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Abstract This paper provides evidence that the ventral
prefrontal cortex plays arole in the learning of tasks in
which subjects must learn to associate visual cues and
responses. Imaging with both positron-emission tomog-
raphy (PET) and functional magnetic-resonance imaging
(fMRI) reveals learning-related increases in activity
when normal subjects learn visual associative tasks. Evi-
denceis also presented from an event-related fMRI study
that activity in this area is time-locked both to the pre-
sentation of the visual stimuli and also to the time of the
motor response. Findly, it is shown in a study of mon-
keys that removal of the ventral prefrontal area 12 (in-
cluding 45 A) impairs the ability of monkeysto relearn a
visual associative task (visual matching), even though
there were no demands on working memory. It is, there-
fore, proposed that the ventral prefrontal cortex consti-
tutes part of the circuitry via which associations are
formed between visual cues and the actions or choices
that they specify. On the basis of the existing anatomical
and electrophysiological data, it is argued that the pre-
frontal cortex isthe only areathat can represent cues, re-
sponses and outcomes.

Key words PET - fMRI - Ventral frontal cortex - Motor
learning - Associative learning

Introduction

It has often been proposed that the prefrontal cortex
is involved in decision making and in the selection of
actions (Damasio 1991; Frith et al. 1991; Frith 2000;
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Passingham 1993, 1997). However, strictly speaking, it
isthe animal that selects, and not one area of the brain. It
is, therefore, necessary to specify more precisely the op-
erations that are performed by the prefrontal cortex. Hy-
potheses concerning these operations have been mainly
based on data concerning the dorsal prefrontal cortex
and, in particular, Brodmann area 46. Goldman-Rakic
(1987, 1998) and Fuster (1997) stress the importance of
“working memory” or “active memory” in response
selection. By contrast, Shallice (1982; Shallice and
Burgess 1998) argues that the prefrontal cortex can be
regarded as a “supervisory attentional system”, and
Baddeley and Della Sala (1998) identify this with the
“central executive” of working memory.

The present account redresses the balance by consid-
ering the ventral prefrontal cortex. In the macague brain,
this lies ventral to sulcus principalis and, in the human
brain, it lies ventral to the inferior frontal sulcus. It com-
prises the inferior prefrontal convexity (areas 45 A,
12/47) and the orbital surface (11, 13, 14) (Petrides and
Pandya 1995). This paper studies the functions of the
ventral prefrontal cortex using functional brain imaging
in humans and the lesion method in macaques.

The learning of visuo-motor associations
Positron emission tomography

We required subjects to select between actions, moving
one finger given stimulus A, another finger given stimulus
B, and so on for the four fingers of the right hand
(Passingham et a. 1998; Toni and Passingham 1999). This
is a visuo-motor associative task. Since the appropriate
movement is conditional on the stimulus presented, a task
of this sort is often also referred to as a “visuo-motor con-
ditional task” (Passingham 1993). The association between
the stimulus and the appropriate movement is entirely arbi-
trary, and it must therefore be learned or acquired.

Using positron emission tomography(PET), we scanned
human subjects while they learned such a visuo-motor con-
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Fig. 1A-D Learning-related A
changes: baseline control
(grey), motor sequence task
(white), visuo-motor conditional
task (black). The dataare
shown for four scans for each
task. rCBF Relative cerebral
blood flow. Data from Toni and
Passingham (1999). A Lingual
gyrus (MNI coordinate = 16,
—60, —10). B Inferior frontal
gyrus (36, 16, 20). C Caudate
(-12, 8, 18); D Subiculum/
parahippocampal gyrus C .,
(-24,-26,-8) o

Control

ditional task by trial and error (Toni and Passingham
1999). There were four sessions in which they learned, by
trial and error, which finger to press given each of four
nonsense figures (VMC). In another condition, the subjects
learned a motor-sequence task, eight-moves long (SEQ);
here, the nonsense figures served to pace performance, but
not to specify which finger should be moved. Findly, in a
baseline condition (BASE), the subjects were presented
with a different set of nonsense figures, but no response
was required. Comparison of the visuo-motor with the
motor sequence condition allowed us to look for learning-
related changes that were specific to the learning of visuo-
motor transformations. Learning-related changes were as-
sessed by investigating where there were differentia
changes in activation across the four sessions as the sub-
jects learned.

