
Abstract Joint stiffness measurements during small
transient perturbations have suggested that stiffness during
movement is different from that observed during posture.
These observations are problematic for theories like the
classical equilibrium point hypothesis, which suggest that
desired trajectories during movement are enforced by joint
stiffness. We measured arm impedances during large, slow
perturbations to obtain detailed information about the
spatial and temporal modulation of stiffness and viscosity
during movement. While our measurements of stiffness
magnitudes during movement generally agreed with the
results of measurements using fast perturbations, they
revealed that joint stiffness undergoes stereotyped changes
in magnitude and aspect ratio which depend on the direc-
tion of movement and show a strong dependence on joint
angles. Movement simulations using measured parameters
show that the measured modulation of impedance acts as
an energy conserving force field to constrain movement.
This mechanism allows for a computationally simplified
account of the execution of multijoint movement. While
our measurements do not rule out a role for afferent feed-
back in force generation, the observed stereotyped restoring
forces can allow a dramatic relaxation of the accuracy
requirements for forces generated by other control mecha-
nisms, such as inverse dynamical models.
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Introduction

Observations of joint stiffness during motion suggest
that the effective mechanical response of the arm during
voluntary movement is different from that seen at rest

(Bennet et al. 1992; Bennet 1994; Gomi and Kawato
1996). While the mass and shape of the arm do not
change significantly during movement, elastic and
viscous forces which depend on the physiological state
of muscles are altered during movement and when
muscles are active (Milner 1993). The modulation of
effective mechanical properties during movement offers
the possibility that the control of movement execution by
the CNS might be simplified by a suitable choice of the
sequence of mechanical states of the arm, prior to move-
ment onset (Lacquaniti et al. 1992; Towhidkhah et al.
1997). Specifically, different levels of stiffness might be
appropriate at different times to correct errors while
avoiding unnecessary muscle activity.

Without elastic restoring forces, a small error in
computed or produced torques early in a multijoint
movement can lead to large position errors at the end of
the movement. The classical equilibrium point hypothesis
(in several forms) avoids this difficulty by postulating
that neural commands specify end and intermediate
points on the movement, and that the details of force
feedback are determined by mechanical and reflex
properties of muscle (Feldman 1966; Bizzi et al. 1984;
Flash 1987). However, observations of stiffness magni-
tudes during movement are incompatible with simpler
forms of this hypothesis (Gomi and Kawato 1996; Gomi
and Kawato 1997). In this paper we present data and
simulations which suggest that modulation of arm
impedance during movement can account both for existing
observations on stiffness during movement, and for the
robust control of voluntary movement.

Joint stiffness measurements during motion have
predominantly involved small (Bennet et al. 1992; Bennet
1994) and/or transient (Gomi and Kawato 1996) pertur-
bations in order to preclude voluntary intervention by the
subject. The same approach has been taken in several
investigations of postural stiffness, for example in the
work of Tsuji et al. (1995) and Gomi and Osu (1998).
However, it is possible that such perturbations induce
reflex mechanisms which are not normally active during
voluntary movement (Bennet 1994) or produce anomalous
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results because of inappropriate models for force-velocity
relationships in normal muscle (Gribble et al. 1998;
Karniel and Inbar 1997). In addition, this choice of
perturbations has limited the data available on the
detailed spatial and temporal pattern of stiffness and
viscosity during multijoint movements. A number of prior
studies have suggested that the human subject can
suppress a voluntary response for more than 700 ms
(e.g., Bennet et al. 1992; Gomi et al. 1992; Shadmehr et
al. 1993; Latash 1994). Therefore, we attempted to
extend the observations of Won and Hogan (1995) and
the conclusions of Gribble et al. (1998) using a systematic
but unpredictable set of perturbations to slowly alter
multijoint movement over its entire course.

The influence of constraint forces on the behavior of
mechanical systems can be dramatic, as for example
when a playground slide produces inclined rather than
vertical motion of a falling body, and this constraint
continues to shape movement even when forces other
than gravity are applied. Thus, motion can be dramatically
affected by passive forces in the absence of an equilibrium
point. The principle of constraint is to prevent motion in
the constraint direction while storing as little elastic
energy as possible. Our simulations compared the efficacy
of joint stiffness modulation in controlling the limb
trajectory through energy-conserving, and non-energy-
conserving mechanisms. This comparison tested the
hypothesis that postural stiffness mechanisms implement
trajectory stability during multijoint movement through a
constraint mechanism.

Since voluntary movement is variable, the nominal
trajectory for any perturbed movement is not known. In
order to estimate the relationship between trajectory
error and restoring force on a trial by trial basis it is
necessary to use perturbations which are larger than the
movement variability. This size requirement is analogous
to the fact that due to local inhomogeneities in topography,
a sufficiently long journey is necessary to accurately
estimate the curvature of the earth. Our data suggest that
stiffness is modified during movement, depending on the
movement context as well as the geometrical and physical
properties of the limb. Movement context is taken to
mean the direction of intended movement, and the
stage of movement during which the perturbation and
measurement takes place. A non-linear model of passive
stiffness and viscosity is required to account for restoring
forces in response to moderate and large perturbations,
though these responses appear to remain energetically
passive. Finally, our simulations suggest that the role of
joint stiffness during unperturbed movement can be
adequately described by a linearized time-varying model
of stiffness (Slotine and Li 1991).

Materials and methods

Experimental methods

Five male subjects participated in the experiment after giving
informed consent according to the standards of the Institutional

Review Board of Northwestern University. With their right hands,
subjects held the handle of a two-joint robot manipulandum which
controlled the position of a cursor on a screen placed just above
eye level (Fig. 1A). The manipulandum was free to move in the
horizontal plane. Chair position was adjusted so that the hand was
placed at the center of the workspace in the intersection of sagittal
and horizontal planes at an elbow angle of 90 degrees, and the
wrist was immobilized by a cast. A 6-df force sensor (ATI technol-
ogies F/T Gamma 30/100) mounted in the handle measured the
interaction force between the subject's hand and the manipulandum.
The trial began when the subject moved the cursor to a fixed start-
ing point. When the cursor attained the starting point, there was a
1-s tone. At tone offset, subjects made a 10-cm reaching move-
ment to a target placed at or near the center of the workspace, and
stopped at or near the target. Reaches were in a horizontal plane,
and hand trajectories were either proximal to distal and parallel to
the sagittal plane, or left to right and perpendicular to the sagittal
plane. Targets were placed at the center of the workspace or 5 cm
to the right of center of the workspace. Before the experiment
began, there was a practice session consisting of 2 blocks of 36 trials,
in which the cursor was visible during the first 18 trials and no
cursor was shown after movement onset in the last 18 trials. A
visual cue was presented when movement time was faster than 0.7 s
(solid red target) or slower than 0.9 s (solid blue target). Subjects
attempted to complete the movement within the time window.

On 60/150 randomly chosen trials, the robot enforced a position
perturbation on the subject's hand trajectory which we refer to as a
virtual wall. Subjects were instructed not to intervene voluntarily
when the perturbation occurred. The virtual walls forced perturbed
movements to reliably retrace the same paths so that velocity was
allowed to vary, while the sequence of positions was held constant.
On the remaining 90/150 trials reaching was not perturbed by the
robot. The cursor was blanked out after movement onset on
perturbed trials. On 60 of the unperturbed trials the cursor also
disappeared after movement onset, while on the remaining trials
visual cues were given as during initial training. Only trials without
visual feedback of the cursor were recorded.

All five subjects completed the experimental protocol involving
proximal-distal reaching movements to the center of the workspace.

