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Abstract

Predicting the time course of motion sickness symptoms enables the evaluation ofgré hcative stimuli and the develop-
ment of countermeasures for reducing symptom severity. In pursuit of this goal e presei )sn observer-driven model of
motion sickness for passive motions in the dark. Constructed in two stages, thig@mog el prediCts motion sickness symptoms
by bridging sensory conflict (i.e., differences between actual and expected sensoi, ¥igiia.s) arising from the observer model
of spatial orientation perception (stage 1) to Oman’s model of motion sgekness syi. ptom dynamics (stage 2; presented in
1982 and 1990) through a proposed “Normalized innovation squared” statis, “Fhe model outputs the expected temporal
development of human motion sickness symptom magnitudes (mapped tdfthe Misery Scale) at a population level, due to
arbitrary, 6-degree-of-freedom, self-motion stimuli. We trained pasiipl parameg rs using individual subject responses collected
during fore-aft translations and off-vertical axis of rotation afations.< aproving on prior efforts, we only used datasets with
experimental conditions congruent with the perceptual stage (1" ) ade/juately provided passive motions without visual cues)
to inform the model. We assessed model performancafoy predicti ) an unseen validation dataset, producing a Q° value of
0.86. Demonstrating this model’s broad applicabiligv, w dormy rate predictions for a host of stimuli, including translations,
earth-vertical rotations, and altered gravity, apdywe provi % our implementation for other users. Finally, to guide future
research efforts, we suggest how to rigorouslyiadva e this model (e.g., incorporating visual cues, active motion, responses
to motion of different frequency, etc.).

Keywords Vestibular - Sensory conflict - 3edic#ve modeling - Spatial disorientation - Orientation perception

Introduction incapacitation have motivated decades of empirical studies

and modeling efforts.

Significance of mZtion siciness

Beyond selfyfitabulatic )yon Earth, motion sickness per-
vades all pddes € humdn transportation (e.g., automobiles,
boats, trains,_splarcs, and spacecraft). Often experienced
by péssi| 2 obsej vers, motion sickness symptoms are most
unive wai, aracterized by sweating, increases in saliva-
tion, dre wginess, and headache ultimately leading to sopite
syndronie, nausea, and/or vomiting (Lackner 2014). Such
symptoms spanning from slight discomfort to prolonged
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Concerning the terrestrial environment, early motion
sickness models and severity studies were developed with
seasickness as the primary motivation. While still applica-
ble today, a renewed interest in motion sickness has arisen
alongside the advent of autonomous automobiles, deep space
exploration, and commercial space travel. In the context of
the space environment, most astronauts experience motion
sickness upon transitioning to a microgravity environment
from Earth and upon returning to Earth following extended
exposure to microgravity (Davis et al. 1988; Oman 1987).
Affecting 60-80% of space travelers (Heer and Paloski 2006)
and coined ‘space motion sickness (SMS)’ or ‘space adap-
tion syndrome (SAS),” this mode of motion sickness is not
thought to be a unique diagnostic entity to terrestrial motion
sickness (Lackner and DiZio 2006). Because SMS/SAS
poses significant operational and performance decrements
to crew members in the first days of travel (Ortega et al.
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2019), more effective countermeasures to motion sickness
must be developed to improve crew health and performance
during future NASA exploration class missions.

Stemming from these applications, across various motion
and environmental stimuli, there exists a principal need to
construct the foundation of a broadly applicable, validated
motion sickness model. This development will further ena-
ble the construction and evaluation of motion sickness coun-
termeasures, which otherwise may not always be intuitive
(e.g., in some instances, the addition of ‘countermeasures’,
such as the addition of visual cues and various behavioral
approaches, may result in more severe motion sickness).
Enabling the formulation of a quantitative computational
model of the dynamics of motion sickness symptoms, there
currently exists both a strong conceptual understanding of
the cause and contributions to motion sickness and relevant
empirical datasets.

Sensory conflict and models of self-orientation
perception

For the last half century, the most prominent theoretical
explanation for motion sickness stems from sensory con-
flict theory, though alternatives exist (Bos 2011; Ricciognd
Stoffregen 1991) which are not necessarily mutuallyA slu
sive. Sensory conflict, the difference between ‘sefised’” ai il
the brain’s centrally ‘expected’ cues, particulafly 'a regarg
to vestibular cues, has been proposed to drifie ‘motic ysick-
ness (Oman 1982, 1990; Reason and Bfand 1975). While
other sensory pathways and associated c¢ Mlicts (¢.g., soma-
tosensory, visual, etc.) could contgibute to \280n sickness,
motion sickness is often believed ty . Mps#r in individuals
without functioning vestibulassystenis, though there is some
evidence to the contrary 4ola ag 201)5; Johnson et al. 1999;
Murdin et al. 2015). Bhaysigibgica.ty, the neural representa-
tion of this confligt{ may exist| ¥'the brainstem and cerebel-
lum (Laurens 2022; C%an and Cullen 2014).