As previously reported (Passingham et al. 1998),
when we looked for interactions between the changes
over time for the visuo-motor conditional task and the
baseline condition (VMC vs. BASE), we found a learn-
ing-related change in the ventral temporal cortex (lingual
gyrus) (Fig. 1A). We take this change to reflect the pro-
cess of learning the identity of the visual stimuli. When
we compared visuo-motor conditional learning with the
learning of a sequence (VMC vs. SEQ), we found learn-
ing-related increases in the inferior prefrontal gyrus; as
is shown in Fig. 1B, there was an increase in activation
over time for the visuo-motor task, but a decrease for the
motor-sequence task. We also found activation in the in-
ferior prefrontal gyrus in a related study in which we
scanned subjects while they performed a visuo-motor
conditional task that they had already learned (Passing-
ham et al. 1998).

Removal of the ventral prefrontal cortex in monkeys
very severely impairs the learning of visuo-motor condi-
tional tasks (Murray and Wise 1997; Murray et a. 2000),
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and it is known that this area derives its visua input
from the infero-tempora cortex (Webster et a. 1994,
Pandya and Yeterian 1998). Both the infero-temporal
cortex (van Hoesen et al. 1981) and the ventral prefron-
tal cortex (Selemon and Goldman-Rakic 1985) also send
subcortical projections to the caudate nucleus. We aso
found a learning-related increase in the caudate nucleus
for the visuo-motor task (Fig. 1C) (Toni and Passingham
1999). Lesions in the nuclei of the ventral thalamus, to
which the basal ganglia project, have been shown to se-
verely impair the retention of a visuo-motor conditional
task (Canavan et al. 1989).

There was also alearning-related increase in the para-
hippocampal gyrus (VMC vs BASE) (Fig. 1D). The peak
lay on the borders between the subiculum and the para-
hippocampal gyrus. Lesions of hippocampus and para-
hippocampal gyrus have aso been shown to severely
impair the learning of visuo-motor conditional tasks
(Murray and Wise 1996).

Functional magnetic resonance imaging

In the PET study described above (Toni and Passingham
1999), there were only four data points during learning.
Using functional magnetic resonance imaging (fMRI), it
is possible to scan for much longer during learning and,
thus, to produce continuous curves for activity during
learning (e.g. Toni et al. 1998). In a recent study, we
scanned subjects while they learned a visuo-motor con-
ditional task by trial and error (Toni et a. 1999a). In an-
other condition, the subjects performed a pre-learned
visuo-motor task. Here, the nonsense figures contained
arrowheads: if the arrowhead pointed to the left, the
subject moved the first finger; if the arrowhead pointed
up and to the left, the subject moved the second finger;
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Fig. 2A, B Curves showing change in blood oxygen-level detec-
tion (BOLD) signal (mean adjusted) during learning of a visuo-
motor conditional task (stars) and performance of a pre-learned
visuo-motor task (crosses). Minutes during learning are plotted on
the abscissa. Data from a study by Toni et al. (1999a). A Scans for
infero-temporal cortex (MNI coordinate = -58, —54, —6); B Scans
for ventral prefrontal cortex (52, 40, —4)

and so on. Thus, in this control condition, the subjects
also attended to visual stimuli and made movements on
the basis of visual cues. This design allowed us to com-
pare the learning of visuo-motor associations with the
performance of a visuo-motor task in which the associa-
tion had been pre-learned. Figure 2 shows that there
were learning-related increases in the infero-temporal
cortex (Fig. 2A) and in the inferior frontal gyrus
(Fig. 2B), as well as in the orbitofrontal cortex. For the
pre-learned motor task, there was a decrease in activa-
tion with time.