Fig. 1A–D Illustration of the experimental setup. A shows the
subject holding the manipulandum. C shows the direction of forces
associated with the virtual wall. B and D show the schematic and
actual locations of walls used in the proximal-distal part of the
reaching experiment. Starting position is indicated by a heavy
circle and target is shown as a heavy square. The small filled
circles are points at which a crossing of three walls occurs



Of the five subjects, subjects 3 and 4 also completed revised
protocols, which involved reaching movements to a target displaced
5 cm to the right of the center of the workspace. There were two
revised protocols, one with proximal-distal reaching, and the other
involving left to right reaching with the virtual wall positions
analogously transformed to permit comparison of the effects of
different movement contexts on measured impedances.

Description of perturbations

Virtual walls consisted of two rectilinear surfaces intersecting at a
small angle (Fig. 1B–D) smoothly joined by a segment of circular
arc (r=4.0 cm). The first portion (1–3 cm) was nearly parallel to
the line from start to target, so that significant forces were exerted
mainly over the curved and second linear portions. Nominal
stiffness to normal penetration was 2×103 N/m. Sampling rate and
refresh rate for the wall forces was 100 Hz. Wall forces
were always turned off 1.6 s after tone offset. Position of the
manipulandum handle and force on the handle sensor were recorded
for 2.2 s on each trial.

Contact instabilities (Colgate and Hogan 1989) were controlled
by adding a large internal viscosity for velocities normal to the
surface and dynamically altering the radius of curvature in the
curved region as significant forces developed. The radius of
curvature of the circular region shrank/grew at a rate proportional
to normal inward/outward velocity of the hand into the wall,
without changing the depth-versus-force profile of the wall at the
point of contact.

The depth-versus-force profile of the wall is the relationship
between the amount of penetration into the wall, and the opposing
force provided by the virtual wall simulation. For large penetrations
(>7 mm), this was given by the nominal stiffness 2×103 N/m. To
avoid abrupt impacts and oscillation at the interface, a cubic
profile was used within the first few millimeters which multiplied
the opposing force by (kd)3/(1+(kd)3) where d was the normal
penetration in millimeters and k=8/30 was chosen to provide about
6.6 N opposition to a 5-mm penetration and about 13.3 N opposition
to a 7.5-mm penetration. The force vs depth profile was kept
constant because otherwise the wall would not have simulated a
smooth and homogeneous surface. With appropriate tuning of
parameters, this scheme conferred stability but did not appreciably
alter wall locations. Subjects perceived the virtual walls as
smooth, relatively rigid surfaces.

A net variation in the radius of curvature could potentially
have altered the wall positions so that they were different on each
trial. However, by construction the rate of change of radius of
curvature depended on normal velocity, so that the net effect on
the radius of curvature was proportional to the time integral of
normal velocity, which is penetration distance. Therefore any net
change in radius of curvature was proportional to the net change in
normal penetration distance over the 2- to 4-cm curved region. If
normal penetration began at a steady value when it entered the
curved region and returned to the same value before leaving the
curved region, the net effect on the radius of curvature would have
been zero. Inspection of the data suggested that this was the case.
As long as several conditions do not collapse into one, movement
of the walls does not matter because the exerted torques would
have been estimated in the same way.

There were ten virtual walls with deviation angles ranging
from ±20.0 degrees to ±40 degrees. The walls were arranged in
four triply crossed configurations as shown schematically in
Fig. 1D, with two such configurations each placed to the left and
right of the target, with the middle (30 degree) wall of the triple in
common. Each perturbation was replicated 5 times in the course of
the experiment except for the ±30-degree perturbations, which
were replicated 10 times, being common to two triples. The
angles, locations, stiffnesses and viscosities of the walls were chosen
by trial and error to ensure firm and continuous contact with the
virtual wall throughout the majority of the perturbed movement.
The system of virtual walls shown in Fig. 1D has been adjusted
from the idealized version shown in Fig. 1B to minimize anomalies
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such as bounces at initial contact, and to compensate for asymmet-
rical penetration of the walls on the right and left.

The triple crossing pattern was chosen to simplify a theoretical
lower bound for the number of parameters which could be estimated
near the crossing point P for a single replication (one trial per
wall). While we did not specifically estimate parameters at the
crossing points, the associated reasoning provides a lower bound
for the overall number of parameters which could be estimated.

At a minimum, it is desirable to estimate ten independent
parameters per replication near each crossing point P, including two
constants, four parameters from the stiffness matrix and four
parameters from the viscosity matrix. Therefore at least ten inde-
pendent equations are needed near P. At the crossing of two walls
there are 2×2=4 equations expressing force components in x and y
as combinations of the parameters and four more equations are
obtained by taking neighboring points on the two walls. Additional
neighboring points on these lines would be collinear and would
not give new equations. Thus where two walls cross there are only
4+4=8 equations to determine 10 parameters in a single replication
at P. By contrast, there are 6 equations at a triple crossing point
and 3×2=6 more can be obtained from neighboring points on the
lines.

Theory: identification of forces

This paper presents both measurements of stiffness and simulations
of trajectories based on these measurements. The present section
details the relationship between the forces measured during
motion, the stiffness and viscosity parameters, and the control
schemes to be simulated. The arm angles at the shoulder and
elbow are denoted by q(t)=(q1(t),q2(t)).

The objective of the experiments reported here is to determine
how the torque α exerted by the arm depends on q(t), q·(t) and time
t during movement. In Appendix A, it is shown that it is reasonable
to assume a linear model for position and velocity-dependent
restoring forces. Specifically, we will assume that near qa(t) the
torque exerted by the arm muscles is

(1)

where the first two terms represent the restoring torques due to the
stiffness and viscosity of the arm respectively, and the last term
f(t) is discussed further below.

In practice, stiffness is measured by pushing the trajectory
away from its unperturbed path qa(t) to a perturbed path q(t), and
expressing the position-dependent restoring force as a linear function
of qe(t)=q(t)–qa(t). However, the contributions of other forces,
including viscous and inertial forces, must be accounted for in
order to isolate the position-dependent force exerted by the arm.
Suppose that the torque exerted by the arm muscles is α(t) and
the perturbation torque is r(t). Then the motion of the arm q(t)
arises from the difference of α(t) and r(t) as summarized by the
equation:

(2)

where D (q(t), q·(t), q··(t)) represents the inertial torques (torques
proportional to the segment masses) on the trajectory q(t) for a
two-jointed arm. Equation 2 indicates that, as might be expected,
the perturbation torque r(t) is balanced by both α and inertial
contributions to the overall torque.

With the above definitions, the torques f(t) are those necessary
to drive the arm along qa(t). This follows because on the unperturbed
path qa(t), the perturbation torque r(t) is zero and Eq. 2 simplifies
to:

(3)

The right-hand side of Eq. 3 is equal to f(t) since the equality
q(t)=qa(t) holds in the first two terms of the expression for α in
Eq. 1 above. This means that f(t) is the torque which produces
qa(t) exactly when applied to the inertial arm.

α t K t q t q t B t q t q t f ta a( ) = ( ) ( )( − )( ) + ( ) ( )( − )( ) + ( )˙ ˙

D q t q t q t q t q t r t( )( ( ) )( ) = ( ( ) )( ) − ( ), ˙ , ˙̇ , ˙ ,α

D q t q t q t q t q t f ta a a a a(( ) ( ) )( ) = (( ) )( ) = ( ), ˙ , ˙̇ , ˙α



By combining Eqs. 2 and 3, the restoring torques proportional
to the coefficients K(t) and B(t) may be isolated from the inertial
torques. Subtracting Eq. 3 from Eq. 2 gives the equation:

(4)

so that the model components K(t) (q(t)–qa(t))+B(t) (q·(t)–q·a(t))
can be fitted to the sum of r(t) and the inertial torque difference on
the left-hand side of Eq. 4. No other terms proportional to q··(t)
need to be considered in estimating α.