The sensgry conflict):neory for motion sickness offers
an explafiac pp/tor phe development of motion sickness
symptss for \L&nown forms of motion sickness from
bo# ynhytical piotion (e.g., car sickness, sea sickness, air
sicknc y, etc.), apparent/illusory motion (e.g., simulator
sickness ), and changing environmental stimuli (e.g., space
motion sickness). Apart from this crucial function of driv-
ing motion sickness, sensory conflict is thought to play a
more fundamentally necessary role of driving perception
of self-motion. This has been computationally captured via
the Luenberger observer framework (Luenberger 1971), par-
ticularly for passive motions where sensory conflict is often
most present (Wolpert et al. 1995). Over the last thirty years,
models of self-orientation perception have been developed
with variously defined sensory conflict signals.
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A prominent perceptual model of self-orientation percep-
tion is the ‘Observer’ model (Clark et al. 2019; Merfeld et al.
1993; Newman 2009; Zupan et al. 2002). In the Observer
model, to produce central perception of self-motion and ori-
entation, sensory measurements for the semicircular canals
and otoliths of the vestibular system are processedyto yield
three sensory conflict signals (angular velocity gbnflict, lin-
ear acceleration conflict, and gravito-inertial 1 g€ (GI¥)
directional conflict); all have an associatgd weighti hsgain
which, when multiplied by the conflic{s; pndatesjtlie state
estimates (i.e., self-motion and origfitation } Jsefption, see
Appendix A1 for more informatic)). Becayse/the Observer
model uses its internal estimafes t¢ afornfeach other (e.g.,
its internal estimate of angwlar< slocity 1s used to perceive
gravity’s direction in th# ead-centy ¥d reference frame [i.e.,
tilt]), it is often descriged a wsing a ‘multi-sensory integra-
tion’ approach. M i-sensor, integration is implemented
via ‘internal #:¥el/ashich are thought to take the form
of learned neural¥)lationships of kinematic and sensory
dynamics

Anothelyr#iev; it model is the subjective vertical conflict
(SVC) modpl,(Bos and Bles 1998). This model uses ‘fre-
ques W segregation:” gravity is hypothesized to be ‘sensed’
from 1 le central processing of the otolith sensory measure-
1 hoté via a low-pass filter in an Earth-fixed reference frame,
cemputed from the perceived rotation rates via Mayne’s
principal (Mayne 1974). While the SVC model does not rely
on a truly ‘sensed’ cue to generate the SVC, this conflict
is used to drive perception of linear acceleration through a
gain and integration. Bos and Bles defined the SVC as the
difference between the low-pass filtered otolith cues (i.e., the
pseudo-"sensed’ gravity vector) and the internal estimate of
this signal (i.e., the ‘expected’ gravity vector; see Appendix
Al).

With the goal of bridging motion stimuli and motion sick-
ness in humans, these models of self-orientation perception,
driving sensory conflict, have either been used (in the case
of the SVC model) or proposed (in the case of an Observer
model) as the first ‘stage’ in various dynamical models of
the development of motion sickness symptoms (Oman 1982,
1990).

Computational models of motion sickness dynamics

It has previously been proposed that the same processing
of sensory information (multi-sensory integration, internal
models, and sensory conflict) used for spatial orientation
perception is also critical for producing motion sickness.
With sensory conflict as an input, various computational
models of motion sickness dynamics have been devel-
oped. Using motion sickness data captured during upright
vertical oscillations across both frequency and amplitude
(O’Hanlon and McCauley 1974), the SVC model with a
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downstream motion sickness stage was tuned to achieve
peak motion sickness incidence for sinusoidal oscilla-
tions at around 0.16 Hz for upright, vertical motion across
amplitudes. Because O’Hanlon and McCauley used motion
sickness incidence (MSI) to quantify motion sickness
severity across subject populations, the SVC motion sick-
ness model estimates MSI by feeding the conflict through
a Hill function and subsequent 2nd-order low-pass filter
(Bos and Bles 1998). Later, Turan et al. presented a six
degree-of-freedom motion implementation of this model
aboard high-speed vessels (Turan et al. 2009).

Relying on a single vestibular conflict to drive motion
sickness, the SVC model contains multiple supposed
limitations (Khalid et al. 2011a, b). These include: the
inability to capture different frequency effects between
earth-vertical and upright earth-horizontal translations
(Donohew and Griffin 2004; Golding et al. 2001; Grif-
fin and Mills 2002a; O’Hanlon and McCauley 1974) and
faster onset of symptoms for earth-horizontal motions
(Golding et al. 1995). A proposed remedy to these limi-
tations, a subjective vertical-horizontal (SVH) conflict
model was developed (Khalid et al. 2011a, b; Khalid et al.
2011a, b). Critically, the SVH conflict model was tuned
to additionally match the frequency response for Earth-
horizonal translations observed empirically (Donohew gnc
Griffin 2004) by incorporating a second conflict agf yout
to the motion sickness stage. This ‘horizontal ¢giifict™ %
similar to the subjective vertical conflict but jfiscad relies
on components of the gravito-inertial fofge*vectiynor-
mal to gravity in order to estimate MJ1. Fundameiitally
the same as SVC model, a coined ‘six a_wree-ofi freedom’
model was developed (Kamiji etgl 2007 augmented
with the addition of active head-ii1t Bmtsol (Wada et al.
2018) and later, with the additionyof visual information
(Wada et al. 2020). Thigfchai 1 of m/»del development has
been centered aroungaprec Miiiig car sickness.

Beyond these i#ations or e SVC model, Irmak et al.
(2022) constructad a tmporal model based on Oman’s heu-
ristic modelgbf motion si-kness. Oman iteratively proposed
a heuristi€ . »d€1 6f motion sickness (Oman 1982, 1990) to
captuzaghe tet dopll dynamics of motion sickness severity
frod)a sa ilar input comprised the vestibular sensory conflict
signaii_Considering augmentations to Oman’s proposal in
1990 (sur-n as input scaling) Irmak et al. (2022)’s model
of motion sickness severity estimates, the time course of
motion sickness symptoms where the model output is a
continuous Misery Scale (MISC) estimate. The MISC is a
unidimensional, qualitative 11-point scale that roughly cor-
responds to the progression of motion sickness symptoms,
where an increase in the magnitude of the MISC score cor-
responds to an increase in the severity of motion sickness
symptoms (Bos et al. 2005). Notably, this model did not
contain a perceptual processing stage and instead assumed

the conflict vector to be proportional to the acceleration
stimulus.

