
Abstract The 2/3 power law, the nonlinear relationship
between tangential velocity and radius of curvature of the
end-effector trajectory, is thought to be a fundamental con-
straint of the central nervous system in the formation of
rhythmic endpoint trajectories. However, studies on the 2/3
power law have been confined largely to planar drawing
patterns of relatively small size. With the hypothesis that
this strategy overlooks nonlinear effects that are constitu-
tive in movement generation, the present experiments test-
ed the validity of the power law in elliptical patterns that
were not confined to a planar surface and which were per-
formed by the unconstrained 7-degrees of freedom (DOF)
arm, with significant variations in pattern size and work-
space orientation. Data were recorded from five human
subjects where the seven joint angles and the endpoint tra-
jectories were analyzed. Additionally, an anthropomorphic
7-DOF robot arm served as a “control subject” whose end-
point trajectories were generated on the basis of the human
joint angle data, modeled as simple harmonic oscillations.
Analyses of the endpoint trajectories demonstrate that the
power law is systematically violated with increasing pat-
tern size, in both exponent and the goodness of fit. The ori-
gins of these violations can be explained analytically based
on smooth, rhythmic trajectory formation and the kinemat-
ic structure of the human arm. We conclude that, in uncon-
strained rhythmic movements, the power law seems to be a
by-product of a movement system that favors smooth tra-
jectories, and that it is unlikely to serve as a primary move-
ment-generating principle. Our data rather suggest that
subjects employed smooth oscillatory pattern generators in
joint space to realize the required movement patterns.

Keywords Human arm movements · Rhythmic
coordination · Trajectory formation · Power law ·
Smoothness · Human

Introduction

Invariant features of movement trajectories constitute an
important window into understanding the fundamental
organizing principles of biological motor control and the
physiology of nervous systems. In the present work, we
will examine one of these features, the 2/3 power law,
with the goal of studying the mechanisms of rhythmic
movement generation. Early studies by Viviani and
Terzuolo (1980, 1982) on handwriting and drawing
movements observed that there is a systematic relation-
ship between the velocity of the end-effector trajectory
and the geometric path1 that it describes. This observa-
tion was quantified by Lacquaniti et al. (1983) as the “2/3
power law”: the angular velocity a(t) of the endpoint is
proportional to the curvature c(t) of the end-effector path
by satisfying the power relation:

a(t)=kc(t)2/3

Or equivalently:

(1)
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1 It is important to keep in mind that a movement path denotes the
spatial realization of a movement, irrespective of its timing,
whereas a movement trajectory includes timing information. The
quantitative description of movement paths is the topic of differ-
ential geometry (Morasso 1983); the radius of curvature is one
such quantity.
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The name “2/3 power law” originates from the formula-
tion written in terms of angular velocity a(t) and curva-
ture c(t) with the exponent 2/3. With a view to the data
analysis, however, it is more convenient to use Eq. 1 for
the tangential velocity v(t) and radius of curvature r(t)
with power law exponent β=1/3. Hence, to avoid confu-
sion, we will refer to the 2/3 power law simply as the
power law. The factor k in Eq. 1 is a proportionality con-
stant, also termed the “velocity gain factor” (Viviani and
Cenzato 1985). To appreciate the appeal of the power
law, one needs to emphasize that no physical reason ex-
ists why movement path and tangential velocity should
be related.

Supporting evidence for the power law comes from
numerous studies, ranging from experiments on skill de-
velopment (Viviani and Schneider 1991), isometric force
trajectories (Massey et al. 1992), and perceptuomotor
tasks (Viviani and Mounoud 1990; Viviani and Stucchi
1989, 1992; Viviani et al. 1987) to results from popula-
tion code activity in the cortex (Schwartz 1994). Given
this converging support, the power law has become
widely accepted as an important invariant in biological
movement trajectories and even an evaluation criterion
for the “goodness” of models (Harris and Wolpert 1998).

Yet, several studies have shown that the power law is
not always accurate. For instance, in more complex
(nonelliptical) movement patterns, movement segmenta-
tion needs to be assumed to retain its validity (Viviani
and Cenzato 1985), and even in elliptical patterns sys-
tematic deviations can be observed (Osu 1993; Wann et
al. 1988;). An alternative perspective was taken by
Gribble and Ostry (1996), who demonstrated the validity
of the power law but argued that it is primarily caused by
neurophysiological and biomechanic properties and not
the control mechanisms of the CNS.

The present study aims to find an explanation for the
empirical phenomenon of the power law. Two hypothe-
ses are examined: (1) The power law is an organization-
al principle for movement generation, implemented di-
rectly by the central nervous system; and (2) The power
law is a by-product of other mechanisms of trajectory
formation. For this purpose, we examined rhythmic, el-
liptical movements performed by the whole arm in three
dimensions. Ellipses have always been patterns that reli-
ably satisfied the power law, or at least in good approxi-
mation. In contrast to previous studies, however, we in-
troduced significant size and workspace variations in
our experiments. These conditions revealed strong vio-
lations of the power law in large patterns. Kinematic an-
alyses of the human arm and smoothness arguments will
allow us to reconcile our results with previous research,
rendering the power law in rhythmic movement a by-
product of smooth, oscillatory trajectory formation in
joint space.

Materials and methods

The following experimental setup is largely the same as previous-
ly detailed by Sternad and Schaal (1999). We will thus describe

only novel issues in this section and otherwise refer to our previ-
ous work.

Experimental strategy

To present our arguments, this study adopted the following strate-
gy. First, human subjects performed cyclic drawing movements in
three dimensions, i.e., without being constrained by a surface. Im-
portantly, subjects used their whole arm and the patterns were
scaled in size, shape, and orientation to examine the influence of
the kinematics of the arm on the endpoint trajectory. Data were re-
corded from the endpoint and seven joint angles. Second, the joint
angular trajectories were approximated by continuous sine waves,
in agreement with the previous findings of Soechting et al. (1986)
and Soechting and Terzuolo (1986). Third, based on these sinusoi-
dal fits, the human joint movements were implemented and exe-
cuted on a 7-degrees of freedom (DOF) anthropomorphic robot
arm. Fourth, the hand paths of the robot produced by this control
strategy were recorded in the same way as in the human experi-
ments and were compared with those of the subjects. This metho-
dology allowed the direct comparison of data from human subjects
with data from an artificial system whose control strategy is
known. Using a robot instead of a simulation enabled us to mea-
sure the artificial data with exactly the same devices as the human
data, such that both data sets underwent the same distortions from
data recording and data processing. In addition, the stringent con-
straints of an implementation on an actual robot helped assure the
correctness of our statements and their applicability to a real an-
thropomorphic movement system.

