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lesions and promote physiological synergistic interactions 
between arm and leg muscles during locomotion, cycling or 
other rhythmic motor activities. Paired transspinal stimula-
tion of cervical and lumbosacral spinal cord segments may 
constitute an approach to strengthen the intrinsic spinal neu-
ronal connectivity between arms and legs. This thesis is sup-
ported by the segmental effects of transspinal stimulation 
and the neurophysiological evidence on arm and leg neural 
coupling and interlimb coordination discussed herewith. 
Cervical transspinal stimulation (1 ms pulse, supra motor 
threshold; intensity = 94.21 ± 26.14  mA; mean ± SD) pro-
duces a short (0, 5 ms) and medium (45, 50, 55 ms) latency 
soleus H-reflex facilitation (Islam et al. 2020) that parallels 
the facilitation of leg transspinal evoked potentials (TEPs) 
by ulnar nerve conditioning stimulation, with and without 
volitional leg motor activity, in people with spinal cord 
injury (Atkinson et al. 2020). However, this is opposite to 
the reported depression of epidural stimulation-produced 
TEPs (Angeli and Gerasimenko 2023). In a similar man-
ner, arm TEP amplitudes increase following fibular nerve 
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Abstract
Transspinal (or transcutaneous spinal cord) stimulation is a promising noninvasive method that may strengthen the intrin-
sic spinal neural connectivity in neurological disorders. In this study we assessed the effects of cervical transspinal stimu-
lation on the amplitude of leg transspinal evoked potentials (TEPs), and the effects of lumbosacral transspinal stimulation 
on the amplitude of arm TEPs. Control TEPs were recorded following transspinal stimulation with one cathode electrode 
placed either on Cervical 3 (21.3 ± 1.7  mA) or Thoracic 10 (23.6 ± 16.5  mA) vertebrae levels. Associated anodes were 
placed bilaterally on clavicles or iliac crests. Cervical transspinal conditioning stimulation produced short latency inhibi-
tion of TEPs recorded from left soleus (ranging from − 6.11 to -3.87% of control TEP at C-T intervals of -50, -25, -20, 
-15, -10, 15 ms), right semitendinosus (ranging from − 11.1 to -4.55% of control TEP at C-T intervals of -20, -15, 15 ms), 
and right vastus lateralis (ranging from − 13.3 to -8.44% of control TEP at C-T intervals of -20 and − 15 ms) (p < 0.05). 
Lumbosacral transspinal conditioning stimulation produced no significant effects on arm TEPs. We conclude that in the 
resting state, cervical transspinal stimulation affects the net motor output of leg motoneurons under the experimental 
conditions used in this study. Further investigations are warranted to determine whether this protocol may reactivate local 
spinal circuitry after stroke or spinal cord injury and may have a significant effect in synchronization of upper and lower 
limb muscle synergies during rhythmic activities like locomotion or cycling.
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stimulation or lumbosacral transspinal stimulation (Atkin-
son et al. 2022). The ascending and descending neuromodu-
lation effects of lumbosacral transspinal stimulation are 
further supported by the significant changes on cortical and 
corticospinal excitability, and temporal summation of leg 
motor evoked potentials (MEPs) and leg TEPs on surface 
electromyogram (Knikou 2014; Knikou et al. 2015; Dixon 
et al. 2016; Steele et al. 2021).