Limitations of existing models

The aforementioned models of motion sickness have been
structured around the hypothesis that sensory cgfifligt from
spatial orientation perception also drives ‘myjioh Si¢k-
ness. Despite this theoretical foundatign, these
have manipulated the spatial orientatién dtage tGyproduce
desirable estimates of motion sickngSs®ever: y (despite not
revalidating the spatial orientation stage in terms of predict-
ing spatial orientation perceptOn)." ar exafnple, in the Bos-
and Bles SVC-driven moti@n si_%sness models, the effect of
oscillatory motion freg{ ancy (i.c. »hotion sickness peak-
ing around 0.16 Hz)Wf thiemetic response was tuned by
modifying param@ s in the ) erceptual stage of the model
(by adjusting £ hfee thack,gain driving perception of head
acceleration), thus jot guaranteeing a valid model of self-
orientati¢, - Jsceptica [the validity of resultant perceptions
have been'yegeli. y explored for various motion paradigms
(Groen et aly, 2022, p. 20; Irmak et al. 2023)]. Critically, the
turie yparaneters in the perceptual stage imply that adaption
to a cy anging gravity magnitude occurs in seconds rather
toangays. For others (Wada et al. 2018, 2020), no validation
of/the perceptual stages have occurred. In fact, other works
have found the validity of the perceptual stage to be incon-
sistent with empirical data (Yunus et al. 2022a; b). In the
case of Irmak et al. (2022), the spatial orientation perception
stage was omitted (using acceleration as a proxy for sensory
conflict), precluding the model from predicting motion sick-
ness from arbitrary motions where different combinations
and amplitudes of sensory conflict are present.

Beyond not containing a validated spatial orientation per-
ception stage, the augmented ‘six degree-of-freedom’ mod-
els (Wada et al. 2018, 2020) include pathways that suggest
the central nervous system has direct access to the actual/
ground-truth acceleration and angular velocity state vectors
when modeling active head tilts. This model violates our
current understanding of the neural processes governing
how active motion commands (efference copies), forward
models, and active motion sensory feedback (reafferent
signals) are integrated into motion perception. While it is
likely that their proposed pathways were intended to serve
as proxies for more detailed active pathways, it is unlikely
that the resultant sensory conflicts produced by their model
are generalizable to other motion paradigms.

Further, it is important that the empirical data of motion
sickness severity used to tune or optimize a model is con-
gruent with the perceptual model used to produce sensory
conflict. Both the presence of active motions (e.g., postural
control, in which the brain is aware of commanded self-
motion, informing the expectation of sensory measurements)

ofiels
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and visual cues (either congruent with a fixed Earth ref-
erence frame or some moving reference frame e.g., inside
of a ship cabin) have been found to affect motion sickness.
Active motion augments sensory conflict due to the pres-
ence of an efference copy, forward internal model, and
expected reafferent signals modifying the expected ves-
tibular sense. Active head movements have been found to
significantly affect motion sickness symptoms (Johnson
and Mayne 1953; Lackner and Graybiel 1987). Moreover,
experiments where subjects (particularly subjects’ heads)
are not well-constrained may provide the vestibular system
with additional self-motion stimuli not accounted for when
fitting models to experimental data. Illustrating these points,
less-restrained (low-backrest seating) conditions have been
found to produce more severe motion sickness symptoms
compared to more restrained (high-backrest seating) during
identical whole-body lateral oscillations (Mills and Griffin
2000), likely due to differences in vestibular stimulation with
less restraint.

The presence of visual cues (either Earth-fixed or sub-
ject-fixed) also augments the expected vestibular sense,
changing the sensory conflict experienced by the subject
(and may even introduce additional ‘visual sensory conflict’
terms influencing motion sickness symptoms). To this point
motion sickness severity (resulting from primarily physiCat
motion stimuli) has been found to be affected in the pr€ jncs
of visual cues (Bos et al. 2005), and simulator-driy£irmoti »
sickness is worsened by visual scenes incongrufri Jgith ves;
tibular cues (Kolasinski 1995). Therefore. s critic )L that
models of motion sickness based on sdnsory conflict are
conceptually congruent with the experiel ) of the subject in
the experiment(s) to which the mgdel is tuilit.

Contrary to this requirement, os IR les used a per-
ceptual model based on passive moion without visual cues
(and additionally but lessfcru¢ ally, viithout somatosensory
cues) while the data ysed v yurncie model (O’Hanlon and
McCauley 1974) 3 ywed subj s to keep their eyes open in
a lit cabin (and,subjec B heads were not strictly restrained).
When devigifig their SViimodel, Khalid et al. used data of
horizontai ¢ piiatiohs (Donohew and Griffin 2004), where
subjeatwere  Astfucted to use active postural control to
alig ythelaselves with the perceived upright while perform-
ing a V_jual search task. In all cases, this presence of active
posture ¢ontrol and visual cues is not present in the percep-
tual stage of the SVH model. Furthermore, in the Donohew
and Griffin study, the motion device trajectory (which was
input into the model) ignores the substantial self-motion of
the subject’s postural control, such that the empirical stimu-
lation to the vestibular system differs from that input into
the model.