Participants

Five volunteers from our laboratory (two women, three men) par-
ticipated in the experiment. Their ages ranged between 24 and
38 years. All of them were right-handed and none reported any
previous arm injuries. The experiments had been approved by the
ethics committee, and subjects gave their informed consent prior
to their inclusion in the study.

Data recording

Data recording was identical to our previous study (Sternad and
Schaal 1999). In brief, six color markers attached to the subjects’
arms were recorded at 60 Hz with a color vision-based motion-
analysis system (Quickmag, Japan). The arrangement of the mark-
ers was such that joint angular data could be reconstructed robust-
ly and that three-dimensional (3D) end-effector data were directly
available, too.

Robot

As described by Sternad and Schaal (1999), we employed an an-
thropomorphic robot arm as a control subject. The arm had 7 DOF
in a configuration that mimicked a human arm with a 3-DOF
shoulder joint, a 1-DOF elbow, and a 3-DOF wrist joint. For con-
trol, the robot employed kinematic trajectory plans (joint position,
velocity, and acceleration), converted those to joint torques by an
inverse dynamics model based on estimated parameters (An et al.
1988), and executed the torque commands in conjunction with a
low-gain PD controller. The lengths of the arm segments corre-
sponded to those of a tall human being, with a total arm length of
0.94 m (shoulder to fingertip).

Procedure for the human experiments

After the subject were seated, they were instructed to draw a series
of ellipses with their dominant arm in the transversal and frontal
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plane. The experimenter demonstrated the elliptical patterns in
their orientation with respect to the body and their approximate
size. No extrinsic constraints were given that would confine the el-
lipse to a plane. A first set of transversal ellipses was drawn so
that the long axis of the ellipse was approximately parallel to the
x-axis (Fig. 1). A second set of transversal ellipses was drawn in a
diagonal orientation, with the long axis pointing approximately
from the center of the chest 45° to the right in the x-y plane. This
diagonal orientation was chosen because joint limits are not so
easily encountered as in other orientations (Viviani and Schneider
1991). Frontal ellipses were drawn in vertical and horizontal ori-
entations, i.e., as a “standing” or a “lying” ellipse. The experimen-
tal trials were performed in four blocks, each consisting of ten tri-
als, which were counterbalanced across participants. In one block,
all elliptical patterns were performed in the same orientation and
with approximately the same eccentricity, but at approximately
five different sizes. Prior to the actual data collection, participants
were asked to explore their workspace and practice different sizes
of ellipses with the only constraint that for the largest patterns they
should avoid extreme ranges of motion. The first trial of each
block started with an intermediate-sized ellipse followed by ellip-
ses in the following sequence of sizes (1 denotes the smallest and
5 denotes the largest ellipse, 3 is the intermediate size): 3, 4, 5, 3,
2, 1, 5, 4, 1, 2. This staggered order was chosen because partici-
pants could not remember the absolute sizes of the ellipses, and
they also did not need to. By going through different sizes in this
step-like fashion, all subjects could produce a roughly uniform
distribution of different ellipses between a maximal and minimal
size. Emphasis was placed on consistency in size and frequency of
the patterns throughout the duration of one trial. For the actual da-
ta collection, subjects started the pattern, then they closed their
eyes2 to avoid visual orientation in Cartesian coordinates and,
while continuing the pattern, they verbally signaled to the experi-
menter when they were ready for data recording. Data collection
for one trial lasted for 15 s. Participants could rest their arms be-

tween trials whenever they needed to. The total experiment lasted
approximately 30 min.

Data analysis

Data filtering

The three-dimensional trajectories of each marker were low-pass
filtered using a zero-lag, second-order Butterworth filter with a
4.5-Hz cutoff frequency. For the analysis of the endpoint trajecto-
ry, the corresponding endpoint marker was additionally high-pass
filtered with a second-order, zero-lag Butterworth filter (cutoff
frequency 0.3 Hz). This filter eliminated slow drifts of the draw-
ing pattern owing to the blindfolded pattern execution. After fil-
tering, the first and last 60 data points of each trial were discard-
ed to eliminate distortions from digital filter onsets. Smooth dif-
ferential trajectories of each marker were obtained by a minimum
jerk spline approximation, adapted from Wada and Kawato
(1994). The reconstructed trajectories were guaranteed to lie
within 0.01 m Euclidean distance from the measured trajectory;
on average, they were within 0.001–0.002 m distance. The choice
of all filter cutoff frequencies was the result of a pilot experiment
using the robot arm. As the robot generated elliptical patterns, its
fingertip data were recorded with the Quickmag system, a proce-
dure that is obviously contaminated with some measurement
noise. In addition, the joint angle data of the robot were recorded
with high-resolution optical encoders, i.e., with very little mea-
surement noise, such that the “true” fingertip position could be
calculated from the known forward-kinematics model of the ro-
bot. By comparing the results of the power law analyses, per-
formed on the Quickmag recordings of the fingertip, with the
power law analyses performed on the low-noise robot endpoint
trajectories calculated from the joint angles, the filter cutoffs ap-
plied to the vision-based recordings were adjusted to obtain a
maximal matching of the data.

Joint angle reconstruction

The six measured markers allowed an analytically well-defined re-
construction of the joint trajectories of the subjects, employing the
biomechanically derived coordinate system of Wood et al. (1989).
Figure 1 shows this coordinate system. Based on the finding that

Fig. 1 a The coordinate system used for joint angles: shoulder
flexion-extension (SFE) is the angle between the z-axis and the
projection of the upper arm onto the sagittal plane; shoulder ad-
duction-abduction (SAA) is the angle between the upper arm and
the projection of the upper arm onto the sagittal plane; humeral ro-
tation (HR) is the torsion angle about the upper arm; elbow flex-
ion-extension (EFE) is the angle between upper and forearm in the
plane spanned by the two limb segments; wrist supination-prona-
tion (WSP) is the torsion angle about the forearm. b The wrist an-
gles are defined relative to a nominal posture of the forearm and
hand: the nominal posture is the forearm hanging straight down,
while the palm is parallel to the sagittal plane and facing toward
the body. Wrist flexion-extension (WFE) is the angle enclosed be-
tween the hand and the projection of the hand onto the sagittal
plane; wrist adduction-abduction (WAA) is the angle between the
z-axis and the projection of the hand onto the sagittal plane

2 In a pilot study, three subjects executed the same set of elliptical
movement patterns with the one difference that they were not
asked to close their eyes. While the results on the main dependent
measures did not differ from the ones of the reported experiment,
the subjects reported a tendency to orient their patterns toward ob-
jects in the laboratory, i.e., walls, closets, or other planar objects.
To avoid any interference from such external influences, we opted
to instruct them to close their eyes.
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cyclic drawing patterns are produced by approximately sinusoidal
oscillations in joint space (Buchanan et al. 1997; Guzman et al.
1997; Soechting and Terzuolo 1986; Soechting et al. 1986), the
seven joint angle trajectories were fitted with sinusoids. The fun-
damental frequency of each pattern was determined from the fun-
damental peak of the FFT analysis of the endpoint trajectory.
Since the patterns were performed stably over the 15-s trials, this
fundamental frequency f must coincide with the fundamental fre-
quency of each DOF. Given the fundamental frequency, the ampli-
tudes and phases of the sinusoidal fits of the joint trajectories were
approximated by a linear regression of the coefficients a0, a1, and
a2 of the equation θ (t)=a0+a1sinωt+a2cosωt, where ω =2πf. The
amplitude and phase of each DOF can be determined from these
coefficients as A= and ϕ =arctan (a1/a2).