The assumption that α contains no explicit dependence on the
angular accelerations can be justified as follows. There is no
physiological mechanism available to significantly alter the mass
or shape of the limb segments. Hence terms of the form I(t)q··(t),
where I(t) is an inertia, are adequately accounted for in the inertial
equations of motion. Since no evidence of explicit torque feedback
based on q·· has previously been presented, it is a reasonable
simplification to assume that exerted forces balancing the inertial
forces are purely time-dependent torques delivered as f(t). This is
comparable to the approach of Hodgson and Hogan (1999) and
Shadmehr and Mussa-Ivaldi (1994).

In Appendix A, it is shown that Eq. 4 is an effective approxi-
mation to the restoring torque even when the exerted arm torque α
is a non-linear function of q provided q(t) is close to qa(t). Specifi-
cally, the right-hand side of Eq. 4 is the second term in the series
derived in Appendix A, and the expression for α is the sum of the
first two terms. When the perturbation is not small, forces must be
derived from or fitted to a fully non-linear model. A more detailed
account of the relationship between experimentally observed and
perturbation forces is given in Appendix B.

Bootstrap variance estimates

Many conventional statistical tests use a specific assumption (such
as normality with mean zero) and mathematically deduce the
expected properties of a sample of N observations from this
assumption. It is then possible to see which sample results would
be common under the original assumption, and which would be
rare. If the experimentally obtained result would have been unlikely,
it tends to refute the assumption.

Bootstrapping (Davison and Hinckley 1997) is a simulation
technique which can be used when it is not clear what specific
distributional assumption is appropriate. In this approach, the original
data are taken as representative of the (possibly shifted) parent
distribution, and a large number of artificial samples are generated.
Thus, the sampling distribution is derived by simulation rather
than mathematical deduction. This sampling distribution is used as
a conventional sampling distribution would have been used to
decide whether the certain sample outcomes (such as zero mean)
would be common or rare given the parent distribution.

Several of the stiffness parameters which were estimated are
non-linear functions of the data, or covary with a large number of
other parameters, complicating the interpretation of statistics
based on the normal distribution. Thus, we computed estimates of
parameter variability using bootstrap estimates (Davison and
Hinckley 1997) which produce distribution free estimates of
variability. The confidence limits presented in the figures were
computed by simulating 1000 replications of the experiment using
stratified random sampling with replacement within each pertur-
bation condition. This was performed for each subject. The upper
and lower limits of the quantity of interest were taken as the simu-
lated observations ranked 975th and 25th respectively. These
confidence intervals were in general agreement with confidence
intervals computed using a less computationally demanding jack-
knife estimate, which was used in exploratory analyses. To
perform the jackknife, a single observation was successively deleted
from each perturbed condition to yield five experimental replications
with four trials per condition. The population standard deviation
was then estimated from the variation among the subsets, after
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correcting for the fact that the subsets were not independent
(Davison and Hinckley 1997) and the resulting standard deviation
was used to compute a conventional confidence interval based on
a t-statistic.

Simulations

Simulations were programmed in C under a Linux operating
system and controlled using a custom built X-Windows interface.
The equations of motion of a two-link arm model (Spong and
Vidyasagar 1989) with parameters derived from measurement of
the subject's arm (McConville et al. 1980) were integrated using a
Runge-Kutta-Fehlberg method (Forsythe 1977), where controlling
torques satisfied the assumptions of models described in the text.

Arm simulations were modified to account for the viscous and
inertial load due to the robot arm during movements which were
otherwise unperturbed. We modeled properties of the unpowered
manipulandum by using the equations of motion for a two-link
robot with known inertias, and fitting a simple model of the non-
inertial torques as it moved freely in different parts of the work-
space after a brief torque pulse. It appeared that at angular velocities
similar to those which occurred during an unperturbed reach
(approximately 0.13 rad/s at the manipulandum “shoulder,” and
0.44 rad/s at the manipulandum “elbow”) these torques were
small, translating to endpoint forces of <1/3 N at the speeds
indicated. Since even such small forces could potentially change
the final position by several centimeters during a simulated
reach, non-inertial torques were modeled as a viscosity matrix:

(N m s/rad) in simulations of the arm and mani-
pulandum compound object.

Results

Forces during reaching

Figure 2 illustrates the average forces observed during 10-cm
reaches to a target position 5 cm to the right of the work-
space center in subject 3. Figure 2A shows a 10-cm reach
from left to right, while Fig. 2B shows a 10-cm reach from
proximal to distal. Forces displayed on the unperturbed
reaching trajectories are the net driving forces produced by
the subject's arm as a result of shoulder and elbow torques,
computed by substituting the trajectory of the arm into the
equations of motion. Thus the displayed forces on the
unperturbed trajectories correspond to f(t) in Eq. 3. The
accompanying insets show force recorded at the interface
between the robot and the subject's hand during virtual
wall perturbations at angles 20, 30 and 40 degrees, during
the 1.6 s that the walls were turned on. These results illus-
trate that while the forces exerted by the arm against the
wall and the wall against the arm on perturbed trials
cancelled one another, they were considerably larger than
those required to produce unperturbed movement. These
patterns are typical, and the fact that force against the wall
shows little tendency to decline during the terminal phases
of the perturbed movements suggests that subjects
followed the instruction not to voluntarily intervene.

Variations in stiffness

We computed stiffness of the arm during different parts
of the perturbed trajectory in both joint and endpoint

D q t q t q t D q t q t q ta a a( )( ( ) )( ) − ( ( ) ( ) )( ), ˙ , ˙̇ , ˙ , ˙̇

= ( ) ( )( − )( ) + ( )( ( ) − )( ) − ( )K t q t q t B t q t q t r ta a˙ ˙ ,

−
−
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coordinates in order to determine whether stiffness
parameters varied reliably during movement. To do this,
the plane was divided into four 2.5-cm strips which ran
perpendicular to the direction of motion beginning
2.5 cm away from the starting point, ending 2.5 cm
beyond the target position and labeled R1–R4. Regions
were thus defined relative to movement context, but also
corresponded to ranges of arm posture. Each perturbed
trial generated a subset of data falling within each
region. The data falling within each region were fitted
to a simple model to determine arm stiffness in joint
coordinates. This model was:

(5)

where the average of the unperturbed joint angle trajecto-
ries qav(t) was used to approximate qa and Ki and Bi were
constant symmetric matrices different for each subject
and region i=1, 2, 3, 4 and τ were torques corrected for
inertial contributions as described above. The assumption
that qav(t) is a suitable approximation to qa is verified by
direct calculation in the section below on movement simu-
lation. Relaxing the assumption of symmetry resulted in
some additional variability, but did not affect the overall
pattern of results. The eigenvalues g1 and g2 and eigenvec-
tors w1 and w2 of Ki were calculated by standard methods,
and we computed root mean square (RMS) stiffness

, and absolute value ratio r=|g2/g1| where
g1>g2. By the definition of eigenvalues, the numbers
gj,j=1,2 and vectors wj,j=1,2 must satisfy the matrix

equation Kiw=gw, meaning that the eigenvalue g is the
scalar stiffness along w and the wj,j=1,2 are the directions
which make the restoring force direction exactly oppo-
site to the displacement direction. The bootstrap
technique was used to estimate the variability of these
quantities and construct 95% confidence intervals for
their values. Stiffness parameters in different regions A
and B were considered different if the mean value region
A fell outside of the confidence limits for region B or
vice versa.

Data were not collapsed across subjects because we
wanted to study the control strategies employed by each
subject rather than an aggregate control strategy. Angular
excursions during the proximal-distal movement were
approximately 12 degrees at the shoulder and 24 degrees
at the elbow. Figure 3 shows bar graphs of the RMS
stiffness v, which is a measure of the overall stiffness
(left panel) and eigenvalue ratio r (right panel), which is
a measure of the asymmetry in the magnitudes of the
eigenvalues in the stiffness matrix Ki. The RMS stiffness
was larger in region R1 relative to other regions in three
of five subjects, but otherwise exhibited no clear trend.
The right-hand panel of Fig. 3 indicates there was a
systematic increase in the ratios of principal stiffnesses
in joint space in mid-movement (R3), but finally stiff-
ness parameters returned to values which prevailed near
the start. The eigenvalue ratio data, however, had signifi-
cantly smaller values in R1 and/or R4 in every subject.
Even where differences were non-significant, every
subject had the same trend.

