
Abstract The existence of retrograde cell death in sen-
sory dorsal root ganglion (DRG) cells after peripheral
nerve injury is well established. However, with respect
to retrograde motoneuron death after peripheral nerve in-
jury, available data are conflicting. This may partly be
due to the cell counting techniques used. In the present
study, quantitative morphometric methods have been
used to analyse retrograde motoneuron death induced by
spinal nerve injury in adult rats. For comparison, DRG
cells were also included in the study. The C7 spinal
nerve was transected about 10 mm distal to the DRG and
exposed to the fluorescent tracer fast blue in order to
retrogradely label the spinal motoneurons and DRG cells
of the C7 segment. At 1–16 weeks postoperatively, the
nuclei of fast-blue-labelled C7 motoneurons and DRG
cells were counted in consecutive 50-µm-thick serial sec-
tions. For comparison, the physical disector technique
and measurements of neuronal density were also used to
calculate motoneuron number. The counts of fast-blue-
labelled motoneurons revealed a delayed motoneuron
loss amounting to 21% and 31% after 8 and 16 weeks,
respectively (P<0.001). The remaining motoneurons ex-
hibited 20% (P<0.05) soma atrophy. Using the physical
disector technique, the motoneuron loss was 23%
(P<0.001) after 16 weeks. Calculations of neuronal den-
sity in Nissl-stained sections failed to reveal any moto-
neuron loss, although after correction for shrinkage of
the ventral horn a 14% (P<0.001) motoneuron loss was
found. The fast-blue-labelled DRG neurons displayed
51% (P<0.001) cell loss after 16 weeks, and the remain-
ing cells showed 22% (P<0.001) soma atrophy. In sum-
mary, cervical spinal nerve injury induces retrograde de-

generation of both motoneurons and DRG cells. Howev-
er, to demonstrate the motoneuron loss adequate tech-
niques for cell counts have to be employed.
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Introduction

Lesions to the cervical spinal nerves and roots are com-
mon injuries affecting mainly young individuals in-
volved in traffic accidents. The functional restoration is
poor and usually results in severely disabling motor and
sensory deficits (Kay 1998; Terzis et al. 1999). This may
at least in part be due to retrograde cell death among the
injured neurons, which will restrict the capacity for pe-
ripheral nerve regeneration (Thanos et al. 1998).

Following peripheral nerve injury, the axotomized
motor and sensory neurons undergo a series of retro-
grade degenerative changes, which may result in neuro-
nal death (for reviews see Aldskogius et al. 1992; Bisby
and Tetzlaff 1992; Lowrie and Vrbová 1992; Snider et al.
1992; Aldskogius and Svensson 1993; Kreutzberg 1995;
De la Cruz et al. 1996; Aldskogius and Kozlova 1998). It
is generally believed that interruption of intra-axonal
transport of neurotrophic factors from the periphery to
the cell bodies plays a role in this degenerative reaction
(Lindsay 1994; Kreutzberg 1995; Sendtner 1996; Gillen
et al. 1997; Hefti 1997; Terenghi 1999), since the moto-
neurons and dorsal root ganglion (DRG) cells seem to
depend for their integrity upon trophic factors derived
from their peripheral targets (reviewed in Davies 1996;
Lindsay 1996) and from the Schwann cells surrounding
the peripheral axons (Terenghi 1999).

In previous studies, the amount of cell loss observed
after peripheral nerve injury has shown considerable
variation. This may be explained by differences in age
and species of the animal, type of neuron, proximodistal
level of the lesion, postoperative survival time and type
of injury. For example, it seems that in newborn animals
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almost any type of peripheral nerve injury induces cell
death among the axotomized motor and sensory neurons
(reviewed in Lowrie and Vrbová 1992; Snider et al.
1992). In adult animals, the extent of cell loss varies be-
tween different studies, but it is generally agreed that
both DRG neurons (for reviews see Aldskogius et al.
1992; Tandrup et al. 2000) and cranial motoneurons de-
generate after peripheral nerve transection (Törnqvist
and Aldskogius 1994; Yu 1997; Johnson and Duberley
1998; Mattsson et al. 1999) and that spinal motoneurons
are lost after ventral root avulsion (Hoffmann et al. 1993;
Wu 1993; Koliatsos et al. 1994; Novikov et al. 1995,
1997; Martin et al. 1999).