Consequently, a complete approximation of each trial was ob-
tained in terms of sinusoidal joint motion, together with a coeffi-
cient of determination indicating the quality of fit of each sinusoid.

Descriptive measures of the endpoint trajectory

Frequency. The mean period or frequency of one trial was com-
puted from the fundamental frequency of the fast Fourier trans-
form (FFT) analysis of the endpoint trajectory.

Perimeter. To quantify the pattern size, the mean perimeter of each
ellipse was computed by summing over the Euclidean distances of
subsequent data points and dividing by the number of elliptical cy-
cles per trial. The number of repeated cycles was obtained from
the fundamental frequency of the FFT analysis of each pattern and
the trial duration.

Planarity. The planarity of the elliptical patterns was defined as
the magnitude of the movement orthogonal to the major and minor
axes of the elliptical pattern, thus quantifying the ellipse’s devia-
tion from its two-dimensional (2D) extent. Therefore, large values
of planarity corresponded to large deviations from the 2D extent.
For this calculation, the patterns were first split into trajectory
pieces of one-period duration. Second, the covariance matrix and
its eigenvalues were determined for each trajectory piece using the
x, y, and z values of all sampled data points of the segment. Third,
the square root of the smallest eigenvalue captures the deviation
from strictly 2D performance. Finally, the planarity estimate of
one trial was obtained from the mean over all single-cycle values.
Performing the calculations on a cycle-by-cycle basis was neces-
sary to avoid noise effects from slow drifts in the subjects’ perfor-
mance. Although the smallest eigenvalue is generally vulnerable
to noise, the calculated values from the present data set neverthe-
less provide a reliable indicator for planarity (for more details, see
Sternad and Schaal 1999).

Power law exponent. The radius of curvature and the tangential
velocity of the elliptical patterns were calculated according to
the standard formulae in Eq. 1. More critical were the estima-
tions of the velocity gain factor k and the exponent β of the pow-
er law. Two different methods were used. First we followed the
typical procedure of determining the exponent from a log-log re-
gression (Lacquaniti et al. 1983). While this is a common analy-
sis technique for extracting exponential coefficients, there is an
important statistical issue to be considered, especially when the
exact magnitude of the linearized fit of the exponent is impor-
tant. A regression on the log-log data is inherently biased, since
it de-emphasizes the error of data points at the higher values of
the variables (see also Elzinga 1985). In the present case, it un-
derestimates errors at higher tangential velocities. This can be
readily appreciated when one compares the cost functions for the
nonlinear regression with the one for the log-log regression;
while in the nonlinear case the cost function Jnonlinear is the regu-
lar squared deviation between predicted v̂i and actual tangential
velocities vi:

(2)

the log-log regression minimizes a cost Jlog using the ratio of vi
and v̂i:

(3)

where N denotes the number of data points in one trial.
To minimize Jlog, v/v̂ is optimized toward 1, where the log

function equals zero. This means that for larger v a larger error in
v̂ will be tolerated, since it is not the absolute error, as in Eq. 2, but
rather the relative error that is minimized. Conversely, for small v,
only an unproportionally small error in v̂ will be tolerated. Statisti-
cally, minimization of Eq. 3 assumes that the data have an error
component that is log-normally distributed, i.e., the smaller the v,
the smaller the error and vice versa. From our point of view, it is
unclear whether this assumption is justified for power law data:
for instance, some results in the literature argue in favor of in-
creasing variance with increasing force production (Newell and
Carlton 1988), while others report more variability in low-velocity
regions of the trajectory (Haggard and Richardson 1996). For this
reason, we also analyzed the untransformed data directly by using
the nonlinear Levenberg-Marquardt least-squares regression
(Press et al. 1989). In the Results section, we demonstrate that the
two different data analysis techniques can have a profound impact
on the quality of fit of the power law.

Data modeling and robot implementation

In order to replicate the human data with the anthropomorphic robot,
the ten trials of each subject from one set of different-sized patterns
were sorted according to their mean perimeters. For each joint angle
θi, a weighted regression analysis was performed (Myers 1990), re-
gressing each of the three parameters of the sinusoid, i.e., frequency
f, amplitude A, phase, against the perimeter p, thus resulting in:

where d0, d1, b0, b1, c0, and c1 are the linear regression parameters.
Using weighted regression analyses was necessary because the pa-
rameters of the sinusoidal fits for the different-sized joint trajecto-
ries had different variances. A nonweighted regression over such
data would violate the linear regression model that assumes equal
variance in all data points. Weighted regression multiplies the in-
put and output of each data point i with a weight wi=1/si, where si
is the standard deviation of the ith data point (Schaal and Atkeson
1998). After this transformation, the regression analysis proceeds
as usual. In the present case, since the true standard deviations of
the sinusoidal-fit parameters are not easily obtained from the non
linear equations for A=            and ϕ =arctan (a1/a2) (see section
Joint angle reconstruction), we used the square root of the coeffi-
cient of determination of the sinusoidal fit as a weight, i.e., wi=

, assuming that it approximately reflects the reciprocal of the
standard deviation of the coefficients of the sinusoidal fits. Thus, the
weighted regression de-emphasized the influence of data points stem-
ming from sinusoidal fits with low coefficients of determination.

As a result of these regressions, we obtained linear scaling re-
lations of how the joint angle motions, i.e., their frequency, ampli-
tude, and phasing, varied as a function of the pattern size. From
these scaling relations, we chose five sets of parameters to gener-
ate the desired joint positions, velocities, and accelerations for five
pattern sizes for every subject in every experimental condition.
The five parameter sets were picked equidistant between the val-
ues for the smallest and the largest perimeter (see also Results).
This kinematic description of joint motion sufficed to repeat the
patterns with the anthropomorphic robot arm by using it as desired
trajectory input for an inverse model in conjunction with a PDJ v kr v vnonlinear i i
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Fig. 2a,b Kinematic des-
criptors obtained for all trials in
human (asterisks) and robot
(circles) data. a Planarity per
trial versus mean perimeter.
b Mean frequency per trial ver-
sus mean perimeter

controller. We recorded the Cartesian fingertip movement of the
robot with the Quickmag vision system for 15 s for each move-
ment pattern. Thus, the pattern realized by the robot could be ana-
lyzed in the same way as the human data.