Fig. 2A, B Average forces during unperturbed and perturbed trials
are shown for subject 3, with force magnitudes proportional to
arrow length. Arrows are at 150-ms intervals. Scale bars each
denote 5 cm, or 10 N, and indicate a magnification of 2 on the
unperturbed reaching insets. Insets from top to bottom show average
forces against the force sensor during five virtual wall perturbations
at 20, 30 and 40 degrees respectively. Top of A shows average
endpoint forces produced by the arm during 60 unperturbed reaching
trials from left to right. The left-hand trace of B shows average
forces produced during 60 unperturbed proximal-distal reaching
trials, while insets from top to bottom show force against the force
sensor during 20-, 30- and 40-degree virtual wall perturbations
respectively

τ = −( ) + −( )K q q B q qi av i av˙ ˙ ,

υ = +g g1
2

2
2

Fig. 3 From top to bottom, the left panel shows values of the
RMS stiffness in joint coordinates for subjects 1–5 in each of the
four regions, while the right panel shows the eigenvalue ratios.
The regions R1–R4 are arranged in order of decreasing distance
from the target. Confidence limit flags lacking cross bars have
been truncated on the figure
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These significant differences were most robust in
joint coordinates, and nearly disappeared when a similar
segmentation of the movement in time was examined.
Figure 4 shows bar plots of the eigenvalue ratios for the
joint stiffness matrix when the model is estimated with a
segmentation by time into epochs T1=(0.2, 0.4) s,
T2=(0.4, 0.6) s, T3=(0.6, 0.8) s and T4=(0.8, 1.0) s
instead of the previous segmentation into spatial regions.
Display conventions are the same as those in the right
panel of Fig. 3. While the mean RMS stiffnesses (not
shown) showed relatively little variation in time, it may
be seen that the pattern of joint stiffness ratios over time
is variable across subjects, with subjects 2, 3, and 4
showing different patterns from each other and subjects
1 and 5. A dependence on time would have suggested
precise feedforward programming of impedance structure
(Lacquaniti et al. 1992).

Experimental accuracy was not sufficient to provide
accurate separate estimates of the four coefficients of
shoulder and elbow stiffness and cross-stiffnesses across
the spatially segmented analysis. However, when move-
ments were segmented by time and the stiffness was
estimated at times when unperturbed movements would
have terminated (0.8–1.6 s) with the walls still present,
direct shoulder stiffnesses ranged from 11.8 to 26.5 N
m/rad, and elbow stiffnesses from 2.7 to 10 N m/rad.
Hand velocities were typically 1–5 cm/s during this time,
so that these values cannot be interpreted as postural
stiffnesses.

Table 1 shows the percentages of torque variance
explained by viscosity terms in a simple linear model for
exerted torques in each region R1–R3. The subscripts of
τi,i=1,2 refer to shoulder and elbow torques respectively.
Percentages of explained variance were obtained by
comparing the values of R2 for regression of the torques
on joint angles alone, with the values of R2 for a similar
regression of torques on both joint angles and joint angular
velocities in each region, for each subject. Mean percent-
age variance explained for both τ1 and τ2 by angles alone

was approximately 85% (R=0.92) across all subjects
and regions R1–R3. Data from a simple linear model
with fixed intercepts are presented rather than the time-
dependent symmetry-constrained model (Eq. 5) because
the time dependence and non-linear fitting procedure
used in the latter case to obtain symmetry would complicate
the interpretation of differences in R2. Similar viscosity
patterns were found in both models, however. The small
size of the torque variations explained by the viscosity
terms makes them more susceptible to experimental error
and to errors in the model. There was a tendency for
viscous forces to have less relative importance at slower
hand speeds. Many of the trajectories had nearly zero
velocity and zero variation in joint angles in region R4,
invalidating the fitting procedure in this region and leading
to non-physical estimates of viscosity there. Because of
the size of the obtained confidence intervals for viscosity,
it was not possible to make reliable statements about
variation of viscosity over space. Constant viscosity esti-
mates in the context of a global torque model for each
subject are reported below.

The variation in joint stiffness properties had conse-
quences for the endpoint stiffnesses shown in Fig. 5,
which shows endpoint stiffness ellipses for each subject
during proximal-distal reaching computed in each region
R1–R4 on perturbed trials. Each ellipse shows the

Fig. 4 From top to bottom,
bar graphs show values of the
eigenvalue ratios in joint coor-
dinates for subjects 1–5 in each
of the four time epochs, T1–T4.
Each epoch was 0.2 s in duration
and T1 begins 0.2 s after move-
ment initiation. Confidence
limit flags lacking cross bars
have been truncated on the
figure

Table 1 Percentage torque variances explained by viscosity

Region Var(τ1) (%) Var(τ2) (%) Hand speed (cm/s)

R1 0.4–7.0 8.8–12.0 15.8–19.9
R2 1.2–7.8 0.2–3.6 14.8–19.2
R3 0.6–3.8 1.2–4.8 2.2–5.6
R4 – – 1.2–4.6

Fig. 5 Endpoint stiffness ellipses are shown in regions R1–R4 for
proximal-distal reaches to the center of the workspace in all five
subjects. The ellipses are computed using the jacobian of the
transformation from angular to endpoint coordinates at the center
of each region. Location of the movement starting point is shown
as a heavy circle, and location of the target is shown as a light
square



magnitude of the force response to a unit perturbation in
endpoint position aligned with a vector from the center
of the ellipse to its perimeter. As might be expected, the
increase in the ratios of the principal stiffnesses in joint
space (Fig. 3, right panel) gives endpoint stiffness ellipses
at R2 and R3 which have less elongated shapes relative
to R1. There is a rotation in direction of the long axes of
the stiffness ellipse in endpoint space in R3 seen in every
subject so that the long axis roughly points along the
forearm. The reduction in endpoint stiffness in region R4
comes about because the definition of torque implies
lateral endpoint stiffness decreases with increasing
shoulder extension for constant shoulder stiffness. The
exaggerated elongation of the R1 stiffness ellipse may be
related to more rapid components of the response to
perturbation, as hand speeds in this region were
15.8–19.9 cm/s as shown in Table 1. Stiffness ellipses
had an unstable direction along the minor ellipse axes in
R4 for subject 1 and in R1 for subject 4. These findings
are likely due to experimental error, since the observed
eigenvalues in these directions were not significantly
different from stable ones.

The fact that these changes in stiffness parameters
occurred primarily with spatial segmentation rather than
time meant that they depended primarily on limb position.
This suggests that stiffness changes depend on passive
factors such as posture (Tsuji et al. 1995; Mussa-Ivaldi et
al. 1985), muscle synergist load sharing (Kuo 1994)
whether contraction was concentric, eccentric or isometric,
or other non-linearity in the response to deviation from
the reference point on the unperturbed trajectory average
(Bennet et al. 1992; Bennet 1993). Since forces were
mainly isometrically exerted and non-decreasing (Fig. 2),
Fig. 3 provides direct evidence against a dependence
on contraction type, and since the wall perturbation
causes the deviation from the reference point to increase,
it is unlikely that this monotonic increase alone accounts
for the non-monotonic changes in stiffness parameters.