Neuromodulation of networks subserving arm and leg 
coupling is well established. Both ipsilateral and contra-
lateral rhythmic arm movements decrease soleus H-reflex 
excitability in seated and standing humans (Knikou 2007), 
while static contralateral arm flexion and extension pro-
duces inhibition and facilitation in the ipsilateral soleus ten-
don reflex, respectively (Delwaide et al. 1977). Coupling of 
cervical and lumbosacral enlargements is apparent during 
movement, with interlimb cutaneous reflexes of arms and 
legs to be modulated in a walking speed-dependent manner 
(Klarner et al. 2020) and cutaneous afferents to modulate 
muscle activity throughout the body with forelimb-to-
hindlimb being stronger compared to hindlimb-to-fore-
limb neuronal pathways (Pearcey and Zehr 2019). Short, 
medium, and long latency reflexes produced by cutaneous 
stimulation of the wrist or ankle strongly support for move-
ment coordination via interlimb reflexes at rest (Zehr et 
al. 2001) and during rhythmic activity (Zehr and Haridas 
2003). Furthermore, the lumbosacral cord potentials with an 
onset latency of 12 ms produced by median nerve stimula-
tion at or above motor threshold (Sarica and Ertekin 1985) 
support directly for neuronal pathways connecting cervical 
and lumbosacral spinal cord segments.

Cervical and lumbosacral transspinal stimulation may 
activate α motor neurons innervating arm and leg muscles 
via similar pathways. Cervical transspinal stimulation pro-
duces concurrently TEPs in arm and forearm muscles, with 
the flexor carpi radialis (FCR) TEP displaying a latency 
half that of the FCR H-reflex (Einhorn et al. 2013; Oh et al. 
2022). This finding mirrors the soleus TEP latency that is 
close to half of the soleus H-reflex latency (Knikou 2013). 
Both arm and leg TEPs are prone to post-activation depres-
sion (Milosevic et al. 2019; Fleming et al. 2023) and fol-
low a sigmoid recruitment curve (Skiadopoulos et al. 2022). 
Moreover, both cervical and lumbosacral transspinal stim-
ulation produce an early and prolonged FCR and soleus 
H-reflex depression, respectively (Einhorn et al. 2013; 
Knikou and Murray 2018), in agreement with the medium 
latency inhibitory postsynaptic potentials exerted on soleus 
motor neurons following lumbosacral transspinal stimula-
tion (Yildiz et al. 2024).

Collectively, the main research question in this study was 
to examine to what extent transspinal stimulation over the 
cervical and lumbosacral spinal cord segments can affect 

simultaneously the net output of different groups of motor 
neurons innervating arm and leg muscles bilaterally. The 
specific objectives of this study were to establish the effects 
of suprathreshold cervical transspinal stimulation on TEPs 
recorded bilateral from knee/ankle muscles, and the effects 
of suprathreshold lumbosacral transspinal stimulation on 
TEPs recorded bilateral from forearm/arm muscles.

Materials and methods

Subjects

Fourteen (6 women) (27.9 ± 9.8; mean ± SD) healthy and 
physically active subjects participated in the study. Each 
participant signed an informed consent form before enroll-
ment to the study. Individuals with history of neurological, 
muscular, or psychiatric disorders, and wearing pacemakers 
were excluded from the study.

Study Design

A single-group repeated-measures study design was used 
to evaluate the effects of suprathreshold cervical and lum-
bosacral transspinal stimulation on leg and arm TEPs, 
respectively. Two experimental protocols were completed. 
The protocols were approved by the Institutional Review 
Board (IRB) of the City University of New York (CUNY). 
All experimental procedures were conducted in compliance 
with the Declaration of Helsinki and CUNY IRB-wide regu-
lations and guidelines. In the first protocol, the effects of 
cervical transspinal stimulation on leg TEPs were investi-
gated. The second protocol aimed to investigate the effects 
of lumbosacral transspinal stimulation on arm TEPs. The 
order of the protocols was randomized across subjects and 
were completed in two recording sessions on the same day, 
with a minimum of 30 min of rest in between.

For both protocols, two control sequences were recorded. 
Subjects reported no pain but some discomfort during stim-
ulation, with short-lived effects. Blood pressure and heart 
rate were measured three times (initial, intermediate, final) 
at each experimental session, and both remained unaltered. 
Given the distance between the cervical and lumbosacral 
spinal cord levels, we did not expect to encounter occlusion 
effects as reported with multi-site transspinal stimulation 
(Tran et al. 2024).

