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Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, prevalent in the elderly population. Neuropathological hallmarks of 
PD include loss of dopaminergic cells in the nigro-striatal pathway and deposition of alpha-synuclein protein in the neurons 
and synaptic terminals, which lead to a complex presentation of motor and non-motor symptoms. This review focuses on 
various aspects of PD, from clinical diagnosis to currently accepted treatment options, such as pharmacological management 
through dopamine replacement and surgical techniques such as deep brain stimulation (DBS). The review discusses in detail 
the potential of emerging stem cell-based therapies and gene therapies to be adopted as a cure, in contrast to the present 
symptomatic treatment in PD. The potential sources of stem cells for autologous and allogeneic stem cell therapy have been 
discussed, along with the progress evaluation of pre-clinical and clinical trials. Even though recent techniques hold great 
potential to improve the lives of PD patients, we present the importance of addressing the safety, efficacy, ethical, cost, and 
regulatory concerns before scaling them to clinical use.
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Parkinson’s disease (PD)

Parkinson’s disease (PD) was first medically described in 
1817 when James Parkinson published “An Essay on the 
Shaking Palsy” (Parkinson 1969, 2002). Later, various neu-
rologists and pathologists described the significant clinical 

and pathological features of PD, separating PD from other 
neurological conditions (Goetz 2011). PD is a progressive 
neurodegenerative disorder pathologically characterised by 
neuronal inclusions in the form of Lewy bodies and Lewy 
neurites composed mainly of misfolded alpha-synuclein 
(α-synuclein) species. It is therefore classified as a Lewy-
type synucleinopathy (Tolosa et al. 2021). The degeneration 
and loss of dopaminergic (DA) neurons in the substantia 
nigra (SN) and the projections from the substantia nigra pars 
compacta (SNc) to the striatum are responsible for the cardi-
nal motor symptoms such as tremor, bradykinesia, and rigid-
ity. PD has florid non-motor manifestations such as anxiety, 
depression, sleep dysfunction, dysautonomia, and a variety 
of neuropsychiatric and cognitive changes (Hayes 2019). 
These symptoms result from widespread neurodegenera-
tion happening both in dopaminergic projections to the non-
motor circuits of the basal ganglia and the non-dopaminergic 
neurons in the brain, such as the brainstem serotoninergic, 
adrenergic, and cholinergic systems. The deposition of Lewy 
bodies happens in neurons, presynaptic terminals, and glia. 
These deposits also accumulate in other parts of the body 
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outside the brain, such as the olfactory bulb, the retina, the 
sympathetic and parasympathetic ganglia, and the skin.

Affecting nearly 8–11 million people worldwide, Parkin-
son's disease is the second most common neurodegenera-
tive disorder next to Alzheimer's disease. PD is considered 
a late-onset disorder with increased prevalence with age. 
The mean age of onset of PD is approximately 60 years. 
However, around 10% of cases have their onset before 50 
(early-onset PD), even in their teens or 20 s, and rare juve-
nile onset has also been also observed (Pagano et al. 2016; 
Bhat et al. 2018). PD affects about 0.3% of the general 
population in industrialised countries; the prevalence in the 
elderly above 60 years is around 1%. Age-related prevalence 
increases both for men and women (Sveinbjornsdottir 2016). 
The likelihood of developing PD depends on genetic varia-
tions in certain genes, environmental factors, and lifestyle. 
Genetic factors play a critical role in those with younger age 
of onset. Mutations in the genes LRRK2, SNCA, and VPS35 
can cause dominantly inherited PD with varying levels of 
penetrance and PRKN, PINK1, and PARK7 genes in reces-
sively inherited PD (Nuytemans et al. 2010). On top of these 
genes responsible for familial PD with a Mendelian pattern 
of inheritance, several susceptibility loci and other genes 
increasing the risk of PD have been identified in genome-
wide association (GWA) studies (Bandres-Ciga et al. 2020). 
Polymorphisms in GBA, the gene encoding the lysosomal 
enzyme glucocerebrosidase (GCase) and implicated in the 
lysosomal storage disorder, Gaucher's disease, is also known 
to contribute to increased risk of PD (Zheng and Fan 2022). 
Many of the so-called idiopathic forms of PD also have a 
genetic background, as many cases result from the synergis-
tic action of genetic factors, increasing the risks and environ-
mental factors such as pesticides or infections (Kline et al. 
2021). The treatment for PD includes medications and func-
tional neurosurgery in selected cases. Currently, available 
treatment options only manage the symptoms and improve 
patients' quality of life but do not provide a cure, reverse the 
neuropathological changes like loss of dopaminergic (DA) 
neurons, or even slow down the progression of the disease.

Pathological hallmarks of PD

Even though the cause for the progressive neurodegeneration 
in PD is unknown, the underlying pathological characteris-
tics causing motor as well as non-motor symptoms are as 
follows.

Lewy body deposition in the brain

The cellular buildup of Lewy bodies and Lewy neurites in 
the substantia nigra and other areas is an important patho-
genic aspect of PD. Lewy bodies are rounded eosinophilic 
inclusions that are present inside the neurons in PD. They 

comprise more than 90 proteins; the significant compo-
nents are α-synuclein and ubiquitin (Balestrino and Scha-
pira 2020). The major component of Lewy bodies and 
neurites is aggregated α-synuclein, which has undergone 
several post-translational changes such as phosphorylation, 
ubiquitination, nitration, and oxidation of certain residues 
(Braak et al. 2003a). The aggregated α-synuclein disrupts 
the microtubule-based subcellular transport, which may 
lead to synaptic dysfunction and disruption of neuronal 
homeostasis (Singleton et al. 2013). The deposition of Lewy 
bodies in PD subjects has been identified in the neurons in 
the medulla oblongata, pons, and the olfactory bulb during 
the early stages. This is followed by the spreading of Lewy 
body pathology to the midbrain where the SN is located, 
and eventually into the neocortex as the disease progresses 
(Braak et al. 2003a).

Neurodegeneration of DA neurons in the nigrostriatal 
system

Parkinson's disease is distinguished by the loss of DA neu-
rons of the substantia nigra region of the midbrain and their 
principal axon projections to the striatum (Lotharius and 
Brundin 2002). The death of DA neurons in the nigrostriatal 
system is critical in the pathophysiology of motor and some 
non-motor symptoms of PD as illustrated in Fig. 1. The path-
ological changes underlying PD start many years before the 
appearance of the initial symptoms; nearly 70–80% of the 
DA axon terminals in the striatum had already degenerated 
by the time the first motor symptoms appear (Kolacheva 
et al. 2023).

Dysfunction of multiple neurotransmitter systems

Extranigral sites, including the locus coeruleus and subcoer-
uleus complex, reticular formation and raphe nuclei, dorsal 
nuclei of the vagus, and nucleus basalis of Meynert also 
exhibit cell loss (Del Tredici et al. 2002). Motor impair-
ment in PD is attributed primarily to the degeneration of DA 
nigrostriatal neurons with the appearance of intraneuronal 
Lewy bodies; however, similar damage may occur to the 
cytoskeleton of glutamatergic, cholinergic, GABA-ergic, 
tryptaminergic, noradrenergic, and adrenergic nerve cells 
also (Sveinbjornsdottir 2016).