To study the relationship between stiffness variation
and movement context, the variations in stiffness during
a 10-cm reaching movement from left to right were also
studied in subjects 3 and 4. Angular excursions during
the left-right movement were approximately 10 degrees
at the shoulder and 3 degrees at the elbow. The results of
these analyses are shown in Fig. 6. The bar graphs show
joint stiffness parameters defined as in Fig. 3, in the
regions S1–S4, which are 2.5-cm strips running perpen-
dicular to the direction of motion, starting 2.5 cm to the
right of the starting point, and ending 2.5 cm beyond the
target. These data show systematic trends in the RMS
stiffness, which is increased in S3, and a systematic trend
in the eigenvalue aspect ratio, which reaches a minimum
in S3. Subject 4 has less variability than subject 3, but
the overall trends are the same in each subject. The lower
part of the figure shows endpoint stiffness ellipses in
regions S1–S4 for subject 4. As might be expected, the
decrease in the ratios of the principal stiffnesses in joint
space (Fig. 6, right panel) corresponds to endpoint
stiffness ellipses at S2 and S3, which have more elongated

498

shapes relative to S1. It is seen that, as in the proxi-
maldistal reach, the endpoint stiffness ellipse turns so
that its major axis is more aligned along the direction of
motion in S3. Unlike the proximal-distal movement at
R3, this endpoint stiffness ellipse does not point along
the forearm.

In the left-right movements, stiffness parameters
follow a pattern of variation which is clearly different
from that of the proximal-distal movement. The tendency
for terminal joint stiffness parameters to resemble those
near the start of movement seen in the proximal-distal
reach is also seen in Fig. 6, however. While this tendency
is not obvious in the endpoint stiffness ellipses, we note
that some apparent variation in endpoint stiffness occurs
as a result of the coordinate transformation from joint to
endpoint coordinates, and not because joint stiffnesses
have changed.

Taken together, the data of Figs. 3, 4, 5, and 6 suggest
that the patterns of restoring force are strongly associated
both with the position of the limb, and the direction and
progress of movement, which interact to produce the
observed patterns of stiffness. The orientation of the
endpoint stiffness ellipse in R3 could be explained by a
postural mechanism, since stiffness along the forearm
direction should be greatest at a 90-degree elbow angle,
where elbow joint elasticity is decoupled from that of
the shoulder. In the left-right movement, a mechanism
producing the observed orientation is suggested by the
fact that a braking force must be generated at the elbow
in the second half of movement to maintain a nearly
fixed elbow angle, and this implies increased muscle
activity about the elbow joint.

Fig. 6 The left panel shows values of the RMS stiffness in joint
coordinates for subjects 3 and 4 in each of the four regions, S1–S4,
while the right panel shows the eigenvalue ratios. Confidence
intervals were computed and displayed as in Fig. 3. The bottom
inset shows endpoint stiffness ellipses in regions S1–S4 for subject 4.
Movement starting point and ending point are indicated as in
Fig. 5
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Restoring torque model

Since stiffness appeared to vary systematically in joint
angle space during movement, and since stiffness expresses
the linear relationship between torque and joint angles,
we conclude that the relationship between torque and
joint angles in the presence of large perturbations is
nonlinear. While it is possible that some of the observed
variation was due to variation in time, stiffness cannot
emulate a spatial constraint unless restoring torques are
functionally related to joint angle and joint angle velocity.
Thus, in this section, goodness of fit of this relationship is
assessed. In addition goodness of fit is compared for
nonlinear functional relationships consistent with energy-
conserving elastic forces, and those which are not consis-
tent with these properties. This clarifies the possible role
of postural stability mechanisms and stiffness modulation
during movement, using the following reasoning.

Position-dependent (elastic) restoring torques appear
to be the dominant involuntary postural stability mecha-
nism (Mussa-Ivaldi et al. 1985). Therefore if restoring
forces during motion are shown to be energy-conserving
elastic forces, it is evidence that postural stability mecha-
nisms are used during movement. By stability is meant
the tendency to return to the original posture, or original
trajectory after a disturbance. However, while unmodulated
elastic restoring forces can make a posture return to its
original value quasistatically, they cannot cause a move-
ment trajectory to return to its original path after a
disturbance. Since elastic forces do not dissipate energy,
the effect of a transient disturbance will persist as a
continuous oscillation unless there is a large viscosity or
a (possibly voluntary) modulation of stiffness. Therefore
if restoring forces during motion are shown to be energy-
conserving elastic forces, it would also suggest that stiff-
ness modulation is necessary for stability.

A potential field is the non-linear extension of a
symmetric stiffness matrix, which is characteristic of
postural stiffness (Mussa-Ivaldi et al. 1985). The distin-
guishing physical feature of such a field is that the forces
produced over any exactly repeated movement can
neither add nor remove energy from the system, so that it
cannot drive repetitive movements which perform net
work. A potential field can be expressed as the gradient
or slope of a scalar function called a potential (Courant
and Hilbert 1953, 1954). It can be shown that the gradient
[Q1(q1,q2),Q2(q1,q2)] of a potential function must satisfy
the symmetry condition ∂Q1/∂q2=∂Q2/∂q1 for all values
of q1 and q2. The hypothesis that the observed torques
are a potential field would be falsified if adding non-
conservative terms to the regression gave significant
increases in goodness of fit, or improved the ability of
the fitted torque model to simulate movement. The latter
possibility is investigated in a later section.

We fitted non-linear joint-angle relationships to the
torque data of the form:

(6)

where τ1 and τ2 are the torques at the shoulder and
elbow, Q1(q1,q2) and Q2(q1,q2) are polynomials of order
less than 3, in the joint angles q1 and q2, and B is not
constrained to be symmetric. In order that the first term
of Eq. 6 represents a conservative force field, the partial
derivatives of Q1(.,.) and Q2(.,.) have to satisfy the
symmetry condition. The models were fitted to an initial
period of the perturbed trials equal to the median time to
reach the furthest extent of the movement, for each
subject (range 0.66–0.8 s). Once the coefficients in Eq. 6
had been estimated, for Q1(.,.) and Q2(.,.) satisfying the
consistency condition, the scalar potential could be
obtained by direct calculation.

Scalar potential functions for the estimated torque
fields for proximal-distal reaches for each subject are
shown in Fig. 7. These polynomials contained only terms
amnq1

nq2
m, m+n≤2, and satisfied the consistency conditions,

thus specifying a model containing 12 parameters when
B is included. Correlations between data and the fitted
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Fig. 7 Inverted three-dimensional perspective plots of the force/
torque potential functions for each subject are shown in cartesian
coordinates. When forces are represented as the gradient of a
potential function, the same scalar function which represents the
relationship between joint angles and torques also represents the
relationship between cartesian coordinates and endpoint forces.
Lines of equal surface height (contour lines) are shown on the
xy-coordinate plane, while the arrow on the bottom inset shows
direction and extent of the proximal-distal reaching movement
studied
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polynomials ranged from 0.93 to 0.96 for proximal-distal
reaches and 0.91 to 0.95 for left-right reaches (left-right
functions are not shown), and individual t-statistics for
the non-linear terms in the regression were always statisti-
cally significant. Of the five subjects, three showed clear
minima near the target, while for the remaining two the
target lay in a valley of the surface but there was no
minimum in the region shown. This suggests that such
potential surfaces do not completely define the restoring
force model, and that viscous and time-dependent factors
may also be important. It should be noted that if stiffness
and viscosity matrices were constant, this situation
would also lead to a simple conservative non-linear
potential.

Table 2 shows the constant estimates of joint viscosity
during movement for the potential model, together with
95% confidence intervals derived from the theory of
multiple linear regression (Johnson and Wichern 1988).
Indices of the table entries bij, i=1, 2 and j=1, 2 refer to
shoulder and elbow respectively. Thus b11 is the direct
shoulder viscosity and b22 the direct elbow viscosity. All
the mean estimates were consistent with positive damping.
These estimates were most reliable for the shoulder
viscosities, which varied by a factor of approximately
2 across subjects. Except for subject 1, the pattern of
means and confidence intervals for cross viscosities
(off-diagonal terms) does not suggest a systematic devi-
ation from zero. Excluding subject 5, the mean direct
elbow viscosities were significantly different from zero
and vary by a factor of approximately 2 across subjects.
For subject 5, the direct elbow viscosity is of the correct
sign but is not significantly different from zero. The
findings for subjects 1 and 5 may have occurred because
of differences in strategy employed by these subjects,
and/or because the torque model was a simplified
description of the systematic features of generated
torques. Tsuji et al. (1995) found a similar pattern of
joint viscosities during posture, but their viscosity
estimates were about half the size of the present estimates
during movement.