Surface electromyography (EMG)

Following standard preparation (skin was dry shaved, 
abraded, and cleaned with alcohol), single differen-
tial bipolar surface electrodes (common mode rejection 
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ratio > 100dB at 40  Hz, input impedance > 100,000 MΩ) 
with fixed inter-electrode distance of 2  cm (MA-300, 
Motion Lab Systems Inc., Baton Rouge, LA, USA) were 
used to record myoelectric signals from both arms and/or 
legs while at rest from biceps brachii (BIC), triceps brachii 
(TRIC), FCR, extensor carpi radialis (ECR), vastus lateralis 
(VL), semitendinosus (ST), soleus (SOL), and tibialis ante-
rior (TA) muscles. Surface electrodes were secured with 
Tegaderm transparent film (3 M Healthcare, St. Paul, MN, 
USA). All EMG signals were low-pass filtered with a cut-
off frequency of 1,000 Hz (MA-300, Motion Lab Systems 
Inc., Baton Rouge, LA, USA), recorded at a sample rate of 
2,000  Hz using 1401 plus analog-to-digital interface run-
ning Spike 2 (Cambridge Electronics Design Ltd., England, 
UK), and saved in a personal computer as Spike 2 data files 
for off-line analysis.

Transspinal stimulation

We delivered cervical and lumbosacral transspinal stimu-
lation according to methods we have previously used in 
our laboratory (Einhorn et al. 2013; Knikou 2013, 2014; 
Knikou et al. 2015; Skiadopoulos et al. 2022). With subjects 
seated at the edge of a treatment table, the Cervical 3 spi-
nous process was identified via palpation. A single reusable 
self-adhered cathode electrode (10.2 × 5.1 cm2, Uni-Patch, 
Massachusetts, USA) was placed at midline along the ver-
tebrae equally between the left and right paravertebral sides 
covering from Cervical 3 to Cervical 7 / Thoracic 1 verte-
brae. A pair of interconnected anode electrodes (same type 
as the cathode) was placed on either side of the clavicles. 
For lumbosacral transspinal stimulation, the Thoracic 10 
spinous process was identified via palpation and anatomi-
cal landmarks. A single reusable self-adhered cathode elec-
trode (10.2 × 5.1 cm2, Uni-Patch, Massachusetts, USA) was 
placed at midline along the vertebrae equally between the 
left and right paravertebral sides covering from Thoracic 
10 to Lumbar 1–2 vertebrae levels. A pair of interconnected 
anode electrodes (same type as the cathode) was placed 
on either side of the iliac crests. Transspinal stimulation 
was delivered via a constant current stimulator (DS7A or 
DS7AH, Digitimer Ltd., Welwyn Garden City, UK) with 
single monophasic 1 ms pulses at 0.2 Hz triggered by Spike 
2 scripts (CED Ltd., Cambridge, UK).

Experimental protocols

Effects of cervical transspinal stimulation on leg TEPs

In this protocol the leg TEPs evoked by lumbosacral trans-
spinal stimulation were conditioned by cervical transspinal 
stimulation. Subjects were supine with knee joints flexed 

at 30 degrees, while lumbosacral transspinal stimulation 
intensity was increased progressively, and the right and left 
SOL TEPs were observed on a digital oscilloscope (Tek-
tronix Inc., USA). Optimal cathode position referred to the 
position when the TEPs in the right and left SOL muscles 
occurred at similar intensities and had similar shapes. 
For each subject while supine with knees and hips flexed 
at 30°, the stimulation intensity that the right soleus TEP 
was equal to 100 mV peak-to-peak amplitude on the oscil-
loscope was termed as TEP threshold and corresponded to 
20.5 ± 1.8 mA across subjects. Ten TEPs at 0.2 Hz from leg 
muscles were recorded at an average of 1.6 ± 0.34 SOL TEP 
(23.6 ± 16.5 mA) threshold under control conditions and fol-
lowing cervical transspinal conditioning stimulation deliv-
ered at twice the right FCR TEP threshold. Conditioned leg 
TEPs were recorded randomly at C-T intervals ranging from 
negative 50 to positive 50 ms with 5 ms increment steps (21 
total C-T intervals).