Representation of cue, response and outcome

To learn a visuo-motor conditional task, the subject has
to associate the success of a particular response with the
specific cue that is presented (Fig. 3). Response 1 is only
successful (correct) in the presence of cue A. Here, we
review evidence that prefrontal cortex can represent
Ccues, responses and outcomes.
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Fig. 3 The association of cues (A and B), responses (R1 and R2)
and outcomes (correct, incorrect) in the learning of a visuo-motor
conditional task

There are two indications that cues can be represented
in the ventral prefrontal cortex. First, it can be seen from
Fig. 1A that, during learning, there was an increase of
activation in the inferior frontal gyrus not only in the vis-
uo-motor learning condition, but also over the four ses-
sions of the baseline condition. In the latter condition,
four new nonsense figures were repeatedly presented,
one at a time, and thus the subjects had the opportunity
to learn to identify which figure was presented on any
trial. The learning-related increase in this area for the
visuo-motor condition may, therefore, also be related to
the learned identification of the figures. It is not suggest-
ed that this area is involved in the process via which
stimuli are recognised as familiar, but rather in the pro-
cess via which stimuli are categorised as the A, B, C
or D figure. There are aso cells in the inferior prefron-
tal convexity that respond to visual stimuli even when
no explicit response is required (Wilson et a. 1993;
Scalaidhe et al. 1997).

There is another way of showing that there is activity
in the ventral prefrontal cortex that is related to the
presentation of the cue. In a related study using event-
related fTMRI, we plotted the evoked hemodynamic re-
sponses when subjects selected a finger on the basis of
visual cues (visuo-motor conditional task) (Toni et al.
1999b). Random delays were introduced between the
presentation of the instruction cue and an auditory cue
that triggered the response. This alowed us to align the
evoked hemodyamic response either to the presentation
of the instruction cue or to the presentation of the trigger
cue. The response in the infero-temporal cortex could be
shown to be statistically associated with the presentation
of the instruction cue, but not with the response
(Fig. 4A). Figure 4B shows the data for trials with along
delay (12.8 9); if the data are plotted for short delays,
there is overlap between the evoked hemodynamic re-
sponses to the instruction cue and trigger stimulus. It
will be seen that, in the inferior frontal gyrus, there was
also a cue-related response.
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There is aso evidence that responses can be repre-
sented in the prefrontal cortex. First, it can be seen from
Fig. 4B that, in the inferior frontal gyrus, thereis also an
evoked hemodynamic response that is time locked to the
response. Movement-related activity has also been re-
ported in the inferior prefrontal convexity in monkeys
(Di Pellegrino and Wise 1991). We also found a second
prefrontal peak in the frontal polar cortex (Fig. 4C), and
here the movement-related activity started early before
the tone, building up towards the time at which the
movement was performed. It is not clear whether the
peak should be classified as lying in dorsal or ventral
prefrontal cortex. Pre-movement activity has also been
reported for single cells in the dorsal prefrontal cortex
(Fuster 1973; Kubota and Funahashi 1982; Funahashi et
al. 1991). Other imaging studies have shown that the
dorsal prefrontal cortex is activated when subjects select
between finger movements (Frith et al. 1991; Jueptner
et al. 1997) or prepare to make finger movements
(Kramset al. 1998).

Finally, it can be shown using brain imaging that out-
comes are represented in the prefrontal cortex. Elliott et
al. (1997) report activation of the ventromedia frontal
cortex when subjects are given either positive or nega-
tive feedback; the subjects were required to guess, and
the feedback was unrelated to the actual guesses they
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made. The orbito-frontal cortex is aso activated when
subjects are scanned while they await negative out-
comes: Chua et al. (1998) scanned subjects while they
expected electric shocks and found activation in the orb-
ito-frontal cortex that varied as a function of the degree
of anxiety the different subjects felt. Cells have also been
recorded in the inferior prefrontal convexity and orbital
frontal cortex that respond to cues predicting a specific
reward (reward A rather than reward B) (Watanabe
1996; Rolls 1998; Tremblay and Schultz 1999).

The level of representation

If two-dimensional shapes are to be associated with spe-
cific actions, both the stimuli and the actions must be
represented at a high level, since there is no direct spatial
correspondence between them. Wise et al. (1996) cites
such associations as examples of “cross-domain map-
ping”. A high-level representation of the response may
differ little from the high-level representation of the cue.
Thus, prefrontal cortex may specify the response by its
target, irrespective of how that target can be achieved. It
is, however, not clear how the prefrontal cortex can in-
fluence movement. Desimone and Duncan (1995) have
suggested that the ventral prefrontal cortex may act to set