For comparison, a second polynomial model was fitted
(Eq. 6) in which Qi(q1,q2) contained all terms of the form
aikqi

k, i=1, 2; k=0, 1, 2, 3 and coefficients were not forced

to satisfy the consistency condition. Since the resulting
field is non-conservative, it could not be represented as a
potential function and is not shown. This model contains
16 parameters when B is included. Correlations were only
slightly larger for each subject (for proximal-distal reaches
0.95–0.97 vs 0.93–0.96) than those achieved for the
conservative model, which had fewer parameters. These
results establish that observed torques are consistent with
a single non-linear restoring force model based on joint
angles. No clear difference in the goodness of fit between
conservative and non-conservative models was seen,
however. Comparison of the ability of these models to
simulate movement is given below.

Attractor and movement simulations

To determine whether the observed patterns of stiffness
were consistent with a role in constraining movement, a

Table 2 Constant viscosity estimates in potential model

Subject ID (N m/rad/s) (N m/rad/s)
b11 b12
b21 b22

1 –2.1±0.22 –0.84±0.15
–0.86±0.16 –0.78±0.14

2 –1.2±0.23 –0.097±0.16
–0.38±0.17 –0.44±0.14

3 –1.25±0.24 0.075±0.17
–0.18±0.18 –0.50±0.15

4 –1.33±0.23 –0.076±0.17
0.05±0.17 –0.47±0.15

5 –2.5±0.39 0.14±0.26
0.32±0.31 –0.14±0.24

Fig. 8A, B Six proximal-
distal reaching trajectories
for subject 3 are shown.
The position of the target
is indicated by the heavy
square. A shows the reach-
ing trajectories as thin lines
with an undistorted scale.
In B symbols on the traces
appear every 150 ms and
the scale is expanded five-
fold in the x-direction to
show lateral variation in
the trajectory more clearly



number of simulation studies were performed. The
trajectories of six typical unperturbed proximal-distal
reaches for subject 3 are shown in Fig. 8A, B for
comparison with simulation results. The trajectories are
scattered over an approximately 1-cm range near the
target. Presumably such variation is due to noise in both
planning and execution of movement. However, a
constraint model attributes error chiefly to execution
errors in a single intended movement, which was modeled
previously by the mean movement.

The global torque model implies that there is a nominal
trajectory qa(t) which is called the attractor trajectory.
With some assumptions this attractor trajectory can be
computed from Eqs. 1 and 2 for each trial. The properties
of these computed trajectories provide a test of the
hypothesis that the global torque model constrains move-
ment.

If constraint based on stiffness is important in correct-
ing small errors in the trajectory, two conditions on the
attractor trajectories have to be satisfied. First, the attractor
trajectories should not be much more variable than the
observed trajectories. If the model implied that extreme
attractor trajectories are necessary to explain the varia-
tion in the observed trajectories, then the attractor trajec-
tories must depend systematically on the exerted torque
for each trial. Such dependence is inconsistent with a
constraint model because a constraint based on the
mechanical state of the arm cannot require any knowledge
of the specific error which is going to occur. Second, the
individual reference trajectories must be significantly
different from the actual trajectories. Perfect identity of
individually observed and attractor trajectories would
suggest equilibrium point control rather than constraint
because it would suggest that each trial has a different
desired trajectory. Thus two tests of the constraint model
can be performed by simulating the attractor trajectories
for each trial. To compute the attractor trajectories, the
linear control scheme of Eqs. 1 and 2 was algebraically
solved for q·a(t) to obtain a differential equation. The
resulting expression for q·a(t):

(7)

specifies an inverse problem for qa(t). The inertial
torques τ and q(t) were estimated from each observed
trajectory. The model was individualized for each
subject. The attractor trajectory qa(t) was computed for each
trial and each subject, provided that the inverse of B was
accurate and the solution for qa was stable. The function
f(t) was taken equal to the average torque at time t over
all unperturbed reaches, since this choice minimizes the
average squared difference between τ and f(t), and so is a
reasonable estimate of the output of a dynamical model.
The quantity τ=τ(t) was estimated from the data for each
trajectory using the method of Appendix B. Two types of
estimate of the stiffness and viscosity were used. These
conditions were simulated in order to evaluate the func-
tional significance of observed variations in the stiffness
displayed in Figs. 3, 4, 5, and 6. First, we employed
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constant estimates of stiffness K and viscosity B. A second
approach was to use values of K(t) and B(t) from the
linear control scheme of Eq. 1 based on the variational
equation of the polynomial model. These were derived
from the polynomial models shown in Fig. 7 using the
methods of Appendix A. The attractor trajectory qa(t)
was computed from each unperturbed reaching trajectory
by solving Eq. 7.

Figure 9A shows the unperturbed and corresponding
attractor trajectories for four typical trials from a single
subject using constant K and B. It is seen that the computed
attractors stay within a few millimeters of the unper-
turbed reaching trajectories but vary apparently randomly
about the actual reaches. Figure 9B shows that there was
little difference between the mean and standard deviation
of the 60 attractor trajectories and unperturbed reaches
for the same subject. This close correspondence held for
all the subjects, whether the attractors were calculated
using constant K and B or coefficients derived from the
conservative polynomial model as described.

The difference between attractor and actual trajectories
was examined for each subject over proximal-distal

˙ ˙ ,q q B K q q B f ta a= + −( ) − − ( )( )− −1 1 τ

Fig. 9 A Reaching trajectories (solid circles) and computed
attractors (open circles) are shown for the 15th, 25th, 35th and
45th unperturbed reaching trials for subject 4. The scale is expanded
by a factor of 5 in the x-direction to show lateral variation in the
trajectory more clearly. B The mean position (solid circles) and
mean with the standard deviation added and subtracted (open circles)
are shown for proximal-distal (top) and left-right reaches. The
scale is expanded in the x-direction for the proximal-distal reaches
and in the y-direction for the left-right reaches by a factor of 5
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reaches. The root mean square (RMS) differences
between 60 computed attractors and the actual trajectories
for 60 proximal-distal unperturbed reaches over the first
1.0 s of each reach are given in Table 3. This RMS
distance includes distance in both X and Y directions,
and thus also summarizes discrepancies in timing. These
variations were not due to noise in the observed torques
since it was possible to reconstruct unperturbed move-
ments from the observed torques using the dynamical
equations with a high degree of accuracy. Attractors for
subject 1 were computed using K and B from the poly-
nomial model only, because computation of the attractors
using constant K and B gave unstable results. In addition,
the polynomial model calculation became unstable for
8/60 trials in subject 3 and 6/60 trials in subject 4 for the
polynomial model. These relatively rare anomalies in the
inverse computation do not cause difficulty with the
model, because the motor system begins with qa and
does not have to solve Eq. 7 to obtain it.

Since the overall distance of the reach was 100 mm,
the small errors in Table 3 indicate that a linear model of
restoring force is sufficient to reconstruct attractor trajec-
tories. Larger RMS discrepancies for the polynomial
model reflect the lower stiffness estimates obtained in
some parts of the movement when fitted stiffness is
allowed to vary, and do not correspond to goodness of
fit. Since the kinematics of computed attractors appear to
match unperturbed movements, qa was estimated as the
average of the unperturbed reaches in what follows.

