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Abstract
Postoperative cognitive dysfunction (POCD) is a common postoperative complication, not only affects the quality of life 
of the elderly and increases the mortality rate, but also brings a greater burden to the family and society. Previous studies 
demonstrated that Nod-like receptor protein 3 (NLRP3) inflammasome participates in various inflammatory and neurodegen-
erative diseases. However, possible mitophagy mechanism in anesthesia/surgery-elicited NLRP3 inflammasome activation 
remains to be elucidated. Hence, this study clarified whether mitophagy dysfunction is related to anesthesia/surgery-elicited 
NLRP3 inflammasome activation. POCD model was established in aged C57BL/6 J mice by tibial fracture fixation under 
isoflurane anesthesia. Morris Water Maze (MWM) was used to evaluate learning and memory abilities. We found that in vitro 
experiments, lipopolysaccharide (LPS) significantly facilitated NLRP3 inflammasome activation and mitophagy inhibition 
in BV2 cells. Rapamycin restored mitophagy and improved mitochondrial function, and inhibited NLRP3 inflammasome 
activation induced by LPS. In vivo experiments, anesthesia and surgery caused upregulation of hippocampal NLRP3, caspase 
recruitment domain (ASC) and interleukin-1β (IL-1 β), and downregulation of microtubule-associated protein light chain 3II 
(LC3II) and Beclin1 in aged mice. Olaparib inhibited anesthesia/surgery-induced NLRP3, ASC, and IL-1β over-expression 
in the hippocampus, while upregulated the expression of LC3II and Beclin1. Furthermore, Olaparib improved cognitive 
impairment in older mice. These results revealed that mitophagy was involved in NLRP3 inflammasome-mediated anes-
thesia/surgery-induced cognitive deficits in aged mice. Overall, our results suggested that mitophagy was related in NLRP3 
inflammasome-induced cognitive deficits after anesthesia and surgery in aged mice. Activating mitophagy may have clinical 
benefits in the prevention of cognitive impairment induced by anesthesia and surgery in elderly patients.
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Introduction

POCD is a neurological complication following anesthesia 
and surgery in elderly patients, mainly affects cognition, 
learning, and memory (Berger et al. 2015; Steinmetz and 
Rasmussen 2016; Holmgaard et al. 2019). The incidence of 
POCD is 41.4% at discharge and 12.7% at 3 months follow-
ing anesthesia and non-cardiac surgery (Evered et al. 2018). 
It can last for days, months, or even years, significantly 
affecting recovery and increasing morbidity and mortality 
after surgery (Steinmetz et al. 2009; Bilotta et al. 2010; Quan 
et al. 2019).

Although POCD is an important clinical problem, the 
pathogenesis of POCD is not well understood. Furthermore, 
elucidating its pathogenesis is helpful to prevent the occur-
rence of disease. Several studies have revealed that tissue 
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damage caused by surgery activates the peripheral immune 
system and promotes an inflammatory response, leading to 
neuroinflammation (Liu et al. 2018; Wang et al. 2022; Sub-
ramaniyan and Terrando 2019). Neuroinflammation has been 
suggested to play a critical role in the development of POCD 
(Wei et al. 2019; Li et al. 2022). Wang et al. showed that 
isoflurane induced age-related hippocampal neuroinflam-
mation via NLRP3 inflammasome activation (Wang et al. 
2018). NLRP3 inflammasome causes cognition deficits in 
age-related neuroinflammation (Youm et al. 2013) and neu-
rodegeneration such as in Alzheimer’s disease (Heneka et al. 
2013; Goldmann et al. 2013).

Based on those facts, the NLRP3 inflammasome plays an 
important role in the development of inflammatory response. 
Mitophagy can inhibit the activation signal of NLRP3 
inflammasome by removing damaged mitochondria (Xu 
et al. 2019), and regulate inflammatory response to avoid 
excessive inflammatory response to the body’s damage (He 
et al. 2019; Chang et al. 2022). Therefore, in this study, we 
explored whether mitophagy activation could inhibit the 
neuroinflammation mediated by NLRP3 inflammasome and 
ameliorate anesthesia/surgery-elicited cognitive decline.