Fig. 4A—-C Evoked hemodynamic responses. The ordinate shows
the relative blood oxygen-level detection (BOLD) signal. The ab-
scissa shows time during a tria in seconds. 1C Presentation of in-
struction cue, mTc mean time of presentation of trigger cue, TC pre-
sentation of trigger cue. Data from Toni et al. (1999b). A Data for
infero-temporal cortex (MNI coordinate = 52, -56, —20). The solid
line shows the evoked hemodynamic response when the data are
aligned to the time of presentation of the instruction cue. The dotted
line shows the lack of an evoked hemodynamic response when the
data are aligned to the time of presentation of the trigger cue. B Da-
tafor theinferior prefrontal cortex (solid line) (—30, 28, 12) and mo-
tor cortex (dotted line) (—36, —22, 60). The data are shown only for
trials with a delay of 12.8 s. There is an evoked hemodynamic re-
sponse for ventral prefrontal cortex at the time of the instruction cue
and at the time of the movement. For motor cortex, there is only a
response at the time of the movement. C Data for the frontal polar
cortex (solid line) (34, 58, 20) and motor cortex (dotted line) (—36,
—22, 60). The data are shown only for trials with a delay of 12.8 s.
The hemodynamic response for the frontal cortex rises before the
time of presentation of the trigger
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up an “attentional template” for objects and their unique
features in the infero-temporal cortex. This actsto “high-
light” the cues that are behaviourally significant and to
bias competition in favour of the representation of one
stimulus. It is possible that the prefrontal cortex selects
movements in the same way, by biasing competition be-
tween the representations of movement in the premotor
areas (Frith 2000).

Therole of the ventral prefrontal cortex is not restrict-
ed to the learning of visuo-motor associations. Monkeys
with lesions of the inferior prefrontal convexity are se-
verely impaired in relearning a visual matching task, in
which they must choose A rather than B if the sample is
A (Rushworth et a. 1997). Disconnection of the infero-
temporal and prefrontal cortex also severely impairs the
learning of associations between one visual stimulus and
another (Eacott and Gaffan 1992), between an auditory
stimulus and a visua stimulus (Gaffan and Harrison
1991) and between presentation of a reward and choice
of avisua stimulus (Parker and Gaffan 1998). Hasegawa
et a. (1998) taught monkeys to associate two visual
stimuli and reported that, if the cue was presented to one
hemisphere, the anterior callosum must be intact if the
other hemisphere is to select the correct response. The
ventral prefrontal cortex is also activated when human
subjects either encode (Dolan and Fletcher 1997) or re-
trieve (Rugg et a. 1996) verbal paired-associates and
when they categorise items such as tools (Vandenberghe
et al. 1996).

Associations

The fact that cues, responses and outcomes can be repre-
sented in the prefrontal cortex does not show that the as-
sociations between these are aso explicitly represented
in the prefrontal cortex. Figure 4B shows that there is a
cue-related and a movement-related response in the infe-
rior frontal gyrus; but the hemodynamic responses re-
present the activity of a whole population of cells, and
there may be separate subpopulations representing only
the cue or the response. However, Asaad et al. (1998)
have shown that single cells in the dorsal and ventrolat-
eral prefrontal cortex can code a specific cue-response
association. These authors trained monkeys to look to
the left or right, depending on the identity of an instruc-
tion cue. They report that many of the task-related cells
coded a specific cue-response relation. For example, a
cell might fire when the monkey looked to the left given
cue A, but not when it looked to the right given A; at the
same time, the same cell might fire less or not at all if
the monkey was taught to look to the left given cue B.
This leaves open the questions of where these associ-
ations are first formed and where they are stored. There
are interconnections between and within the ventrolater-
al, orbital and dorsal sectors of the prefrontal cortex
(Barbas 1988; Pandya and Yeterian 1998). It could thus
be argued that associations can be formed by intercon-
nections within the prefrontal cortex. To learn a visual
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conditional task, it is necessary to associate the success
of a specific response with the presentation of a specific
cue (Fig. 2). It has been argued that representations of
the cue, response and reward are available to the prefron-
tal cortex.