Efforts that do not use a validated spatial orientation stage
(via manipulating parameters or by not modeling pathways)
no longer offer a rigorous evaluation of the hypothesis that
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the same neural processing mechanism that drives spatial
orientation perception is also driving motion sickness. This
also holds if the spatial orientation stage and the empirical
data used to fit/tune are incongruent, implying that the spa-
tial orientation perception stage of the model is incomplete.
Of additional note is that none of these modeling efforts
use multiple datasets or motion paradigms to fisftune their
models, so it is unclear if these models should gc e#alizeiso
arbitrary 6-degree-of-freedom motion stipuli.

Given the evidence of brainstem and ¢ sebellas ricurons
that respond analogously to the hyp@uiesize Jsesfisory con-
flict signals [i.e., signaling is greally reducing/during active
motions, where the brain can hétter" 3xpecti’ sensory signals,
as opposed the same motiga,exy Jienced passively; (Brooks
and Cullen 2009; Jamalit al. 2005 3Xoy and Cullen 2004)],
we have chosen to 1&yeraz jthe Observer spatial orienta-
tion model, and & Mement 15 integration with the Oman
emetic pathwa§ mod 3 Our goal is to tune and validate this
comprehensive m¢ gl implementation using several motion
paradigmi, st are ¢cfinitively congruent with the mecha-
nisms in thg oG« (i.e., passive motion without visual cues).

Moti »n sickness model formulation

W< propose using a motion sickness severity model driven
by sensory conflict resulting from a perceptual model vali-
dated across several motion paradigms (i.e., the “Observer”
model for spatial orientation perception during passive
motions). This choice reflects the decision to build a com-
putational model based on sensory conflict theory. Param-
eters of the Observer model were consistent with the imple-
mentation of Clark et al. (2019) and not further modified
here. The downstream motion sickness dynamic pathways
are based on Oman’s heuristic model (1982, 1990). With
passive motion over time as an input, the model produces
predictions of motion sickness symptoms over time. The
overarching framework of this model is depicted in Fig. 1.
The Observer model achieves its main function, producing
estimates of self-motion and self-orientation, by first simulat-
ing the peripheral dynamics of the vestibular organs. For both
the semicircular canals and otolith organs, transfer function
representations of how angular velocity and GIF are trans-
duced produce afferent signals, which are then compared to
central expectations of these signals. These central expecta-
tions are generated through internal, central models of ves-
tibular dynamics and kinematic relationships. The differences
between actual and expected sensory measurements yields
sensory conflict. For the passive Observer model depicted in
Fig. 1, central perceptions of angular velocity, gravity, and
linear acceleration are driven by weighted sensory conflict.
Oman’s model of motion sickness severity takes some
weighted and rectified sensory conflict signal, &, and passes
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Observer Model of Self-Orientation Perception

Central Nervous System Estimation

Motion Sickness Symptom Dynamics

Fast Pathway

)

h(e. W)

K
Ct (7 5+ 1)?

Symptom Magnitude
y

y
MISC
Mapping

MISC Symptom Magnitude

this time-varying scalar through the mo sickpess symp-
tom dynamics. The sensory confligt stems y from the
central nervous system estimate a.Observer model
of self-orientation perception

no discernable or delayed motion sickness intensity onset).
Following thresholding, motion sickness intensity is output
through a power law with exponent 7.

Excluding the sensory conflict weights, W (detailed in the
following section), there are five trainable free parameters in
the motion sickness symptom dynamics. Further, we include
a mapping function to map the model output onto the MISC
reporting metric.

self-motion. Sensory conflicts from stage 1 are fed into stage 2 (the
motion sickness symptom dynamics) as proposed by Oman (1982,
1990)

Processing of sensory conflicts

Within the Observer model, there are nine sensory conflicts
for passive motion without visual cues: three vector compo-
nents for each e, e,,, and e (note that while we use a naming
convention consistent with Merfeld and colleagues, these
conflicts are differences between actual and expected meas-
urements of the vestibular system and are detailed further
in Appendix Al). Oman proposed a scalar conflict, i, for
input into the motion sickness symptom dynamics stage. As
defined by Oman, this scalar conflict, A, should always be
positive, with larger values corresponding to greater sensory
conflict, which will in turn eventually lead to more severe
motion sickness. Oman conceptually suggests that the multi-
dimensional and multi-aspect sensory conflict signals should
undergo “conflict weighting and rectification” to produce the
scalar conflict (also referred to as “weighted sensory con-
flict (scalar)” or “neural mismatch signal”). To quantitatively
implement this concept, we propose a form of / based on the
Normalized Innovation Squared (NIS statistic), which has
been proposed to drive central adaption to changing envi-
ronmental stimuli Kravets et al. (2021, 2022):
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_ T
hy, = e, Wey

T
where ¢, = [eaXeayeazewxewyewzefxef;eﬂ] and

W= diag(W% W, W, W, W, W, W, W, W, ) )

The normalization matrix, shown here as W, is a diagonal
matrix of conflict-specific weighting terms because we do
not consider cross-conflict contributions (e.g., e, Xe, ).
Effectively, this process squares each component (ensuring
rectification), weights them (accounting for differences in
units and contributions to /), and sums them up (yielding a
scalar value). While the exact form of the neural circuitry
connecting sensory conflict to motion sickness is currently
undetermined and remains a theory in premise, the central
nervous system would have access to a NIS statistic, or an
equivalent constant, based on the sensory conflict signals
(without knowing ‘ground truth’ signals). This approach,
where each conflict component contributes toward £, is a
general possibility for how each sensory conflict signal may
contribute toward the neural mismatch signal. However, in
tuning, it may be found that one or more of the weightings
within W are zero (or near zero) implying that sensory con-
flict signal does not contribute to the neural mismatch signal
and thus does not drive motion sickness.

