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Abstract. In this paper, firstly we calculate Picard groups of a nilpotent
orbit O in a classical complex simple Lie algebra and discuss the properties
of being Q-factorial and factorial for the normalization Õ of the closure
of O. Then we consider the problem of symplectic resolutions for Õ. Our
main theorem says that for any nilpotent orbit O in a semi-simple complex
Lie algebra, equipped with the Kostant-Kirillov symplectic form ω, if for
a resolution π : Z → Õ, the 2-form π∗(ω) defined on π−1(O) extends to
a symplectic 2-form on Z, then Z is isomorphic to the cotangent bundle
T ∗(G/P) of a projective homogeneous space, and π is the collapsing of
the zero section. It proves a conjecture of Cho-Miyaoka-Shepherd-Barron
in this special case. Using this theorem, we determine all varieties Õ which
admit such a resolution.

0. Introduction

Since A. Beauville’s pioneering paper [Be2], symplectic singularities have
received a particular attention by many mathematicians. Recall that a holo-
morphic 2-form on a smooth variety is symplectic if it is closed and non-
degenerate at every point. A normal algebraic variety V (always over k = C)
is said to have symplectic singularities (or to be a symplectic variety) if there
exists a holomorphic symplectic 2-form ω on Vreg such that for any reso-
lution of singularities π : Ṽ → V , the 2-form π∗ω defined a priori on
π−1(Vreg) can be extended to a regular 2-form on Ṽ . If furthermore the
2-form π∗ω extends to a symplectic 2-form on Ṽ for some resolution of V ,
then we say that V admits a symplectic resolution.

A resolution of singularities π : Ṽ → V for a symplectic variety V
is called crepant if the canonical bundle of Ṽ is trivial. As we will show
later, a resolution is crepant if and only if it is a symplectic resolution. In
particular, we see that the existence of a symplectic resolution is independent
of the special symplectic form on Vreg.
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Examples of symplectic singularities are quotients of symplectic singu-
larities by finite groups of automorphisms, preserving a symplectic 2-form
on the regular locus. A particular case is the quotient of a complex vector
space C2n by a finite group G of symplectic automorphisms. The problem
of symplectic resolutions for such quotient singularities has been studied
by D. Kaledin in [Kal] and M. Verbitsky in [Ver]. We will come back to
this problem in a subsequent paper [Fu]. The motivation is to generalize the
McKay correspondence to higher dimensions. Strikingly, if C2n/G admits
a symplectic resolution, then the general problem of McKay correspondence
has been solved by D. Kaledin [Ka2].

In general, it is difficult to determine whether a symplectic variety admits
a symplectic resolution or not. A general conjecture on symplectic reso-
lutions says (see [CMSB]) that any birational contraction of a smooth sym-
plectic variety can be modelled locally upon the collapsing of the cotangent
bundle T ∗(G/P) of a homogenous space. In the case of isolated symplectic
singularities, this has been proved in [CMSB] with some extra hypothesis.

Another important class of symplectic singularities is the normalization
Õ of the closure of a nilpotent orbit O in a semi-simple complex Lie al-
gebra g. As is well-known there exists a canonical symplectic 2-form ω
on any adjoint orbit O (identified with a co-adjoint orbit via the Killing
form), called the Kostant-Kirillov form. It was first proved by D. Pa-
nyushev [Pan] that this symplectic form extends to any resolution, so
Õ is a variety with symplectic singularities. The main purpose of this paper is
to give an affirmative answer to the above conjecture for these singularities.
More precisely, we prove the following

Theorem 0.1 (Main theorem) For any symplectic resolutionπ : (Z,Ω) →
(Õ, ω), there exists a parabolic subgroup P of G, such that (Z,Ω) is iso-
morphic to (T ∗(G/P),Ωcan), where Ωcan is the canonical symplectic form
on T ∗(G/P). Furthermore, under this isomorphism, the map π corresponds
to

T ∗(G/P) � G ×P u→ g, (g, X) �→ Ad(g)X,

where u is the nilradical of p = Lie(P).

Recall that an element X ∈ u is a Richardson element if dim(G · X) =
2dim(G/P), or equivalently P · X is dense in u and P contains the identity
component of the centralizer ZG(X) (see [Hes]). The orbit G · X is called
a Richardson orbit, which plays an important role in representation theory.
It was Richardson who has shown that every parabolic subgroup in G has
Richardson elements (see also our Proposition 3.10). As a direct corol-
lary, our theorem implies that if the closure of a nilpotent orbit O admits
a symplectic resolution, then it is a Richardson orbit.

The key point of the proof is to study the C∗-action on O. Using the
same idea as in [Kal] and [Ver], we show that this action can be lifted to
any symplectic resolution Z of Õ. Then we use some standard analysis for
this action on Z, as done in [Kal] and [Nak].
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Let us give a brief outline of the contents of the paper.
• Sect. 1 recalls some basic definitions. We prove some easy proposi-

tions which reveal the relationship between crepant resolutions, symplectic
resolutions and resolutions with small exceptional set.

• In Sect. 2 we calculate Picard groups of nilpotent orbits of classical
type. In particular, we prove that for a nilpotent orbit O in a simple complex
Lie algebra of B-C-D type, Pic(O) = Hom(π1(O),C

∗). Explicite formulas
are given. Then we use these results to determine when the normalization
Õ is Q-factorial or factorial.

• In Sect. 3, firstly we prove the main theorem. Then we use it and some
results of W. Hesselink [Hes] to determine, in terms of the partition cor-
responding to the orbit O, all normal varieties Õ which admit a symplectic
resolution.

Acknowledgements. I want to thank A. Hirschowitz, J. Kock, C. Margerin and C. Pauly for
helpful discussions. I am especially grateful to A. Beauville for many valuable discussions
and suggestions. Without his help, this work could never have been done. I want to thank
the referee for some pertinent remarks.

1. Preliminaries

Let V be an irreducible complex algebraic variety. A morphism π : Ṽ → V
is called a resolution (or desingularization) if π is projective and π induces
an isomorphism outside the singular locus Sing(V ) of V . Since we are
working over C, Hironaka’s big theorem says that every V admits a desin-
gularization. In this paper we will consider a particular class of resolutions
(called symplectic resolutions). Suppose that the canonical divisor KV of V
is a Cartier divisor. In this case, there is the following notion.

Definition 1.1 A resolution π : Ṽ → V is called crepant if π∗(KV ) = KṼ ,
i.e. π preserves the canonical class.

Recall that a holomorphic 2-form on a smooth variety is symplectic if it
is closed and non-degenerate at every point.