In adult spinal motoneurons subjected to distal crush
injury followed by regeneration, no cell loss was found
(Arvidsson and Aldskogius 1982; Crews and Wigston
1990; Johnson et al. 1991; Swett et al. 1991; Yu 1997;
Kuzis et al. 1999). After permanent peripheral nerve
transection or limb amputation, complete motoneuron
survival has been reported in several studies (Carlson et
al. 1979; Schmalbruch 1984; Johnson et al. 1991; 
Vanden Noven et al. 1993; Piehl et al. 1995; Anneser et
al. 2000), although retrograde motoneuron death has also
been described (Casanovas et al. 1996), especially after
long postoperative periods (Kawamura and Dyck 1981;
Suzuki et al. 1995). It has also been reported that ventral
root axotomy within a distance of 2 mm from the spinal
cord induces 40–70% motoneuron loss in rats (Gu et al.
1997), while no cell death follows more distal transec-
tion of the ventral roots in either rats (Wu 1993; Gu et al.
1997) or cats (Hoffmann et al. 1993).

Since the variability in results between previous stud-
ies may at least partly depend on the techniques used for
neuronal counts, the present morphometric investigation
was undertaken to analyse quantitatively the extent of
retrograde motoneuron death induced by peripheral
nerve injury in adult rats. The results indicate that spinal
motoneurons undergo delayed degeneration after spinal
nerve transection, but that the extent of observed cell
loss is highly dependent on the technique used for cell
counting.

Materials and methods

Experimental animals

The experiments were performed on adult (age 10–12 weeks;
n=41) female Sprague-Dawley rats (Möllegaard Breeding Centre,
Denmark). The animal care and experimental procedures were
carried out in accordance with the standards established by the
NIH Guide for Care and Use of Laboratory Animals (National In-
stitutes of Health Publications No. 86–23, revised 1985) and the
European Communities Council Directive (86/609/EEC). This
study was also approved by the Northern Swedish Committee for
Ethics in Animal Experiments. All surgical procedures were car-
ried out with the animals under general anaesthesia using a mix-
ture of ketamine (Ketalar, Parke-Davis; 100 mg/kg i.v.) and xyla-
zine (Rompun, Bayer; 10 mg/kg i.v.).

Fast blue labelling of spinal motoneurons and DRG cells

In order to retrogradely label the C7 spinal motoneurons and DRG
cells, an incision was made along the right clavicle. After splitting
the major pectoral muscle, the brachial plexus was exposed. The
ventral branch of the C7 spinal nerve was identified and transected
about 10 mm distal to the C7 DRG and at a distance of 15–20 mm
from the C7 spinal cord surface. The proximal end of the cut nerve
was inserted into a small cup filled with a 2% aqueous solution of
the fluorescent dye fast blue (Sigma). The cup was sealed with a
mixture of silicone grease and Vaseline and maintained in situ for
2 h. After removal of the cup, the nerve was rinsed in saline and
covered with a thin sheet of Parafilm to prevent dye leakage into
the surrounding tissue. The muscles and skin were closed in layers
and the rats were given saline (2 ml s.c.) and benzylpenicillin
(Boehringer Ingelheim; 60 mg i.m.). The survival times after fast
blue labeling were 1 week (n=11), 4 weeks (n=6), 6 weeks (n=6),
8 weeks (n=6) and 16 weeks (n=12). The animals surviving for
1 week after axotomy and fast blue labelling served as controls. In
a previous study, we have shown that fast blue produces a very ef-
ficient retrograde labelling of spinal motoneurons at 1 week after
tracer application and that the staining remains constant for at
least 6 months (Novikova et al. 1997b). Another advantage is that
the fast-blue-labelled motoneurons can be easily distinguished in
the spinal cord sections and, therefore, other cells in the ventral
horn will not be included in the motoneuron counts. In addition,
since the number of labelled motoneurons is independent of
changes in neuronal density, the counts will not be affected by tis-
sue shrinkage secondary to loss or atrophy of motoneurons.