It has been proposed that (as a proxy to the neural™ hig-
match signal) simply a signal proportional to thé accelere
tion amplitude alone could be used as a stand il for’ y(Irmak
et al. 2022). While this may suffice as a pgugh apprc ‘na-
tion for a single-axis translation motion/»aradigm, the NIS
statistic captures specific conflict contri tions’to motion
sickness, enabling prediction of{ Wtion sickness for any
arbitrary 6-degree-of-freedom passivesiii fOn trajectory. To
determine how the individs&sonflict components from the
perception processing s nld Fagveignted (i.e., values of W)
for input into the mo#io sick Jgss, dynamics, weighting terms
were fit via an op#in: jation sclieme using existing empirical
motion sickngfs,data t¢ ypassive motions in the dark.

Experipentai )'ata

For ei_nirical datasets measuring motion sickness, we
chose toonly consider experiments in which subjects expe-
rienced passive motions without active head/torso tilts and
no visual cues. We note that this substantially reduced the
number of studies that could be leveraged but ensured that
the mechanisms included in the model were congruent with
the empirical datasets (i.e., we did not include datasets with
the head unrestrained, where visual cues were provided,
etc. which are not captured in the existing observer per-
ceptual model). There were five datasets identified which
matched this criterion (Bijveld et al. 2008; Cian et al. 2011;
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Dai et al. 2010; Irmak et al. 2021; Leger et al. 1981), with
four unique motion paradigms (see Appendix A2 for fur-
ther details).

As an additional constraint for training this model, we
were only able to leverage motion sickness reporting data
which contained individual subject responses ovegtime or
averaged subject responses over time with all suljects com-
pleting the experiment. In the latter case, aver yifig oy
surviving subjects (while ignoring or otherwise ai yufiing
a motion sickness severity for subjects {ix hstop tiye €xperi-
ment due to excessive motion sickp€ss) doc ot faithfully
represent the temporal dynamics [(\f motiop sickness in the
sample population due to selaftiorn ias.

The final dataset used for ti Jining our model, leverag-
ing upright x-axis (fopd aft) oscli ion data (Irmak et al.
2022) and off-vertica! axiyof rotation (OVAR) data (Dai
et al. 2010), congi® il of 77 § . bject response curves across
2 motion para& yms and S,unique stimuli magnitudes (one
at 0.168 Hz and f¢{xat, 0.3 Hz). There were 26 unique sub-
jects, an¢ paverage MSSQ of the subject population is
inferred to\bg/111) ie 42nd and 65th percentile range. While
there was a) asymmetry between the number of male and
tein g subjects (7F to 19 M), a subject population MSSQ in
this raige should yield a representative training dataset for
v . bdman population despite known differences in motion
sickness susceptibility between sexes.

While not leveraged quantitatively to train the model,
Leger et al. (1981)’s earth-horizontal rotation data were
used to gain insight into the motion sickness dynamics and
reduce the total number of free parameters in our model.
Specifically, this study found that there were no significant
differences between earth-horizontal roll, pitch, and yaw
rotations. While the null hypothesis cannot be proven, this
finding implies that the following equivalence in corre-
sponding axes is true:

h(eay, €4r €0, eﬁ—) ~ h(eax, € €o,» efy) ~ h<eax, €, o s eﬂ)
2)

A similar inference could be drawn from an extensive
(N=192) comparison to y-axis (lateral) and x-axis (fore-aft)
oscillations which found no significant difference in illness
ratings (from 0.2 Hz to 0.8 Hz) in males (Griffin and Mills
2002a). While notable, this study was not included in this
inference because the experiment did not meet the criteria of
well-restrained, passive motions (subjects were seated with
a low backrest, no head restraint) in the dark (subjects had
a fixed cabin view).

Should the weights of the individual conflict compo-
nents be equal, the above approximate equivalences are
always satisfied. This assumption reduces our matrix for
weighting sensory conflicts and rectifying them via the NIS
statistic from 9 to only 3 free parameters ({W,, W,,, W;}),
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such that the neural mismatch signal becomes the follow-
ing (where || V|| is the 2-norm of the x, y, and z component
vector V):

2 —2 —2
h=W,llell” + W,llelI” + Wyllell A3)

Predicting reporting metrics

The output of Oman’s model of motion sickness symptom
dynamics (Oman 1982, 1990) is a magnitude of motion sick-
ness severity (also termed “nausea magnitude estimate” or
“subjective discomfort”). This value ranges from zero (cor-
responding to no motion sickness experienced) to techni-
cally infinity (as the motion profile could always be made
more intense). However, empirically motion sickness is
often best measured using subjective reporting scales with
finite bounds (Lawson 2014). We formulated a monotonic
mapping to allow motion sickness symptom magnitude pre-
dictions from Oman’s model of motion sickness symptom
dynamics to be converted to MISC symptom magnitude
predictions. Ideally, there would be different channels of
responses (e.g., separate nausea, emetic, discomfort, etc.)
to fully characterize motion sickness symptoms in an ingis
vidual. However, because the existing motion sicknesgfdatd
we leveraged did not distinguish these channels wien ¢ ¥¢-
rying subjects, a single all-encompassing motid ) sicknes:
response is incorporated via MISC [consistelit wiv hlrmak
et al. (2022)’s modeling effort].

In order to map from the continu s outgut of the
Oman model to the MISC reporting me g, 2dpiece-wise

(a) 10 qu —— L J

fel
pqdium NiUsea

c

‘.'\/Iedium Discomfort .