Definition 1.2 A normal algebraic variety V is said to have symplectic
singularities (or to be a symplectic variety) if there exists a symplectic
2-form ω on Vreg such that for any resolution π : Ṽ → V, the 2-form π∗ω
defined a priori on π−1(Vreg) extends to a holomorphic 2-form Ω on Ṽ .

Basic examples of varieties with symplectic singularities are quotients
of symplectic singularities by finite groups of automorphisms, preserving
a symplectic 2-form on the regular locus (see [Be2]). Some classification
theorems for isolated symplectic singularities have been proved since the
original paper [Be2].
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Definition 1.3 A resolution π : Ṽ → V for a symplectic variety (V, ω)
is called symplectic if the 2-form Ω extending π∗ω is a symplectic 2-form
on Ṽ .

Note that for a symplectic variety V , its canonical sheaf is trivial, thus
a symplectic resolution is a crepant resolution. The converse is also true, as
shown by the following proposition (see also [Kal] and [Ver]).

Proposition 1.1 Let (V, ω) be a symplectic variety of dimension 2n
and π : Ṽ → V a resolution, then π is a crepant resolution if and only if π
is a symplectic resolution.

Proof. We have seen that a symplectic resolution is a crepant resolution.
Now suppose that π is crepant. Since ωn has no zeros on Vreg, it extends
to a global section of KV . That π is crepant implies that π∗(ωn) extends to
a global section on Ṽ without zeroes. By our assumption, V has symplectic
singularities, so π∗ω extends to a 2-form Ω on Ṽ , furthermore we have
Ωn = π∗(ωn), thus Ωn has no zeroes on Ṽ , which implies that Ω is
non-degenerate everywhere. Now on π−1(Vreg), we have dΩ = dπ∗(ω) =
π∗(dω) = 0. Since π−1(Vreg) is open-dense, dΩ = 0 on Ṽ , i.e. the 2-form
Ω is closed, which gives thatΩ is a symplectic 2-form, i.e. π is a symplectic
resolution. �


In particular, we see that the existence of a symplectic resolution is
independent of the special symplectic form on Vreg. This easy proposition
gives the following criterion for a resolution being symplectic in the case
of Sing(V ) having higher codimension.

Proposition 1.2 Let V be a symplectic variety with codim(Sing(V )) ≥ 3.
Then V has a symplectic resolution if and only if there exists a resolution
π : Ṽ → V such that codim(π−1(Sing(V ))) ≥ 2.

Proof. Let π : Ṽ → V be a symplecitc resolution. Suppose that the ex-
ceptional set E = π−1(Sing(V )) has a component of codimension 1, then
by Corollary 1.5 of [Nam] (where the proof works without the assumption
“projective”) the image of this component by π in V should be of codi-
mension 2. This is impossible since π is a resolution of singularities and
codim(Sing(V )) ≥ 3, so we have codim(E) ≥ 2.

Conversely, if π is resolution such that codim(π−1(Sing(V ))) ≥ 2, then
Ṽ − π−1(Vreg) has codimension ≥ 2, so KṼ = Kπ−1(Vreg) = π∗(KVreg),
which shows that KṼ is trivial. Thus the resolution π is crepant, which is
also symplectic by the above proposition. �


Recall that a variety isQ-factorial if any Weil divisor has a multiple that
is a Cartier divisor.

Corollary 1.3 A locally Q-factorial normal variety V whose singular lo-
cus Sing(V ) is not of pure co-dimension 2 does not admit any symplectic
resolution.
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Proof. By an argument of [Deb] (p. 28), V being normal and locally
Q-factorial implies that for any birational map π : Z → V , the excep-
tional set E ⊂ Z of π is of pure codimension 1 in Z. Now the corollary
follows in the same way as the precedent proposition. �


Here we recall some basic notions concerning nilpotent orbits. A detailed
and excellent discussion can be found in [C-M]. Let g be a semi-simple
complex Lie algebra and let Gad (or G for short) be the identity component
of its automorphism group, which is called the adjoint group of g. Recall that
each adjoint orbit O (identified with a co-adjoint orbit in g∗ via the Killing
form) carries a canonical G-invariant symplectic 2-form ω, the Kostant-
Kirillov form. An adjoint orbit is closed if and only if it is a semi-simple
orbit. For a nilpotent orbit O, its closure O in g is not necessarily normal.
It is shown in [Pan] (see also [Be1]) that the normalization Õ of O is
a symplectic variety.

Another feature of nilpotent orbits is the existence of a C∗-action. This
can be seen as follows. Take a nilpotent element X ∈ g, we want to show that
λX is conjugate to X for any λ ∈ C∗. By the Jacobson-Morozov theorem,
there exists a standard triple (H, X,Y ) for X, i.e. we have

[H, X] = 2X, [H,Y ] = −2Y, [X,Y ] = H.

So we have an isomorphism φ : sl2 → C〈H, X,Y 〉. Now it is clear that
λX = gXg−1 where g = exp(cH) with c ∈ C satisfying exp(2c) = λ. For
this action, we have

Lemma 1.4 For λ ∈ C∗, we have λ∗ω = λω.

Proof. For an element X ∈ g, let ξ X be the vector field

ξ X(Z) = d

dt
|t=0 exp(tX) · Z = [X, Z].

Then for any λ ∈ C∗, we have λ∗ξ X(Z) = d
dt |t=0λexp(tX) · Z = [X, λZ] =

ξ X(λZ). Let κ(·, ·) be the Killing form on g, then by definition

ωZ
(
ξ X(Z), ξY (Z)

) = κ(Z, [X,Y ]).
Now

λ∗ωZ(ξ
X(Z), ξY (Z)) = ωλZ(λ∗(ξ X(Z)), λ∗(ξY (Z)))

= ωλZ(ξ
X(λZ), ξY (λZ)) = κ(λZ, [X,Y ]) = λωZ(ξ

X(Z), ξY (Z)),

so we have λ∗ω = λω. �

Now g is an sl2-module via the above isomorphism φ, so g is decomposed
as g = ⊕i∈Zgi , where gi = {Z ∈ g| [H, Z] = iZ}. The nilpotent orbit O
is called even if g1 = 0, or equivalently if g2k+1 = 0 for all k ∈ Z (see
Lemma 3.8.7 [C-M]). Let p = ⊕i≥0gi and P a connected subgroup in G
with Lie algebra p. Set n = ⊕i≥2gi . Then for an even orbit O, there is an
isomorphism between (g/p)∗ and n.
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Proposition 1.5 (Springer’s resolution) Let O be an even nilpotent orbit
in g, then there exists a G-equivariant resolution of singularities

π : T ∗(G/P) � G ×P
n→ O, (g, X) �→ Ad(g)X.