These associations may be learned in interaction with
the basal ganglia and the hippocampa system. There
were learning-related increases in the caudate nucleus
(Fig. 1B) and parahippocampal gyrus (Fig. 1C) that were
specific for the establishment of visuo-motor associa
tions. Several authors have proposed that the basal gan-
gliaare involved in procedural motor learning and, more
specifically, in the process via which the contexts of the
movements are learned (Hikosaka 1993; Passingham
1993; Dominey et al. 1995; Houk and Wise 1995). The
nigral dopamine cells sends projections to the same me-
dium spiny neurones in the striatum on which the corti-
cal afferents terminate (Groves et a. 1995), and it
has been shown that these synapses are modifiable
(Calabresi et al. 1996). Furthermore, changes have been
shown in the firing of the nigral dopamine cells (Holler-
man and Schultz 1998) and of the striatal cells (Kawagoe
et al. 1998; Tremblay et al. 1998) when monkeys are re-
inforced for making specific responses. The association
between cue and response may be reinforced by the do-
pamine system at the level of the striatum. It isimportant
to note that no assumption need be made that there is an
interaction between the prefrontal and premotor loops
(Alexander et al. 1991). If both the cue and the response
can be represented in the prefrontal cortex, the associa-
tion can be established by projections onto striatal cells
within a prefrontal-striatal [oop.

There is evidence that the hippocampal system is aso
involved in the acquisition of the association. Lesions
that include both the hippocampus and parahippocampal
gyrus severely impair the learning of visual conditional
tasks, while leaving unimpaired the retention of such
tasks if learned before surgery (Murray and Wise 1996).
Similarly, transection of the fornix impairs the ability
of monkeys to learn a visuo-spatial conditional task
(Rupniak and Gaffan 1987). Furthermore, the parahippo-
campal gyrus is activated when human subjects encode
verbal paired associates in episodic memory (Dolan and
Fletcher 1997). There are suggestions that the hippocam-
pal system may be involved in the process by which the
context of episodic memories is established (Dore et al.
1998; Parker and Gaffan 1998). Further work is needed
to directly compare the contribution of the basal ganglia
and hippocampal system with the learning of visual con-
ditional tasks. Furthermore, studies need to be conducted
to identify the pathways that are involved in overlearned
performance.

Working memory

It could be argued that the ventral prefrontal cortex isin-
volved not in the association of the cue and the response,
but in the working-memory. Though the cue is available
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Fig. 5A, B Performance on vi-
sual matching task for monkeys
with ventral prefrontal lesions.
The histograms give the means

for pre-operative and post-
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at the time of response, it might be supposed that, none-
theless, subjects first remember the cue, before deciding
on the appropriate response.

It has long been known that monkeys with bilateral
lesions in dorsal prefrontal area 46 are impaired on de-
layed-response tasks, but not impaired if the same re-
sponses are required without a delay (Goldman and
Rosvold 1970; Funahashi et al. 1993). Rushworth et al.

(1997) therefore assessed the ability of monkeys with le-
sions of the inferior prefrontal convexity to remember
across delays. The monkeys were trained on a visual
matching task. After surgery, they were severely im-
paired, even when the sample was present at the same
time that the choice was made (Fig. 5A). The animals
were, however, able to relearn the task with extended
training. They were then tested with delays interposed




between the presentation of the cue and the time of re-
sponse, and they were able to perform as well as they
had done pre-operatively (Fig. 5B). It cannot, therefore,
be argued that the impairment of the animals on the si-
multaneous condition was due to a working-memory
impairment. This experiment (Rushworth et a. 1997)
makes two points. First, the ventral prefrontal cortex is
not essential for working memory. Second, there is a dif-
ference in specialisation between the ventral and dorsal
prefrontal cortex, since lesions of the dorsal prefrontal
cortex do not impair visual matching (Passingham 1975;
Mishkin and Manning 1978).

The connected brain

There are two findings from single-unit studies that
might be thought to challenge the first of these conclu-
sions. First, on a delayed-response task, it is possible to
record continuous cell activity during the delay period
not only in area 46, but also in the inferior prefrontal
convexity (area 12) (Rosenkilde 1981; Rao et a. 1997).
However, White and Wise (1999) have recorded cell ac-
tivity on a visuo-motor conditional task with no working
memory requirement, and they were able to record task-
specific activity in the prefrontal cortex. It is true that
there are cells in the ventral prefrontal cortex which re-
spond differentially when a stimulus is presented for
the second time after a delay filled with other stimuli
(Chelazzi et a. 1993). But the results of the study by
Rushworth et al. (1997) suggest that the change in activi-
ty could reflect the comparison that is made, and that it
may not be crucial that the comparison be made between
the stimuli that are presented at different times.