Materials and methods

Ethics statement

This study was approved by the Animal Care and Use Com-
mittee of the Second Affiliated Hospital of Jiaxing Univer-
sity (Permit Number: JXEY-2020SZ034). All animal pro-
cedures complied with the NIH Laboratory Animal Care 
and Use Guidelines Statement. Efforts were made to reduce 
the pain caused by surgery and to reduce the total number 
of animals used.

Animals

16-month-old male C57BL/6J mice were provided by the 
Shanghai Institute of Family Planning Science. They were 
kept under 12-h light–dark cycle and controlled room condi-
tions (24 ± 2 °C; 50 ± 10% humidity). The mice were free to 
eat food and water. All the mice were acclimated for 7 days 
before starting the experiment.

Tibial fracture fixation

Intramedullary fixation of tibial fractures was performed 
under isoflurane anesthesia (2.0% isoflurane in 0.30 frac-
tion of inspiration O2 (FiO2) (Feng et al. 2017). After 
making a skin incision just below the knee, exposed the 
tibia and inserted a 0.3 mm needle into the medullary cav-
ity. Then, breaked the tibia at its midpoint. Third, 0.1% 

lidocaine was used around the incision for analgesia and 
5–0 Vicryl suture was used to close the wound. During the 
whole experiment, the temperature of mice was controlled 
between 36 and 37 °C with a warming pad (ATC-200; 
World Precision Instruments, Sarasota, Florida USA). 
After surgery, the mice were spontaneously resuscitated. 
MWM was used to test learning and memory abilities on 
the third day after surgery.

Behavioral testing

MWM was used to assess learning and memory abilities 
(Vorhees and Williams 2006). In the previous study, mice 
rested for 2 days after surgery (Su et al. 2011). Twelve 
mice in each group underwent behavioral tests. The MWM 
with a white circular pool, 110 cm in diameter and 60 cm 
deep, a circular platform was hidden at 1.0 cm beneath 
the surface of water, a platform, 10 cm in diameter. The 
pool was filled with opaque milky water (23–25 C°) to a 
depth of 35 cm. The pool was surrounded by invariable 
visual cues which were not changed till the end of the 
experiment. The MWM test results of all subjects were 
monitored and tracked by television camera (HIK VISION 
Co., Ltd., Hangzhou, China) mounted overhead.

The MWM test included training trials and probe tri-
als. The training trials were performed for 4 days. Each 
day, mice were put into the maze at the different points. 
Once the mouse found the platform, mice were allowed 
to rest on the platform for 30 s. When the mouse did not 
find the platform within 60 s, the mice were guided to the 
platform and rest for 30 s. MWM software was used to 
calculate latency to reach the platform, time spent in each 
quadrant and swimming speed (RWD Co., Ltd., Shenzhen, 
China). The probe trials were completed on the 7th day 
after operations. In probe test, the platform was removed 
and mice swam for 60 s, and recorded time spent in each 
quadrant (Gao et al. 2021).

Cell cultured and treatment

BV2 cell lines were purchased from Procell Life Science 
& Technology Co., Ltd (China) and cultured in DMEM/
HIGH medium containing 10% fetal bovine serum (FBS), 
in a humidified atmosphere of 5% CO2 at 37 °C. The BV2 
cells were plated into 6-well plates and treated on the first 
day after cell attachment, the corresponding treatments 
were carried out, respectively: control, LPS (1 μmol/L), and 
LPS + Rapa (0.1 μmol/L). After cultivation for 24 h, cells 
were collected for immunofluorescence and western blot-
ting, and the supernatant in culture medium was measured 
by ELISA analysis.
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Western blotting