Now the morphism π factorizes through Õ, so for an even orbit O, the
variety Õ admits a symplectic resolution. The motivation of this paper is to
find out all varieties Õ which admit a symplectic resolution. This is achieved
at the end of Sect. 3.

2. Picard groups and Q-factority

2.1. Picard groups of nilpotent orbits

Let g be a complex simple Lie algebra, and G the adjoint group of g. For
a nilpotent element X ∈ g, we denote by OX the nilpotent orbit G · X. It is
isomorphic to G/G X , where G X is the stabilizer of X in G. The purpose of
this section is to calculate Picard groups for these nilpotent orbits in case of
g being of classical type.

Instead of working with G, we will work with the universal covering
Gsc of G. In this case we have OX = Gsc/G X

sc, where G X
sc is the stabilizer

of X in Gsc.
Let gi = {Z ∈ g| [H, Z] = iZ}, then g is decomposed as g = ⊕i∈Zgi .

Let gX
i = gX ∩ gi and uX = ⊕i>0g

X
i . If we define gφ = {Z ∈ g| [Z, X] =

[Z,Y ] = [Z, H] = 0}, then gX = uX ⊕ gφ. Let U X be the connected
subgroup of G X

sc with Lie algebra uX , and let Gφ
sc be the centralizer of Im(φ)

in Gsc, then we have

Proposition 2.1 (Barbasch-Vogan, Kostant) There is a semi-direct prod-
uct decomposition G X

sc = U X · Gφ
sc.

Recall that the character group X(G) of an algebraic group G is defined
to be the abelian group of algebraic group morphisms between G and C∗,
i.e. X(G) = Hom(G,C∗).

Lemma 2.2 We have X(G X
sc) = X(Gφ

sc).

Proof. Note that the algebra uX is nilpotent, so the group U X is unipotent.
As is well-known, every unipotent group has trivial character group. Now
our lemma follows from the above proposition. �


So to calculate X(G X
sc), we need to calculate the character group X(Gφ

sc).
In the classical cases, we can describe explicitly the subgroup Gφ

sc. Before
giving the description, we need some notations. For any group H , let Hm

∆

denote the diagonal copy of H in Hm . If H1, · · · , Hm are matrix groups,
let S(

∏
i Hi) be the subgroup of

∏
i Hi consisting of m-tuples of matrices

whose determinants have product 1.



Symplectic resolutions for nilpotent orbits 173

Recall that a partition d of n is a tuple [d1, · · · , dN ] such that d1 ≥ d2 ≥
· · · ≥ dN > 0 and

∑N
j=1 dj = n. In classical cases, a nilpotent orbit can

be encoded by some partition d. To illustrate the idea, let us consider the
case of sln. Every nilpotent element X ∈ sln is conjugate to an element of
the form diag(Jd1, · · · , JdN ), where Jd j is a Jordan block of type dj × dj
and d = [d1, · · · , dN ] is a partition of n. It is clear that this partition is
invariant under conjugation, thus to the nilpotent orbit OX we associate the
partition d, which establishes a bijection between nilpotent orbits in sln and
partitions of n. A similar bijection exists for nilpotent orbits in sp2n and som
(see Sect. 5.1 of [C-M]). It is easy to see that the orbit OX is even if and
only if all the parts di have the same parity. For a partition d = [d1, · · · , dN ],
we put ri = #{ j|dj = i} and si = #{ j|dj ≥ i}. Then we have (see [C-M]
Theorem 6.1.3):

Proposition 2.3 (Springer-Steinberg)

Gφ
sc =


S(

∏
i(GLri )

i
∆) g = sln;∏

i odd(Spri )
i
∆ × ∏

i even(Ori )
i
∆ g = sp2n;

double cover of S(
∏

i even(Spri )
i
∆ × ∏

i odd(Ori )
i
∆) g = som.

Lemma 2.4 If g = sln, then X(G X
sc) = Zk−1, where k = #{i|ri �= 0} is the

number of distinct di in d.

Proof. Recall that X(GLr) ∼= Z for any r > 0, where the isomorphism
is given by Z � l �→ (A �→ det(A)l ). So X(

∏
i(GLri )

i
∆)

∼= Zk, where
k = #{i|ri �= 0} is the number of distinct di in the partition d. When we take
the operation “S”, the determinant of the first factor GLr1 is determined by
the others, so X(G X

sc) = Zk−1. �

Proposition 2.5 Let OX be a nilpotent orbit in sln corresponding to the par-
tition d, and k the number of distinct di in d. Then we have
Pic(OX ) = Zk−1.

Proof. By a result of V. Popov ([Pop]), the Picard group of a connected
semisimple Lie group is isomorphic to its fundamental group. So the Picard
group Pic(Gsc) of the simply connected semi-simple group Gsc is trivial.
Now the following exact sequence ([KKV]):

0 → X
(
G X

sc

) → Pic(OX ) → Pic(Gsc) = 0,

gives that Pic(OX ) = X(G X
sc), which is equal to Zk−1 by the above

lemma. �

Now we consider the case of a simple Lie algebra of B-C-D type.

Theorem 2.6 Let g be a simple complex Lie algebra of B-C-D type, and OX
a nilpotent orbit in g, then we have Pic(OX ) = X(π1(OX )), where π1(OX )
is the fundamental group of OX.
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Proof. By our Lemma 2.2, we have X((G X
sc)

◦) = X((Gφ
sc)

◦). By the above
theorem of Springer-Steinberg, we see that (Gφ

sc)
◦ is product of copies of

semi-simple Lie groups, thus X((Gφ
sc)

◦) is trivial. So we have

X
(
G X

sc

) = X
(
G X

sc/
(
G X

sc

)◦)
.

By Lemma 6.1.1 of [C-M], the component group G X
sc/(G

X
sc)

◦ is isomor-
phic to the fundamental group π1(OX ) of OX , thus we have X(G X

sc) =
X(π1(OX )). Now a similar argument as we did in the above proof gives
that Pic(OX ) = X(G X

sc) = X(π1(OX )). �

Combiningwithexplicit formulas forπ1(OX )given in [C-M] (Cor. 6.1.6),

we can give the following formulas for Pic(OX ). Recall that we say a par-
tition d is rather odd if all of its odd parts have multiplicity one.