Oxidative stress and inflammation

Oxidative stress and neuroinflammation are the key factors 
thought to contribute together to the development of PD 
(Taylor et al. 2013). Reactive oxygen species (ROS) such 
as superoxide, hydrogen peroxide, and hydroxyl free radi-
cals can harm neurons if they are created in excess, as hap-
pens during persistent neuroinflammatory responses. The 
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nitrogen intermediates, nitric oxide, and peroxynitrite also 
cause oxidative damage to the neurons (Mosley et al. 2006).

Synuclein aggregation and neuronal death are accompa-
nied by a neuroinflammatory reaction that is driven by the 
glia. Glial cells are essential components of homeostatic 
systems that support neuronal survival in the brain's niche 
(Tansey and Goldberg 2010). Free radicals such as NADPH 
and iNOS, produced by microglia, are a key link between 
neuroinflammation and synuclein dysfunction in driving 
chronic PD neurodegeneration. It is reported that inhibition 
of NADPH oxidase and iNOS reduce pathologic alterations 
of α-synuclein which causes chronic neurodegeneration in 
PD (Gao et al. 2011)

Mitochondrial and autophagy dysfunction

Mitochondrial dysfunction in PD is characterised by the 
reduction of mitochondrial complex I enzyme activity, 
leading to the generation of oxidative stress in the nigral 
neurons and their accelerated degeneration. DA neuronal 
death is also associated with misfolding and aberrant deg-
radation of brain proteins. The presence of misfolded and 

ubiquitinated proteins shows that dysregulation of protein 
synthesis or flaws in the protein breakdown pathway play 
a significant role in PD etiology (Vila and Przedborski 
2004). Dysfunction of autophagy or lysosomal degradation 
pathway is found to be associated with impaired protein 
or organelle clearance. It can contribute to intracellular 
protein aggregates, which leads to the eventual death of 
neurons in the PD brain. (Rivero-Ríos et al. 2016).

Supplementing dopaminergic activity in the nigrostri-
atal pathway is the principle behind most medical treat-
ment options for the motor symptoms of Parkinson’s dis-
ease. Deep brain stimulation (DBS), the invasive treatment 
widely used in the management of advanced stages of PD, 
does not increase nigrostriatal dopaminergic activity, but 
attempts to correct the neuronal circuit dysfunction result-
ing from DA deficiency by electrically stimulating nuclei 
like the subthalamic nucleus (STN) or Globus Pallidus. 
Current researches focus on repairing the nigrostriatal 
pathway to restore dopamine levels in the striatum (Har-
ris et al. 2020). Since endogenous DA neuronal cells are 
insufficient or defective in PD, DA cell delivery could 
restore the nigrostriatal circuit.

Fig. 1   The motor, associative, and limbic basal ganglia circuits. The 
degeneration of DA neurons in the nigrostriatal pathway in Parkin-
son’s disease patients causes associated symptoms. The degeneration 
of DA neurons from the substantia nigra pars compacta to the dor-
sal striatum (putamen) causes motor symptoms of rigidity and brad-
ykinesia. Similar degeneration of the nigrostriatal tracts from SNc to 

caudate results in cognitive changes such as executive changes and 
attention deficits. The limbic loop involves dopaminergic projections 
from the VTA to the ventral striatal regions of the nucleus accumbens 
whose degeneration contributes to the pathogenesis of apathy, psy-
chosis, and impulse control disorders (image generated in Biorender)
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Current diagnosis and management of PD

PD is a multifaceted neurodegenerative disorder with 
motor and non-motor symptoms manifesting differently 
in each patient (Jankovic 2008; Thenganatt and Jankovic 
2014). PD-like symptoms are seen in certain other neuro-
logical disorders such as multiple system atrophy (MSA) 
and progressive supranuclear palsy (PSP), collectively 
known as "atypical parkinsonian disorders". The etiology, 
neuropathology, and disease progression of these condi-
tions are different from those of PD. However, the clini-
cal syndrome of parkinsonism (presence of bradykinesia 
with rigidity and/or tremor) is shared by PD and these 
disorders. A meticulous clinical assessment is needed to 
differentiate such disorders from PD.

Diagnosis of PD

The gold standard for diagnostic confirmation of PD is 
post-mortem examination and demonstration of cell loss in 
the SN region with the presence of Lewy bodies, staining 
positive for α-synuclein and ubiquitin (Hartmann 2004). 
In a clinical setting, the diagnosis of PD can be made with 
a certainty of 75–90% based on medical history and clini-
cal examination. Several clinical diagnostic criteria have 
been in use for PD. The UK Parkinson's Disease Society 
Brain Bank (UKPDSBB) criteria (Hughes et al. 1992) have 
been the most widely used. The International Parkinson 
and Movement Disorders Society (MDS) has recently 
proposed more elaborate criteria (MDS Diagnostic Crite-
ria) for the diagnosis of PD (Postuma et al. 2015). All the 
currently used diagnostic criteria rely on identifying the 
core motor symptom complex of parkinsonism and then 
looking for additional features supportive of a diagnosis of 
PD and ensuring the absence of features ("red flags") sug-
gestive of other parkinsonian disorders like MSA and PSP

Clinical symptoms

Motor symptoms  Motor symptoms in PD are generally 
distributed asymmetrically (one side of the body is gener-
ally affected initially and continues to be the more severely 
affected side). Symmetrical symptoms, though they could 
occur in PD, should raise the suspicion of atypical parkinso-
nian disorders such as MSA or PSP. Parkinsonism is the core 
motor symptom of PD. Parkinsonism is a clinical symptom 
complex characterised by bradykinesia with rigidity and/or 
tremor. Postural instability is a common accompaniment of 
parkinsonism, particularly in the later stages of PD.

(a)	 Bradykinesia: Bradykinesia means slowness of move-
ments, though muscles can exert normal power. Initia-
tion and execution of voluntary movements, including 
limb movements, gait, and facial expression, become 
slow (Berardelli et al. 2001).

(b)	 Tremor: The classical tremor in PD is characterised 
by a 4-6 Hz resting tremor, which is generally unilat-
eral or asymmetrical. Action and postural tremors also 
could occur in PD (Anouti and Koller 1995). When 
the tremor occurs in the hands, it is often described 
as a "pill-rolling" tremor because of the characteristic 
pattern.

(c)	 Rigidity: Muscle rigidity in PD is characterised by 
wax-like resistance during passive movement of the 
limbs. This, combined with tremors, often results in a 
"cogwheel" feeling during examination (di Biase et al. 
2018).

(d)	 Postural instability: Postural instability is generally a 
late feature of PD and is characterised by the loss of 
automatic balance control resulting in a tendency to fall 
(Palakurthi and Burugupally 2019).

Based on the dominant symptoms, different PD pheno-
types can be identified (Foltynie et al. 2002). These include 
tremor dominant (TD), postural instability and gait dominant 
(PIGD), and mixed/indeterminate types (Marras and Lang 
2013). TD PD is likely to progress slowly and have a rela-
tively benign course compared to the PIGD variant.

Non‑motor symptoms  Parallel to this, many non-motor 
symptoms precede the motor symptoms and then progress 
through the later stages of PD.

(a)	 Olfactory dysfunction Lack of odor discrimination is 
presented in 70–90% of PD patients in the early stages 
and can precede the development of motor symptoms 
(Doty 2012).

(b)	 Dysautonomia Autonomic failure in PD includes ortho-
static hypotension, constipation, gastrointestinal dys-
function, urinary incontinence, and sexual dysfunction 
which can occur at the early stages and worsen in the 
later stages of the disease (Goldstein 2014).