Finally, we investigated whether the values of K(t)
and B(t) estimated from the data were of the correct
structure and magnitude to provide robust control of
voluntary movement. According to Eq. 1, the torque
applied to the arm consists of f(t) added to the torques
proportional to K(t) and B(t). Therefore if movement
could still occur when the torques f(t) associated with an
inverse dynamical model were absent, this would show
that torques proportional to K(t) and B(t) are sufficient to
control movement. If control of movement does not
depend on an accurate f(t), this would show that a move-
ment execution strategy based on an appropriate selection
of mechanical states of the arm can dramatically reduce
accuracy requirements in an inverse dynamical model.
To test this hypothesis, we set the driving force f(t) equal
to zero in the simulation. This was tested using both the
conservative and non-conservative polynomial models of
the restoring torque. Since the underlying models do not
contain f(t), it is not expected that these simulations
would closely replicate unperturbed movement. However,

the clear qualitative failure of one of the conservative or
the non-conservative models to produce stable move-
ment would suggest that the mechanism it is based on is
incorrect.

Simulation results are shown in Fig. 10. Linear
control schemes associated with either conservative or
non-conservative models were able to support stable
movement simulations for all subjects in all cases except
for left-right movement in the non-conservative model. It
can be deduced from the spacing of the symbols that
movement initiation was delayed by approximately
150 ms, probably as a consequence of setting f(t)=0.
Detailed comparison of the simulations suggests that
despite slightly lower R values in fitting restoring torques,
the conservative model is more effective in reproducing
the tendency of unperturbed proximal-distal reaches to
curve counterclockwise (Fig. 8), and that the conservative
model produces fewer anomalous trajectories (1/5 vs
3/5). The dramatic instability of the left-right simulation
for the non-conservative model is associated with a
relatively poor fit for the shoulder torques (R=0.69–0.72).
The simulations for the anomalous trajectories in the
non-conservative model were also performed with the
viscosity coefficients replaced by those from the conser-
vative model (Table 2) with similar results. This demon-
strated that the anomalies were due to the model for
stiffness and were not an indirect effect of viscosity.

While the initial delay of movement in these simula-
tions implies a velocity profile different from unper-
turbed movement, the effectiveness of this control

Table 3 RMS difference between the attractor and unperturbed
trajectories (mm)

Model Subject

1 2 3 4 5

Constant (mm) n/a 5.2 2.4 5.8 3.4
Conservative polynomial (mm) 11.1 11.0 10.4 5.8 6.0

Fig. 10 Simulations of 1.6 s of unperturbed movement are shown
for each subject using the linear control schemes derived from
conservative (A) and non-conservative (B) models. The left panels
show simulations of proximal-distal reaching and the right panels
show left-right reaching simulations scaled by a factor of 2. The
scales are magnified fivefold perpendicular to movement direction
to show deviations from straight line movement. The symbols are
150 ms apart, the legend indicates the subject parameter set used
in each simulation, and the position of the target is indicated by a
heavy square



scheme demonstrates that forces of constraint are large
enough to enforce nearly normal movement even when
driving forces are inaccurate.

Discussion

Our results demonstrate that stiffness varies during
multijoint movement, and does so in a manner which is
not simply predictable from posture, muscle contraction
type, or the parameters of the experiment (Figs. 3, 4, 5,
6). Our results on stiffness modulation are generally
consistent with observations by Gomi and Osu (1998), who
found that viscoelastic properties of the multijointed arm
can be modulated under different loading conditions.
Comparison of Fig. 5 with the work Mussa-Ivaldi et al.
(1985) and Tsuji et al. (1995) suggests that variations in
stiffness observed in these 10-cm movements cannot be
explained by variations in posture. Since the deviation
from the reference point on qa(t) was monotonically
growing, and stiffness parameters were not monotonically
growing, stiffness variation cannot be explained by the
size of the deviation from the reference point. It is possible
that different stiffnesses are associated with muscles
which are contracting isometrically, concentrically or
eccentrically; however, as Fig. 2 shows, force generation
during motion involved largely isometric or slightly
eccentric contraction during perturbed trials.

Some stiffnesses we measured during movement are a
factor of 1–2 smaller than those measured by Mussa-
Ivaldi et al. (1985) and by Tsuji et al. (1995) during
posture. However, the values observed were similar to
estimates by others (Bennet et al. 1992; Bennet 1994;
Gomi and Kawato 1996) who measured stiffness during
movement. For example, Gomi and Kawato report an
elbow stiffness range of 5–21 N m/rad over three subjects,
while we found 2.7–10.0 N m/rad over five subjects near
movement termination.

Stiffness magnitudes observed at other points in the
movement were similar to those observed during
measurements of postural stiffness (Mussa-Ivaldi et al.
1985; Tsuji et al. 1995). It is possible that these larger
values of observed stiffness were related to our use of a
large slow experimental perturbation. In the proximal-
distal reaching experiment, of 20 conditions (5 subjects
× 4 spatial domains), 10/20 RMS stiffness estimates fell
below 24.6 N m/rad. The corresponding median for the
two left-right reaching experimental replications was
30.0 N m/rad. Because stiffness ellipses had aspect ratios
different from 1.0, substantially higher stiffnesses could
be obtained in some directions. As noted by Gomi and
Kawato (1996), the observed stiffness values are not
high enough to enforce an arm trajectory which
preserves a substantial similarity between the virtual and
actual trajectories if restoring forces depend only on a
positional error (forces associated with the first term in
Eq. 1). The altered velocity profile in our simulation
(Fig. 10) suggests that stiffness and viscosity terms
constrain but do not dictate movement trajectories. Other

simulations (Katayama and Kawato 1993) which have
modeled reaching as an equilibrium point trajectory
enforced by position-error-dependent restoring forces
suggest that stiffnesses at or below 19.5 N m/rad for the
shoulder and 15 N m/rad at the elbow are insufficient to
enforce similarity of actual and virtual trajectories. If
cross-stiffnesses between shoulder and elbow are
neglected, these values correspond to a combined RMS
stiffness value of 24.6 N m/rad, so that, as noted, half the
observed stiffnesses were lower than this threshold.

While the observations are not compatible with simple
equilibrium point control, the constraint forces we
measured can be consistently described as combinations
of neurally determined force field primitives (Mussa-
Ivaldi and Giszter 1992; Mussa-Ivaldi et al. 1994;
Mussa-Ivaldi 1997), which form a global torque model
depending on joint angles (cf. Fig. 7 and Appendix A).
One contribution of the present work is to show that
such a model is also equivalent to a linear model in
which stiffness and viscosity may vary, with the same
form hypothesized by Shadmehr and Mussa-Ivaldi
(1994). This account of trajectory formation differs from
that of others, e.g., Gomi and Kawato (1997), because it
postulates a control scheme (Eq. 1) in which qa(t), K(t),
B(t) and associated restoring torque terms emerge from a
single global torque model. It is worth emphasizing that,
unlike the virtual trajectory in the equilibrium point
hypothesis, Appendix A shows that neither the attrac-
tor qa(t), nor the existence of a viscosity error term
B(t) (q·(t)–q·a(t)) requires any assumption beyond the global
torque model. While the torques affected by location of
qa(t) cannot be experimentally distinguished from those
due to f(t) in a linearized model (Hodgson and Hogan
1999), this indeterminacy is removed for sufficiently
large perturbations in the non-linear models we studied,
so that qa(t) is experimentally as well as theoretically
well defined. In linearized form, the account presented
here remains consistent with the formulations of others
such as Kawato and Gomi (1993), Shadmehr and Mussa-
Ivaldi (1994) and Hodgson and Hogan (1999).

Different patterns of stiffness modulation are not
equivalent for control of reaching as shown by our simu-
lations detailed in Table 3 and Fig. 10. Thus the detailed
pattern of constraint forces which are implied by a global
torque model cannot be neglected in accounting for
multijoint movement. It is demonstrated through simula-
tion that relatively low measured RMS stiffness values
are consistent with robust movement control when
observed stiffness modulation patterns prevail. A limitation
of the present study is that we do not establish whether
the observed variations in stiffness are functionally
essential to movement or controlled independently of the
activation which produces f(t). In addition, the present
results were obtained with relatively small and slow
movements and may be specific to such movements. It
cannot be ruled out that subjects intervened voluntarily
to some extent in responding to the wall perturbation.
However, since there were ten conditions presented in an
unpredictable manner, and subjects did not have visual
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feedback, it appears unlikely that the consistent responses
observed were a product of voluntary intervention.