Processing of tissue

After 1–16 weeks survival, the rats were deeply anaesthetized
with an overdose of sodium pentobarbital (240 mg/kg, Apoteks-
bolaget, Sweden) and transcardially perfused with Tyrode’s solu-
tion followed by 4% paraformaldehyde in 0.1 M phosphate buffer
(pH 7.4). The C6–C8 spinal cord segments and the C7 DRGs were
removed and postfixed overnight. The DRGs were cryoprotected
in 20–30% sucrose for 2–3 days at 4°C, embedded in Tissue-Tek
(OCT, Miles Inc., Elkhart, IN) and frozen at –80°C. The spinal
cord block was cut serially into 50-µm-thick parasagittal sections
(for counts of fast-blue-labelled motoneurons at 1, 4, 6, 8 and
16 weeks postoperatively) or transverse sections (for disector
method and profile counts at 1 and 16 weeks postoperatively) on a
Vibratome (Leica Instruments, Germany). The DRGs were cut in-
to serial 40-µm-thick sections on a cryomicrotome.

All sections were mounted on gelatin-coated slides, dried over-
night, briefly cleared in xylene, embedded in DPX and stored at
4°C. In each transverse spinal cord section at 1 and 16 weeks post-
operatively, the area occupied by fast-blue-labelled motoneurons
was outlined (see below). The sections were then counterstained
with cresyl violet for calculation of neuronal density and physical
disector measurements (see below).

Counts of fast-blue-labelled neurons

At 1, 4, 6, 8 and 16 weeks postoperatively, fast-blue-labelled
motoneurons and DRG cells were identified under a Leitz Aristo-
plan microscope using Leitz filter block A. The nuclear profiles of
the labelled cells were counted throughout the entire series of sec-
tions at ×250 magnification (Novikova et al. 1997b; Novikov et al.
2000). The numbers of nuclear profiles were not corrected for split
nuclei, since no significant difference in nuclear size between the
operated animals at 1 week and 16 weeks postoperatively was
found with regard to either motoneurons (14.51±0.33 µm and
14.00±0.36 µm, respectively; mean ± SEM; P>0.05) or DRG neu-
rons (14.31±0.22 µm and 13.59±0.36 µm, respectively; mean ±
SEM; P>0.05) and since the nuclear diameters were small in com-
parison with the section thickness used (Coggeshall and Lekan
1996). Also, when comparing counts of nuclear profiles in a pool
of fast-blue-labelled motoneurons with the data obtained after
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complete serial reconstructions of the same neurons, the recorded
cell numbers differ by less than 3%, which indicates that the for-
mer counting method is reliable (Novikov et al. 1995, 1997,
2000). The cross-sectional soma area of the labelled neurons was
measured with a Eutectic Neuron Tracing System (Raleigh, NC).

Physical disector

The C7 motoneurons at 1 and 16 weeks after axotomy were count-
ed in randomly selected sections (ten pairs per rat) using a modi-
fied physical disector method (Coggeshall and Lekan 1996; West
1999). The disector area was defined in each section with the aid
of the Eutectic Neuron Tracing System at ×250 final magnification
and corresponded to the cross-sectional area occupied by the retro-
gradely fast-blue-labelled motoneurons. In transverse reconstruc-
tions of the ventral horn, the disector area was mapped and printed
out. With the aid of a drawing tube attached to a Leitz Dialux 22
microscope, an image of a reference section counterstained with
cresyl violet was superimposed on the printout of the disector ar-
ea. Multipolar profiles with clearly visible Nissl bodies and diam-
eters exceeding 10 µm were considered to be neurons, while small
(5–8 µm) profiles with dark nuclei and a light rim of cytoplasm
were classified as glial cells. After outlining all the neuronal pro-
files within the borders of the disector area, the reference section
was replaced by the adjacent look-up section. If a neuronal profile
was present in the reference section but not in the look-up section,
it was included in the counts. The total number of neurons was
calculated for a length of 1 mm of the C7 spinal cord segment us-
ing the formula: 20× (counted number of neurons/number of
counted pairs of sections).