Hippocampal tissues were extracted on the 7th day after 
anesthesia/surgery. Hippocampal tissues and BV2 cells 
were extracted with RIPA lysis buffer (Beijing Pulilai Gene 
Technology Co., Ltd, China), and then centrifuged at 4 °C, 
12,000 g for 10 min. Protein concentration was quanti-
fied by BCA assay. The protein samples were separated by 
10% sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis and transferred electrophoretically onto a polyvi-
nylidene fluoride membrane (Millipore). The membranes 
were blocked with 3%-TBST for 1 h and incubated with 
the following primary antibodies: NLRP3 (1:1000, df7438, 
Affinify, USA), ASC (1/1000, PA5-95,826, ThermoFisher, 
USA), IL-1β (1/1000, sc-7884, Santa Cruz, USA), Beclin-1 
(1/1000, 11,306–1-ap, Proteintech, USA), and LC3-I/II 
(1/1000,12741T, CST, USA) at 4 °C overnight. The mem-
brane was then washed in TBST three times (10 min each) 
and incubated with secondary antibody at room temperature 
for 2 h. An enhanced chemiluminescence system was used 
to detect the membrane (Chemi DocTM XRS + , China) and 
the results were analyzed using an imaging system (Tanon-
5200, China).

Immunofluorescence

The brain tissue slices were washed with PBS and 0.4% Tri-
ton X-100, and then, sections of brain tissue were blocked 
with 10% normal donkey serum for 1 h at room tempera-
ture. The brain slices were incubated with primary antibody 
NLRP3 (1/100, df7438, Affinify, USA). Following the treat-
ments, cells were stained with Mito-Tracker Red CMXRos 
fluorescent probe for 30 min at 37 °C. BV2 cells were fixed 
with 4% paraformaldehyde at 37 °C for 15 min, and washed 
with PBS twice. Then, permeabilization with 0.5% Triton-
X-100 at 37 °C for 30 min and blocking with goat serum 
for 1 h. Cells were incubated with antibody LC3I/II (1:250, 
af540, Affinity, USA). Nuclear DNA was labeled with DAPI. 
Fluorescent images were observed under laser confocal 
microscope (FV1000, Olympus, JAPAN).

Mitochondrial membrane potential

After culturing, BV2 cells were harvested by centrifugation 
(3 min at 1500 × g) and then resuspended in 500 µL of incu-
bation buffer with JC-1 (10 ug/mL) for 20 min at 37 °C and 
5% CO2 in the dark. JC-1 is a cationic dye that reflects mito-
chondrial polarization by transferring fluorescence emission 
from green (530 nm) to red (590 nm). In flow cytometry, the 
green and red fluorescence signals were detected, respec-
tively, in the conventional FL-1 and FL-2 channels. Samples 

were analyzed using novoexpress software. The ratio of red-
to-green fluorescence measures changes in mitochondrial 
membrane potential (MMP).

Enzyme‑linked immunosorbent assay

IL-1β was measured in BV2 cells supernatant using an 
enzyme-linked immunosorbent assay (ELISA) kit follow-
ing the manufacturer’s instructions (Meimian Industrial Co., 
Ltd, Jiangsu, China).

Statistical analyses

Data were analyzed with GraphPad Prism 6.0 (GraphPad 
Software Inc., USA). Data are presented as mean ± SEM. 
The escape latency and average speed were analyzed by 
two-way analysis of variance (ANOVA); moreover, the time 
spent in the target quadrant by one-way ANOVA. A one-way 
ANOVA was used to perform the mitochondrial membrane 
potential, relative protein levels of Beclin-1, LC3I and LC3-
II, and relative protein levels of NLRP3, caspase-1, ASC, 
and IL-1 β. P < 0.05 was considered statistically significant.