Corollary 2.7 Let OX be a nilpotent orbit in g corresponding to the par-
tition d. Let a be the number of distinct odd di and let b be the number of
distinct even di . Then we have

(1) For g = sp2n, we have Pic(OX ) = (Z/2Z)b;
(2) For g = so2n+1, if d is rather odd, then Pic(OX ) is an extension of
Z/2Z by (Z/2Z)a−1, otherwise Pic(OX ) = (Z/2Z)a−1;

(3) For g = so2n, if d is rather odd, then Pic(OX ) is an extension of Z/2Z
by (Z/2Z)max{0,a−1}, otherwise Pic(OX ) = (Z/2Z)max{0,a−1}.

Corollary 2.8 For any nilpotent orbit OX in a simple Lie algebra of B-C-D
type, the Picard group Pic(OX ) is finite.

2.2. Q-factority and symplectic resolutions

Let g be a simple Lie algebra of classical type, and OX be a nilpotent
orbit. The closure OX is not always normal (for precise results see [KP]).
We denote by ÕX its normalization. In this section, we will give some
results on the properties of being Q-factorial and factorial for the normal
variety ÕX .

For an irreducible algebraic variety V , which is smooth in codimension 1,
we denote by Cl(V ) its divisor class group, i.e. the Weil divisors modulo
linear equivalences ([Har]). The following lemma is easily proved.

Lemma 2.9 Let V be an irreducible algebraic variety, which is smooth in
codimension 1. Let π : Ṽ → V be the normalization. Then the induced
map π∗ : Cl(V ) → Cl(Ṽ ) is a group isomorphism.

Proposition 2.10 Let g be a simple Lie algebra of B-C-D type, and let OX

be a nilpotent orbit in g, then the normal variety ÕX is Q-factorial.
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Proof. Since OX is smooth in codimension 1, by the precedent lemma,
we have Cl(ÕX ) ∼= Cl(OX ). Now by Proposition II.6.5 of [Har], we have
Cl(OX ) ∼= Cl(OX ). That OX is smooth gives Cl(OX ) = Pic(OX ), thus
Cl(ÕX ) ∼= Pic(OX ). Now by our calculations in the precedent section, we
know that Pic(OX ) is a finite group, so Cl(ÕX )⊗ZQ ∼= Pic(OX )⊗ZQ = 0.
In particular, the map

Pic(ÕX )⊗Z Q→ Cl(ÕX )⊗Z Q
is surjective, ÕX is Q-factorial. �

Proposition 2.11 Let g be a simple Lie algebra, and OX be a nilpotent orbit
in g corresponding to the partition d = [d1, · · · , dN ]. Then we have:

(1) For g = sln, the normal variety ÕX is factorial if and only if d1 = d2 =
· · · = dN , i.e. there is only one distinct di;

(2) For g = sp2n, the normal variety ÕX is factorial if and only if every di
is odd;

(3) For g = so2n, the normal variety ÕX is factorial if and only if there
exists exact one distinct odd di;

(4) For g = so2n+1, the normal variety ÕX is factorial if and only if there
exists just one distinct odd di with multiplicity at least 3.

Proof. From Proposition II.6.2 of [Har], the affine normal variety ÕX is
factorial if and only if Cl(ÕX ) = 0. By the proof of the above proposi-
tion, this is equivalent to Pic(OX ) = 0. Now we just do a case-by-case
check, based on our Proposition 2.5 and Corollary 2.7. For example, when
g = so2n+1, Pic(OX ) = 0 if and only if d is not rather odd and a = 1,
i.e. d has only one distinct odd di , with multiplicity at least 2. But the sum∑

di = 2n + 1 is odd, so the multiplicity should be at least 3. �

The above two propositions give a rather clear description of the property

of beingQ-factorial or factorial of the normal variety ÕX , with one exception
g = sln . This will be discussed further in Sect. 3. Applying these results to
symplectic resolutions, we have

Proposition 2.12 Let g be a simple Lie algebra of type B-C-D, and OX be
a nilpotent orbit in g. If OX − OX is not of pure co-dimension 2 in OX, then
the normal variety ÕX does not admit any symplectic resolution.

Proof. This comes directly from the above Proposition 2.10 and Corol-
lary 1.3. �

Examples: In the case of g = sp6, this proposition shows that Õ[2,2,1,1] and
the closure of the minimal orbit do not have any symplectic resolution. In
the case of g = so8, we find 2 orbits which do not admit any symplectic
resolution, corresponding to the partitions [3, 22, 1] and [22, 14], while the
other nilpotent orbits are all even, thus having a symplectic resolution by
Springer’s resolution.
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Corollary 2.13 Let g be a simple Lie algebra of type B-C-D. The closure
of the minimal orbit Omin in g does not admit any symplectic resolution.

Remark 1 This is also true for minimal orbits in exceptional Lie algebras
by a similar argument. We just need to note that the Picard groups for these
cases are trivial. This follows also from our discussions in Sect. 3.4.

As we will see later, the closure of every nilpotent orbit in sln admits
a symplectic resolution. This is more or less known to some experts.

3. Symplectic resolutions for nilpotent orbits

3.1. Lifting the action of C∗ and G

Let g be a semi-simple complex Lie algebra and G its adjoint group. Let
O be a nilpotent orbit in g and Õ the normalization of O. Recall that there
exists an action of G (resp. C∗) on O. The purpose of this section is to
prove that this action can be lifted to any symplectic resolution of Õ. Let
π : Z → Õ be a symplectic resolution for Õ, and Ω the symplectic 2-
form on Z extending π∗ω, where ω is the Kostant-Kirillov symplectic form
on O. We denote also by π the map Z → O, which should not cause any
confusion.

Proposition 3.1 The action of G (resp. C∗) on O lifts to Z, in such a way
that π is G-equivariant (resp. C∗-equivariant).

Proof. The proof is inspired from the proof of Theorem 1.3 in [Kal] and
Theorem 2.5 in [Ver]. Firstly we will show that the action of g on O can be
lifted to an action of g on Z. To this end, let X ∈ g. Consider the vector field
ξ X on O defined by ξ X(Y ) = d

dt |t=0 exp(tX) · Y = [X,Y ], where · denotes
the adjoint action of G on g. Now the symplectic form ω on O gives an
isomorphism Ω1(O) � T (O) between 1-forms and vector fields on O. Let
us denote by αX the 1-form on O corresponding to the vector field ξ X . The
key point is the following claim.

Claim The 1-form π∗(αX ) extends to the whole of Z.