Profile counts and estimation of neuronal density

Most previous studies of retrograde motoneuron degeneration
have operated with total number of neuronal profiles or neuronal
density (= number of neurons per unit area). Also in the present
study, neuronal density was calculated to allow comparisons with
previously reported data on motoneuron survival. In 50-µm-thick
cresyl-violet-stained sections of the very same animals as those
used for physical disector measurements, an unbiased sampling
frame (West 1993, 1999) with a size of 250×250 µm (i.e. 25–30%
of the total area occupied by the FB-labelled motoneurons; see
comments on sampling frame size by Benes and Lange 2001) was
randomly superimposed on an optical section through the most
ventrolateral part of the ventral horn. Motoneurons were distin-
guished from glial cells as described above. Cell counts were
made both on the control and operated sides of the spinal cord.
Neuronal profiles located within the frame or being in contact
with either of two adjacent borders of the frame were included in
the counts. The data were sampled from 16–20 randomly selected
sections and presented as mean neuronal density.

Microphotography and image processing

Fast-blue-labelled spinal motoneurons were photographed under a
Leitz Aristoplan microscope using Kodak 64T color reversal film.
The film images were captured on computer with the aid of a Ni-
kon LS-4500AF film scanner using 1800 dpi output resolution.
Images of motoneurons stained with cresyl violet were captured
with a Spot RT Color CCD camera (Diagnostic Instruments Inc.,
Sterling Heights, MI) attached to a Nikon Eclipse E800 light mi-
croscope at 1520×1080 dpi optical resolution. The captured imag-
es were resized, grouped into a single canvas and labelled using
Adobe Photoshop 5.5 software. The contrast and brightness were
adjusted to provide optimal clarity.

Statistical analyses

A one-way analysis of variance (ANOVA) followed by the post
hoc Newman-Keuls test (counts of fast-blue-labelled motoneu-
rons) and the unpaired t-test (neuronal density, physical disector
and DRG neurons) were used to compare different experimental
groups (Prism, GraphPad Software Inc.; San Diego, CA).

Results

In control rats at 1 week after unilateral C7 spinal nerve
transection, the C7 spinal cord segment contained
1086±37 (mean ± SEM) fast-blue-labelled motoneurons,
which agrees with previously published data (Wu et al.
1994).

Counts of the total number of fast-blue-labelled C7
motoneurons at 4, 6, 8 and 16 weeks after the injury in-
dicated that no cell loss occurred during the first 6 post-
operative weeks. However, at 8 and 16 weeks postopera-
tively, 21% and 31%, respectively, of the labelled neu-
rons had been lost (P<0.001; Fig. 1). At 4 weeks after
the injury, the labelled motoneurons displayed a 12% in-
crease in soma size (P<0.05), which gradually turned in-
to 17–18% atrophy at 8–16 weeks postlesion (P <0.05;
Fig. 1). In addition to the labelled motoneurons, fast blue
was also observed in small cells with microglial appear-
ance (Fig. 2A, B) and in small fragments probably repre-
senting disintegrated neurons (Rinaman et al. 1991;
Angelov et al. 1995; Novikova et al. 2000). 

The loss of C7 motoneurons at 16 weeks postopera-
tively resulted in 14% shrinkage (P<0.0001) of the area
of the C7 ventral horn which was occupied by fast-blue-
labelled cells (Fig. 3) and, consequently, a significant re-
duction of the reference space.

To compare the results obtained by counting nuclei of
fast-blue-labelled motoneurons, the retrograde motoneu-
ron loss was in addition calculated by means of the phys-
ical disector technique and by estimating neuronal densi-
ty (see “Materials and methods”). Using the physical di-
sector, it was found in the control animals at 1 week
postoperatively that a 1 mm length of the C7 spinal cord

Fig. 1 Time course of degeneration and atrophy of motoneurons
after C7 spinal nerve transection (n = 6 animals in each group).
Error bars indicate ± SEM. At 1 week, SEM for survival and cell
atrophy is 3.4% and 6.3%, respectively. *P<0.001 (cell survival,
experiment vs control) and P<0.05 (soma area, experiment vs con-
trol)



219

segment contained 703±30 (mean ± SEM) neurons with-
in the reference space defined by the distribution of fast-
blue-labelled motoneurons. At 16 weeks postoperatively,
the neuronal loss amounted to 23% (P<0.001; Fig. 4),
which was significantly different from the value (31%)
obtained using counts of fast-blue-labelled motoneurons
(normalized data sets; t-test, P<0.05).

