
Abstract A neural network model has been developed
to represent the shaping function of a central pattern gen-
erator (CPG) for human locomotion. The model was
based on cadence and electromyographic data obtained
from a single human subject who walked on a treadmill.
The only input to the model was the fundamental timing
of the gait cycle (stride rate) in the form of sine and co-
sine waveforms whose period was equal to the stride du-
ration. These simple signals were then shaped into the
respective muscle activation patterns of eight muscles of
the lower limb and trunk. A network with a relatively
small number of hidden units trained with back-propaga-
tion was able to produce an excellent representation of
both the amplitude and timing characteristics of the
EMGs over a range of walking speeds. The results are
further discussed with respect to the dependence of some
muscles upon sensory feedback and other inputs not ex-
plicitly presented to the model.
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Introduction

Neurophysiological research shows that the spinal cord
has an intrinsic capacity for generating complex locomo-
tor patterns in response to simple tonic inputs (Delcomyn
1980; Grillner 1981; Grillner 1985). In the decerebrate
cat, for example, it has been demonstrated that changes
in the level of tonic input can modulate the speed, and
even the form, of locomotion (Shik et al. 1966). Similar
findings have been demonstrated in spinal animals where
application of pharmacological agents can elicit and
modify locomotor patterns (see review by Rossignol and

Dubuc 1994). Evidence for this spinal circuitry, called
the central pattern generator (CPG), in humans is begin-
ning to emerge from studies on spinal cord injured pa-
tients (Calancie et al. 1994; Bussel et al. 1988, 1989).

While exact decoding of the circuitry has been possi-
ble in a primitive vertebrate species (Grillner et al.
1991), indirect methods such as mathematical models
have been used to understand the organizational princi-
ples of this circuitry in mammals (see Patla et al. 1985).
One such model uses a labile synthesized relaxation os-
cillator (Bardakjian et al. 1983) to suggest that the CPG
can be thought of as two modules (Patla et al. 1985). One
module, representing the time-keeping function, gener-
ates the simple sinusoidal signals at the periodicity of the
step cycle; while the second module, representing infor-
mation storage function, shapes the simple sinusoidal
signal into complex waveforms through time-indepen-
dent non-linear modulators. Experimental work has also
proposed the separation of pattern-generating networks
into timing and shaping functions based on how sensory
stimuli interact with either the cycle timing or the inter-
cycle features (Koshland and Smith 1989; Lennard and
Hermanson 1985). Additionally, in vivo studies on neo-
natal rat spinal cord suggest that the locomotor pattern-
generating networks are distributed within the spinal
cord, with separate elements of these networks being re-
sponsible for different aspects of the locomotor pattern,
such as oscillatory drive (Cowley and Schmidt 1997).
Recently researchers have used artificial neural networks
(ANNs) to model the time-keeping function of the CPG
(Prentice et al. 1995; Srinivasan et al. 1992). These mod-
els, however, only capture one of the organizational struc-
tures of a CPG. This paper presents a shaping network
designed to mould a simple timing signal into the com-
plex muscle activation patterns. Our goal was to develop
a simple network whose weightings and properties are
time independent and that can produce muscle activation
patterns across a range of walking speeds. ANN models
have been proposed for a number of different sensorimo-
tor transformations (see reviews by Fetz 1993; Lasner
and Ekeberg 1994) including those where complex mus-

S.D. Prentice (✉) · A.E. Patla
Neural Control Laboratory, Department of Kinesiology,
University of Waterloo, Waterloo, Canada, N2L 3G1

D.A. Stacey
Department of Computer and Information Science,
University of Guelph, Guelph, Canada, N1G 2W1

Exp Brain Res (1998) 123:474–480 © Springer-Verlag 1998

R E S E A R C H  N O T E

S.D. Prentice · A.E. Patla · D.A. Stacey

Simple artificial neural network models can generate basic muscle
activity patterns for human locomotion at different speeds

Received: 9 February 1998 / Accepted: 13 August 1998



475

cle activity is generated from simple control signals.
Similar approaches have been developed for engineering
applications to generate stimulation patterns for para-
lyzed individuals (Abbas and Chizeck 1995; Abbas and
Triolo 1997); however, few studies have used these mod-
els to examine the control of human locomotion espe-
cially from a theoretical perspective. Preliminary results
of our shaping network have appeared in abstract form
(Prentice and Patla 1994).