Results

MCC950 attenuated the negative effects 
of anesthesia/surgery on learning and memory

To identify the role of NLRP3 inflammasome in learn-
ing and memory dysfunction induced anesthesia/surgery, 
we used MWM to test the effects of the NLRP3 inhibitor 
MCC950 on learning and memory in elderly mice. Mice 
were intraperitoneally injected with MCC950 (10 mg/kg) 
30 min before surgery and on days 1 and 2 after surgery. 
The mice acclimated to the environment for 7 days before 
the experiment began, as shown in Fig. 1A. Tibial fracture 
with intramedullary fixation was performed under isoflu-
rane anesthesia. The mice rested for 2 days after anesthesia 
and surgery, and the MWM was used to assess learning 
and memory on the third day after anesthesia and surgery 
(Fig. 1A); tibial fracture model in elderly mice (Fig. 1B). 
Compared with the control group, the escape latency was 
significantly prolonged on the fourth day of training test in 
the anesthesia/surgery group (F (2, 132) = 5.275, P < 0.01, 
Fig. 1C). There was no significant difference in swimming 
speed (F (2, 165) = 1.600, P > 0.05; Fig. 1D) among the 
three groups. Exploratory path of three groups of mice 
in the probe test (Fig. 1E). The percentage of time spent 
in the target quadrant was more in the control group than 
the anesthesia/surgery group (F (2, 66) = 4.809, P < 0.01, 
Fig. 1F). Interestingly, all of the changes in the behavioral 



420	 Experimental Brain Research (2024) 242:417–427

1 3

tests were reversed by administration of MCC950 (F (2, 
132) = 5.275, P < 0.01; F (2, 66) = 5.616, P < 0.01, Fig. 1C, 
F). These data indicated that MCC950 treatment had a 
therapeutic effect on anesthesia/surgery-induced cognitive 
decline.

Administration of MCC950 inhibited NLRP3 
inflammasome activation induced by anesthesia 
and surgery in the hippocampus of aged mice

To determine the role of NLRP3 inflammasome in learning 
and memory impairment induced by anesthesia and surgery, 

Fig. 1   MCC950 treatment alleviated the effects of anesthesia/surgery 
on learning and memory in aged mice. A Schematic timeline of the 
experimental paradigm. Treatment with MCC950 before anesthesia 
and surgery and on days 1 and 2 after surgery. The mice rested for 
2 days after anesthesia and surgery, and the Morris Water Maze was 
used to assess learning and memory on the third day after anesthesia 
and surgery. After 4 days of training, the probe test was conducted 
on the 7th day. B Tibial fracture model in elderly mice. X-ray was 
used to determine the intramedullary fixation of the left tibial fracture 
in mice. C Escape latency to reach the hidden platform during the 
4-day training; MCC950 reversed the increased escape latency caused 
by anesthesia/surgery. ##P < 0.01 versus Con group; *P < 0.05 versus 

A/S group. D Average swimming speed; there was no significant dif-
ference among the three groups. E Representative exploratory path 
of mice in the probe test, each quadrant is represented in a different 
color, and the quadrant with the small circle is the target quadrant. F 
The percentage of time spent in the target quadrant during the probe 
test; MCC950 reversed anesthesia/surgery-induced reduction the time 
spent in the target quadrant. All data are presented as mean ± SEM 
(n = 12 per group). ##P < 0.01 versus Con group; **P < 0.01 ver-
sus A/S group. Con control group, A/S anesthesia/surgery group, 
A/S + MCC950 anesthesia/surgery group combined with MCC950 
treatment group
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the present study examined the effect of MCC950 on the 
levels of NLRP3 inflammasome components in the hip-
pocampus. Compared with the control group, the expression 
of NLRP3 (F = 33.06, P < 0.01), ASC (F = 34.56, P < 0.01), 
and IL-1β (F = 36.09, P < 0.01) was significantly increased 
in the hippocampus at day 7 post-surgery in the anesthesia/
surgery group by western blotting (Fig. 2A–D). However, 
administration of MCC950 effectively reduced the anesthe-
sia/surgery-induced over-expression of NLRP3, ASC, and 
IL-1β in the hippocampus (Fig. 2A–D). Meanwhile, immu-
nofluorescence staining of NLRP3 in the hippocampus was 
confirmed (Fig. 2E). Overall, these results indicated that 
anesthesia/surgery-induced NLRP3 inflammasome activa-
tion was remarkably relieved by MCC950 administration.