In contrast, counts of Nissl-stained profiles located
within the sampling frame (Fig. 2C, D) did not show any

Fig. 2 Fast-blue-labelled C7
spinal motoneurons at 1 week
(A) and 16 weeks (B) after C7
spinal nerve transection. Exam-
ples of small fast-blue-labelled
cells with microglial appear-
ance are indicated by arrows.
Cresyl-violet-stained transverse
sections through the ventral
horn of the intact (C) and oper-
ated (D) side of the C7 spinal
cord segment at 16 weeks after
C7 spinal nerve injury. The
sampling frame was randomly
applied to the most ventrolater-
al part of the ventral horn. Note
that the numbers of neuronal
profiles are similar on both
sides, and that it is difficult to
determine the exact border of
the motor nucleus and to distin-
guish atrophic motoneurons
from interneurons in Nissl-
stained preparations (D). Scale
bars 50 µm (A, B), 200 µm
(C, D)

Fig. 3 Ventral horn area occupied by fast-blue-labelled motoneu-
rons at 1 and 16 weeks after C7 spinal nerve transection. Error
bars indicate SEM *P<0.05 (1 week vs 16 weeks postoperatively)

Fig. 4 Number of surviving motoneurons at 16 weeks after C7
spinal nerve transection estimated by different counting tech-
niques (Fast Blue counts of small nuclear profiles of fast-blue-la-
belled motoneurons in thick serial sections; Disector counts of
Nissl-stained motoneurons using the physical disector technique;
reference space, V(ref), was calculated from the area occupied by
fast-blue-labelled motoneurons; Density estimation of numerical
density of neuronal profiles in Nissl-stained sections through the
ventral horns using a sampling frame; Profiles neuronal density
corrected for shrinkage of the ventral horn, see “Materials and
methods”). Error bars indicate SEM. *P<0.001 (experiment vs
control for fast blue and disector; operated side vs control side for
density and profiles)
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Fig. 5 Survival and soma area of C7 DRG neurons at 16 weeks
after C7 spinal nerve transection (n = 6 animals in each group).
Error bars indicate SEM. *P<0.001 (experiment vs control)

1998; West 1999), it was included for comparison since
the vast majority of previous reports on retrograde de-
generation of adult spinal motoneurons have been based
on estimates of neuronal density (see “Introduction”).

Retrograde neuronal tracers have been widely used to
determine post-traumatic cell death in the nervous
system (Mori et al. 1997; Bradbury et al. 1998; Houle
and Ye 1999; Wang et al. 1999). With respect to moto-
neuron degeneration, several tracers have been success-
fully employed, including horseradish peroxidase (HRP)
(Schmalbruch 1984; Johnson et al. 1991; Casanovas 
et al. 1996), fluoro-gold (Crews and Wigston 1990; 
Koliatsos et al. 1994) and fast blue (Wu et al. 1994; 
Novikov et al. 1995; Novikova et al. 1997a). For exam-
ple, pre-labelling with fluoro-gold allows precise esti-
mates of motoneuron loss after ventral root avulsion, as
confirmed by comparisons with the optical disector
method (Koliatsos et al. 1994). However, since neuronal
labelling with fluoro-gold is stable for only about
4 weeks compared to at least 6 months for fast blue 
(Novikova et al. 1997b), the former tracer will be of lim-
ited value in long-term experiments. Similarly, HRP la-
belling persists only for a limited time and has been re-
ported not to include all axotomized neurons (Peyronnard
et al. 1986), although this has since been questioned
(Swett et al. 1991).