Results

Human data

Descriptive measures

A first set of analyses extracted the relevant kinematic
variables to describe the subjects' performance across the
experimental conditions. In accordance with the instruc-
tions, subjects traced ellipses over a large range of differ-
ent sizes, yielding an approximately uniform distribution
of mean perimeters ranging between 0.21 and 2.23 m.
Typical realizations of such patterns were shown in pre-
vious work (Sternad and Schaal 1999). In general, sub-
jects traced proper elliptical patterns in the smaller-size
conditions, while for some workspace locations the large
patterns show distortions from elliptical (for an explana-
tion, see Sternad and Schaal 1999). Figure 2a plots the
measure of planarity as a function of the mean perimeter
of each trial. With increasing pattern size, the planarity
measure increased, indicating that large ellipses increas-
ingly deviated from a strictly planar shape, i.e., had a
significant 3D structure. Figure 2b shows the temporal
dependency of the elliptical patterns on the mean perim-
eter. In all subjects, the mean frequency of the elliptical
patterns decreased with increasing pattern size, but it de-
creased much more slowly than the mean perimeter in-
creased. Similar observations have been reported in pre-
vious studies (Viviani and Cenzato 1985; Viviani and
Flash 1995; Viviani and Schneider 1991).

Power law fits

The endpoint trajectories of human data were used to de-
termine the coefficients of the power law. Figure 3a–d
shows the results of the power law fits for one represen-
tative subject performing the four different pattern orien-
tations. Each panel shows the results for the β coeffi-

cients of ten trials, estimated with the nonlinear regres-
sion (see Materials and methods) and graphed as a func-
tion of the mean perimeter of each trial. To illustrate the
quality of the power law fit, the coefficients of “nonde-
termination” (1–R2) are included to provide a “confi-
dence band” of ±0.5×(1–R2) around the β-values. It is
important to note that these “confidence bands” are not a
confidence measure of each β-value, but rather a confi-
dence measure of the entire power law fit. Thus, Fig. 3
superimposes two quantities in one graph to allow in-
spection of the quality of the power law fits at one
glance.3

Figure 3a shows the “confidence points” for each trial
with “+” signs, while in the other charts they were omit-
ted for reasons of clarity. In order to capture the trend of
the power law fits as a function of pattern size, we fitted
polynomials of maximally second order to the β-values
and the R2-values by using a stepwise regression, thus
obtaining β- and R2-values as functions of the perimeter
p:

β=a0+a1p+a2p2 and R2=b0+b1p+b2p2 (4)

The results of these regressions are added as solid lines
in Fig. 3 to depict the trends of the data more clearly. Us-
ing a stepwise regression ensured that all fits of the
trends in Eq. 4 were significant at a level of P<0.05.
Across all subjects and conditions, we obtained 20 such
fits of the parameter trends (one for each condition for
each subject). Of these 20 fits, 18 had a significant linear
or quadratic trend in the β-values. In the two cases where
the stepwise regression favored a constant fit, there was

3 Using a Bayesian nonlinear regression procedure, we also calcu-
lated the confidence bands on the β-values. Across all subjects and
conditions, these confidence bands were very narrow, and they are
not recognizable in Fig. 3. Also, the confidence bands of the β-
values are not relevant to our analysis: the confidence band on a
regression parameter can be very narrow even if the regression
analysis is not significant. The confidence band of the regression
parameters is typically determined by the leverage that the data
provide to determine the parameters accurately, while the quality
of the regression is determined by the suitability of the model that
was fitted to the data. The latter point is what we pursue in our an-
alyses: a statement about the suitability of the power law model
for rhythmic movement generation.
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a significant deviation of the β-values from the target
value of 1/3 (tested by t-tests with a 0.05 significance
level). Additionally, 13 out of 20 fits had a significant
linear or quadratic trend in the R2-values. These trends
are statistical evidence that the size variations of the el-
liptical patterns had a significant impact on the quality of
the power law fits.

As a summary result of the power law fits across all
subjects and experimental conditions, two main observa-
tions can be discerned: for small pattern sizes, the power
law coefficient β is close to the expected 1/3, for larger
pattern sizes, however, the fit continuously degrades.
This degradation is indicated as either an increasing de-
viation from the target value 1/3, or an increasingly
worse fit of the power law coefficients, i.e., lower R2-
values expressed in the widening of the confidence band
in Fig. 3. It should be emphasized that the degradation of
the power law fits is often so severe, e.g., on the order of
30–40% difference from the original value 1/3, that it is

not possible to dismiss it as a tolerable variation of an
empirically determined law of human movement coordi-
nation.

Power law fits: log-log or nonlinear regression?

In the Materials and methods section, we mentioned that
our data analyses employed nonlinear regression techniques
to extract the coefficients of the power law, while most pre-
vious investigations made use of log-log regressions. Ap-
pendix A provides empirical evidence that the log-log re-
gression systematically underestimates the absolute devia-
tions from the coefficient 1/3, such that care must be taken
in interpreting the absolute values of previous power law
studies that employed log-log regressions. However, the
trend of degradation of the power law with larger patterns
size remains the same in both analysis techniques.

Fig. 3a–h Estimates of the co-
efficient β of the power law as
a function of the mean perime-
ter of each trial. To indicate the
quality of the regressions, a
“confidence band” of
β±0.5×(1–R2) is added in each
graph. The data points of β and
R2 were interpolated by poly-
nomial regressions to visualize
the trend of the data. For com-
parison the dimmed horizontal
line indicates the power law co-
efficient β=1/3. a–d Data from
one human subject in the four
different experimental condi-
tions; e–h the corresponding
robot results
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Joint angle trajectories

In addition to the analysis of the endpoint trajectories, we
further investigated the joint angle trajectories of the hu-
man subjects that generated the endpoint trajectories. Sim-
ilar to previous results obtained by Soechting and
Terzuolo (1986) and Buchanan et al. (1997), all time se-
ries of the seven joint angles were sufficiently regular to
allow their fitting by sinusoids. Table 1 lists the R2-values
across all subjects in the four pattern orientations. To bet-
ter reflect the dependency of the R2-values on the joint an-
gular amplitudes, the R2-values were binned according to
amplitude ranges. For each bin, the median and interquar-
tile range is shown as a robust statistic for the mean and
the standard deviation. Robust statistics had to be used in
this case because the distribution of R2-values in each bin
deviated significantly from a normal distribution.