Materials and methods

Experimental protocol

A single subject was required to walk on a motor-driven treadmill
at a given speed. Footswitches placed under the ball and heel of
each foot served to mark the temporal events of each stride. The
speed of the treadmill was adjusted to match the subject’s natural
walking speed (1.2 m/s). Five trials each consisting of 12 strides
were collected for five different walking speeds: 1.2, 1.4, 1.6, 1.8
and 2.0 m/s. The speeds were chosen to include both increases and
decreases to the subject’s normal speed. This experimental proto-
col received ethics approval from the Office of Human Research
and Animal Care at the University of Waterloo.

Muscle activation patterns and foot switch data were obtained
using a custom-built fibre optic telemetry system and stored on
computer (fs=256 Hz). Rectified EMG signals were recorded from
the medial gastrocnemius, soleus, tibialis anterior, peroneus longus,
biceps femoris, rectus femoris, gluteus medius and erector spinae at
the electrode sites suggested by Winter (1991). The rectified EMG
signals were low pass filtered (Butterworth, fc=3 Hz) to generate
linear envelope signals and the record length was reduced by sam-
pling every fourth point. The EMG amplitude of each muscle was
scaled to the working range of the network (0→1.0) by normalizing
to the peak amplitude of the respective muscle observed over all
speed conditions. The average stride periods were used to determine
the fundamental frequency, or stride rate, for each walking condition.

Model development

The proposed shaping model consisted of a feedforward network
(see Fig. 1) where the input vector consisted of the two sinusoidal
inputs, whose frequency matched the average stride rate for each
walking speed, and the individual muscle activations formed the
output vector. The time history data were represented through a
series of input and output vectors where each vector pair depicted
the data of a single time step. The use of a sine and cosine wave-
form as the model’s inputs was based on earlier work using labile
synthesized relaxation oscillators (Bardakjian et al. 1983) and it
was intended that together these patterns would permit the net-
work to generate output patterns with different phasic profiles. In
fact, when the networks were developed using only a single sinu-
soidal input, the resulting output patterns exhibited sinusoidal
bursts of activity which were synchronized with the sinusoidal in-
put rather than when the target muscles were active. A further ad-
vantage to using both a sine and cosine input is that the network
can be developed to produce the appropriate phasing of the output
patterns regardless of the absolute timing of the input signal. For
example, when the network was trained using the same input only
delayed in time with respect to the walking cycle, the network
could still be developed to transform this the relative timing signal
into the appropriate output patterns. In the development of the
shaping network, true sine and cosine waveforms were used to re-
present the output of the timing network to permit an accurate rep-
resentation of the fundamental frequency and thus provide an in-
dependent evaluation of the shaping network. The model employed
2 input units, 16 hidden units and 8 output units. Additional ver-
sions of this model were developed where the size of the hidden
layer was decreased to four, two or one hidden unit(s) to investi-
gate how reducing the complexity of the network would affect the
production of muscle activation patterns.

The connections, weights and bias values for the shaping mod-
el were determined using a back-propagation algorithm (Rumel-
hart et al. 1986). The data from the different walking speeds were
separated into a training set and a test set. The training set con-
tained strides obtained at walking speeds of 1.2 and 1.8 m/s. This
data set was repeatedly presented to the network to enable the
learning rule to resolve the desired network parameters while the
remaining conditions (1.4, 1.6 and 2.0 m/s) were reserved to test
the ability of the network to generalize its output when receiving
inputs different than those used in training. The test set was select-
ed to include a range of speeds that were either within or outside
the limits provided in the training set to test the network’s ability
to both interpolate and extrapolate to different walking speeds.

The length of network training was guided by monitoring the
output error of the training set and the output error in the test set,
which was evaluated after every ten passes of the training set dur-

Fig. 1 A neural network approach to modelling the timing and
shaping functions of a CPG for human locomotion. The connec-
tion diagram illustrates the architecture of the proposed shaping
network with the direction of processing flowing from left to right.
All units of a layer are fully connected to the units of the next lay-
er to the right
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ing the training schedule. The training algorithm was suspended
during each introduction of the test set to prevent any influence on
the network connections. Training continued until either the test or
the training set no longer demonstrated a decreasing error. The
output from the final network was then obtained by presenting
both the training and test data.