There are also single-unit studies which appear to
challenge the conclusion that there is specialisation be-
tween the ventral and dorsal prefrontal cortex. For exam-
ple, in a visuo-motor conditional task, White and Wise
(1999) recorded task-related cells in the dorsolateral as
well as the ventrolateral prefrontal cortex (caudal third).
In the studies by Rao et al. (1997) and Asaad et al.
(1998), cell activity was recorded on conditional tasks
both in area 46 and in the ventrolateral prefrontal cortex
below. One possible explanation for the difference be-
tween the results of lesions and recording studies relies
on the fact that there are strong interconnections between
the dorsal and ventral prefrontal cortex (Barbas 1988;
Pandya and Yeterian 1998). Both cell recording and
functional brain-imaging studies are conducted in a
“connected brain”, that is one with intact interconnec-
tions. Thus, it is not possible to distinguish whether the
activity of a cell in the dorsal prefrontal cortex depends
on the activity of a cell in the ventral prefrontal cortex,
and vice versa. In alesion study, one of the areas is re-
moved, and behavioural tests demonstrate whether that
areais essential for the task. In other words, in the inter-
connected frontal lobe, the activity of a cell in one sector
may be derived from the other. In alesion study, one of
the areas is removed, and behavioural tests demonstrate
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whether that area is essential for the task. After a lesion
of, say, the ventral prefrontal cortex, the activity of the
cells in the dorsal prefrontal cortex can no longer be de-
rived from the activity in the ventral prefrontal cortex. If
this explanation is correct, it should be possible to dem-
onstrate a change in the pattern of activity in one area
when the other is removed or temporarily inactivated.

Specialisation of ventral
and dorsal prefrontal cortex

There have been two views as to the specialisation of the
dorsal and ventra prefrontal cortex. The first is that they
perform the same operations, but for different inputs (Gold-
man-Rakic 1998). The second is that the ventral and dorsal
prefrontal cortex perform different operations (Owen et al.
1996; Owen 1997; Petrides 1998). The data presented in
this paper are consistent with the second of these views.

That there may be differences in specialisation is sug-
gested by the pattern of anatomical connections. The
dorsal area 46 and the ventral areas 12/47 and 45 A dif-
fer in their inputs and outputs. The inferior prefrontal
convexity and orbital prefrontal cortex receives inputs
from all sensory modalities. The ventral prefrontal cor-
tex derives visua information from the infero-temporal
cortex (Webster et al. 1994; Pandya and Yeterian 1998),
auditory information from superior temporal cortex
(Pandya and Yeterian 1998) and somatic information
from SII and 7b (Cavada and Goldman-Rakic 1989;
Preuss and Goldman-Rakic 1989; Carmichael and Price
1995); and the orbital prefrontal cortex derives informa-
tion about taste from the insula and smell from the pyri-
form cortex (Rolls 1998). There are also interconnec-
tions between the ventral and orbital prefrontal cortex
(Barbas and Pandya 1989), and both are connected with
the amygdala (Aggleton et a. 1980; Porrino et al. 1981,
Amaral and Price 1984; Barbas and De Olmos 1990). In
both ventrolateral and orbital prefrontal cortex, there are
cells that respond to cues predicting a specific reward
(reward A rather than reward B) (Watanabe 1996; Rolls
1998; Schultz and Tremblay 1998).

The dorsal prefrontal cortex, on the other hand, de-
rives its visual input from inferior parietal cortex in the
dorsal visual system and is also connected with somatic
area parietal 7b. There are motor outputs from area 46 to
the dorsal and ventral premotor cortex (Dum and Strick
1997; Matelli et al. 1986) and to the pre-SMA and cingu-
late motor area CMAr (Lu et al. 1994). There are also
outputs from area 46 to the superior colliculi (Goldman
and Nauta 1976; Fries 1984) and to the cerebellum via
the pons (Schmahmann and Pandya 1997). There are no
projections to the pons from the ventral prefrontal area
12 (Schmahmann and Pandya 1997), and it is disputed
whether the origin of the projections to the ventral pre-
motor cortex is restricted to the ventral bank of sulcus
principalis (area 46) (Matelli et al. 1986; Luppino et al.
1998) or includes the ventral convexity cortex (area 12)
(Pandya and Yeterian 1998).
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Fig. 6 A comparison of the peaks for visual conditional tasks (0)
and free-selection and motor-preparation tasks (X), plotted on the
Talairach and Tournoux (1988) brain. Some of the studies nor-
malised the brains using the Talairach and Tournoux (1988) tem-
plate and others using the MNI template (Montreal Neurological
Ingtitute); this introduces minor errors when the peaks for MNI
data are plotted on the Talairach and Tournoux (1988) brain. Data
from Paus et al. (1993), Deiber et a. (1997), Jueptner et al.
(1997), Krams et al. (1998), Spence et a. (1998), Toni et al.
(1999b) and Rushworth et al. (in preparation)