(c)	 Depression and anxiety These are observed in roughly 
40% of the patients, along with motor symptoms, and 
may correlate with disease severity. These symptoms 
contribute to significant functional impairment and 
poor quality of life (Ray and Agarwal 2020).

(d)	 Cognitive decline and dementia Mild cognitive dys-
function, not qualifying for the diagnosis of dementia, 
can be present even in the early stages of PD. Cogni-
tive dysfunction and dementia progress during PD and, 
in 15–20 years, become ubiquitous (Hely et al. 2008; 
McKeith et al. 2017).
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(e)	 Rapid eye movement (REM)-sleep behaviour disorder 
(RBD) RBD or dream enactment can occur years before 
the onset of motor symptoms of PD. This is charac-
terised by vigorous limb movements and vocalisation 
resulting from complex motor enactment of dreams 
(Tekriwal et al. 2017).

Imaging in PD diagnosis

Conventional magnetic resonance (MR) imaging sequences 
used in routine clinical practice are generally normal in PD. 
MR imaging may help in differentiating PD from atypi-
cal parkinsonian disorders such as MSA and PSP in some 
cases. Higher-field MR imaging studies make use of high-
resolution susceptibility-weighted imaging (SWI) to detect 
neurodegeneration in the substantia nigra pars compacta 
(SNpc) present in PD patients through the absence of dorsal 
nigral hyperintensity (DNH), which appears in the shape of 
a "swallowtail" in healthy individuals (Pavese and Tai 2018). 
The "loss of swallowtail sign" in PD results from changes in 
iron deposition in the nigrosome-1 region.

Neuromelanin MR imaging (NM-MRI) is sensitive to 
neuromelanin, a dark intracellular pigment found in SNc 
and locus coeruleus (LC). It is susceptible to oxidative 
stress(Zecca et al. 2008). The study on the utility of NM-
MRI for differential diagnosis of PD and atypical parkinso-
nian disorders (APDs) has gained attention in the last dec-
ade, but is yet to be accepted clinically (Ohtsuka et al. 2014; 
Taniguchi et al. 2018). Pre-synaptic dopaminergic imaging 
using PET and SPECT tracers differentiates degenerative 
parkinsonism from non-degenerative conditions. Dopamine 
transporter (DAT)-SPECT imaging is FDA approved for the 
differentiation of tremulous forms of parkinsonism from 
essential tremor (ET); it is typically abnormal in PD and 
other neurodegenerative parkinsonism disorders while nor-
mal in ET. Normal functional neuroimaging of the presynap-
tic dopaminergic system is considered an absolute exclusion 
criterion for the diagnosis of PD in the MDS criteria for 
clinical diagnosis of PD (Postuma et al. 2015).

Genetic testing

Genetic testing is currently available for clinical use, par-
ticularly in young-onset PD (YOPD) patients. In the absence 
of gene-specific treatments at present, genetic test results 
are used primarily for counselling and prognostication. 
Moreover, certain genetic forms of PD, e.g. PD associated 
with pathogenic variants in the gene for glucocerebrosidase 
(GBA), may respond differently to interventions like DBS 
compared to those without such variants (Pal et al. 2022). 
Genetic testing may become more critical in the future 
when gene-specific therapies emerge (Axelsen and Wold-
bye 2018).

An important factor supporting the diagnosis of PD is the 
response to dopaminergic therapy; a poor response to dopa-
minergic medications like levodopa tried at a sufficient dose 
is a factor pointing strongly to a diagnosis of a parkinsonian 
disorder other than PD (Lingor et al. 2011). The conditions 
to be suspected in such cases include other neurodegenera-
tive pParkinsonisms, such as PSP, MSA, and corticobasal 
degeneration (CBD), and secondary ("non-degenerative") 
parkinsonian disorders like vascular parkinsonism, normal 
pressure hydrocephalus (NPH), and drug-induced parkinson-
ism. The efficient management of parkinsonian disorders 
relies on their proper diagnosis.

Management of PD

The management options for PD have to be tailored to the 
needs of the individual patients based on the profile of symp-
toms, level of impairment, age, and co-morbid status. At 
present, there are no proven neuroprotective medications that 
can cure PD or modify its disease course; therefore, medical 
and surgical management is purely oriented towards control 
of symptoms and improving quality of life. Supportive meas-
ures such as physiotherapy to ease movements and improve 
balance, occupational therapy to maintain independence, 
speech therapy to maintain communication skills, and die-
tary advice to alleviate symptoms like constipation, and to 
maintain optimal weight, are also recommended to improve 
the quality of life. In this section, we briefly discuss some of 
the current medications and surgical options for PD.

Medications

Dopamine replacement therapies form the mainstay of the 
medical management of PD (Borovac 2016). The medica-
tions are prescribed based on the symptoms, disease dura-
tion, and age of the patient and are aimed at controlling 
symptoms that cause disability and handicap. The medi-
cations used in the treatment of PD are briefly described 
below:

(a)	 Levodopa Since the motor symptoms of PD stem from 
the degeneration of dopaminergic neurons projecting 
to the striatum and resultant dopamine deficiency in 
the striatum, the most effective medication is levodopa, 
which is the precursor to dopamine (Poewe et al. 2010). 
It enters the bloodstream and crosses the blood–brain 
barrier and gets decarboxylated to dopamine in the 
remaining dopaminergic terminals in the striatum, thus 
reducing the symptoms of PD. To reduce the break-
down of L-Dopa in the bloodstream before reaching 
the brain and to reduce the side effects resulting from 
decarboxylation happening in the periphery, it is usu-
ally combined with benserazide or carbidopa (Gold-
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stein et al. 1984). Long-term use of levodopa has been 
associated with levodopa-associated complications 
such as uncontrollable involuntary movements called 
levodopa-induced dyskinesia (LID) and other motor 
complications resulting in "on–off" effects (Marsden 
and Parkes 1977; Marsden 1994). To reduce the risk of 
dyskinesia, levodopa treatment is generally postponed, 
particularly in younger patients, managing with other 
drugs like dopamine agonists till levodopa treatment 
becomes unavoidable because of the increasing severity 
of parkinsonism, and started and maintained at a lower 
dose as far as possible. However, this approach has 
also been challenged; levodopa should not be withheld 
even in young patients in whom initiation of levodopa 
is judged to be essential for providing improvement in 
quality of life (Vijayakumar and Jankovic 2016).

(b)	 Dopamine agonists Dopamine agonist medications like 
pramipexole and ropinirole are used as a substitute for 
dopamine and have a milder effect than levodopa. They 
directly act on the DA receptors without increasing 
presynaptic dopamine synthesis in the striatum. They 
are given more frequently compared to levodopa in the 
early stages of PD and in younger patients; they are 
also prescribed in combination with levodopa to aug-
ment the action of levodopa and keep the levodopa dose 
low. Thus, by helping to reduce the dose of levodopa, 
the onset of LID can be delayed. They have similar, 
but more severe adverse effects than levodopa and can 
cause abdominal discomfort, nausea, hallucinations, 
confusion, and increased sleepiness (Borovac 2016). 
Dopamine agonists are generally poorly tolerated by 
elderly patients. They have also been associated with 
compulsive behaviours such as addictive gambling, 
shopping, and increased sexual desire.