Proof of the claim. Take an Hermitian metric h on Z. Set U = π−1(O).
Then π∗(αX ) can be extended to the whole of Z unless it has singularities
on the complement Z − U . So we need to show that for any compact set
K ⊂ Z and for any z ∈ U ∩ K , the Hermitian norm of π∗(αX ) is bounded
by some constant depending on K .

Since π is analytic, thus Lipschitz on compact subsets K ⊂ Z. By
rescaling the metric h, we can suppose that π|K decreases distance. Here
the metric on O is the one induced from the metric on g. We need to show
that on π(K ) ∩ O, the 1-form αX has bounded norm. This follows from
the fact that the vector field ξ X has bounded norm on π(K ) ∩ O and ω is
G-invariant, so it also has bounded norm on π(K ) ∩ U . �
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Let us denote by α̃ the extended 1-form on Z. The symplectic form Ω
on Z gives a 1-1 correspondence between 1-forms and vector fields on Z,
so we get a vector field ζ X on Z. If we denote by φX(z, t) the flow of this
vector field, then g acts on Z via X · z = φX(z, 1). This gives an action of
Gsc on Z. The center of Gsc acts trivially on the open-dense set π−1(O),
so it acts trivially on the whole of Z. Since G is the quotient of Gsc by its
center, we get an action of G on Z.

A similar argument shows that we can also lift the C∗-action to Z. It is
clear from the construction that π is G-equivariant (resp. C∗-equivariant).

�

Corollary 3.2 The symplectic formΩ is G-invariant, and for theC∗ -action,
we have λ∗Ω = λΩ for any λ ∈ C∗.

Proof. This comes from the above proposition and the corresponding prop-
erties of ω, which is G-invariant and satisfies λ∗ω = λω (Lemma 1.4).

�


3.2. Main theorem

In this section we will prove the following theorem, which gives an affirma-
tive answer in the case of nilpotent orbits to the conjecture of Cho-Miyaoka-
Shepherd-Barron [CMSB].

Theorem 3.3 (Main theorem) Let g be a semi-simple complex Lie algebra,
and G its adjoint group. Consider a nilpotent orbit O in g, equipped with the
Kostant-Kirillov form ω. Then for any symplectic resolution π : (Z,Ω) →
(Õ, ω), there exists a parabolic subgroup P of G, such that (Z,Ω) is iso-
morphic to (T ∗(G/P),Ωcan), where Ωcan is the canonical symplectic form
on T ∗(G/P). Furthermore, under this isomorphism, the map π becomes

T ∗(G/P) � G ×P u→ g, (g, X) �→ Ad(g)X,

where u is the nilradical of p = Lie(P).

The idea of the proof is to study the C∗-action on Z, as done in the
papers of D. Kaledin [Kal] and H. Nakajima [Nak]. A detailed account of
the general theory can be found in Sect. 6 of [Kal]. One may also consult
the excellent book of H. Nakajima [Na2].

In the following we also denote by π the map Z → O. We will study
this map intead of Z → Õ. By our Proposition 3.1, the C∗-action on O
can be lifted on Z. Let ZC

∗
be the fixed points subvariety in Z under this

C∗-action. Put 2n = dim(Z). As we will see later, one difficulty of the proof
is to show that π−1(0) = ZC

∗
.

Lemma 3.4 There exists a G-equivariant attraction p : Z → ZC
∗
.
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Proof. For any point x ∈ Z, define φx : C∗ → Z to be φx(λ) = λ · x. Let
ψx : C → O be ψx(λ) = λπ(x). Since π is C∗-equivariant, we have the
following commutative diagram:

C∗ φx−−−→ Z� �π
C

ψx−−−→ O

Applying the valuative criterion of properness for the projective map π,
we get a unique morphism φ̃x : C → Z extending φx . It is clear that
φ̃x(0) ∈ ZC

∗
. Now we define p : Z → ZC

∗
by p(x) = φ̃x(0), which is

the attraction map for the C∗-action. That the G-action commutes with the
C∗-action on Z implies that p is G-equivariant. �


Now take a fixed point z ∈ ZC
∗
, the action of C∗ on Z induces a weight

decomposition
Tz Z = ⊕p∈ZT p

z Z,

where T p
z Z = {v ∈ Tz Z|λ∗v = λpv}.

Definition 3.1 The C∗-action is called definite at the point z if T p
z Z = 0

for all p < 0.

Lemma 3.5 There exists an irreducible smooth component Z0 of ZC
∗

on
which the C∗-action is definite.

Proof. Consider the open-dense set π−1(O), which is isomorphic to O, so
G acts on it transitively. By our precedent lemma, p is G-equivariant, so
the G-action on p(π−1(O)) is also transitive. As a corollary, p(π−1(O)) is
connected, then it is contained in a connected component, say Z0, of ZC

∗
.

This means that the attraction subvariety of Z0 contains the open-dense set
π−1(O) of Z, so the C∗-action is definite on Z0 (see Lemma 6.1 [Kal]),
i.e. T q

z Z = 0 for q < 0. Since Z is smooth, it is well-known that the fixed
points variety ZC

∗
is a union of smooth connected components, thus Z0 is

smooth and irreducible. �

Lemma 3.6 The closed subvariety Z0 is projective, n-dimensional and
Lagrangian w.r.t. Ω.

Proof. Since π is projective, the variety π−1(0) is projective. That π is
C∗-equivariant implies that Z0 is a closed subvariety in π−1(0), so Z0 is
projective.

The tangent space of Z0 at the point z equals to Tz Z0 = T 0
z Z. Now take

two vectors v1 ∈ T p
z Z and v2 ∈ T q

z Z, then the equation λ∗Ω = λΩ implies

λΩz(v1, v2) = (λ∗Ω)z(v1, v2) = Ωλ·z(λ∗(v1), λ∗(v2)) = λp+qΩz(v1, v2).
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So Ωz(v1, v2) = 0 if p + q �= 1. Now that T q
z Z = 0 for q < 0 implies that

for p ≥ 2, the space T p
z Z is orthogonal to Tz Z w.r.t. Ω, thus T p

z Z = 0,
so Tz Z = T 0

z Z ⊕ T 1
z Z. Furthermore Ω gives a duality between T 0

z Z and
T 1

z Z, so dim(T 0
z Z) = n, i.e. Z0 is of dimension n. This also gives that Z0 is

Lagrangian with respect to the symplectic form Ω. �

Since the decomposition by the attraction subvarieties is locally closed,

the variety V = p−1(Z0) containing π−1(O) is open-dense in Z. As easily
seen, it is also G-invariant. From now on, we will only consider p : V → Z0
instead of p : Z → ZC

∗
. At the end of this section, we will prove that V = Z.