Mitophagy inhibited LPS‑induced activation 
of NLRP3 inflammasome in BV2 cells

To further study the role of mitophagy in regulating NLRP3 
inflammasome, we established LPS-stimulated BV-2 cell 
model. Mitophagy inducer with Rapamycin was used to 
investigate the expression of mitophagy markers and NLRP3 
inflammasome. Our data showed that the expression of 
NLRP3 (F = 39.69, P < 0.01), ASC (F= 106.7, P < 0.01), 
caspase-1  (F=324.4, P < 0.01), and IL-1 β (F =55.77,  
P < 0.01) were significantly higher in LPS-stimulated BV-2 
microglial cells than normal BV-2 microglial cells by west-
ern blotting (Fig. 3A–E). Meanwhile, immunofluorescence 

staining of NLRP3 in BV2 cells was confirmed (Fig. 3G). 
The levels of IL-1β in the supernatant of cells were signifi-
cantly higher in LPS-stimulated BV-2 microglial cells than 
normal BV-2 microglial cells (F = 24.91, P < 0.01, Fig. 3F). 
Mitochondrial membrane potential (MMP) was lower in 
LPS-stimulated BV-2 microglial cells than normal BV-2 
microglial cells (F = 405.1, P < 0.01, Fig. 3H,I). Adminis-
tration of Rapamycin reduced the over-expression of NLRP3 
(F = 39.69, P < 0.01), ASC (F = 106.7, P < 0.01), caspase-1 
(F = 324.4, P < 0.01), and IL-1 β (F = 55.77, P < 0.01) in 
LPS-stimulated BV-2 microglial cells, while increased MMP 
(F = 405.1, P < 0.01, Fig. 3A–F, H, I). In summary, the 
results showed that NLRP3 inflammasome activation was 
dramatically relieved by Rapamycin administration in LPS-
stimulated BV-2 microglial cells. Nevertheless, whether 
mitophagy induction can effectively inhibit the activation of 
NLRP3 inflammasome needs to be further explored in vivo.

Anesthesia and surgery‑induced NLRP3 
inflammasome activation in aged brain 
by inhibiting mitophagy

To further clarify whether the inhibition of mitophagy is 
involved in the anesthesia/surgery-induced NLRP3 inflam-
masome activation, mitophagy activation with Olaparib 
was used to investigate the expression of mitophagy mark-
ers and NLRP3 inflammasome. The results showed that 
compared with the control group, the expression of NLRP3 

Fig. 2   Effect of MCC950 treatment on NLRP3 inflammasome in the 
hippocampus of aged mice. A Representative western blot illustrat-
ing NLRP3, ASC, and IL-1β levels in the hippocampus on the 7th 
day after anesthesia/surgery. B–D MCC950 reversed anesthesia/
surgery-induced increase in NLRP3, ASC, and IL-1β levels in the 
hippocampus on the 7th day after anesthesia/surgery. The data are 

presented as means ± SEM (n = 6 per group). ##P < 0.01 versus Con 
group; **P < 0.01, *P < 0.05 versus A/S group. E Representative 
images of immunofluorescence staining of NLRP3 (red) in the hip-
pocampus. Scale bars = 100  μm. Con control group, A/S anesthesia/
surgery group, A/S + MCC950 anesthesia/surgery group combined 
with MCC950 treatment group
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(F = 32.17, P < 0.01), ASC (F = 26.01, P < 0.01), and 
IL-1β (F = 28.48, P < 0.01) was significantly increased, 
while the expression of LC3II/I (F = 129.5, P < 0.01) and 
Beclin1 (F = 19.26, P < 0.01) decreased in the hippocam-
pus at day 7 post-surgery in the anesthesia/surgery group 
(Fig. 4A–F). Meanwhile, immunofluorescence staining 
of NLRP3 was confirmed in the hippocampus (Fig. 4G). 