An important advantage of using fast blue labelling in
combination with the disector method is that any change
in reference volume, V(ref) (Gundersen et al. 1988; West
1993), caused by tissue shrinkage and neuronal atrophy
can be precisely estimated. It is virtually impossible to
determine V(ref) in sections where only three to four
neuronal profiles remain which, in addition, may exhibit
pronounced atrophy (see also Fig. 2 in Novikov et al.
1997). The decrease in V(ref) after peripheral nerve inju-
ry is most likely related to degenerative changes in the
motoneuron dendrites (Standler and Bernstein 1982;
Brännström et al. 1992; O’Hanlon and Lowrie 1995) and
will, if defined inaccurately, result in biased estimates of
motoneuron number even with the disector technique.
Yet another proposed stereological method, the fraction-
ator (Gundersen et al. 1988; West 1993; Oorschot 1994;
Coggeshall and Lekan 1996), which does not require es-
timation of V(ref), will probably not be effective in
counts of spinal motoneurons, since it will estimate the
total number of neurons in the area rather than the num-
ber of neurons belonging to a specific neuronal popula-
tion, e.g. axotomized motoneurons. In the present study,
the difference in cell number obtained between the
counts of fast-blue-labelled motoneurons, on one hand,
and the physical disector counts of neurones located
within the reference volume, on the other, might be ex-
plained similarly. Thus, in the former case only the
motoneurons belonging to the transected ventral branch
of the C7 spinal nerve were labelled and counted, while
in the latter case the reference space also included the
motoneurons of the uninjured dorsal branch of the C7
spinal nerve. Therefore, in the present experiments the
physical disector method will underestimate the number

change in neuronal density between 1 week (11.74±0.26
profiles per frame) and 16 weeks (11.68±0.26 profiles per
frame; P>0.05; Fig. 4) postoperatively. However, when
compensating for the postoperative shrinkage of the ven-
tral horn by instead calculating the neuronal density of
the reference space outlined by fast-blue-labelled moto-
neurons (Fig. 3), a 14% cell loss was found (P<0.001).

In the fast-blue-labelled DRG cells, the counts of nu-
clear profiles revealed a 51% cell loss (P<0.001) be-
tween 1 week (9323±209) and 16 weeks (4533±237)
postoperatively. In the latter group, the remaining cells
exhibited 22% atrophy (P<0.01; Fig. 5).

Discussion

The present study shows that axotomy of a cervical spi-
nal nerve in adult rats induces not only a retrograde loss
of DRG neurons (Aldskogius et al. 1992; Tandrup et al.
2000), but also delayed degeneration of spinal motoneu-
rons. With respect to the different methods for calculat-
ing cell number, the counts of fast-blue-labelled neurons
and the physical disector technique demonstrated a de-
layed motoneuron loss. In contrast, neuronal density
measurements were unable to reveal the 20–30% cell
loss found with previous methods, although a 14% re-
duction in motoneuron number was found after correc-
tion for postoperative shrinkage of the ventral horn.

Methodological aspects on cell counts

In studies of neuronal degeneration, the selection of ap-
propriate methods for cell counting is of crucial impor-
tance since biased estimates and low precision will oth-
erwise lead to erroneous conclusions about the extent of
neuronal loss.

Three methods for cell counts were employed in the
present study to assess motoneuronal loss, namely counts
of fast-blue-labelled neurons, a modified physical disec-
tor method, and profile counts for calculation of neuro-
nal density. Although the latter method has been regard-
ed as “biased” (Gundersen et al. 1988; West 1993; 
Oorschot 1994; Coggeshall and Lekan 1996; Hedreen



of axotomized motoneurons lost after spinal nerve injury.
Moreover, the physical disector method may not distin-
guish between atrophic motoneurons and normal inter-
neurons in the ventral horn (see, e.g. Fig. 2D). In the
present study, a correction factor compensating for post-
operative shrinkage of V(ref) resulted in a significant
motoneuron loss after peripheral nerve transection.

In summary, therefore, it seems advantageous to com-
bine prelabelling of neurons with stereological methods
in order to accurately determine nuclear borders and to
increase the precision of neuronal counts in both the in-
tact and injured nervous system.

Factors influencing retrograde degeneration 
of adult spinal motoneurons

Several factors have been described to influence the ex-
tent of retrograde motoneuron death after peripheral
nerve injury in adults, such as the distance from injury
site to the cell body, the type of nerve lesion and the
postoperative survival time.