(c)	 MAO-B/COMT inhibitors Monoamine oxidase iso-
form B (MAO-B) and catechol-O-methyltransferase 
(COMT) are both enzymes involved in dopamine 
metabolism and breakdown. Thus, by inhibiting the 
activity of these enzymes, the level of dopamine is 
increased, thereby reducing the symptoms associ-
ated with striatal dopamine depletion in PD. MAO-B 
inhibitors can be prescribed as monotherapy in the 
early stages of PD or along with other medications 
like levodopa or dopamine agonists. COMT inhibitors 
are therapeutically useful only when given along with 
levodopa.

(d)	 Anticholinergics Anticholinergics do not act through 
dopamine replacement and could be used for symp-
tomatic treatment in some patients, particularly for 
tremors. They are generally prescribed with dopamine 
replacement therapy (Katzenschlager et  al. 2002). 
They block the action of acetylcholine and ameliorate 
the tremor symptoms in PD. Side effects include dry 

mouth, blurred vision, hallucinations, and changes in 
attention and memory. Hence, it may not be safe for 
elderly patients or those who already have cognitive or 
neuropsychiatric symptoms (Ehrt et al. 2010).

Symptoms such as dysarthria, dysphagia, and freezing 
of gait do not respond well to dopaminergic treatment and 
may need measures like physiotherapy and speech therapy. 
Timely identification and management of non-motor symp-
toms are equally as important as managing motor symptoms 
to ensure good quality of life for patients. The interventions 
include treatment of constipation by dietary measures and 
laxatives, appropriate use of antidepressants and anxiolytics 
for depression and anxiety, and management of sleep distur-
bances, fatigue, and sexual dysfunction. Patients also need to 
be carefully monitored for adverse effects of dopaminergic 
treatment, including hallucinations and behavioural distur-
bances, impulse control disorders, and compulsive behav-
iours, and dose adjustments need to be made if these are 
detected (Weintraub et al. 2010; Martini et al. 2018)

Neuroprotective drugs capable of arresting or slowing 
down the neurodegenerative process, thereby favorably mod-
ifying the course of the disease, remain to be an unmet need 
in the management of PD (Lang and Espay 2018). Multiple 
genetic and environmental mechanisms and multiple cellular 
cascades contribute to the pathogenesis of PD. The hetero-
geneity of the etiology and patho-mechanisms underlying 
PD is a major challenge in the successful development of 
effective neuroprotective drugs. Precision medicine, aimed 
at individualising management based on the genetic mecha-
nisms in the individual patient, is a novel and emerging strat-
egy (von Linstow et al. 2020). Drug repurposing, or studying 
the drugs that are already approved to treat one disease for 
their safety and efficacy in other diseases, is a promising 
option in the development of neuroprotective agents in PD 
(Fletcher et al. 2021). Several drugs including antidiabetic 
drugs, antihypertensives, and some anticancer drugs have 
undergone repurposing trials in PD. Some of them such 
as ambroxol (traditionally used as a mucolytic agent) and 
exenatide (antidiabetic drug) have shown promising results 
warranting further studies (Athauda et al. 2017).

Deep brain stimulation (DBS) surgery

DBS is a relatively safe surgical procedure in which elec-
trodes (DBS leads) are implanted in the nodes in the sub-
cortical motor network. The electrode contacts at the lead 
tips are used to stimulate the target nuclei at finely tuned 
amplitude, frequency and pulse width to provide sympto-
matic relief in many movement disorders such as PD, dys-
tonia, and ET. It is currently the standard of care for PD 
patients who develop motor complications—motor fluctua-
tions and LID—which impair quality of life despite optimal 
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tailoring of medical management (Hartmann et al. 2019). It 
requires meticulous patient selection based on strict eligibil-
ity criteria, which include age, disease duration and severity, 
response to levodopa treatment, burden of neuropsychiatric 
dysfunction, and co-morbidity status. A meticulous follow-
up by an experienced comprehensive care team is essential 
for the patients to enjoy the maximum benefits of this surgi-
cal treatment (Krishnan et al. 2018). Patients who respond 
to levodopa treatment usually respond to DBS. The exact 
mechanism by which it ameliorates the symptoms of move-
ment disorders remains elusive. The widely accepted theory 
is that the high-frequency stimulation of DBS acts as an 
"information lesion" disrupting the pathological neuronal 
hyper-synchrony in the neural circuits passing through the 
target nuclei, thereby blocking the flow of abnormal infor-
mation and relieving symptoms (Grill et al. 2004).

The subthalamic nucleus (STN) and globus pallidus inter-
nus (GPi) are the common nuclei targeted in DBS for PD. 
STN, as in Fig. 2, is generally the preferred target to treat 
motor symptoms and often enables the reduction of medica-
tion doses and, thereby, control of LID (Groiss et al. 2009). 
GPi-DBS has a direct anti-dyskinetic effect compared to 
STN-DBS, but reducing the medication dose is usually not 
possible (Fan et al. 2020). The gait and postural symptoms 

generally remain refractory or show only transient benefits 
following STN or GPi DBS. Pedunculopontine nucleus 
(PPN) has been tried as a target in those with predominant 
gait and postural symptoms, with variable results (Yu et al. 
2022).

The implantation of the DBS leads is conventionally done 
using a stereotactic frame; frameless and robotic DBS are 
emerging as novel alternatives. The intracranial end of the 
lead, placed in the target nuclei, has quadripolar or octopolar 
electrode contacts. The extracranial end of the leads is con-
nected to the pulse generator placed in the infraclavicular 
pocket of the chest wall using extension wires. To ensure 
accurate placement of the electrodes and avoid any adverse 
effects, micro-electrode recording (MER) is performed 
during the surgical operation while the patient is awake. A 
couple of days following the surgery, the pulse generator 
is programmed by adjusting the amplitude, frequency, and 
pulse width of the neurostimulation. Multiple programming 
sessions may be required to ensure maximum benefit with 
minimum side effects to the patient. Repeat programming 
sessions may also be necessary to deal with symptoms 
arising from the worsening of the disease over time. Medi-
cations are adjusted gradually as the symptoms improve 
with stimulation; though dose reduction is often possible, 

Fig. 2   Figure showing the reconstructed lead placement for STN-
DBS surgery performed in one of the patients at the Comprehensive 
Care Center for Movement Disorders, SCTIMST, Trivandrum. A 
Coronal, B axial slice with arrows showing the tips of the DBS lead 

implanted in the STN in the postoperative MRI. C 3-D reconstruc-
tion of the lead position from the postoperative MRI with electrode 
tip located in the STN



8	 Experimental Brain Research (2024) 242:1–23

1 3

particularly following STN DBS, complete withdrawal of 
medications is not recommended (Fasano et al. 2016). Even 
though there is no neuroprotective effect, DBS improves 
symptoms and quality of life for several years (Kishore et al. 
2010; Krishnan et al. 2016). Surgical complications include 
implant infections and intracranial haemorrhage during the 
surgical procedure. Recent advances in DBS technology 
include the use of intraoperative imaging, current steering, 
and directional stimulation using specialised electrodes to 
maximise benefits (Steigerwald et al. 2019), and adaptive 
DBS, or closed-loop stimulation, which depends on signals 
from target nuclei to tailor stimulation parameters optimally 
(Fleming et al. 2020).