Effects of lumbosacral transspinal stimulation on 
arm TEPs

In this protocol the arm TEPs evoked by cervical transspi-
nal stimulation were conditioned by lumbosacral transspinal 
stimulation. The experimental procedures were exactly as 
outlined before, with the main difference being that the test 
and conditioning stimuli were the cervical and lumbosacral 
transspinal stimulation, respectively. Optimal cathode posi-
tion referred to when the TEPs in the right and left FCR 
muscles occurred at similar thresholds, and at increasing 
intensities the shapes of the action potentials were similar. 
For each subject while supine and arms placed parallel to 
the body, the stimulation intensity that the right FCR TEP 
was equal to 100 mV peak-to-peak amplitude on the oscillo-
scope was termed as FCR TEP threshold and corresponded 
to 11.5 ± 0.9 mA, across subjects. Ten TEPs at 0.2 Hz from 
arm muscles were recorded at 1.85 ± 0.46 FCR TEP thresh-
old under control conditions and following lumbosacral 
transspinal conditioning stimulation delivered at twice the 
right SOL TEP threshold (28 ± 1.94 mA). Conditioned arm 
TEPs were recorded randomly at C-T intervals ranging from 
negative 50 to positive 50 ms with 5 ms increment steps (21 
total C-T intervals).

Data analysis

The onset latency was measured from the waveform average 
of control arm and leg TEPs for each muscle and subject, at 
a point that the first deflection from baseline was present. 
All control and conditioned responses (arm TEPs, leg TEPs) 
were measured as the area under the rectified curve because 
there are no differences when measured as peak-to-peak 
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Effects of cervical transspinal conditioning 
stimulation on leg TEPs

Raw waveform averages of TEPs recorded from leg mus-
cles under control conditions (black lines) and following 
cervical transspinal conditioning stimulation (red lines) are 
shown for each C-T interval tested from a representative 
subject (C09) in Fig. 1.

The overall effects of cervical transspinal conditioning 
stimulation on leg TEPs for all subjects are depicted in 
Fig. 2. The conditioned TEPs are normalized to the mean 
amplitude of the homonymous control TEP and subtracted 
from 100 for ease recognition of changes from zero. The 
conditioned right VL (F(21, 210) = 1.96, p = 0.009; Kendall’s 
W = 0.16) was significantly different from control values at 
the C-T intervals of -20 ms (right VL TEP = -13.3 [-32.4, 
-4.66]; rrb = 0.79; p = 0.04) and − 15 ms (right VL TEP = 
-8.34 [-13.3, 7.35]; rrb = 0.91; p = 0.04) (Fig.  2). Statisti-
cally significant differences of the conditioned TEPs among 
C-T intervals for the left VL were found (F(21, 210) = 1.63, 
p = 0.045; Kendall’s W = 0.14), but the conditioned left 
VL TEP was not different from control values (p > 0.05). 
The conditioned right ST TEP was significantly different 
from control values (F(21, 252) = 2.15, p = 0.003; Kendall’s 
W = 0.15) at the C-T intervals of -20 ms (-11.1 [-23, 3.5]; 
rrb = 0.08; p = 0.04), -15 ms ( -4.55 [-19.1, -0.68]; rrb = 
0.91; p = 0.02), and 15 ms (-5.76 [-18.6, 4.6]; rrb = 0.21; 
p = 0.01). For the left ST TEP despite the significant overall 
effect among conditioned TEPs (F(21, 252) = 1.86, p = 0.01; 
Kendall’s W = 0.13), no significant differences from control 
TEP values were found (p > 0.77; Fig. 2).