VII§ U U-10j

0

0 5 10 15 20
Pensacola (0-20)

Fig.2 a A piecewise linear map between the Pensacola 0-20 and
MISC scales. b A piecewise linear map between the six-point 1-6
and MISC scales. These conversions allow data from Dai et al. (2010)
and Cian et al. (2011), respectively, to be compared to the model pre-

linear map with a slope of one and maximum of 10 was
established:

x, x <10
MapMISC('x) = { 10, x> 10" (4’)

Here x is the input to the reporting mappinggianction
(Oman’s magnitude of motion sickness sevepil ). Fw for-
mulating the model output mapping in this mannei;_he oz'da-
mal model parameters were tuned to a tipg-history oy VIISC
reports provided by subjects on a conginuo hscalg.
Furthermore, two additional rdporting mi Jpings were
formulated to convert from other r( horting faetrics to MISC;
Dai et al. (2010) used a sishy, hifiec Qggfacola 0-20 scale
and Cian et al. (2011) pgedba siyooint, 1-6, scale. Thus,
piecewise linear mapsgve: hformulaced to convert from these
scales to MISC. These‘mapp: hg# were constructed by equat-
ing anchor poins in| ach of ¢he scales, as outlined by their
respective autho: MISC equivalent anchor points.
All integmediate vo p€s were then interpolated between
anchor pdint. Fhese two maps are shown in Fig. 2a and
b, respectivfly (slight modifications to these mappings had
', minor ippacts upon model fit). Because the Irmak et al.
(2025 data were already in a MISC reporting format, no
dditiynal mapping was required. While MISC reports are
ot “hal and qualitative, we treat MISC as a continuous quan-
itative measure because it has been found to track a general
progression of symptoms (Bos et al. 2005, p. 20), and, bol-
stering this design decision, there is a positive, monotonous
relationship between MISC and subjective discomfort (de
Winkel et al. 2022). Therefore, all model predictions and
fitting were done on a MISC scale, similar to the model
proposed by Irmak et al (2022). Consequentially, final model

LU

(b)10 Vomiting *

Severe Nausea

Medium Nausea

Some Nausea

1 2 3 4 5 6
SixPoint (1-6)

dictions (MISC scale) during training and validation, respectively.
The data from Irmak et al. (2022) does not require a mapping because
it was recorded using MISC reporting
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parameters resulting from the fitting process are dependent
on the chosen MISC output, likely a non-linear expression
of symptom progression (de Winkel et al. 2022; Reuten et al.
2021).

Cost function

In summary, we aimed to fit the free parameters in the
motion sickness model described above by minimizing the
differences between model predictions of motion sickness
severity over time and those empirically observed in subjects
experiencing various motion paradigms. The cost function
for minimizing errors in model predictions was formulated
to be equally weighted for each subject, regardless of their
underlying susceptibility to motion sickness. To accom-
plish this, each subject’s individual mean squared error was
normalized by their total measurement reports so that sub-
jects with shorter survival times (i.e., because they experi-
enced excessive motion sickness and did not complete the
motion exposure) were not deemphasized during the opti-
mization procedure (and to not overemphasize studies with
higher frequency reports). For each subject, a subject mean
squared error cost, was calculated, where y, was reported
sickness severity (in MISC units), P, is the correspgfia®
ing MISC model prediction at the same discrete pdat ip
time (k), m is the total measurements for a gives subje
and 0 is the set of trainable free parameters j#fi v ) model;
0={W_,W, WK, 1,7,]),n}.

_ L (Ro-y) 5

‘Iii/IMSE(B;ylzm) = p ,

The full cost function across all jybjec.s (where N is the
total number of subjects iz ai pxperiment) is the following:

VN S (0)
~s=1 it
JMMSE(G;YI:N): % —. ©)

By mip#nizing the/above cost function, we find
P(@) = argi W umst KP(0); Y, . ). Because our optimization
problefinis fori wtated as a minimum mean squared error
estidato paur sfiodel optimal solution universally equates
to P(65 5. EIP(0)|Y, . y], or the mean human motion sickness
sympton: dynamics conditioned on all subjects leveraged
for training. Thus, we coin our model predictions to be the
sample population mean symptom response (SPMSR) as it
is conditioned on the measurements gathered from sample
data in the literature (Y. ). If a representative, generalizable
sample was provided from the collected data, then the model
predictions will be equivalent to the population mean symp-
tom response (PMSR), which we refer to from this point for-
ward. This modeling approach produces an expected motion
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sickness severity for an “average” individual, yielding a use-
ful prediction of the severity of motion sickness with no
known insight to individuals’ susceptibilities.

Optimization procedure

We present our best-case found solutions, whichgvere found
via an optimization routine in MATLAB usirig j wificonHA
lower bound was enforced on all optimization parari: ¥efs of
greater than zero to produce real and int€i| Jetable jolutions.
Intermittent results over optimizatigii ¥erat psgas well as
the initial values, are presented infAppendix A3.

Results
Model optimizadn resuly’

All instances of op_inization (even outside the best results,
describe\\dpse), rewrned non-zero weighting param-
eters (Wf, W4, wy,), indicating that all three conflict vec-
tors contribiite to the neural mismatch signal and thus to
the' pvelopment of motion sickness symptoms. Further,
W, > W, W,}, suggesting the GIF angle conflict con-
v hused the most (though note that the units of the sensory
cenflicts to which these weights are applied each have dif-
terent units: g’s, rad/s, rad, respectively). The final values
of the weights are the following: W,=6.72, W_ = 11.7, and
W, =562.