Other device-assisted therapies which can be used in 
selected patients unsuitable for DBS include levodopa–car-
bidopa intestinal gel (LCIG—delivery of levodopa continu-
ously and directly into the duodenum) and apomorphine 
pump. Oral medications, DBS, and other such device-
assisted therapies have several limitations. Though these 
therapies manage symptoms and improve quality of life, they 
do not have any impact on the disease progression and hence 
cannot prevent patients from relentlessly progressing to the 
late-stage of PD, characterised by medication- and stimula-
tion- resistant symptoms like imbalance and falls, dysar-
thria, dysphagia, and cognitive dysfunction. These warrant 
research for better treatment alternatives, such as cell-based 
therapies or gene therapy for restoring the lost neurons and 
modifying the natural course of the disease.

Stem cell therapy for PD

Cell replacement therapy may compensate for the loss of 
DA neurons in PD. Restoration of the lost DA neurons has 
the potential to cure PD rather than merely addressing the 
symptoms as with current treatments. Transplantation of 
dopamine-producing neurons or immediate precursors of 
DA neurons into the PD brain is one of the various cell 
therapy strategies. DA neurons or immediate precursors of 
DA neurons may be collected from autologous or alloge-
neic sources such as foetal tissue and embryonic stem cells 
(ESC). In autologous cell therapy, the cells are sourced from 
the patient as adult stem cells or induced pluripotent stem 
cells (iPSCs) as shown in Fig. 3. In foetal cell therapy, the 
neural cells are directly collected from the foetal tissue. The 
DA neurons or progenitors derived from autologous sources 
are usually genetically manipulated to induce differentiation. 
The directed differentiation of the stem cells using small 
molecules or growth factors without viral vectors or genetic 
methods is another approach.approximately 300 000 cells

The proof of concept or pre-clinical studies for cell-based 
therapies utilise animal models based on MPTP (1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine) and 6-OHDA 

(6-hydroxydopamine). These chemicals recapitulate PD-like 
symptoms in rodents and non-human primates to evaluate 
the potential and safety of cell replacement therapy in PD. 
The MPTP neurotoxicity and its effects in human brain was 
discovered in 1982 when seven young adults in California 
injected themselves with synthetic heroin, which contained 
MPTP, and developed severe and irreversible parkinsonism 
(Langston 2017; Nonnekes et al. 2018). Understanding the 
MPTP toxicity and mechanism of nigrostriatal degenera-
tion has helped discover many compounds and stem cell-
based approaches to alleviate or prevent the symptoms 
(Langston 2017; Simon et al. 2019; Park and Chang 2020; 
Pu et al. 2023). Human NSCs (hNSC) were implanted in 
monkeys treated with MPTP at the site of bilateral caudae 
and right SN which reduced the number and size of tyros-
ine hydroxylase-positive cells comparable to non-MPTP-
treated controls(Bjugstad et al. 2005). Treatment protocol 
for accidental exposure to MPTP includes the immediate 
use of MAO inhibitors such as selegiline and rasagiline, to 
prevent the formation of MPTP-derived toxic metabilities.

Re‑establishing the lost connections using stem 
cells

The cell replacement strategy focuses on re-establishing the 
lost connection due to degenerative changes. The adult CNS 
has limited intrinsic ability to regenerate, and stem cell-
based therapies are being developed to surpass this hurdle. 
Regeneration or replacement of the lost neurons, re-estab-
lishment of the neural connections, and functional recovery 
are the key objectives of cell replacement therapy in neuro-
degenerative disorders (Okano 2011). The cell replacement 
therapy depends on the surviving transplanted cells extend-
ing their neurites and making new connections in the grafted 
area. However, the process is slow and may take several 
months to make functional changes (Morizane 2023). When 
the degeneration occurs in PD, microenvironment changes 
occur in the SN, involving the neurons, glial cells, endothe-
lial cells, and peripheral immune cells. The neuroinflam-
matory cascade in PD is similar to other neurodegenerative 
conditions, making it difficult for any regenerative approach 
to succeed (Hirsch et al. 2005). It has been reported that the 
neural stem cells when used for cell replacement therapy 
integrate into the host tissue and promote rescue of the host 
cells by altering the host environment. Another observation 
from this study is that the neural stem cells migrate well in 
the aged brain rather than in the adult brain, possibly as a 
response to degeneration and ageing. Similarly, spontane-
ous differentiation of neural stem cells was observed in the 
MPTP-treated brain with impaired DA neurons. At the same 
time, there was no such spontaneous differentiation in the 
intact aged or adult brain. These observations suggest that 
the exogenous neural stem/progenitor cells may be used to 
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promote the endogenous regeneration of the host tissue. In 
this strategy, genetically manipulated exogenous stem cells 
may deliver the trophic factors and molecules that could alter 
the host tissue microenvironment to rescue the endogenous 
cells and regain their functionality.

Allogeneic cell replacement therapy

Foetal cells

Replacement of lost DA neurons for restoring the neural 
circuits with foetal tissue was the first cell therapy approach 
in PD (Li and Li 2021). Foetal tissues were obtained from 
spontaneous abortions, stillbirths, surgical procedures asso-
ciated with ectopic pregnancy, and elective abortions. Foe-
tal tissues have a greater number of stem cells and are less 
immunogenic, with higher proliferation than adult tissue-
derived cells (Ishii and Eto 2014). In the late 1980s, the 

ventral mesencephalic tissue from elective abortions was 
utilised in the human cell therapy trials in PD. Researchers 
were able to implant these cells into the caudate and puta-
men regions of the brains of immunosuppressed PD patients 
without causing any significant complications (Lindvall 
et al. 1988). The transplantation of foetal cells improved 
dopamine synthesis and motor symptoms, bradykinesia, and 
rigidity in one of the two patients (Lindvall et al. 1990). In 
a similar study, a non-immunosuppressed PD patient was 
implanted with foetal tissue stereotactically throughout the 
caudate and putamen regions. A 1-year follow-up study 
demonstrated significant therapeutic benefits to the patient 
regarding motor symptoms, such as improved hand speed, 
walking speed, and a better medication response (Freed et al. 
1990). Several similar studies showed promising results with 
the transplantation of foetal grafts; afterwards, more than 
350 patients received foetal cell grafts by the beginning of 
the 2000s (Spencer et al. 1992; Kefalopoulou et al. 2014; Li 

Fig. 3   An overview of cell-based therapies for PD. Allogeneic cell 
therapy involves 1. direct grafting of foetal neural tissue to the PD 
lesion or 2. transplantation of embryonic stem cells (ESC)-derived 
DA neurons or progenitors to the patient. In autologous cell therapy 
3. adult stem cells (MSCs, PBMNCs, etc.) or blood/skin fibroblast-

derived iPSCs are collected from the PD patient. 4. Autologous stem 
cells are differentiated into DA neurons or neural progenitors in vitro. 
5. Adult stem cells/iPSC-derived neural cells are transplanted back to 
the patient for integration into the SNc (image generated in Bioren-
der)
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and Li 2021). Even though foetal grafts showed promising 
results, several concerns were there in their clinical transla-
tion path.

The trials with foetal cell therapy showed inconsistent 
results. Some patients had beneficial outcomes, while oth-
ers showed no significant change in the symptoms. Some 
patients also exhibited significant side effects such as graft-
induced dyskinesias, inflammation, confusion, and halluci-
nation (Olanow et al. 1996). The most unexpected outcome 
was the development of multifocal brain tumours after 
intracerebellar and intrathecal injection of human foetal neu-
ral stem cells to treat ataxia telangiectasia. Characterisation 
of the tumour tissue revealed that the origin was from the 
transplanted neural stem cells, and cells from two aborted 
fetuses were present (Amariglio et al. 2009). Another con-
cern in using foetal cell transplantation as a therapy for PD 
includes the ethical issues associated with the procurement 
of cells. In addition to this, the availability of foetal tissue is 
also a concern. These factors and the long-term safety con-
cerns associated with foetal stem cell transplantation delay 
the translation of this therapy to clinics.