The fact that restoring forces can be accounted for by
energetically passive mechanisms suggests that reflex
mechanisms and sensory feedback might act only to
shape energetically passive mechanical properties of
muscles and, thus, the mechanical state of the arm
(Hogan 1985; Houk and Rymer 1981). The hypothesis
that postural mechanisms continue to influence stiffness
during movement remains consistent with the possibility
that limb impedance is adjusted in an appropriate manner
for each movement. In particular, the observed complex
joint-angle-dependent variation in stiffness may occur
because redundant synergist muscles which exert their
influence in different pulling directions attain a varying
degree of mechanical advantage at different points
during the perturbed motion (Kuo 1994). Such an
account might reconcile complicated observed patterns
of stiffness modulation with relatively simple neural
strategies for tuning joint stiffness. Further studies of
muscle activation would be required to substantiate this
hypothesis.
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Appendix A

In the experiments reported here, the robot enforced a
relatively large lateral deviation of 1–5 cm. The data
suggest that the restoring forces associated with these
deviations can be described by a non-linear model which
is a function of joint angle and angular velocities. In this
appendix it is shown that such a global torque model
implementing a spatial constraint can be equivalent to a
selection of mechanical states in considering small
disturbances near the intended trajectory. This derivation
does not address the origin of the global model, which
might arise from neural and/or biomechanical mechanisms.

In unperturbed movement, deviations about the average
trajectory are small, on the order of 1 cm. We can define
the dimensionless parameter ε to be the ratio of the
average deviation of the path at the target across many
perturbations to the entire path length, and write any
disturbing force as ε d(t). Thus a typical value of
ε=1 cm/10 cm. While the calculation below can be done
whether epsilon is small or not, the effectiveness of the
approximation will vary with the size of epsilon and the
physical properties of the model. The perturbation can be
considered to be “small” when only a small deviation is
induced in the trajectory.

A global model of torque leads to the dynamical
equation:

(8)

where q=(q1,q2) are the shoulder and elbow angles in the
plane, D describes the passive dynamics of the arm, S(q)
gives torque as a function of q, B(q) is a matrix of the
form ∂▼▼ρ(q)/∂(q1,q2) for some scalar function ρ(q),
P(t)=Jtd(t), and ε is the small dimensionless parameter
described above. The terms on the right-hand side of Eq. 8
represent the active controller for the arm. The particular
forms chosen for S and ρ do not affect the argument and
more details about the choices made appear below.

Perturbation analysis is a classical technique of mathe-
matical physics (Courant and Hilbert 1953, 1954), which
has also been applied to the control of robot manipulators
(Lee and Chung 1984). We assume that this dynamical
equation produces a solution q(t,ε), which is infinitely
differentiable in t and ε. Hence it has a taylor series in ε,
which we write (absorbing the factorials into the defini-
tions of Vi, i=0, 1, 2,...) as:

(9)

where Vi(t) are to be determined from the dynamical equa-
tion. It may be verified from Eq. 9 that V0(t) is obtained by
setting ε=0 and V1(t) is obtained by computing ∂q/∂ε|ε=0.
This procedure may also be followed to obtain the Vi(t)
implicitly from Eq. 8 as we now describe for V0(t) and V1(t).

Substitution of Eq. 9 into Eq. 8 yields (omitting the
t arguments for brevity):

(10)

Setting ε=0 gives the equation for the unperturbed
trajectory:

(11)

The trajectory V0(t) corresponds to qa(t) in the text. This
equation involves forces which are not accessible to
experimental measurement because by definition no
experimental perturbation has been given. While it is
possible to deduce the net torques as a function of time
using the passive dynamical equation of the arm, not
much can be determined about their space or velocity
dependence without perturbing the arm.

To determine the equation satisfied by V1(t), we
differentiate both sides of Eq. 10 with respect to ε and
then set ε=0, which removes the non-linear terms. In this
manner, using the product rule on the term involving
B(q)q· in Eq. 8 we obtain:

(12)

where Dj=∂D(·,·,·)/∂{jth argument}; the symbol [Dj]
denotes the latter evaluated at (V0, V·0, V··0) and square
brackets [] are used to denote a matrix.D q q q S q B q q P t, ˙, ˙̇ ˙( ) = ( ) + ( ) + ( )ε
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The first term [∂S/∂(q1,q2)]V1 on the right-hand side
of Eq. 12 is the stiffness term and corresponds to K(t) in
the text. The term B(V0)V

·
1 is the viscous term which

corresponds to B(t) in the text, and the term [∂B(V0)/∂(q1,
q2)V

·
0]V1 is referred to as the viscoelastic term. Since B is

a matrix, the expression ∂B(V0)/∂(q1,q2) is a 3-index
tensor. Note that the viscoelastic term is largest in
midreach where V0 is large, and vanishes when V·0=0. If
B=const, the viscoelastic term vanishes entirely. However,
the presence of a viscoelastic term in the perturbation
expansion shows that whenever the viscous force term of
Eq. 8 is not constant this produces a non-negligible
transient stiffness which must be inserted to represent the
outcome of dynamic perturbations. While this term was
not necessary to explain our data on reaching, it represents
a potentially important theoretical prediction in situations
which require adaptation to a viscous field.

Equation 12 is the variational equation mentioned in
“Materials and methods.” This equation gives the time
varying linear relationship between the experimental
perturbation P(t) and the resulting change in the trajectory
and its time derivatives. Despite the fact the original
equation (Eq. 8) contained no explicit time dependence,
and no new physical or physiological assumptions were
used in deriving Eq. 12, each term in this equation
depends on time through V0.

Several forms were entertained for S(q) in Eq. 8
including S(q1,q2)=(Q1(q1),Q2(q2) for general cubic poly-
nomials Qi(q), i=1, 2 and S(q1,q2)=Kq for a constant
matrix K. We also considered models of the form
S(q)=▼▼σ(q) where each of σ and ρ had the form

(13)

where a, b, c, d, e, f, g, h, i are constants, different for
each of σ and ρ. From the form G(q1,q2), each of the
terms on the right-hand side of Eq. 12 can be computed
in a straightforward way. When a=b=c=d=0, in the scalar
function σ(q) the matrix [∂S(V0)/∂(q1,q2)] is constant and
symmetric and when a=b=c=d=0 in the function ρ(q),
B(V0) is a constant symmetric matrix, and the viscoelastic
term is zero.

Appendix B: torque estimation

This appendix describes the method used to estimate α,
the total torque exerted by the human arm. If the inertial
parameters of the human arm are known, net torque at
each joint may be inferred directly from the kinematic
variables by an algebraic substitution into the equation
of motion (Spong and Vidyasagar 1989). However, net
torque τ consists of the difference between the force
exerted by the robot r (represented as human arm torque)
and the torque exerted by the musculoskeletal components
of the arm α; that is τ=α–r. The endpoint force d
observed on the force sensor (with appropriate sign) is

the active and inertial force exerted by the robot on the
arm so that r=Jt

qd, where Jq is the jacobian of the trans-
formation from (q1,q2) to (x,y) coordinates. Substituting
for r gives α=τ+Jtd.

The arm/manipulandum system may be described by
the equation:

(14)

where s1 and s2 are robot joint angles, Dr and ρ are
respectively the passive dynamics and driving torques
exerted by the robot, Da are the dynamical equations of
the arm and the subscripts of Js and Jq refer to the
respective coordinate transformations for the robot and
human arms. Thus, observations of d and a model of arm
dynamics Da are sufficient to estimate α for any ρ.
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