Results

The muscle activation time histories predicted by the
model show a strong agreement with those recorded ex-
perimentally for all five walking speeds. Profiles from
the three test conditions are shown in Fig. 2, where
they are superimposed on a band representing the range
(±2 SD) of muscle activity recorded across 12 strides
for each condition. The model will produce consistent
bursts of activity with no variability per cycle since the
sinusoidal inputs have a constant frequency and do not
differ from cycle to cycle. The differences seen in the

activation patterns from stride to stride reflect the sub-
ject’s variability in stride period and the normalization
procedures used to display the data. The resulting mus-
cle patterns captured the basic features of every muscle
over the different rates of walking and exhibited the
general magnitude and temporal phasing appropriate
for each condition.

The absolute error of magnitude between predicted
and actual muscle activations was quantified for each

Fig. 2 Muscle activation patterns predicted by the 16 hidden unit
network (A) are shown for each of the three test walking condi-
tions (1.4 m/s, 1.6 m/s and 2.0 m/s), while the leftmost column (B)
shows the results for one of the test walking conditions (1.4 m/s)
using the four hidden unit network. Each solid line represents the
model’s output from one stride, normalized for time between RFC
and RFC, while the shaded area is a 2-SD band about the mean of
the actual muscle activity recorded from the subject over 12 strides.
The amplitude of activity for each muscle has been scaled to the
peak activity found across all walking conditions



muscle-speed combination using an RMS difference ex-
pressed as a percentage of the operating range of the out-
put units. The majority of the values (33/40) were below
20%, indicating a good match between predicted and ac-
tual activation of individual trials. The level of 20%
RMS error, although a liberal criterion for goodness of
fit, was selected more to indicate whether the output
from this simple model captured the majority (80%) of
the magnitude information contained in the muscle activ-
ity pattern. The magnitude of error increased with the
speed of locomotion, with the 2.0 m/s condition having
the highest RMS error. Errors greater than 20% were ob-
served in the soleus, tibialis anterior, peroneus longus,
rectus femoris and the erector spinae for the fastest speed
condition. The erector spinae was the only muscle which
showed consistently high errors with the three fastest
speeds, showing RMS differences above 20%. Those
muscles which showed higher errors for the fastest con-
ditions generally had greater RMS differences at lower
speeds.

Correlations between predicted and actual muscle ac-
tivity evaluated the ability of the model to capture the
temporal modulation of muscle activity across succes-
sive strides. The correlation values for each muscle-speed
combination of the test conditions are shown in Fig. 2.
Consistently high correlations were exhibited in the gas-
trocnemius, soleus and peroneus longus muscles while
lower values were seen in the biceps femoris and erector
spinae activity. The remainder of the muscles displayed
moderate to high correlations. There was no clear trend
between the correlation values and the speed of locomo-
tion.

Effect of decreasing hidden units

When four hidden units were used, the predicted activity
showed a strong resemblance to those obtained for 16
hidden units despite the fourfold decrease in hidden units
(see Fig. 2). The resulting waveforms did lack some of
the subtle features that were captured using more hidden
elements. For example, the model with four hidden units
failed to preserve the burst in both the gastrocnemius and
tibialis anterior during toe off (approximately 60% of the
stride). Aside from these specific examples, the profiles
exhibited less phasic detail than when a larger hidden
layer was utilized.

The mean RMS differences for the four hidden unit
network confirmed the good agreement between predict-
ed and actual muscle activations; in fact the values for
many conditions only differed by 1 or 2% from the error
observed with 16 hidden units. As with the larger model,
most conditions (32/40) showed differences below 20%
and the RMS differences increased with speed. Essen-
tially the same muscle-speed conditions were responsible
for the high RMS values.

Correlations also reflected a slight loss of phasic in-
formation with fewer hidden units even though the val-
ues were comparable to those of the original model (see

Fig. 2). Higher correlations were again seen in the gas-
trocnemius, soleus and peroneus longus and similar to
the previous model the biceps femoris and erector spinae
exhibited rather poor correlations. There was also no
clear relationship between the correlation values and the
speed of walking.

Reducing the size of the model further to either two
or one hidden units resulted in a gradual breakdown of
the muscle output patterns. Models with two hidden
units could still generate those muscles best predicted by
the larger models (i.e., medial gastrocnemius, soleus, and
peroneus longus), while for most other muscles the mod-
el could generate the appropriate timing of activity but
both the size and form of the phasic profiles were only
crude representations of the target muscle activity. Mod-
els with only one hidden unit demonstrated a much great-
er breakdown where the model could only generate ac-
tivity during a single phase of the walking cycle. Essen-
tially, all outputs were scaled versions of the same activi-
ty pattern which matched the timing of the medial gas-
trocnemius, suggesting that activity during this phase
was the most common activity pattern shared amongst
the muscles.