Our best results (Jysg = 3-587) found /, to be near zero
(le— 4 [unitless]), similar to the assumptions made by Irmak
et al. (2022). However, it is likely that the specific train-
ing data used did not contain long enough periods of sub-
threshold sensory conflict stimuli to uncover a precise value.
Final values of the gain (K = 91.2), power law (n = 0.323),
and fast and short time constants (rf =74 s and 7, =438 s)
differed from, but remained similar to, the median values
presented by Irmak et al. (2022) (provided in Appendix A3).

Model prediction results

Model predictions compared to the translational subset of
training data revealed similar qualitative fits to those in
Irmak et al. (2022), displayed in Fig. 3a. However, the under-
lying prediction here is a PMSR vs. an individual response,
so a direct comparison is not made. Compared to the OVAR
subset of training data (Dai et al. 2010), the PMSR is over-
laid on individual subject responses in in Fig. 3b. While
PMSR reasonably captures the temporal dynamics of train-
ing data, individual subjects experienced more or less
motion sickness than estimated by the model, as expected.
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amplitudes (1-2.5 m/s?). Full re

ness scal) used (when mapping to motion sickness severity)
and modeling the fast and slow pathways as 2nd-order low-
pass filters. For steady conflict stimuli, this leaky integra-
tor first undergoes exponential growth and then eventually
converges to a constant value.

Further model evaluations are made on the validation
dataset (i.e., unseen during fitting of the model’s free param-
eters), conveyed in Fig. 3c. Forty minutes of model predic-
tions (20 min of OVAR followed by 20 min of recovery with-
out motion) are compared to the mean symptom response of

lengths of time). ¢ Model validation prediction. The red, dashed line
is the Cian et al. (2011) mean severity reports of surviving subjects
converted from the six-point scale to MISC at the scatter (box sym-
bol) locations. The solid blue line is the model prediction. The dashed
blue line is the model prediction with a gain of 1.5 applied to the neu-
ral mismatch signal, potentially capturing an unaccounted frequency
effect

surviving subjects from Cian et al. (2011), converted from
a six-point scale to MISC (Fig. 2b). The model prediction
was evaluated with a Q% metric of 0.86 (Q? is analogous to
R?, but for predicting unseen data, with good values near 1).
While the model captures the temporal dynamics of motion
sickness in this unseen dataset, it tends to underestimate the
motion sickness severity observed empirically. This result
is elaborated upon in the “Discussion”.

Additional example simulations
Here we explore additional model predictions for motion
paradigms where existing individual motion sickness sever-

ity data over time is not known to have been collected dur-
ing passive motions in the dark (shown in Fig. 4). We cast
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Fig.4 Model PMSR predictions arising in the presence of various
physical and environmental motion stimuli over a 1-h period

predictions for upright y-axis and z-axis oscillatory transla-
tions (at 0.3 Hz, peak acceleration of 1 g) to compare earth-
horizontal (y-axis) and earth-vertical (z-axis) motions.
Earth-vertical yaw motions (both an oscillatory rotation at
0.3 Hz with a peak displacement of 60 degrees and congtant
spin of 360 deg/s with a 60 s constant ramping upf e’
are simulated to show how this model predicts g§1ptoi s
for earth-vertical rotations, a motion paradigmgn. hdoes noj
result in any predicted motion sickness in_the'SVC
Finally, motion sickness symptoms are sifnulated for enang-
ing environmental stimuli via a gravity transitipn to 0 g.
This changing environmental stiggulus wasiiifdeled in the
Observer model by setting the a¢tua. Jpayity to zero and
leaving the internal estimateaf gravify (a {lxed parameter) at
1 g (i.e., no transient adagfatior ). Mot ¥n sickness symptoms
result during both noggotiv Matu“eii upright roll (an oscilla-
tory tilt at 0.3 Hzg( th a peai Wisplacement of 60 degrees,
similar to the va\g mG pn).

odel.

Discrssion

We pit_ent a’ computational model predicting the dynam-
ics of Mj5C symptom magnitudes over time in terms of a
population mean symptom response (PMSR). This two-stage
model formulates predictions of motion sickness from physi-
cal motion stimulation for passive motions in the dark by
bridging the Observer model of spatial orientation percep-
tion (stage 1) to Oman’s model of motion sickness symptom
dynamics (stage 2) through a proposed NIS statistic, com-
prised only the information the central nervous system has
access to. Building upon the work of many existing research
efforts, we trained our model using data congruent with the
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perceptual stage of our model and determined the optimal fit
of model parameters, finally applying the model to an unseen
validation dataset using another motion paradigm.

Model predictions and fit

Because the output of the model is a PMSR f0r 2, given
motion stimulus and not a prediction of arf 1v }i#iduays
response, it is not expected that predictions match ti jsiape
of the dynamic response on an individuc jlevel, Yefice the
differing shape compared to the ind#vidual 1 ngfise curves
measured by Dai et al. (Fig. 3b). A"t seen with<ne validation
dataset (Fig. 3¢), which captufes ti_ymeax response of sur-
viving participations fromgiatial. (ZU11)’s OVAR study,
the model prediction dg{ s match t y'temporal dynamics of
the ground-truth PMiSR (hich is desired from our cost
function formulat€. ) The O alue of 0.86 on the validation
dataset demonf Jates shis model’s ability to match the tem-
poral behavior anc yuggests that this model provides a true
predictio . WGthe PNLSR for an unseen motion that can be
leveraged Yoievy (0p countermeasures and evaluate ranked
differences tn motion sickness for a given motion paradigm.