Administration of Olaparib reduced the anesthesia/
surgery-induced over-expression of NLRP3 (F = 32.17, 
P < 0.01), ASC F = 26.01, P < 0.01) and IL-1β (F = 28.48, 
P < 0.01) in the hippocampus; however, the expression of 
LC3II/I (F = 129.5, P < 0.01) and Beclin1 (F = 19.26, 
P < 0.01) was upregulated (Fig. 4A–F). Taken together, the 
results showed that mitophagy played an important role in 

Fig. 3   Mitophagy inhibited the activation of NLRP3 inflamma-
some in activated BV-2 microglial cells. A Representative western 
blot illustrating NLRP3, ASC, caspase-1, and IL-1β levels in BV2 
cells after LPS stimulation (1  μmol/L), Rapamycin (Rapa) treat-
ment (0.1 μmol/L) for 24 h. B–E Rapamycin reversed LPS-induced 
increase in NLRP3, ASC and IL-1β levels in BV2 cells. F ELISA 
assays of IL-1β levels in the supernatant of BV2 cells. The data are 
presented as means ± SEM (n = 6 per group). ##P < 0.01 versus Con 
group; **P < 0.01 versus A/S group. G LC3 levels in the mitochon-
dria were determined by immunofluorescence. Mitochondria were 
stained with Mito-Tracker Red, and Nuclei are stained with DAPI. 

The merged images show the Nuclei (blue), LC3 (green), and Mito-
Tracker (red) signals. Scale bars = 15 μm. H The mitochondrial mem-
brane potential (MMP) was measured using a JC-1 probe. When 
the membrane potential was normal, it was red fluorescence by flow 
detection. While decreased, it was green fluorescence. I The ratio 
of red fluorescence to green fluorescence reflects the mitochondrial 
membrane potential (MMP). Data are mean ± SEM (n = 6 per group). 
##P < 0.01 versus Con group; **P < 0.01 versus A/S group. Con con-
trol group, LPS LPS group, LPS + Rapa LPS group combined with 
Rapamycin treatment
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inhibition of NLRP3 inflammasome activation induced by 
anesthesia/surgery.

Mitophagy activation with Olaparib reversed 
anesthesia/surgery‑induced learning and memory 
dysfunction in aged mice

To identify the role of mitophagy in learning and memory 
dysfunction induced anesthesia/surgery, we used the MWM 
test to explore the effects of Olaparib, a mitochondrial 
autophagy activator, on learning and memory function. 
Mice were intraperitoneally injected with Olaparib (10 mg/
kg) 30 min before surgery and on days 1 and 2 after sur-
gery. Mice acclimated to the environment for 7 days before 
the experiment began, as shown in Fig. 5A. Tibial fracture 
with intramedullary fixation was performed under isoflu-
rane anesthesia. The mice rested for 2 days after anesthe-
sia and surgery, and the MWM was used to assess learning 
and memory on the third day after anesthesia and surgery 
(Fig. 5A). There was no significant difference in swimming 
speed (F (2, 165) = 2.716, P > 0.05, Fig. 5C) among the three 
groups. Compared with the control group, the escape latency 
was significantly prolonged on the fourth day of training 
test (F (2, 132) = 4.942, P < 0.01, Fig. 5B) as well as target 
quadrant time (F = 6.831, P < 0.01, Fig. 5E) in the probe 
trial was significantly decreased in the anesthesia/surgery 
group. Of note, all of the changes in the behavioral tests (F 
(2, 132) = 4.942, P < 0.01; F = 6.831, P < 0.01, Fig. 5B, E) 
were reversed by administration of Olaparib. Exploratory 
path of three groups of mice in the probe trial (Fig. 5D). 
Taken together, these data indicated that Olaparib treatment 
had a therapeutic effect on the cognitive impairment induced 
by anesthesia/surgery.