There exists a canonical symplectic 2-formΩcan on the cotangent bundle
T ∗ Z0, which comes from the Liouville form. There is also a natural C∗-
action on T ∗Z0, considered as a vector bundle over Z0.

Lemma 3.7 There exists a C∗-equivariant isomorphism i : V → T ∗Z0,
which identifies also the two symplectic structures.

Proof. Since the C∗-action is definite on Z0 and the C∗-action on Tz Z =
T 0

z Z ⊕T 1
z Z is the same for any z ∈ Z0, a classical work of Bialynicki-Birula

(see [BB]) implies that the attraction p : V → Z0 makes V a vector bundle
of rank n over Z0, and the C∗-action on this vector bundle is the natural
one. Let us identity Z0 with the zero section of this bundle. Since for any
z ∈ Z0, Tz Z = Tz Z0 ⊕ T 1

z Z, the induced C∗-action on the normal bundle N
of Z0 in V is the natural one when we consider N as a vector bundle over Z0.
This gives a C∗-equivariant isomorphism between V and the total space of
the normal bundle N. Let us also denote by Ω the symplectic form on N,
which comes from the symplectic form on V .

Now we establish an isomorphism between (N,Ω) and (T ∗ Z0,Ωcan)
as follows. Take a point z ∈ Z0, and a vector v ∈ Nz . Since Z0 is La-
grangian in the two symplectic spaces, there exists a unique vectorw ∈ T ∗

z Z0
such that Ωz(v, u) = Ωcan,z(w, u) for any u ∈ Tz Z0. We define the map
i : N → T ∗Z0 to be i(v) = w. Now it is easy to see that i is a symplectic
isomorphism. �


From now on, we will denote by Ω (instead of Ωcan) the canonical
symplectic 2-form on T ∗ Z0. Now we will study the action of G on Z.
Since the G-action commutes with the C∗-action, the fixed points ZC

∗
is

G-invariant. Since Z0 is a connected component of ZC
∗

and G is connected,
Z0 is also G-invariant, thus we get a G-action on Z0. This action induces
naturally an action of G on the total space of TZ0, which is given by
g · (z, v) = (g · z, dg(v)). By taking the dual, we have a G-action on T ∗Z0.

Lemma 3.8 The G-action on T ∗Z0 is isomorphic to the one described
above.

Proof. For an element g ∈ G, we write φg the action of g on T ∗ Z0. The ac-
tion of G on Z0 will be simply denoted by ·. For an element z ∈ Z0 ⊂ T ∗Z0,
we have a natural decomposition Tz(T ∗ Z0) = T ∗

z Z0 ⊕ Tz Z0, which is also
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isotropic w.r.t.Ω. The G-action on Tz Z0 is the natural differential one. Since
the G-action commutes with the C∗-action, for a vector v2 ∈ T ∗

z Z0, consid-
ered as a tangent vector in Tz(T ∗ Z0), we have dφg(v2) = d

dλ |λ=0φg(λv2) =
d

dλ |λ=0λφg(v2) = φg(v2).
For any vector v1 ∈ Tz Z0, since Ω is G-invariant, we have

Ωz(v1, v2) = φ∗
gΩz(v1, v2)

= Ωg·z(dφg(v1), dφg(v2)) = Ωg·z(dg(v1), φg(v2)).

That Ω is the natural symplectic structure on T ∗ Z0 implies that φg(v2) =
(dg)∗(v2), i.e. the action of G on T ∗ Z0 is the natural one induced from the
action of G on Z0. �

Lemma 3.9 The variety Z0 contains an open-dense G-orbit.

Proof. The argument in the proof of Lemma 3.5 shows that G acts transi-
tively on the set p(π−1(O)) ⊂ Z0. Here p : T ∗ Z0 → Z0 is the canonical
projection. Since π−1(O) is open, p(π−1(O)) is an open-dense G-orbit. �


The author wants to thank F. Knop and M. Brion for having provided
the proof of the following proposition, which is implicit in [Kno].

Proposition 3.10 Let g be a semi-simple complex Lie algebra and G its
adjoint group. Let P be a closed subgroup of G and p its Lie algebra. Then
P has a dense orbit (via the co-adjoint action) in (g/p)∗ if and only if P is
parabolic.

Proof. Suppose that P has a dense orbit in (g/p)∗, then its image in g∗//G is
a point. This means that the space G/P has rank 0 (see Satz 5.4 [Kno]). Now
Satz 9.1 of loc. cit. implies that all isotropy groups of G/P are parabolic,
thus P is parabolic.

The converse is a theorem of Richardson [Ric]. �

Corollary 3.11 The G-action on Z0 is transitive, and Z0 is isomorphic to
G/P for some parabolic subgroup P of G.

Proof. By our Lemma 3.9, Z0 has an open orbit, say U = G/P, where P is
a subgroup of G. Now T ∗(G/P) � G ×P (g/p)∗. Note that G has an open
orbit in T ∗(G/P), which is isomorphic to π−1(O), so P has an open dense
orbit in (g/p)∗, where the action is the co-adjoint one by our Lemma 3.8.
Now the above proposition gives that P is parabolic. As a corollary, the
variety G/P is projective which is also dense in Z0, so Z0 = G/P. �


By our above lemmas, V is isomorphic to T ∗(G/P) = G ×P u, where
u is the nilradical of p = Lie(P) which is identified with (g/p)∗ via the
Killing form. Under this isomorphism, the G-action on G×P u is the natural
one g · (h, X) = (gh, X).
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Lemma 3.12 Under these isomorphisms, the map π : V � G ×P u→ O
becomes (g, X) �→ Ad(g)X.

Proof. Take a point (1, X) ∈ 1×u∩π−1(O), possibly by using a translation
on G/P, we can suppose π(1, X) = X. Since π is G-equivariant, for any
p ∈ P, we have π(1, Ad(p)X) = π(1, p · X) = p · π(1, X) = Ad(p)X.
Now that P · X is dense in u implies that π(1,Y ) = Y for any Y ∈ u, which
gives π(g,Y ) = π(g · (1,Y )) = g · π(1,Y ) = Ad(g)Y for any g ∈ G. �

Corollary 3.13 We have Z0 = π−1(0)∩V, i.e. Z0 is a connected component
of π−1(0).