In the past, the relatively high number of foetal cell trials 
caused the adoption of insufficient precautionary measures, 
resulting in compromised foetal cell quality. Some stud-
ies considered only the number of transplanted cells rather 
than their functionality. Testing and the screening of donors 
were insufficient to prevent infectious diseases (Ishii and 
Eto 2014). The European multi-center consortium, TRAN-
SEURO (NCT01898390), was formed in 2010 to minimise 
variability and improve the consistency and efficacy of 
dopamine cell replacement therapy. The consortium aims 
to improve DA cell replacement therapy in PD by improving 
tissue preparation, cell delivery, patient selection, and immu-
nosuppression strategy. Another objective is to demonstrate 
that the DA treatment can be effective without causing side 
effects suchas dyskinesias, as seen with foetal ventral mes-
encephalic grafts. A template protocol may be standardised 
as a guideline for all future cell-based therapies and their 
ethical implications (Barker and TRANSEURO Consortium 
2019; Petit et al. 2014).

Embryonic stem cells

Embryonic stem cells (ESCs) are another potential stem cell 
source for allogeneic cell replacement therapy in PD. ESCs 
are multipotent stem cells with high proliferative capacity. 
In contrast to foetal cell therapy, the availability of cells is 
not a limiting factor with ESCs. Even in the midst of ethical 
dilemmas surrounding ESCs, IVF surplus embryos can be 
obtained for cell therapy applications. In vitro differentiation 
of ESC to DA neurons or neural stem cells for applications 
in cell therapy is well studied. The embryonic patterning and 
differentiation of the foetal midbrain can be recapitulated 

in vitro using mitogens, small molecules, and signalling 
inhibitors to generate midbrain DA neurons (Eiraku et al. 
2008; Kirkeby et al. 2012). BMP/SMAD signalling plays a 
vital role in developmental neurogenesis and the generation 
of midbrain DA neurons (Jovanovic et al. 2018). Inhibition 
of SMAD using dual inhibitors, Noggin and SB43154, has 
demonstrated robust and rapid differentiation of ESC to neu-
ral cells with approximately 80% efficiency.

Many pre-clinical studies have demonstrated the effi-
ciency and potency of ESC-derived DA neurons or precur-
sors to be used as a cell source for therapy in PD (Kriks et al. 
2011; Doi et al. 2012; Grealish et al. 2014). The pre-clinical 
studies of the NCT03119636 trial reported improved motor 
symptoms in PD rat models without toxicity or any other 
adverse effects (Piao et al. 2021). The first clinical studies 
using ESC-derived neural stem cells are NCT03119636 and 
NCT02452723. These trials with neural stem cells inves-
tigated cytokine effects such as neuroprotection and sup-
pression of inflammation (Takahashi 2021). Another clini-
cal trial by BlueRock Therapeutics (NCT04802733) tests 
ESC-derived midbrain dopaminergic neurons in PD patients. 
However, it is still unclear if the ESCs are safe and effective 
for being adapted as a potent cell source for therapy.

The safety of ESC-based cell therapy depends not only on 
the behaviour of the cells in vivo, but also on the in vitro dif-
ferentiation protocols. A previous pre-clinical study reported 
that human ESC-derived DA neurons transplanted into a rat 
PD model developed teratomas when the in vitro differen-
tiation protocol was 16 days long. Teratoma formation was 
not observed when the protocol was either 20 or 23 days. 
These results suggest that prolonged in vitro differentiation 
is safer than short differentiation protocols (Brederlau et al. 
2006). Another study also showed highly malignant terato-
carcinoma formation at the site of implantation of mouse 
ESC-derived cells, irrespective of whether the cells were 
pre-differentiated or not (Erdo et al. 2004).

In addition to the ethical issues and donor cell availabil-
ity, allogeneic transplantation is also associated with the 
need for long-term immunosuppression. Even though the 
stem cells are considered less immunogenic, transplantation 
without HLA characterisation and matching causes immune 
conflicts (Kot et al. 2019). Immune reactions following the 
allogeneic transplantation cause transplant rejection and 
could also affect the differentiation of the transplanted pro-
genitor cells such as neural stem cells (Ideguchi et al. 2008). 
Calcineurin inhibitors or mTOR inhibitors are commonly 
used for immunosuppression. But, long-term use is associ-
ated with complications such as hepatotoxicity, nephrotox-
icity, hypertension, and immune suppression (Master et al. 
2007).In addition, the issues with tissue availability, ethical 
dilemma, and tumourigenicity make translating allogeneic 
cell therapy difficult, leaving autologous cell therapy as 
a viable option. The only requirement in autologous cell 
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therapy is an accessible source of stem cells or neural cells, 
which could be transplanted to the lesion site to replace the 
lost neurons or promote adult neurogenesis in the PD brain. 
Induced pluripotent stem cells (iPSCs), adult stem cells, and 
induced neurons are the most studied cell sources that may 
be used for autologous cell replacement therapy.

Autologous cell replacement therapy

Induced pluripotent stem cells (iPSCs)

The iPSCs are pluripotent stem cells which could be gen-
erated from adult fibroblast cells by stable transduction 
with transcription factors, Oct3/4, Sox2, c-Myc, and Klf4 
(Takahashi and Yamanaka 2006). iPSC technology enables 
the production of ESC-like pluripotent stem cells from the 
patient's blood or skin cells. iPSC-based cell therapy has 
reduced the risk of transplant rejection and immunosup-
pression, as observed in allogeneic transplantation. The 
long-term efficiency and safety of DA neurons derived from 
iPSCs have been demonstrated in various pre-clinical studies 
(Hallett et al. 2015; Wang et al. 2015; Wakeman et al. 2017; 
Kikuchi et al. 2017; Doi et al. 2020). However, the long-
term safety of viral-based transduction protocols warrants 
further confirmation. The differentiation of iPSCs to neural 
cells can be achieved using Noggin and SB431542 via dual 
SMAD inhibition without using viral vectors. However, such 
a differentiation process is tedious and further induction with 
molecules such as BDNF, ascorbic acid, sonic hedgehog, 
FGF8, GDNF, TGF-β3, and cyclic-AMP is necessary to 
induce the differentiation of iPSCs to mature midbrain DA 
neuronal subtype (Chambers et al. 2009). Different differen-
tiation strategies and protocols are being developed to induce 
the differentiation of iPSCs to dopaminergic neurons (Grow 
et al. 2016; Fedele et al. 2017; Rakovic et al. 2022).