Except for very small joint angular amplitudes, the
R2-values of sinusoidal fits were always highly signifi-
cant, expressed by R2-values greater than 0.8. The fact
that larger joint angle amplitudes have higher R2-values
is largely due to our recording technique: Since the
markers attached to the subjects' arms are necessarily
offset from the neutral axis of the joint, even single-DOF
movement can cause displacements in several markers
which will be interpreted as if several DOFs were mov-
ing. This spurious movement reduces the signal-to-noise
ratio, particularly for small angular amplitudes. In some
trials, a slow drift in frequency also contributed to a re-
duction of the R2, although the pattern was otherwise ap-
proximately sinusoidal. Despite these data contamina-
tions, it was always possible to faithfully reproduce the
main effects of the human movement with the sinusoidal
model, as subsequent results will demonstrate. Apart
from the observation that the angular motions of wrist
supination-pronation (WSP), wrist flexion-extension
(WFE), and wrist adduction-abduction (WAA; see
Fig. 1) had generally lower amplitudes, we could not
find any particular preference in subjects as to which
DOFs contributed most to the patterns. A more detailed
discussion of how to generate joint angle trajectories
from marker data can be found in previous work
(Sternad and Schaal 1999).

Data modeling and robot implementation

After fitting the amplitude, frequency, and phase param-
eters for each DOF of each experimental trial, one more

step was performed before the modeled data were imple-
mented on the robot arm. To avoid an exact replication
of each trial but rather to implement a subject's generic
drawing strategy, the sinusoidal parameter sets across all
pattern sizes were interpolated by linear regression for
each subject. Figure 4 shows the amplitude values and
regression lines obtained from one representative subject
as a function of the mean perimeter. The linear scaling in
Fig. 4 was observed in all subjects. The phase differ-
ences between joint oscillations were determined pair-
wise between the shoulder angle and the six other DOFs,
respectively. Importantly, the pairwise phase differences
did not change across the different pattern sizes: out of a
total of 140 linear regressions for the phase offset as a
function of the perimeter (7 DOFs × 4 conditions
× 5 subjects), only four linear fits showed a statistically
significant linear trend (P<0.05). The scaling of the fre-
quency as a function of the mean perimeter is presented
in Fig. 2b.

The modeled set of joint trajectories of the human da-
ta were implemented on the robot arm, which then
“mimicked” each of the five subjects. It is important to
emphasize that the endpoint trajectories of the robot
were recorded and processed in exactly the same way as
the human data, yielding an analogous set of dependent

Table 1 Median and interquartile range of R2-values of sinusoidal
fits binned into 0.1-rad intervals of the amplitude of the angular
motion. The interquartile range gives the distance between the

lower and upper quartile and represents a robust statistic for the
standard deviation (Huber 1981)

R2 Amplitude range (rad)

0.0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7

Median 0.62 0.83 0.86 0.87 0.91 0.96 0.86
Interquartile range 0.38 0.21 0.15 0.14 0.14 0.08 0.17

Fig. 4 Representative set of amplitudes of the seven joint angles
versus their corresponding mean perimeter from one subject per-
forming a block of trials in the transversal-oblique pattern orienta-
tion



The clustering of the degrading
power law fits around the identity line confirms that the
robot data generated power law fits with the same main
features as the human data.

Discussion

With the goal of investigating the generative mecha-
nisms of rhythmic arm movements, the present experi-
ment tested the validity of the 2/3 power law in uncon-
strained arm movements where subjects performed
large-scale elliptical patterns in three dimensions involv-
ing the whole arm. Elliptical patterns were chosen be-
cause they are the simplest rhythmic traces, and small el-
lipses drawn in two dimensions have been repeatedly an-
alyzed in the literature on the power law. Patterns of ten
different sizes were performed by five human subjects in
three different areas of the workspace. Each trial was an-
alyzed in terms of the trajecotry of the fingertip and the
arm’s seven joint-angle trajectories that were involved in
the pattern realization. By modeling the joint angle tra-
jectories with simple sinusoidal fits, we could replicate
the subjects' movements on a 7-DOF anthropomorphic
robot arm. Comparative analyses of the endpoint trajec-
tories of human and robot performance converged to one
common result: while for small pattern sizes the power
law was satisfied accurately, it was increasingly compro-
mised for larger patterns, where up to 30–40% difference
from the coefficients of the original law were observed.
Therefore we concluded that the power law was an un-
likely candidate for explaining rhythmic movement gen-
eration in human motor control.

At first glance, one may suspect that the observed de-
viations from the power law could be due to an incorrect
extraction of the relation between velocity and curvature.
Viviani and Cenzato (1985) have already emphasized
that the power law is only valid within appropriately de-
fined movement segments. This point was the subject of
a previous study that addressed the issue of segmentation
in similar elliptical patterns to those in the present exper-
iment (Sternad and Schaal 1999). Their results gave
strong evidence against the hypothesis that elliptical pat-
terns are composed of multiple movement segments and
dismissed several criteria that had been previously sug-
gested to delineate movement segments. Thus, it is nec-
essary to resort to another line of argument to account
for our findings. In the following, we will develop an ar-
gument that the power law is an epiphenomenon of
smooth, oscillatory trajectory generation in joint space,
at least for unconstrained rhythmic movement.

The power law as an expression of smoothness

Our first and major hypothesis is that the power law is
effectively an expression of smoothness of endpoint tra-
jectories. A similar argument was presented by Todorov
and Jordan (1998), however, with the difference that
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variables with the same kind of measurement noise. The
measures of mean perimeter, planarity, and mean fre-
quency of the robot's ellipses performed at five pattern
sizes were calculated. The results are shown in Fig. 2 su-
perimposed on the human data. There is hardly any visi-
ble difference between the human data and the robot da-
ta, except that the robot data show slightly smaller val-
ues of planarity, since this measure captures to some ex-
tent the variability of the experimental patterns.