Proof. Note that for any (g, X) ∈ G ×P u, π(g, X) = Ad(g)X is 0 if and
only if X = 0, i.e. Z0 = π−1(0) ∩ V . This implies that for any z ∈ π−1(0)
such that limλ→0 λ · z ∈ Z0, then z ∈ Z0, so Z0 is a connected component
of π−1(0). �


Now to finish the proof of our theorem, we need to show that V = Z,
which is equivalent to that π−1(0) is connected by the above corollary.
Suppose that there existed another connected component W of π−1(0). Let
Z1, · · · , Zl be the connected components of ZC

∗ ∩ W .
Following [Wlo], we say that Zi is an immediate predecessor of Z j iff

there exists a non-fixed point x ∈ Z such that

lim
λ→0

λ · x ∈ Zi, and lim
λ→∞ λ · x ∈ Z j .

Since Zi, Z j are in π−1(0), such a point x is necessarily in π−1(0), and in
fact in the connected component W of π−1(0). We say that Zi precedes Z j
and write Zi ≺ Z j if there exists a sequence Zk0 = Zi, Zk1 , · · · , Zks = Z j
such that Zkm−1 is an immediate predecessor of Zkm for all m. Since Z
is quasi-projective and smooth, the following lemma is a restatement of
Lemma 1 in [Wlo], which is though elmentary but essential to the work
of [Wlo].

Lemma 3.14 The relation ≺ is an order, i.e. there does not exist any com-
ponent Z j such that Z j ≺ Z j.

The following corollary is clear from the above lemma.

Corollary 3.15 There exists a component Zi which is minimal with respect
to the relation ≺, i.e. there does not exist any Z j with Z j ≺ Zi.

Now to finish the proof of the main theorem, we show that the C∗-action
is also definite on Zi . The key point here is to note that for any z ∈ Z,
limλ→0 π(λ · z) = limλ→0 λπ(z) = 0, so λ · z lies in a neighborhood of the
compact variety π−1(0). This implies that for a point x ∈ ZC

∗
the negatively

weighted vectors v ∈ T p
x Z, with p < 0 could only possibly come from the

C∗-action on π−1(0). Now Zi is minimal with respect to the relation ≺,
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then there does not exist any z ∈ Z such that limλ→∞ λ · z ∈ Zi , so there
is no negatively weighted tangent vector on Zi , i.e. the C∗-action is definite
on Zi . As a corollary, the attraction subvariety of Zi should contain an open
set in Z, which is impossible, since the attraction subvariety of Z0 is already
an open-dense set. So π−1(0) is connected and equals to Z0, which gives
V = Z. The proof of our main theorem is thus completed. �

Remark 2 Here O is not necessarily normal, so we could not use Zariski’s
main theorem to deduce that π−1(0) is connected.

3.3. Symplectic resolutions: classical cases

Let g be a simple Lie algebra and G its adjoint group. Recall that a nilpotent
orbit O in g is called polarizable if there exists a parabolic subalgebra
p ⊆ g such that u ∩ O is dense in u, where u is the nilradical of p.
The Lie group P corresponding to p is called a polarization of O. In the
literature, these orbits are also called Richardson orbits. For such an orbit,
we have dim(O) = 2 dim(G/P). As shown by Richardson, every parabolic
subalgebra corresponds to a polarizable orbit. In the case of g = sln, every
nilpotent orbit is polarizable. As a direct corollary of our main theorem, we
have

Proposition 3.16 If the normal variety Õ admits a symplectic resolution,
then O is a Richardson orbit.

So in the following we will only consider Richardson orbits. For an
element X ∈ O, let G X be the stabilizer of X in G, and (G X )◦ the identity
component. The component group G X/(G X )◦ is denoted by A(O). Suppose
that O is polarizable and let P be a polarization. Let PX be the stabilizer
of X in P. Then we have (G X )◦ ⊆ PX ⊆ G X . Put AP(O) = PX/(G X )◦,
which is also the stabilizer of P in A(O). Note that AP(O) is a subgroup of
the abelian group A(O). We denote by N(P) = [A(O) : AP(O)] the index
of AP(O) in A(O). It turns out that this number is useful to our problem, as
shown by the following:

Proposition 3.17 Let O be a nilpotent orbit in a simple Lie algebra g. Then
the symplectic variety Õ admits a symplectic resolution if and only if there
exists a polarization P of O such that N(P) = 1.

Proof. By our main theorem, any symplectic resolution for O is of the form

π : T ∗(G/P) � G ×P u→ O, π(g, X) = Ad(g)X,

for some parobolic subgroup P in G. In particular, we see that P gives
a polarization of O. As shown in [BK](§7), the map π is projective and
of degree N(P) = [G X : PX]. So it is birational if and only if N(P) = 1,
in which case it gives an isomorphism from π−1(O) to O, thus we get
a symplectic resolution for O, and also for Õ. �
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Corollary 3.18 The closure of any nilpotent orbit in sln admits a symplectic
resolution.

This corollary comes directly from the proposition and the fact that A(O) = 1
for any nilpotent orbit in sln (see for example Corollary 6.1.6 of [C-M]).
The following corollary follows from Corollary 1.3.

Corollary 3.19 Consider a nilpotent orbit O in sln. If O − O is not of pure
codimension 2, then O is not locally Q-factorial.

In the following we will consider the classical cases g = som and
g = spm . The first question is to decide when a nilpotent orbit O is polariz-
able, and the second question is to decide when there exists a polarization
P such that N(P) = 1. We will use notations and results of [Hes] to settle
these two questions.

First, some notations. Here all congruences are modulo 2. Let ε = 0
for som and ε = 1 for spm . A natural number q ≥ 0 is called admissible if
q ≡ m and q �= 2 if ε = 0. Set

Pai(m, q) = {partitions π of m |π j ≡ 1 if j ≤ q; π j ≡ 0 if j > q},
which parametrizes some Levi types of parabolic subgroups in G. Let Pε(m)
be the partitional parameterizations of nilpotent orbits in g, i.e. the partitions
d such that for any i ≡ ε, the number #{ j|dj = i} is even (see Sect. 5.1
in [C-M]). Then there exists an injective Spaltensein mapping

Sq : Pai(m, q) → Pε(m).

As shown by Theorem 7.1.(a) in [Hes], a nilpotent orbit O is polarizable
if and only if there exists some admissible q such that the partition of the
orbit is in the image of Sq. If we denote by

J(d) = { j|dj ≡ ε} ∪ { j, j + 1| j ≡ m, dj = dj+1}
j1(d) = sup{ j ∈ J(d)|dj ≡ 1} (−∞ if empty)

j0(d) = min{ j ∈ J(d)|dj ≡ 0} (+∞ if empty),

then a partition d is in the image of Sq if and only if (see Prop. 6.5 [Hes]):

j1(d) ≤ q < j0(d) and dj ≡ dj+1 if j ≡ m + 1.