In the USA, a patient with idiopathic PD was transplanted 
with autologous iPSC-derived midbrain DA neurons into 
both hemispheres of the putamen region. iPSC-derived 
grafts delivered to the left and right sides of the putamen 
survived for 24 and 18 months, respectively. Moderate 
improvements were demonstrated in the clinical measures 
of PD symptoms 18–24 months after implantation (Sch-
weitzer et al. 2020). Several clinical trials are currently in 
progress to evaluate the safety and efficacy of iPSC-derived 
dopamine neurons in treating Parkinson's disease. The Kyoto 
trial (UMIN000033564) is the first iPSC-based trial in PD. 
The iPSCs-derived DA progenitors were transplanted into 
the corpus striatum of PD patients to replace the lost DA 
neurons. The safety and efficacy of the clinical grade DA 
precursors were initially tested in immunodeficient mice, 
6-OHDA rats, and MPTP monkeys (Takahashi 2019, 2020, 
2021). iPSCs have a better reputation regarding safety and 
acceptability when compared to ESCs. iPSCs technology 

generally involves retroviral or lentiviral transduction, 
which could cause insertional mutagenesis, posing a risk 
for clinical translation. However, several integration-free 
methods, such as plasmids, Sendai virus, adenovirus, and 
synthesised RNAs/proteins, are currently being adopted to 
reduce the adverse effects (Yamanaka 2012). The safety and 
efficacy of iPSCs remain a question until the clinical trials 
are completed.

Adult stem cells

Adult stem cells exist in almost all tissues and are crucial 
for homeostasis. These cells can proliferate and differenti-
ate into cells of a particular lineage based on intrinsic and 
extrinsic signalling cues. Most adult stem cells are tissue 
specific and stay quiescent. Autologous stem cell-based ther-
apy utilises the differentiation potential of stem cells residing 
in the accessible adult tissues to obtain the desired cell types. 
Adult stem cells can be programmed to differentiate into 
desired cell types in a controlled in vitro environment. One 
of the most researched adult stem cells for application in cell 
therapy is mesenchymal stem cells (MSCs). MSCs are stro-
mal cells that have multipotency and self-renewal properties. 
They could be isolated from bone marrow, adipose tissue, 
dental tissue, and menses blood. MSCs are easy to acquire in 
large numbers with minimally invasive procedures, making 
them a reliable cell source for cell therapy in elderly patients 
(Ding et al. 2011). The bone marrow-MSCs (BM-MSCs) 
have been shown to protect against the progressive loss of 
DA neurons induced by protease inhibitor MG-132 in both 
in vitro and in vivo conditions (Sun et al. 2006; Park et al. 
2008). The exosomes derived from MSCs might function as 
biological nanoparticles and exert therapeutic effects in PD 
(Vilaça-Faria et al. 2019). MSCs have advanced to the stage 
of clinical trials for use in Parkinson's disease (Table 1).

Researchers use several strategies to induce the differen-
tiation of MSCs into DA neurons in vitro (Table 2). Directed 
differentiation using signalling molecules or small molecule 
inhibitors is more reliable, as the genetic manipulation strat-
egies may have long-term side effects. One of the least stud-
ied yet potential sources of autologous cell therapy is periph-
eral blood mononuclear cells (PBMNCs). It has been shown 
that PBMNCs are capable of neural differentiation, but they 
are primarily used for generating iPSCs for autologous cell 
therapy (Tara and Krishnan 2015; Generali et al. 2019). A 
similar study demonstrated the directed differentiation of 
rat PBMNCs into DA neurons with approximately 90% 
efficiency (Prakash et al. 2023). Blood is one of the most 
accessible cell sources, and developing a strategy based on 
peripheral blood may enable autologous cell therapy with 
minimal discomfort to the patient.

Age is a critical factor to be considered when developing 
an autologous cell-based therapy for PD. Some autologous 
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stem cells, such as MSCs, show a negative correlation 
between age and proliferation. MSCs isolated from adipose 
tissue or bone marrow of older patients have lower pro-
liferation rates and may not grow well in vitro. Similarly, 
mitochondrial dysfunction has also been linked to ageing 
in mesenchymal stem cells (Marędziak et al. 2016; Fričová 
et al. 2020). Since PD is usually a late-onset disorder, the 
age-related decline of the proliferation potential of MSCs 
may narrow the clinical translation path. iPSCs have an 
advantage over MSCs or any autologous stem cells that the 
generation of iPSCs by expression of reprogramming fac-
tors improves the cellular and physiological ageing signs 
(Ocampo et al. 2016).

iDA cells

Stem cell-derived DA neurons may include a small percent-
age of proliferating cells and may cause tumour formation 
when transplanted. Mitomycin C can selectively remove 
the proliferating cells from the differentiated cell popula-
tion. This method can be used to select the non-proliferative 
cell population for transplantation (Hiller et al. 2020). An 
approach used in the Kyoto trial was to sort and enrich the 
DA progenitors using CORIN, a floor plate cell surface 
marker. The CORIN sorting removes unwanted immature 
cells, further improving the safety and quality of DA cell 
therapy (Kikuchi et al. 2017). Alternatively, methods have 
been developed to directly convert adult somatic cells into 
dopaminergic neurons (iDA) by expressing various tran-
scription factors such as mash 1, nurr 1, and lmx1a (Caiazzo 
et al. 2011). The generation of iDAs does not involve passing 
cells through the undifferentiated state. It is a direct con-
version method, thereby reducing the probability of tumour 
formation due to uncontrolled proliferation. Even if the stem 
cell stage is bypassed with direct conversion, the viral vec-
tors generally used in direct conversion pose risks in the 
long run.

Cell replacement therapy also carries the risk of host-
to-graft transmission of the α-synuclein pathology. In PD 
patients who received foetal tissue grafts, a disease pathol-
ogy spread from the host brain was observed in 11–12% of 
the dopaminergic neurons grafted (Li et al. 2016). Similarly, 
the transmission of α-synuclein pathology in the form of 
the inclusion of phosphorylated α-synuclein from host cells 
to ESC-derived dopaminergic neurons was observed in a 
6-OHDA rat model (Hoban et al. 2020). The transplanted 
cells in the PD brain may differentiate, migrate, and integrate 
into the affected areas immediately after transplantation. But 
the endocytosis and deposition of extracellular synuclein 
derived from host neurons may inhibit the long-term benefits 
of graft. Previous studies have demonstrated this effect in 
both in vivo and in vitro with mouse cortical neural stem 
cells and primary neurons (Desplats et al. 2009; Hansen 

et al. 2011). Even though some clinical studies report the 
beneficial effects of cell-based therapies in PD, follow-ups 
are needed to confirm the reliability of long-term benefits.