The conditioned TEPs recorded from the left SOL mus-
cle were significantly different from control TEP values 
(F(21, 273) = 2.53, p < 0.001; Kendall’s W = 0.16), and were 
decreased at the C-T intervals of -50 ms (-4.59 [-7.4, 0.77]; 
rrb = 0.85; p = 0.04), -25 ms ( -4.95 [-5.78, 0.59]; rrb = 0.58; 
p = 0.04), -20 ms ( -6.11 [-7.43, -1.50]; rrb = 0.70; p = 0.002), 
-15 ms ( -4.54 [-6.80, -0.07]; rrb = 0.66; p = 0.04), -10 ms ( 
-3.87 [-11.2, 0.17]; rrb = 0.60; p = 0.04), and at 15 ms (-4.97 
[-7.71, 1.18]; rrb = 0.77; p = 0.02) (Fig. 2). No significant 
differences were observed between control and conditioned 
TEPs (p ≥ 0.05 for each; Fig. 2) for the right SOL and left 
TA despite the significant overall effect among conditioned 
TEPs for the right SOL (F(21, 273) = 1.80, p = 0.01; Kendall’s 
W = 0.12), and left TA (F(21, 273) = 2.23, p = 0.002; Kendall’s 
W = 0.15). The right SOL and left TA conditioned TEPs 
at 50 ms were significantly different from those recorded 
at negative C-T intervals supporting for a time-dependent 
modulation. Last, no significant effects were observed for 
the right TA (F(21, 273) = 1.41, p = 0.11; Kendall’s W = 0.10) 
(Fig.  2). These results suggest a short latency depression 

amplitude or as area (Knikou and Taglianetti 2006). Mark-
ers were visually placed at each full-wave rectified sweep 
from the onset latency until the response returned to base-
line (Spike 2, CED Ltd., UK). The conditioned responses 
at each C-T interval were expressed as a percentage of the 
mean value of the homonymous control response. The mean 
value of each normalized conditioned TEP from each sub-
ject was grouped based on the C-T interval and muscle.

Shapiro-Wilk’s test for normal distribution was estab-
lished. According to the normality results, non-parametric 
tests were used for inference. A Sign test was conducted 
to determine whether there was a significant difference in 
the latency values of each TEP between the left and right 
muscles. For each muscle separately, a non-parametric 
Friedman test (Conover and Iman 1981) was performed 
to test the effect of transspinal stimulation on TEPs. When 
necessary, this was followed by an exact non-parametric 
many-to-one post-hoc test (Eisinga et al. 2017) with false 
discovery rate correction, to establish statistically signifi-
cant differences between control and conditioned TEPs. The 
non-parametric Skillings-Mack test was used for missing 
data (Skillings and Mack 1981). Kendall’s W coefficient of 
concordance was reported as the effect size (W < 0.10 neg-
ligible, W < 0.25 small, W < 0.40 moderate, otherwise large 
effect). Rank biserial correlation (rrb) was used as effect size 
for significant post-hoc test (0 being the lowest and 1 being 
the highest effect size) (Cureton 1956). All statistical tests 
were performed at α = 0.05. Results are reported as median 
and interquartile range (Mdn [Q1, Q3]). All tests were per-
formed using the PMCMRplus and effect size packages for 
the R statistical language (Ben-Shachar et al. 2020; Pohlert 
2023; R Core Team 2023).