Power law fits

Figure 3e–h depicts the results of the power law fits
when the robot mimicked the patterns of the subject dis-
played in Fig. 3a–d. There is a remarkable similarity be-
tween the trends of the β coefficients between the robot
and the human data. As in the human data, for small pe-
rimeter values, β=1/3 was produced quite accurately, but,
as in the human subjects, the same deterioration of the
power law fits were apparent for increasing pattern size.
The similarity of the trends of the human and robot data
is summarized in Fig. 5. To generate this graph, we plot-
ted the coefficients of the polynomial fits for the trends
of the β and the R2-values of the robot versus the corre-
sponding coefficients from the human subjects (cf.
Eq. 4). For every subject and every experimental condi-
tion, we obtained a set of polynomial coefficients,

for the human subject and the corre-
sponding ar

0,ar
1,ar

2,br
0,br

1,br
2, for the robot. Figure 5 plots

these coefficients pooled across all subjects and all con-
ditions in a pairwise fashion  as

a a a b b bh h h h h h
0 1 2 0 1 2, , , , , ,

( , ), ( , ), ( , )a a a a a ah r h r h r
0 0 1 1 2 2

( , ), ( , ), ( , ).b b b b b bh r h r h r
0 0 1 1 2 2

Fig. 5 Comparison of the coefficients of the polynomial regres-
sions capturing the trends of the power law fits in human and ro-
bot data (cf. Fig. 3). Each data point is composed from a polyno-
mial coefficient from human data on the horizontal axis and the
corresponding robot coefficient on the vertical axis. Constant, lin-
ear, and quadratic coefficients across all subjects and all condi-
tions are pooled
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their experiments addressed the tracing of discrete paths
in two dimensions and three dimensions, and modeled
them using a complex optimization criterion, the con-
strained minimum jerk. As will be shown in the follow-
ing, a simpler smoothness criterion can account for our
data.

For the purposes of our argument, smoothness is de-
fined as low power in the higher-frequency components
of the endpoint trajectory. For example, a harmonic os-
cillation is maximally smooth and is equivalent to a
rhythmic minimum jerk trajectory. There exists a tight
connection between the power law and harmonic oscilla-
tions: in a Lissajous plot, two or three orthogonally ar-
ranged sinusoids with a phase offset trace out a planar el-
lipse whose velocity-curvature relation satisfies the pow-
er law exactly (Lacquaniti et al. 1983; Morasso 1983;
Soechting and Terzuolo 1986). Evidently, both the power
law and minimum jerk model are equally fulfilled in this
case, a fact that also hints at a close connection between
minimum jerk and the power law (Todorov and Jordan
1998; Viviani and Flash 1995). Next we will discuss the
power law as a definition of smoothness in the context of
our data.

After Lacquaniti et al. (1983), an alternative method
to visualize the realization of the power law in the data is
to plot tangential velocity v against the radius of curva-
ture r raised to the power 1/3 (referred to as v-r plot).
This way of graphing assumes that the exponential rela-
tion is satisfied and thereby affords inspection of the
time course of the parameter k throughout the periodic

pattern. If the power law is satisfied, the velocity gain
factor is constant and the data lie on a straight line
through the origin; the slope of the line expresses the ve-
locity gain factor k. Figure 6 shows v-r plots for three
exemplary large-size patterns. Clearly, the power law is
violated throughout the rhythmic trace in a systematic
fashion. Figure 6a is typical for patterns in the frontal
plane, Fig. 6b is primarily observed in horizontal ellipses
in the transversal plane, and Fig. 6c is common in trans-
versal oblique patterns. Figure 6d–f depicts the corre-
sponding robot trials. Importantly, the robot, although
explicitly driven by joint-space sinusoids alone, repro-
duces strikingly similar distortion features to found in
the human subjects.4 Applying our smoothness criterion,
we can explain how these complex structures arise. A
discussion of how such distortions affect the 3D realiza-
tion of the elliptical patterns as well as a geometric inter-
pretation for these distortions has already been presented
in previous work (Sternad and Schaal 1999).

If the power law, as expressed in Eq. 1, is an explicit
constraint in the CNS for the generation of rhythmic
movement trajectories in Cartesian space, there are two
alternatives for its implementation: (1) the power law re-
lation is somehow implemented directly in the neural
substrate, i.e., some set of neurons realize Eq. 1 and are
used in movement planning; or (2) the power law is im-
plemented indirectly. The latter can be achieved by max-
imizing the smoothness of Cartesian trajectories, equiva-
lent to minimizing higher-frequency components of the

Fig. 6a–f Tangential velocity versus radius of curvature to the
power 1/3 for three typical cases of power law degradation. a–c
Human trials; d–f corresponding robot trials

4 It is also noteworthy that the deviation of the data from a straight
line happens in the high-velocity areas, exactly those areas that
would be de-emphasized by log-log regressions of the power law
coefficients (see Appendix A).
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endpoint trajectory or to minimizing jerk. Such a process
automatically leads to trajectories that conform with the
power law, as mentioned above. However, since our data
demonstrate a deviation from the power law for large
patterns, neither of these solutions seems to be used by
our subjects.

Yet, why are there so many studies that show that the
power law is obeyed, including our results for small pat-
terns? As laid out formally in Appendix B, it is possible
to reconcile all observations about the power law if, for
rhythmic movements, smoothness is implemented in in-
trinsic, e.g., joint space, coordinates. For small patterns,
smoothness in intrinsic coordinates is equivalent to
smoothness in Cartesian coordinates, because the trans-
formation between joint coordinates and extrinsic end-
point coordinates is approximately linear. Thus, the pow-
er law will be satisfied for small patterns. For larger pat-
terns, smoothness in joint coordinates no longer results
in smoothness in extrinsic coordinates as the nonlineari-
ties added by the kinematic transformation become in-
creasingly larger. It is these nonlinearities that cause de-
viations from the power law. The relevance and primary
contribution of joint space trajectories to endpoint move-
ments is supported by the fact that joint trajectories can
be fitted with high significance by simple sinusoids that
subsequently capture the major features of human data.
Further, the linear scaling of the amplitudes of the joint
space sinusoids as a function of pattern size (Fig. 4) indi-
cate the primary role of joint space in movement genera-
tion.

The 2/3 power law as by-product of smooth trajectories

Taken together, the above arguments make it unlikely
that the power law – a law relating the geometric path

and the timing of the end-effector trajectory – is a first-
order criterion for the generation of rhythmic move-
ments. Rather, we agree with Todorov and Jordan (1998)
that it seems to be a by-product of smooth trajectories.
Smoothness is a topic that has been predominant in
many approaches to motor control (Flash and Hogan
1985; Todorov and Jordan 1998; Uno et al. 1989; Viviani
and Flash 1995; Viviani and Schneider 1991). Yet
whether smoothness is implemented in intrinsic or ex-
trinsic coordinates and whether based on kinematic or
dynamic criteria remains a topic of current research
(Harris and Wolpert 1998). Our suggestion that uncon-
strained rhythmic movement favors smoothness in joint
space is in agreement with previous work. Smoothness
in joint space corresponds to minimum jerk movements
in joint space, which is a first-order approximation to the
minimum torque change criterion, as long as the move-
ment is not too fast (Uno et al. 1989). Despite this corre-
spondence, caution is necessary in generalizing our re-
sults to discrete movements. Rhythmic and discrete
movement may not share the same movement-generating
principles – after all, rhythmic movement is phylogeneti-
cally older than discrete movement and could employ
different neural circuits.