Assessing the network structure

To address how the network is operating, we will only
examine the structure of the four hidden unit network
given that its structure is much simpler while its perfor-
mance was comparable to the larger model. Figure 3
shows the activity of the four hidden units (HU1–4) and
their network connections to the eight muscle outputs.
While the network connections remain constant for all
walking conditions, the hidden unit and muscle activity
patterns are shown for a single stride during the 1.4-m/s
walking condition. The hidden units act as building
blocks and take on quite different forms, where HU1 and
HU4 show more discrete bursts during different periods
of the stance phase while HU2 and HU3 show more cy-
clical patterns of activity with the HU2 being the only
unit with increased activity during the swing phase. In
general the projections from these hidden units show ex-
citatory connections to those muscles that have in-
creased activity during the same phase and inhibitory
connections to those muscles that show a decrease in the
same period as the hidden unit activity. This is most eas-
ily seen in the projections from HU1 to the first four
muscles: where the peak activity of the medial gastroc-
nemius, soleus and peroneus longus (each receiving ex-
citatory connections) coincides with that of HU1, while
the tibialis anterior shows a decrease in activation dur-
ing this period and receives an inhibitory connection. It
should be noted that each of the units in the network has
a bias activity level and the incoming connections will
act to increase or decrease the units’ activity from this
resting level of activity. The lower three figures in Fig.
3 isolate the network connections from the four hidden
units to three individual muscles in order to further
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demonstrate how the hidden units combine to form very
different activity patterns. Here the reciprocal nature of
the network can be seen where those inputs serving to
excite the medial gastrocnemius (HU2 and HU4) also in-
hibit the tibialis anterior. Further examination of the
weights and hidden units also demonstrated that the
muscle activity best predicted by the network (e.g., me-
dial gastrocnemius) tended to receive more directed hid-
den unit input where one hidden unit may be dominant,
while muscle activity with less favourable results (e.g.,
biceps femoris) was often dependent on input from all
four hidden units. This would agree with the results of
networks that utilize only two or one hidden unit(s)
where activity from certain muscles could not be gener-
ated in an oversimplified network.

Discussion

It is proposed that a simple feedforward ANN model is a
suitable candidate for modelling the shaping function of
a CPG for human locomotion. Although recurrent dy-
namic neural networks have been used to model other
sensorimotor systems and may be better suited to per-
form many complex transformations involving temporal
sequences (see Fetz 1993), the use of recurrent/feedback
connection would add a temporal dynamic that would
limit the ability to independently represent and examine
the timing and shaping functions of the pattern generat-
ing network. The simplicity of the current model is re-
flected in the size of its hidden layer, which embodies
much of the intermediate processing. Hidden units of
feedforward networks function much like principal com-
ponent analysis, where the basic features of a set of
waveforms are extracted and can later be used to recon-
struct the individual signals. Here the hidden unit activa-
tion representing features from the sinusoidal locomotor
rhythm are combined to build the individual muscle ac-
tivity patterns of the eight muscles. The original model
used 16 feature signals to construct the muscle activa-
tions while a reduced model used only four feature sig-
nals. The primary difference between these two models
was that the more detailed model preserved more of the

Fig. 3A–D Hidden unit activation patterns and their projections to
the individual muscle outputs are shown for the four hidden unit
network. The top figure (A) illustrates all of the connection weights
from the four hidden units (HU1–4) to all eight muscles, while the
lower three figures (B–D) each isolate the connections to an indi-
vidual muscle. The lines between units represent both excitatory
(solid lines) and inhibitory (dashed lines) connections, with the
thickness of the line representing the relative strength of the con-
nection. The hidden and muscle output activity profiles are taken
from a single stride (RFC to RFC) of the 1.4-m/s walking condi-
tion



subtle phasing information contained in the actual sig-
nals; however, the results of the reduced model were on-
ly slightly poorer despite the fourfold decrease in the
number of hidden units. Decreasing the size of the hid-
den layer below four units failed to generate reasonable
activity patterns for all muscles. This suggests that four
fundamental signals were sufficient to generate a basic
representation of the activation patterns and a more com-
plex model added some finer phasing details of the sig-
nals. Using principal component analysis, Patla et al.
(1985) identified that only four feature signals were re-
quired to construct profiles that account for the majority
of activation during locomotion. Although there are dif-
ferences between their shaping functions and the hidden
units of these models, together these results suggest that
the locomotor system, if it utilizes similar operations,
may only require a limited number of features to produce
the activation patterns for most limb muscles.