Let B(d) = { j ∈ N|dj > dj+1; dj ≡ ε + 1} and u = 1
2(−1)ε(#{ j|dj ≡ 1}

− q), then we have

Proposition 3.20 (Theorem 7.1 [Hes]) Suppose d is in the image of Sq.
Let P be an associated parabolic subgroup. Then

N(P) =
{

2u if q + ε ≥ 1 or B(d) = ∅;
2u−1 if q = ε = 0 and B(d) �= ∅.
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Now we will do a case-by-case check.

Proposition 3.21 For g = sp2n (resp. g = so2n+1), let O be a nilpotent orbit
in g corresponding to the partition d = [d1, · · · , dN ]. Then the following
three conditions are equivalent:

(i) O is polarizable and there exists a polarization P such that N(P) = 1;
(ii) there exists an even (resp. odd) number q ≥ 0 such that the first q parts

d1, · · · , dq are odd and the other parts are even;
(iii) the normal variety Õ has a symplectic resolution.

Proof. The equivalence between (i) and (iii) has been established earlier. In
the following, we will prove the equivalence between conditions (i) and (ii).

For the case g = sp2n, we have ε = 1, so N(P) = 2u , which gives
that N(P) = 1 if and only if u = 0, i.e. if and only if q = #{ j|dj ≡ 1}.
Now the condition (i) is equivalent to saying that the partition d is in
the image of Sq : Pai(2n, q) → P1(2n). This condition is equivalent to
having j1(d) ≤ q < j0(d) and dj ≡ dj+1 if j ≡ 1. Note that here the
set J(d) contains the set { j|dj ≡ 1}, thus j1(d) = su p{ j|dj ≡ 1}. Now
j1(d) ≤ q = #{ j|dj ≡ 1} implies that the first q parts of d are odd, and
the others are even. In this case, the conditions q < j0(d) and dj ≡ dj+1
if j ≡ 1 are satisfied automatically. So we have the equivalence of the
conditions (i) and (ii).

In the case of g = so2n+1, since q is admissible, q ≡ 1, thus q ≥ 1, which
gives N(P) = 2u . So N(P) = 1 if and only if u = 0, i.e. q = #{ j|dj ≡ 1}.
Now the set { j|dj ≡ 0} is contained in J(d), thus j0(d) = min{ j|dj ≡ 0}.
The condition j0(d) > q gives that the first q parts should be odd, and the
others are even. If this is satisfied, then the orbit is polarizable by some P
with N(P) = 1. So we have the equivalence between (i) and (ii). �

Examples: Consider so7, the variety Õ[3,2,2] has a symplectic resolution. So
in the case of so7, only Omin does not admit any symplectic resolution. For
sp6, we see that the variety Õ[4,1,1] does not admit any symplectic resolution.

Proposition 3.22 For g = so2n, let O be a nilpotent orbit corresponding
to the partition d = [d1, · · · , dN ]. Then the following three conditions are
equivalent:

(i) O is polarizable and there exists a polarization P such that N(P) = 1;
(ii) either there exists some even number q �= 2 such that the first q parts

of d are odd and the others are even or there exists exactly 2 odd parts
which are at the positions 2k − 1 and 2k in the partition d for some k;

(iii) the normal variety Õ has a symplectic resolution.

Proof. We need to establish the equivalence between (i) and (ii). There are
three cases:
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Case (a): q = ε = 0 and B(d) �= ∅.
In this case we should have u = 1, then #{ j|dj ≡ 1} = 2, i.e. there are
exactly 2 odd parts. The polarizable condition dj ≡ dj+1 if j ≡ 1 gives that
the two parts are at the positions 2k − 1 and 2k in d for some k. In this case,
the other conditions as B(d) �= ∅ and j1(d) ≤ 0 < j0(d) are satisfied.

Case (b): B(d) = ∅
In this case we find that there is no odd part in d.

Case (c): q ≥ 2 and q ≡ 0.
Since q should be admissible, thus q �= 2, i.e. q ≥ 4 even. Now N(P) = 1
gives u = 0, i.e. q = #{ j|dj ≡ 1}. Now the set { j|dj ≡ 0} is contained
in J(d), so j0(d) > q gives that the first q parts of the partition d should
be odd, and thus the other parts should be even. If this is satisfied, then the
other conditions are also satisfied.

The above analysis for the three cases gives the equivalence between the
conditions (i) and (ii). �

Remark 3 By Theorem 7.1.(d) of [Hes], it is also possible to determine the
number of non-conjugate polarizations P for a Richardson orbit O such that
N(P) = 1, i.e. we could give the number of different symplectic resolutions
for a Richardson orbit. Interested readers are encouraged to provide such
a list.

3.4. Symplectic resolutions: exceptional cases

Firstly we have the following

Proposition 3.23 Let g be one of the following exceptional simple complex
Lie algebras: G2, F4, E6, and O a nilpotent orbit in g. Then the normal
variety Õ admits a symplectic resolution if and only if O is a Richardson
orbit.

Proof. Note that an even orbit is always a Richardson orbit, and it ad-
mits a symplectic resolution by Springer’s resolution. Among the non-
even orbits, a list of Richardson orbits in exceptional simple Lie alge-
bra g can be found in [Hir]. Here we use notations of [C-M] for nilpo-
tent orbits in exceptional algebras. When g = G2, every Richardson or-
bit is even. When g = F4, there is only one non-even Richardson or-
bit: C3. In the case of g = E6, there are 5 non-even Richardson orbits:
2A1, A2+2A1, A3, A4+A1, D5(a1). Now the table given in [C-M] (Chap. 8)
shows that all these orbits are simply connected, thus A(O) = 1, so for any
polarization P for O, the collapsing T ∗(G/P) → O gives a symplectic
resolution. �


In the case of g = E7, there are 5 non-even Richardson orbits, two of
which have trivial component groups (thus admit a symplectic resolution):
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D5 + A1 and D6(a1); while for the other three (D4(a1)+ A1, A4 + A1 and
D5(a1)) we do not know, whose component groups are S2.

In the case of g = E8, there are 7 non-even Richardson orbits, three
of which have trivial component groups (thus admit a symplectic reso-
lution): A4 + A2 + A1, A6 + A1 and E7(a1); while for the other four
(D6(a1), D7(a2), E6(a1)+ A1 and E7(a3)), whose component groups are S2,
we do not know the answer.
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