With respect to cranial motoneurons, transection of
the trochlear (Book et al. 1996) and facial nerves 
(Mattsson et al. 1999) close to the brainstem results in
more extensive cell loss than distal injury of the same
nerves. On the other hand, axotomy of the hypoglossal
nerve at a distance of 8 mm from the brainstem has been
reported to produce motoneuron loss similar to a more
distal axotomy (Törnqvist and Aldskogius 1994).

With respect to spinal motoneurons, previous studies
have reported that no significant cell death occurs at
6–16 weeks after transection of the C7 motor axons at a
distance exceeding 2 mm from the spinal cord surface
(Hoffmann et al. 1993; Wu et al. 1994; Gu et al. 1997).
However, in these investigations profile counts or esti-
mates of neuronal density were used to determine neuro-
nal survival and, furthermore, shrinkage of the ventral
horn secondary to motoneuron degeneration was not tak-
en into account. Although the latter methods failed to re-
veal any motoneuron loss in the present study, it should
be noted that in the case of a massive 70–100% moto-
neuronal loss following, e.g. ventral root avulsion, all
counting methods including profile counts and estimates
of neuronal density (Hoffmann et al. 1993; Wu 1993; Li
et al. 1995; Piehl et al. 1995; Kishino et al. 1997; Martin
et al. 1999), fast blue labelling with serial reconstruc-
tions (Novikov et al. 1995; Novikov et al. 1997), counts
of fast blue/fluorogold-stained neurons (Koliatsos et al.
1994; Novikova et al. 1997a) and the optical disector
(Koliatsos et al. 1994) demonstrate a significant reduc-
tion in motoneuron number. It seems, therefore, that the
profile counting technique is capable of revealing mas-
sive cell death, but fails to detect small or moderate cell
losses. The low sensitivity of the technique is probably
not only related to the issue of “split profiles” in profile-
based sampling methods (Coggeshall and Lekan 1996;
Guillery and Herrup 1997; Hedreen 1998; West 1999),
but also to the failure to observe and compensate for

changes in reference volume when applying the tech-
nique to, e.g. Nissl-stained preparations (see also review
by Gahr 1997).

In human patients with extremely long survival times
after proximal limb amputation (Kawamura and Dyck
1981) or shoulder amputation (Suzuki et al. 1995), a sub-
stantial motoneuron loss has been described. Although
the latter reports used the “insensitive” profile counting
method, the retrograde degeneration was apparently ex-
tensive enough to overcome the relative increase in neu-
ronal density caused by shrinkage of the ventral horn.

Delayed loss of motoneurons after spinal nerve injury

Delayed onset of retrograde degeneration has been 
described in axotomized adult rubrospinal neurons after
cervical spinal cord injury (Houle and Ye 1999; 
Novikova et al. 2000), in DRG neurons after peripheral
nerve transection (Tandrup et al. 2000) and in various
cortical and hippocampal regions after traumatic brain
injury (Smith et al. 1997). Although the mechanism un-
derlying the delay in retrograde degeneration after axoto-
my remains unclear, at least two factors may contribute
to prolonged survival of axotomized adult motoneurons,
namely intramedullary sprouting of “supernumerary mo-
toraxons” and/or “dendraxons” (Lindå et al. 1985; 
Havton and Kellerth 1987) and an increased discharge of
neurotrophic molecules from the non-neuronal cells sur-
rounding the remaining proximal motor axons (reviewed
in DiStefano and Curtis 1994; Sendtner et al. 1994;
Friedman et al. 1995b; Gillen et al. 1997; Bartlett et al.
1998; Terenghi 1999).

In accordance with the latter hypothesis, a number of
studies have demonstrated that different neurotrophic
factors, such as brain-derived neurotrophic factor
(BDNF) (Yan et al. 1994; Novikov et al. 1995; Wang et
al. 1997), neurotrophin-3 (Fernandes et al. 1998) and
neurotrophin-4/5 (Friedman et al. 1995a), can rescue
adult spinal motoneurons from retrograde degeneration
after ventral root avulsion and, also, restore their cholin-
ergic phenotype after peripheral nerve transection and
stimulate motor axonal regeneration (Kishino et al. 1997;
Novikov et al. 1997; Novikova et al. 1997a).
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