Discussion

In our study, we found that older mice had poorer learn-
ing and memory function after anesthesia and surgery, and 
anesthesia and surgery did not impair learning and memory 
abilities in young mice (Zhao et al. 2016). In addition, we 
found that anesthesia and surgery led to overactivation of 
NLRP3 inflammasome, decreased the levels of mitophagy-
related proteins, including Beclin1, LC3II, and induced 
mitochondria dysfunction in the hippocampus of aged 
mice. Conversely, Olaparib, a mitophagy inducer, enhanced 
mitophagy, improved mitochondrial health, inhibited 
NLRP3 inflammasome activation, and ameliorated the learn-
ing and memory deficits in aged mice. Overall, our results 
suggest that mitophagy may play a vital role in NLRP3 
inflammasome activation-mediated cognitive impairment 
after anesthesia and surgery in aged mice. Thus, this present 

study suggests that mitophagy inducer can restore cognitive 
decline caused by anesthesia/surgery.

Morris Water Maze is a common cognitive function test 
method, which can objectively reflect learning and memory 
abilities (Morris et al. 1982). The average swimming speed 
during the training and probe trials was comparable in all 
the mice; this reduced interference to the test results. In this 
study, the learning ability of mice was determined by escape 
latency, and the memory ability of mice was determined 
by time spent in the target quadrant. Our results showed 
that during the training trials, mice in the anesthesia/surgery 
group showed a longer escape latency than mice in the con-
trol group. During the probe trials, mice in the anesthesia/
surgery group showed significantly less preference for the 
target quadrant than control mice. The results showed that 
anesthesia/surgery-induced learning and memory impair-
ment in older mice. Olaparib, a mitophagy inducer sig-
nificantly compromised the decreased preference for target 
quadrant and the increase of the escape latency caused by 
anesthesia/surgery. Together, the results implied that anes-
thesia and surgery induced mitophagy dysfunction, which 
was associated with postoperative cognitive impairment.

The role of the NLRP3 inflammasome in POCD has 
recently been investigated (Wei et al. 2019; Sun et al. 2022). 
The NLRP3 inflammasome activation leads to secreting 
inflammatory factors, like IL-1β and IL-18. Overproduc-
tion of IL-1β and IL-18 has been reported to be involved 
in systemic inflammation (Sendler et al. 2020). In the pre-
sent study, enhanced NLRP3 inflammasome activation were 
detected after anesthesia and surgery, and NLRP3 inhibition 
with MCC950 significantly inhibited NLRP3 inflammas-
ome-mediated caspase-1 and IL-1β maturation.

Several theories have been proposed to explain acti-
vation of the NLRP3 inflammasome, including reactive 
oxygen species (ROS) production and mitochondrial DNA 
(mtDNA) release (Lamkanfi and Dixit 2014). Qiu et al. 
showed that ROS are positively related to postoperative 
cognitive deficit and mitochondria is thought to be the 
main source of intracellular ROS (Qiu et al. 2016a, b). 
ROS overproduction can activate NLRP3 inflammation 
(Qiu et al. 2016a, b). Oxidative stress caused by surgical 
trauma leads to increased mitochondrial permeability, and 
mtDNA is released into the cytoplasm, causing activation 
of NLRP3 inflammasome (Zhao et al. 2021). These exist-
ing findings suggest that NLRP3 inflammasome activa-
tion is enhanced due to mitochondrial dysfunction, such as 
excessive mitochondrial ROS and change in mitochondrial 
membrane permeability. However, mitophagy is the main 
mechanism of dysfunctional mitochondrial clearance and 
controls mitochondrial quality (Harris et al. 2018; Zhong 
et al. 2016; Yamano and Tanaka 2016), thereby prevent-
ing excessive inflammation activation. In this study, we 
showed that anesthesia and surgery induced activation of 
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NLRP3 inflammasome, mitochondria impairment, and 
mitophagy dysfunction in the hippocampus. Further-
more, we showed that Olaparib relieved the anesthesia/
surgery-induced mitochondria impairment. Therefore, 
Olaparib increased activating mitophagy in parallel with 
inactivation of the NLRP3 inflammasome. Therefore, our 
findings indicated that mitophagy-mediated inhibition of 
the NLRP3 inflammasome was associated with improve-
ment in anesthesia/surgery-induced cognitive impairment. 
Chang et  al. showed that resveratrol inhibited NLRP3 
inflammasome activation in macrophages by preserving 