These anatomical differences underlie the functional
specialisation of the ventral and dorsal prefrontal cortex.
The ventral prefrontal cortex receives information con-
cerning the identity of a visual stimulus, since it is the
infero-temporal cortex that analyses the shape or colour
that identifies an object (Ungerleider and Mishkin 1982;
Milner and Goodale 1997). It is the inferior prefrontal
cortex that is activated when subjects categorise items by
making semantic judgements about them (Vandenberghe
et a. 1996). By contrast, the dorsal prefrontal cortex re-
ceives an input from the inferior parietal cortex in the
dorsal visua system. Milner and Goodale (1997) have
reviewed evidence that suggests that parietal cortex op-
erates on sensory information for the purposes of action.
This includes the generation of both hand and eye move-
ments (Snyder et al. 1998) as well as the direction of co-
vert attention, where subjects prepare to make eye move-
ments, but do not actually make them (Nobre et al. 1997,
1998).

This functional difference between the ventral and
dorsal prefrontal cortex is highlighted by contrasting
the activations on two types of task. In the first, visual
cues are presented that specify the appropriate response
(visual conditional task). In the second, the subject
must either arbitrarily select between responses (“free
selection”) (Deiber et al. 1991; Frith et al. 1991;
Jueptner et al. 1997) or are required to attend while
they prepare to move a finger (Krams et al. 1998).
Figure 6 shows that there is a difference between the
peaks of activation. They tend to lie more ventrally for
performance of visual conditional tasks and more dor-
sally for the tasks on which subjects must represent ac-
tions to themselves.

SENSORY MOTOR
HIPPOCAMPAL
SYSTEM
INFERO- !
TEMPORAL
PREFRONTAL |-, |PREMOTOR
SUPERIOR | AREAS
TEMPORAL ! /
BASAL
GANGLIA

Fig. 7 Anatomical connections of the prefrontal cortex showing
that it lies at the top of the sensory hierarchy and at the top of the
motor hierarchy

Conclusions

It has been argued that the prefrontal cortex has an asso-
ciative role that can be missed by the concentration in
the literature on the functions of the dorsa prefrontal
cortex. Both Passingham (1993) and Petrides (1987)
have previously argued for arole of the prefrontal cortex
in conditional learning, and Murray et a. (2000) also ar-
gue that the prefrontal cortex is involved in the process
by which rules are learned that govern the production of
responses on the basis of visual cues. White and Wise
(1999) have demonstrated that there are cells in the ven-
trolateral and dorsolateral prefrontal cortex that show a
different pattern of activity, depending on whether the
rule concerns the association between a visual pattern
and an eye movement or the association between a spa-
tial location and an eye movement.

The prefrontal cortex is a position that associates
high-level representations of cues and actions. As also
noted by Fuster (1997), the prefrontal cortex lies at the
top of the sensory hierarchy and at the top of the motor
hierarchy (Fig. 7). The question arises why these associ-
ations are not learned by a direct interaction between the
infero-temporal cortex and the premotor areas. As far as
we know, there are no direct projections from the infero-
temporal cortex to premotor area 6 (Boussaoud et al.
1996, and pers. comm.). The behavioural relevance of a
visual stimulus can only be determined by detecting the
association of a successful response with the presence of
that stimulus. This means that there must be associations
between the visua stimuli, the responses and the out-
comes. While infero-temporal cortex has information
about visua stimuli and premotor cortex can represent
actions, only the prefrontal cortex can represent stimuli,
actions and outcomes.
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