The current feedforward model only receives infor-
mation regarding the fundamental locomotor rhythm and
holds the assumption that the amplitude of EMG is a
constant function of its temporal position within the step
cycle. At the higher speeds most muscles exhibit an in-
crease in recorded EMG amplitude during the primary
phases of activity and some muscles also included addi-
tional bursts of activity. The model by definition would
be limited to predicting activation patterns in those mus-
cles and/or conditions where this relationship changes. It
has been shown that changes in cadence during over-
ground walking have little effect on the relative phasing
of muscle activity while the amplitude of the muscle ac-
tivity is speed dependent (Yang and Winter 1985). These
changes in EMG amplitude were attributed to the me-
chanical demands associated with the different rates of
walking and it was further demonstrated that the more
proximal muscles are more affected by these demands.
Walking at faster rates places additional requirements
upon the locomotor control system to ensure safe foot
placement, maintain postural equilibrium and compen-
sate for muscle fatigue while increasing the propulsion
needed over successive strides. Not only will these de-
mands vary with different walking speeds, they will also
vary from stride to stride within any one speed. This
model did not explicitly receive any inputs conveying
this information and thus some of its inability to repres-
ent certain aspects of the actual EMG profiles is unavoid-
able and might reflect the locomotor control system’s de-
pendence on inputs from other levels of the nervous
system.

It is well recognized that supraspinal and sensory in-
formation will contribute even in the control of normal
steady-state locomotion, and the degree of their contri-
bution will certainly vary across muscles and walking
conditions, where they may influence both the timing
and shaping of muscle activity (see reviews by Arm-
strong 1988; Rossignol 1996). In studies of cat locomo-
tion, it has been demonstrated that certain muscles are
more dependent on sensory feedback than on central
commands (Engberg and Lundberg 1969; Smith et al.

1993). Additionally, some muscles such as the semiten-
dinosus (Smith et al. 1993) have one burst linked to sen-
sory feedback while a second burst seems to have a cen-
tral origin. Researchers have suggested that information
arising from the motor cortex is important for the control
of limb trajectory as well as the regulation of the timing
of individual strides (Drew 1993; Drew et al. 1996),
while input from specific brainstem regions has shown to
be necessary to maintain and modify postural tone as
well as modifying other aspects of locomotor activity on
a step-by-step basis (Drew et. al 1986; Drew 1991; Mori
et al. 1991). This dependence on phasic information dur-
ing normal treadmill walking is an important component
in generating appropriate muscle activity and one would
expect the absence of this information to limit the mod-
el’s ability to predict EMG patterns of a normal subject
whose locomotor control system included this rich infor-
mation. Although the model produced the basic muscle
activation patterns for a range of walking speeds, the
lack of phasic input could be a factor in the model’s pre-
dictions for muscles like the tibialis anterior, biceps fem-
oris and erector spinae whose results were weaker even
at the lower speeds. Examining the structure of the net-
work and the results of the networks using fewer hidden
units suggests that activity of these same muscles seems
to require a more complex transformation of the timing
input.

The shaping model in its current form has demon-
strated how a simple arrangement of uncomplicated pro-
cessing elements whose sole input was the basic locomo-
tor rhythm can produce complex muscle activations for a
range of different walking conditions. Although some of
the model’s deficits may be attributed to the network’s
structure, the absence of phasic information from periph-
eral and supraspinal sources is a limiting factor in pro-
ducing the activity for certain muscles and walking
speeds. If future models are to represent skilled locomo-
tor behaviour, a better understanding of the role of supra-
spinal and sensory information and how they interact
with the pattern generator is needed. Aside from charac-
terizing these inputs, it must be established how this in-
formation influences the CPG network. It has been sug-
gested that inputs to a CPG for rhythmic limb move-
ments may affect either the timing or the patterning of
muscle activity (Lennard and Hermanson 1985; Kosh-
land and Smith 1989). A model that can incorporate
these additional inputs and resolve effects on both the
timing and shaping of muscle activity will be better suit-
ed to address the generation of normal locomotor behav-
iour. Preliminary work using a variation of this shaping
network has included data from cat experiments to add
motor cortical inputs in order to step over obstacles
(Prentice and Drew 1997). These models may also have
practical uses in the development of functional electrical
stimulation systems for the restoration of gait in paraple-
gic patients, where researchers have begun to adopt simi-
lar control strategies (Abbas and Chizeck 1995; Abbas
and Triolo 1997). Developing a suitable controller to
generate the skilled locomotor activity required for ev-
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