Gene therapy

Another potential treatment option for PD is gene therapy. 
This strategy can be used to introduce a gene into the cell, 
which can replace the faulty or missing gene/s associated 
with the disease. Gene therapy may be used in PD treat-
ment to restore the neurocircuitry, deliver trophic fac-
tors, and promote dopamine synthesis in the nigro-striatal 
region. Adeno-associated vector (AAV) and lentiviral vec-
tors (LVV) are the two vectors that have the potential for 
clinical translation. The AVV have gained attention over the 
past years for in vivo gene therapy as they do not integrate 
into the patient genome and have only low immunogenic-
ity (Hitti et al. 2019; Buttery and Barker 2020). Glutamic 
acid decarboxylase (GAD) is a target gene that is used to 
improve neurocircuitry. GAD enzyme is rate limiting in 
the production of the neurotransmitter GABA. The GABA 
activity towards the subthalamic nucleus and their targets in 
basal ganglia circuitry is often affected in PD. A previous 
double-blinded, randomised study investigated the modu-
lation of GABA production by delivery of AAV2-GAD in 
the subthalamic nucleus of subjects with advanced PD. The 
positive results suggested the continued development of the 
strategy as an effective treatment (LeWitt et al. 2011). Glial 
cell line-derived neurotrophic factor (GDNF) is essential for 
DA neuronal outgrowth and survival. It has been reported 
that the GDNF gene therapy may promote DA neuronal graft 
survival, plasticity, sprouting, and innervation into the recip-
ient's target nuclei. It was also associated with augmented 
activation of striatal neurons and DA metabolism depending 
on the time of gene delivery (Zheng et al. 2005; Gantner 
et al. 2020). Since the half-life of GDNF is low and it does 
not cross the blood–brain barrier (BBB), a gene therapy 
approach based on viral vectors is used to deliver this growth 
factor to the brain (Pandey and Singh 2022). The first clinical 
use of the AAV2-GDNF vector co-infused with gadoteridol 
(an MRI contrast agent) into the bilateral putamina of adult 
PD patients using MRI guidance reported safe and well-tol-
erated gene delivery. The results also showed a neurotrophic 
effect of GDNF on DA neurons (Heiss et al. 2019). Another 
strategy is the stable transgene expression of the aromatic 
amino acid decarboxylase (AADC) gene. AADC is crucial 
for the conversion of exogenous and endogenous L-dopa 
to dopamine in the nigro striatal region. L-Dopa therapy 
gets less effective over time due to a decline in the AADC 
enzyme, which leads to the necessity of initiating efforts 
to increase the expression of AADC through gene therapy. 
(Bankiewicz et al. 2006). By increasing AADC expression in 
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the putaminal neurons, medically administered L-Dopa may 
be converted to dopamine (DA) faster, thereby improving 
efficiency (Bankiewicz et al. 2006; Muramatsu et al. 2010). 
An open-label study of ten patients with advanced PD, who 
received bilateral infusions of AAV2-hAADC vector to the 
putamen, indicated an improved L-Dopa response in the 
first 12 months with slow decline in subsequent years (Mit-
termeyer et al. 2012). Another study spanning 36 months 
reported short-term safety and efficacy with AADC AVV 
therapy in patients with advanced PD (Christine et al. 2022). 
AADC therapy can only improve the conversion of L-Dopa 
to dopamine by restoring enzyme activity, but does not help 
to restore endogenous dopamine. Consequently, certain clin-
ical studies test the combined delivery of tyrosine hydroxy-
lase (TH), AADC, and GTP cyclo hydroxylase 1 (GCH). 
Transduction with GCH converts the non-DA cell to DA 
neurons, restoring endogenous DA production (McFarthing 
et al. 2019). Several other approaches, such as AVV-based 
therapies using neurturin, a homologue of GDNF, CDNF, 
and LV-based AADC, TH, and GCH1, were also studied 
(Palfi et al. 2014; Elkouzi et al. 2019).

In vivo gene therapy using AAV is approved in the USA 
and Europe and may gain more traction in the coming years 
(Axelsen and Woldbye 2018; Commissioner 2020). How-
ever, in cases where high-dose AAV therapy is needed, 
immune complications could arise and may even require 
immune suppression (Ertl 2022). Similarly, potential side 
effects, such as insertional mutagenesis and genotoxicity, 
must be considered with LV therapy.

Microbiome–gut–brain axis and PD

Recent research has connected gut microorganisms to the 
aetiology and symptoms of PD. These studies highlight the 
importance of gut microbiota (GM) in modulating neuro-
degenerative disorders (Singh et al. 2022). Gastrointestinal 
symptoms such as constipation, drooling, dysphagia, stom-
ach pain, dyspepsia, and faecal incontinence are frequently 
seen in PD patients (Omotosho et al. 2023). Constipation is 
the most prevalent gastrointestinal symptom in PD, affect-
ing up to 80% of people with the disease. Constipation can 
be observed in PD patients before developing motor symp-
toms (Su et al. 2017). This recent finding supports the Braak 
hypothesis, stating that α-syn first causes intestinal lesions 
and disrupted the enteric nervous system. It further causes 
Lewy body production in enteric nerves, which then acts on 
the vagus nerve to reach the substantia nigra and striatum 
and ultimately induces the development of PD (Braak et al. 
2003b). According to recent research, transplanted cells 
appear to target the gut–brain axis by reducing the inflam-
matory response in the gut and preventing neurodegenera-
tive cell death cascades in the brain. Intravenous cell-based 

therapies in α-syn expressing transgenic mice indicated a 
reduction in inflammatory microbiota, cytokines, and α-syn 
in both the gut and brain. The treatment also enhanced motor 
functions with a reduction in the death of dopaminergic neu-
rons in the substantia nigra (Lee et al. 2022, 2023). Another 
study showed that patients with PD had significant variations 
in the gut microbiome. A significant reduction in the levels 
of Prevotellaceae, Faecalibacterium, and Lachnospiraceae 
and an increase in the levels of Bifidobacteraceae, Rumi-
nococcaceae, Verrucomicrobiaceae, and Christensenel-
laceae were observed in PD patients (Shen et al. 2021). This 
study concluded that the ecological imbalance of these gut 
microbiota might cause impairment in short-chain fatty acid 
(SCFA) production, lipid metabolism, immune regulation, 
and intestinal permeability which in turn contributes to the 
pathology of PD. Curcumin administration improved gas-
trointestinal and intestinal barrier dysfunctions, decreased 
gut microbial dysbiosis, altered carbohydrate metabolism, 
corrected SCFA profiles, decreased dopaminergic neuron 
loss, and alleviated motor impairments in MPTP-induced 
mice (Cai et al. 2023). Srivastav et al. showed that a probi-
otic mixture containing LGG, B. animalis lactis, and L. aci-
dophilus raises the level of butyrate and protects the nigral 
dopaminergic neurons from MPTP and rotenone-induced 
neurotoxicity by increasing the butyrate level (Srivastav 
et al. 2019). Probiotics, psychobiotics, prebiotics, synbiotics, 
postbiotics, faecal microbiota transplantation, and dietary 
changes can all affect the gut microbiota, which can be con-
sidered viable diagnostic and treatment targets for PD (Hash-
ish and Salama 2023). Hence along with other therapeutic 
strategies for PD like cell transplantation, gene therapy, 
DBMs, and levodopa–carbidopa therapy, restoring eubiosis 
and homeostasis in patients' gut by the use of prebiotics, 
probiotics, or faecal matter transfer might be more impactful 
in the fight against Parkinson's disease.

Conclusion

Currently, patients and clinicians rely on detailed clinical 
assessments for the diagnosis of PD. Patients heavily rely 
on long-existing medications such as L-DOPA replace-
ment therapy for the management of PD. In the case of 
advanced PD, invasive surgeries such as brain stimulation 
are done on patients to improve their quality of life. All 
current approaches are focused on symptomatic treatment 
rather than reversing or providing a cure for the disease. 
Even though cell-based therapies hold promise for treating 
PD, there are several untoward obstacles along the way. The 
most crucial part is obtaining the correct functional neuronal 
subtype from in vitro differentiation of stem cells. The long-
term safety and efficacy of cell-based therapies are the pri-
mary concern that must be addressed before adopting such 
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therapies in the clinical realm. Although various clinical and 
pre-clinical studies have established the potential for using 
cell-based therapies for the treatment of PD, the large-scale 
production of clinical-grade cells and the ethical dilemma 
surrounding the usage of cells remains a bottleneck. Despite 
existing challenges, advancing translational research in the 
field will bring such therapies to fruition in the foreseeable 
future.
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