Fig. 4   Olaparib treatment inhibited the activation of NLRP3 inflam-
masome and increased LC3-II and Beclin1 levels in the hippocampus 
of aged mice. A Representative western blot illustrating the effects 
of Olaparib on the anesthesia/surgery-induced changes in hippocam-
pal NLRP3, ASC, IL-1β, and LC3-II, Beclin1 levels on the 7th day 
after anesthesia/surgery. B–F Olaparib reversed anesthesia/surgery-
induced decrease in Beclin1, LC3-II, and increase in NLRP3, ASC, 
and IL-1β levels in the hippocampus on the 7th day after anesthesia/
surgery. The data are presented as means ± SEM (n = 6 per group). 
##P < 0.01, #P < 0.05 versus Con group; **P< 0.01, *P < 0.05 versus 
A/S group. G Representative images of immunofluorescence staining 
of NLRP3 (red) in the hippocampus. Scale bars = 100 μm Con con-
trol group; A/S anesthesia/surgery group; A/S + Olaparib anesthesia/
surgery combined with Olaparib treatment group

◂

Fig. 5   Olaparib treatment alleviated the effects of anesthesia/surgery 
on learning and memory in aged mice. A Schematic timeline of the 
experimental paradigm. Treatment with Olaparib before anesthesia 
and surgery and on days 1 and 2 after surgery, after 4 days of train-
ing, the probe test was conducted on the 7th day. B Escape latency 
to reach the hidden platform during the 4-day training; Olaparib 
reversed the increased escape latency caused by anesthesia/surgery. 
##P < 0.01 versus Con group; **P < 0.01 versus A/S group. C Aver-
age swimming speed; there was no significant difference among the 

three groups. D Representative exploratory path of mice in the probe 
test. E The percentage of time spent in the target quadrant during 
the probe test; Olaparib reversed anesthesia/surgery-induced reduc-
tion the time spent in the target quadrant. All data are presented 
as mean ± SEM (n = 12 per group). ##P < 0.01 versus Con group; 
**P < 0.01 versus A/S group. Con control group; A/S anesthesia/sur-
gery group; A/S + Olaparib anesthesia/surgery combined with Olapa-
rib treatment group
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mitochondrial integrity and enhancing autophagy (Chang 
et al. 2015). Qiu et al. reported that Urolixin A inhib-
ited NLRP3 inflammasome activation via promoting 
mitophagy in microglia, and improved dopaminergic neu-
rodegeneration and neuroinflammation (Qiu et al. 2022). 
Shao et  al. showed that Divanillyl sulfone suppressed 
NLRP3 inflammasome activation by inducing mitophagy 
in microglia and ameliorates chronic neuropathic pain in 
mice (Shao et al. 2021). Zheng et al. showed that FUN14 
domain containing 1(FUNDC1) inhibited NLRP3 inflam-
masome activation by promoting mitophagy, thereby 
alleviated intracerebral hemorrhage-induced brain injury 
(Zheng et al. 2021). These studies also suggested that alle-
viating NLRP3-mediated neuroinflammation by promot-
ing mitophagy plays an important role in the diseases of 
central nervous system.

The current study does have limitations. First, we did not 
identify specific mechanism by which mitophagy inhibited 
NLRP3 inflammasome activation in anesthesia/surgery-
induced cognitive impairment. Future research is needed 
to determine the specific molecular mechanisms. Second, 
Olaparib, a mitophagy inducer, was observed and tested only 
for 7 days after anesthesia/surgery. The long-term effects of 
enhancing mitophagy on anesthesia/surgery-induced learn-
ing and memory decline need to be further investigated.

In conclusion, the data presented here revealed that acti-
vating mitophagy inhibited anesthesia/surgery-induced 
learning and memory decline in the older mice by promoting 
NLRP3 inflammasome inactivation, which reduced IL-1β 
secretion. These results show that enhancing mitophagy may 
be further developed as a potential anti-inflammatory agent 
for the treatment of POCD.
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