Returning to the discussion of smoothness in the con-
text of the power law, it can be shown nicely how direct-
ly a smoothness criterion can lead to the generation of
the power law. In simulating movements with a two-joint
arm using the λ-version of the equilibrium point hypoth-
esis, Gribble and Ostry (1996) argued that limb dynam-
ics, muscle mechanics, and physiology contribute signif-
icantly to producing the power law. Although their
planned or virtual trajectory consisted of 36 via points
traversed at a constant speed across an elliptical path, the
actual trajectory realized by the simulation satisfied the
power law. What the authors effectively demonstrated is
that the arm, muscle, and λ-dynamics have one common
effect: they act as low-pass filters. Low-pass filtering
takes away higher frequency components in the resulting
movement, i.e., it increases smoothness. As demonstrat-
ed in Appendix B, a strong enough filter will cause the
power law to emerge.

Fig. 7 a Desired and realized elliptical trajectories for point mass
and Butterworth filter. Stars, via points; bold solid line, path
traced out by the point mass; thin solid line, smoothed trajectory. b
v-r plots corresponding to the trajectories in a
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To demonstrate that this effect does not require the
simulation of a complex, biomechanically validated arm,
we repeated Gribble and Ostry's (1996) experiment in a
highly simplified way. A 0.6-s periodic movement was
generated using 36 via points with equal distance in time
and space along the perimeter of a planar ellipse with a
0.2-m major axis and a 0.1-m minor axis. These mea-
surements exactly replicated Gribble and Ostry’s (1996)
parameters. By linearly interpolating between these via
points, we generated a desired trajectory for a simulated
point mass of 1 kg weight for a 500-Hz control loop; the
linear interpolation resembles the constant velocity shifts
of the λ-trajectories. The point mass was controlled to
stay on the desired trajectory with a PD controller, using
a proportional gain of 50 and a velocity gain of 5. Note
that the desired velocity along the trajectory was as-
sumed to be zero, hence realizing a pure damping term.
Thus, we effectively used a constant tangential velocity
trajectory as the tracking input for an elliptical path. Fig-
ure 7a shows the results of this simulation, illustrating
the via points together with the path traced out by the
point mass. As shown by Gribble and Ostry (1996), the
trajectory realized by the controller had a smaller perim-
eter than the desired trajectory; our PD gains were cho-
sen to quantitatively reproduce this scaling. Figure 7b
depicts the corresponding v-r plots: while the via-point
trajectory does not obey the power law (the slope is zero
and does not pass through the origin), the point mass’s
trajectory achieves an exponent β=0.327, i.e., an almost
perfect power law fit.

Yet, the same effect can be achieved in an even more
straightforward way: we simply passed the desired tra-
jectory through a fourth-order Butterworth filter with
2.5-Hz cutoff frequency. These results are also presented
in Fig. 7 by the thin solid line. The power law fit for this
smoothed trajectory was β=0.328.

We conclude that any kind of mechanism that gener-
ates smooth, rhythmic trajectories is likely to display the
phenomenon of the power law. This, however, does not
imply that the power law is directly used as a movement-
generating principle. By investigating different pattern
and workspace conditions, we demonstrated that the
power law is systematically influenced by such condi-
tions, showing that it is not a primary factor in move-
ment generation. For unconstrained rhythmic movement,
smooth oscillatory pattern generators in joint space seem

to be the most parsimonious explanation for all observed
movement features, including the power law.
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Appendix A: log-log or nonlinear regression
for power law fits?

In the Materials and methods section, we indicated a potential
problem when extracting exponents from log-log transformed data
and showed that there are significant statistical differences be-
tween a regression on untransformed and on double-logged data.
In a log-log regression, errors associated with higher tangential
velocities are underestimated, or, alternatively, the assumption
about a log-normal distribution of errors needs to be satisfied. This
assumption has never been validated for power law studies, and
contrasting results have been published on the variability of end-
point trajectories (Haggard and Richardson 1996; Newell and
Carlton 1988). Thus, applying a log-log regression carries the po-
tential danger of distorting the power law fit results.
Given that the long series of studies on the power law exclusively
used the log-log method, it is worthwhile to examine the kind of
bias introduced by such regressions. Figure 8 compares the results
of the two different fitting methods applied to the trials of one ex-
perimental condition, which is depicted in Fig. 3d. The two fitting
methods result in clearly different estimates for both the power
law coefficient and the coefficient of determination of the regres-
sion. While the trend of degradation of the power law fit as a func-
tion of perimeter is preserved in both fitting methods, it is appar-
ent that in Fig. 8b the linear log-log regression generates coeffi-
cients β that lie closer to the “desired” value 1/3. Further, the R2-
values of the fit are generally larger such that the band delineated
by the coefficient of nondetermination 1–R2 is narrower.
To demonstrate that this exemplary trend toward a better power
law fit is not a singular result, we quantified the bias for all trials
and subjects and calculated the mean difference between nonlinear
and log-log regressions as ∆β=|βnonlinear–1/3|–|βlog–1/3| and

. Note that ∆β uses the absolute deviation
from the ideal value 1/3 such that it can directly serve to compare
the statistical bias in both regression techniques. As Fig. 9 summa-
rizes, ∆β is positive for the four experimental pattern orientations,
implying that the log-log regression consistently produces a result
that is biased toward the value 1/3. This is accompanied by a high-
er R2 of the log-log regression, recognizable from the consistently
negative mean values of ∆R2. All mean values of ∆β and ∆R2 in
Fig. 9 are significantly different from zero, according to a two-
tailed t-test (P<0.05). Thus, in both statistics the log-log regres-

Fig. 8a,b Power law fits for
the trials of the experimental
condition from Fig. 3d (see leg-
end to Fig. 3 for explanations
of the plots), a using nonlinear
Levenberg-Marquardt regres-
sion; b using linear log-log re-
gression

∆R R Rnonlinear
2 2 2= – log
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sion is biased toward a better fit of the power law and is thus like-
ly to favor too optimistic interpretations of power law data.