Results

The median latency for each TEP was not statistically sig-
nificant different between the left and right BIC (6.75 [6.6, 
7.5] vs. 6.9 [6.6, 7,1] ms; S = 3, p = 0.09), TRIC (7 [6.4, 8.3] 
vs. 7.7 [6.7, 8.8] ms; S = 4, p = 0.54), ECR (11.0 [10.2, 12.2] 
vs. 10.6 [10.0, 12.4] ms; S = 5, p = 1), FCR (10.4 [9.5, 11.3] 
vs. 9.85 [9.02, 10.6] ms; S = 8, p = 0.38), VL (9.2 [9.0, 9.8] 
vs. 9.0 [8.1, 9.0] ms; S = 2, p = 1), ST (13.6 [13.6, 14.2] vs. 
14 [14, 14.3] ms; S = 2, p = 1), TA (19.0 [19.0, 20] vs. 19.0 
[16.7, 20.1] ms; S = 2, p = 1), and SOL (19.9 [19.5, 20.2] 
vs. 20.0 [19.5, 20.6] ms; S = 4, p = 1). This indicates that 
the cathodal stimulating electrode was placed on the spinal 
process with an equal distance from the left and right para-
vertebral muscles and that transsynaptic activation of moto-
neurons occurred via similar pathways in the left and right 
sides. The latencies are consistent to our previous reports for 
arm (Einhorn et al. 2013) and leg (Knikou et al. 2015) TEPs.
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Fig. 1  Raw waveform averages of TEPs recorded bilaterally from the 
right and left SOL, TA, ST, and VL muscles under control conditions 
(black lines) and following cervical transspinal conditioning stimu-
lation (red lines) at each conditioning-test (C-T) interval tested for 

one subject (C09). The waveform average of TEPs is shown for each 
C-T interval tested ranging from negative 50 to positive 50 ms. SOL: 
soleus, TA: tibialis anterior, ST: semitendinosus, VL: vastus lateralis, 
TEPs: transspinal evoked potentials
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not produce significant modulation on the amplitude of 
TEPs recorded from arm and forearm muscles.

Important parameters in a paired stimulation proto-
col are the interval between the two stimuli and their 
intensity. The conduction time between Cervical 7 and 
Thoracic 12 for central cutaneous pathways is 7 ms (Jen-
ner and Stephens 1982), while supramaximal median 
and posterior tibial nerve stimulation produces dorsum 
cord action potentials at lower cervical and thoracic lev-
els with a latency of 6.5 ± 0.1 ms (Ertekin 1976). The 
first slow component of the action potential lasts up to 
29.2 ms, while when the first slow component occurs at a 
latency of 11.1 ± 0.2 ms it lasts up to 36 ± 0.5 ms (Ertekin 
1976). These results suggest that excitation of afferents 
from mixed peripheral nerves produce short and medium 
latency action potentials in the dorsum spinal cord. Thus, 
transspinal stimulation which also activates simultane-
ously afferents of different diameter produces neuro-
nal activity in the dorsum spinal cord that in turn can 
potentially activate one of the longest loops, the trans-
cortical continuation of ascending pathways reaching 
the somatosensory and motor cortices (Yamawaki et al. 
2021). These pathways support for engagement of trans-
cortical reflexes following transspinal stimulation.

Cervical transspinal stimulation produced depression 
of leg TEPs from − 20 to -15 ms C-T interval, while a 
short latency inhibition at C-T interval of 15 ms was 
observed in right ST and left SOL TEPs (Fig. 2), which 
agrees to the short (10–20 ms) latency soleus H-reflex 
inhibition following median nerve stimulation (Kagami-
hara et al. 2003). It needs though to be mentioned that 
when analysis was done based on peristimulus times his-
tograms, inhibition or inhibition-facilitation was found 
(Kagamihara et al. 2003). The short and medium latency 
depression and facilitation of TEPs may involve differ-
ent neuronal pathways with the former be attributed to 
activity of long descending propriospinal neuronal activ-
ity, and the latter to activation of transcortical loops as 
seen in monkeys with cerebellectomy or spinal hemisec-
tion when direct motor and reflex responses are present 
(Ruegg and Chofflon 1983). Based on the long-latency 
(80 to 400 ms) facilitation of the soleus H-reflex by 
brachial plexus or forelimb nerve stimulation (Meinck 
1976), it remains to establish the full time-dependent 
modulation profile of leg TEPs following cervical trans-
spinal conditioning stimulation.