Appendix B: the relation between power law
and smoothness

Assume β=1/3 (as is done in the v-r plots) and solve Eq. 1 for the
velocity gain factor k, then the following equation is obtained:

(B1)

The expression on the right is obtained by substituting all vari-
ables according to the definitions in Eq. 1. Note that k is now writ-
ten as a time-varying quantity, and the following analysis will dis-
cuss the temporal dependence of k as an alternative way to explore
conditions when the power law is achieved.
Since the experimental test patterns are periodic, it is possible to
represent the endpoint trajectory x(t) by a finite Fourier series of
the order n:

(B2)

After differentiation with respect to time to obtain velocities and
accelerations, Eq. B1 can be rewritten for the general case of 3D
periodic patterns:

(B3)

where:

an additional property. While it is evident that two sinusoids of the
same frequency and with a nonzero phase offset generate a 2D el-
lipse when arranged in orthogonal dimensions, also three-dimen-
sional orthogonal oscillations of the same frequency can only pro-
duce planar ellipsoids in the higher dimensional space. In compari-
son, the results of the human and robot data show that the per-
formed larger patterns had a 3D extension – as apparent in the in-
creasing planarity measure with larger perimeter (see Fig. 2a). This
precludes that our subjects used the harmonic solution.
As soon as x(t) has higher frequency components, i.e., is less
smooth according to our smoothness definition, f2 will add time-de-
pendent variations to the slope of the v-r plot. Since f2 has Fourier
terms up to the order 2n–1, the Euclidean norm in Eq. B3 can in-
crease the frequency content in k up to the order 2×(2n–1). Thus, the
time course of k can become very complex, as it depends in subtle
ways on the phases F and amplitudes A. For the case of higher-fre-
quency components, there is theoretically a second solution for how
Eq. B3 can still produce a constant k without the necessity of opti-
mal smoothness. It is possible for f2 to vanish if the higher-order
Fourier terms in f2 cancel each other. However, this solution re-
quires precise adjustment of many parameters and is evidently a
special case. It is highly improbable that this special solution is
found by chance. Since our data show that the higher Fourier terms
add strong time variation in the v-r plot, the special solution to
achieve the power law is apparently not employed by our subjects.
In sum, if the power law were a direct criterion that the CNS uses
for movement generation in Cartesian space, then trajectory gener-
ation must follow either one of the two strategies above. The
“pure harmonic” solution is optimally smooth but can only pro-
duce planar patterns, while the “special solution” can lead to 3D
patterns without necessarily being smooth. As it remains a fact
that a lot of data in the literature, including our results on small

f A A1
3

3

3

3

1 1 1
( , )

sin( – )

sin( – )

sin( – )

,
, , , ,

, , , ,

, , , ,

, , ,

, , ,

Φ =
∑
∑
∑

















=ω
ϕ ϕ
ϕ ϕ
ϕ ϕ

n a a

n a a

n a a

a a a

a a a

y n z n y n z n
n

x n z n x n z n
n

x n y n x n y n
n

x y z

x n y n z n

L












=












,
, , ,

, , ,

Φ
ϕ ϕ

ϕ ϕ ϕ

x y z

x n y n z n

a1 1 1
L

f A2
3

2

0 5( , , ) .

sin(( – ) – ) – sin(( – ) – )
sin(( ) ) – sin(( )

, , , , , , , ,

, , , , , ,

Φ t

rn
a a n r t a a n r t
a a n r t a a n rn r

z r y n y n z r y r z n y r z n

z r y n y n z r y r z n

=

∑
+ + +

+ + + +≠

ω

ω ϕ ϕ ω ϕ ϕ
ω ϕ ϕ ωtt

rn
a a n r t a a n r t
a a n r t a a n r

y r z nr

x r z n z n x r z r x n z r x n

x r z n z n x r z r x n

+ +




∑

+ + +
+ + + +

ϕ ϕ
ω ϕ ϕ ω ϕ ϕ
ω ϕ ϕ ω

, ,

, , , , , , , ,

, , , , , ,

)
sin(( – ) – ) – sin(( – ) – )
sin(( ) ) – sin(( )

2
tt

rn
a a n r t a a n r t
a a n r t a a n

z r x nn rr

y r x n x n y r x r y n x r y n

y r x n x n y r x r y n

+ +




∑∑

+ + +
+ + +

≠ ϕ ϕ
ω ϕ ϕ ω ϕ ϕ
ω ϕ ϕ

, ,

, , , , , , , ,

, , , , , ,

)
sin(( – ) – ) – sin(( – ) – )
sin(( ) ) – sin((

2
++ + +





∑∑





















≠ r t x r y nn rr ) ), ,ω ϕ ϕ

Fig. 9 Power law fits of human
data contrasting the results of
nonlinear and log-log regression.
Categorized by experimental
condition, the bars show the
mean and standard deviations of
the differences in β- and R2-val-
ues, defined as: 
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For notational convenience, all Fourier coefficients above are sum-
marized in the matrices A and F. Ignoring the complexity of the
equations for the moment, it is interesting to note that Eq. B3 can
be decomposed into a time-independent term f1 and a time varying
part f2. Importantly, this decomposition allows us to distinguish two
possible strategies if the power law were used as a movement-gen-
erating principle. To obtain a time-independent, i.e., constant, k, a
first strategy can exploit the fact that f2 vanishes if x(t) is purely
harmonic, i.e., for n=1. From our definition of smoothness, this so-
lution is optimally smooth. Such a harmonic solution, however, has

patterns, satisfy the power law, how can these observations be rec-
onciled with our data and analyses?

Smooth trajectories in intrinsic space can violate
the power law

We pursue the hypothesis that the harmonic solution is relevant
despite the fact that larger pattern produce a reduced quality of
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power law fits. To develop this argument, we will focus on the ro-
bot data, since they allow direct insight into why the power law
can be violated even if trajectory generation is smooth. As the ro-
bot generates movement from nothing but continuous sinusoidal
oscillations in a 7-DOF joint space, trajectories are optimally
smooth in intrinsic space. The joint space trajectories are trans-
formed by the forward kinematics of the robot arm into an end-
point trajectory in Cartesian coordinates. For small pattern sizes,
the forward kinematics fkin is approximately linear:

where J(θ0) is the Jacobian of the forward kinematics. The capital-
ized subscripts refer to the individual joint angles and the sub-
script "0” denotes the constant offsets in each of the oscillations.
Thus, for small patterns, the endpoint trajectory becomes a linear
combination of sinusoids with different phases and amplitudes,
but identical frequency ω. According to the laws of trigonometry,
this linear combination results in an endpoint trajectory that re-
mains purely harmonic and thus optimally smooth. Following the
argument above, the power law must be fulfilled.

However, if the amplitudes of the joint oscillations are increased
to realize large elliptical patterns, the nonlinearities of the forward
kinematics come into play. Forward kinematic transformations con-
sist of a series of multiplication of rotation matrices, each of which
changes its coefficients according to the current joint angles. Thus,
the sinusoidal joint trajectories are multiplied with other sinusoidal
elements. Such highly nonlinear combinations of sinusoids result in
an endpoint trajectory that has higher frequency components and
becomes less smooth. According to Eq. B3, higher frequency com-
ponents will effect that the velocity gain factor of the power is no
longer constant, and the power law fit should deteriorate, as ob-
served in our robot data. Given the striking similarity of the human
and the robot data, we believe that this reasoning equally holds for
the deterioration of the power law fits in our human data.
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