The non-significant effects on left VL and ST TEPs 
(Fig.  2) may partly be related to the stimulation inten-
sity strength. TEPs follow a sigmoid recruitment curve 
similar to the SOL H-reflex (Knikou 2008; Skiadopoulos 
et al. 2022), but the stimulation intensity was based on 

of the net motor neuron output for legs following cervical 
transspinal stimulation.

Effects of lumbosacral transspinal stimulation on 
arm TEPs

Raw waveform averages of TEPs recorded from arm 
muscles under control conditions (black lines) and fol-
lowing lumbosacral transspinal conditioning stimulation 
(red lines) are shown for each C-T interval tested from a 
representative subject (C09) in Fig. 3.

The mean amplitude of the arm TEPs in response to 
lumbosacral transspinal conditioning stimulation as a 
percentage of the homonymous control TEP are shown in 
Fig. 4. The conditioned TEPs are normalized to the mean 
amplitude of the homonymous control TEP and subtracted 
from 100 for ease recognition of changes from zero. 
Friedman test showed that the conditioned right TRIC 
(F(21, 252) = 0.60, p = 0.92; Kendall’s W = 0.05), left TRIC 
(F(21, 252) = 1.09, p = 0.39; Kendall’s W = 0.08), right BIC 
(F(21, 252) = 1.19, p = 0.26; Kendall’s W = 0.09), left BIC 
(F(21, 252) = 0.93, p = 0.55; Kendall’s W = 0.07), right ECR 
(F(21, 252) = 1.15, p = 0.29; Kendall’s W = 0.08), left ECR 
(F(21, 252) = 0.59, p = 0.93; Kendall’s W = 0.05), right FCR 
(F(21, 252) = 0.64, p = 0.88; Kendall’s W = 0.05), and left 
FCR (F(21, 252) = 0.64, p = 0.88; Kendall’s W = 0.05) TEPs 
were not statistically significant different from the hom-
onymous control TEP at any C-T interval tested. These 
results suggest that lumbosacral transspinal stimulation 
did not affect the net motor output of the cervical spinal 
cord in resting healthy subjects.

Discussion

In this study, we found that cervical transspinal stimula-
tion resulted in short latency inhibition of TEPs recorded 
from the left SOL (-50, -25, -20, -15, -10, 15 ms), right 
ST (-20, -15, 15 ms), and right VL (-20, -15 ms) muscles 
out of the eight knee and ankle muscles recorded bilater-
ally. In contrast, lumbosacral transspinal stimulation did 

Fig. 2  Effects of cervical transspinal stimulation on leg TEPs. TEPs 
recorded from the right and left SOL, TA, ST, and VL muscles fol-
lowing single pulse cervical transspinal conditioning stimulation from 
all subjects as a percentage of median amplitude of the homonymous 
control TEP and subtracted from 100 for ease recognition of changes 
from zero. For all cases, conditioned TEPs are shown for conditioning-
test intervals ranging from negative to positive 50 ms. Red denotes 
significant differences between control and conditioned TEPs based 
on the Friedman test followed by many-to-one post-hoc test with false 
discovery rate correction. Error bars denote the IQR. SOL: soleus, TA: 
tibialis anterior, ST: semitendinosus, VL: vastus lateralis, TEPs: trans-
spinal evoked potentials
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Fig. 3  Non-rectified raw waveform averages of TEPs recorded bilater-
ally from the left and right TRIC, BIC, FCR, and ECR muscles under 
control conditions (black lines) and following single pulse lumbosa-
cral transspinal conditioning stimulation (red lines) for one subject 

(C09). The waveform average of TEPs is shown for each conditioning-
test interval tested ranging from negative 50 to positive 50 ms. TRIC: 
triceps bracchii, BIC: biceps bracchii, FCR: flexor carpi radialis, ECR: 
extensor carpi radialis, TEPs: transspinal evoked potentials
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