. ncussed further in the “Future Model Advancements”
sectio |, this model does not account for frequency effects,
sacefno known frequency effects have been noted in the lit-
erature for passive motions in the dark. However, we specu-
late the underestimation of the PMSR compared to the vali-
dation dataset may be due to frequency effects for passive
motion in the dark. The Irmak et al. (2022) dataset used for
training subjected participants to 0.3 Hz motions, and the
Dai et al. (2010) datasets subjected participants to 0.167 Hz
motions. If a gain of 1.5 is applied to the neural mismatch
signal (4) to account for increased population sensitivity
to 0.2 Hz conflicts (the spin rate of the Cian et al. OVAR
motion paradigm), the model prediction PMSR overshoots
the true data near the end of the OVAR motion, before recov-
ery. This is desired since Cian et al. (2011) excluded sub-
jects here that dropped out due to experiencing excessive
motion sickness. This bias due to dropouts is not present in
the model prediction, such that we would expect the model
to overestimate the biased empirical average. Frequency
dependent gains are commonly thought to range many orders
of magnitude (based on studies concerning sea sickness with
either active postural control or visual cues; [ISO-2631), thus
an unaccounted-for frequency gain around 1.5 is plausible.

The additional model simulations (Fig. 4) reveal that this
model predicts that upright y-axis translations are more nau-
seogenic than upright z-axis translation, a result that is sup-
ported by Golding et al. (1995), who found y-axis oscilla-
tions to be ~2 X more nauseogenic (however, subjects’ heads
were not restrained, and they conducted a visual search task
with visual cues). For earth-vertical yaw, we demonstrate
that this model predicts notable motion sickness for upright
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yaw oscillations [also observed in the literature, though
again with subjects conducting a visual search task (Guedry
et al. 1982)] but much less so for constant spin [supported by
Leger et al. (1981)]. Finally, this model is capable of predict-
ing motion sickness from changing environmental stimuli as
demonstrated by a 1 g to 0 g gravity transition, and motion
sickness symptoms are worsened with the addition of physi-
cal stimuli (with roll tilts shown here) in the altered gravity
environment, consistent with the onset of SMS/SAS.

Contributions advancing upon previously proposed
models

Because existing models (Bos and Bles 1998; Khalid et al.
2011a, b; Wada et al. 2020) were tuned using data with
experimental conditions not modeled in the perceptual stage
of the model, they are not predicting motion sickness from
sensory conflict from passive motion paradigms without
visual cues via a bottom-up approach. Our implementation
allows us to formulate motion sickness symptom predictions
from arbitrary motion paradigms for passive motions in the
dark. Since the free parameters are trained to one dataset, but
then shown to predict another unseen validation dataset rea-
sonably well, it provides some confidence that the model is
not overfit, but instead can generalize to arbitrary 6 degzCes
of free motion stimuli.

Further, this model provides a method of prediCéing v »
PMSR, an indicator of how the population wifi i spond tQ
a motion stimulus on average even if the oyigail foriye:g.,
variance) of the distribution is unknows. This population-
level approach to predicting the time\yourse /f motion
sickness symptoms allows us tqgdisregar LE source of
individual differences, which may\bc’, Jmsat in the motion
sickness symptom dynamicssstage (rmak et al. 2022) and/
or the perceptual stage (Jitai el al. 2005).

Following modelrea: ¥ious“ot motion sickness, this
cohesive model e bles furt ¥f development of counter-
measures for m&ion « pkness during passive motions. The
results thatdW,>> {W 5w, } suggest that most sickness
counternfca wifs wiich reduce |e_f'|, even if this reduction
comea s, the \hyognse of slightly/moderately increasing
leACnd/ccle | inay be effective at alleviating the develop-
ment ¢_symptoms. Further, the non-zero nature of all three
weightin . terms suggests that all three conflict types may
contribute to motion sickness and not just the vector differ-
ence conflicts (@f relates the difference in direction of two
vectors, see Appendix Al for a detailed description). As a
final advantage over existing models, this model can produce
motion sickness severity predictions from conflict arising
from changing environmental stimuli such as experienced
by astronauts transitioning between gravity environments
and from earth-vertical rotations (Fig. 4). The quantifica-
tion of symptoms from these additional provocative stimuli

(physical, environmental, and a combination of the two)
enable the subsequent evaluation of countermeasures for
these stimuli.

Limitations of this current model

As previously stated and reemphasized here, the finalimodel
parameters and resultant model predictions art ¢ aditionyd
on the training data we used and are appropriate  ylyf for
modeling passive motions without viSc )l cues)Farther,
with the inclusion of more motion gi€xitess ¢ ja ffom future
experiments (particularly those sy zgested helow), it is pos-
sible that final parameter valy®s ci yage wlith the inclusion
of more information. Additioi )y, tiurs model of motion
sickness predicts only/ ymean res ¥nse and ignores indi-
vidual variability. Indiyidu fyvariability in the development
of symptoms has 5T % sugges; -d to be related to the velocity
storage time c€: htan yDaiet al. 2003), and modulating this
parameter in the pc eptual stage as well as modulating sen-
sory nois_at.modeied here) are two potential options for
incorporating 1ty «vidual variability and quantifying uncer-
tainty boungs around the mean predictions. Since individual
susc tibility to motion sickness varies substantially, the
mode| s PMSR prediction may greatly underestimate the
. ntign sickness experienced by a highly susceptible indi-
viaual and vice versa for an unsusceptible person.

Further, our model does not consider anticipation.
Recently, anticipation has been found to affect motion
sickness in subjects during experimental trials (Bos et al.
2022). For instance, experiments that provide subjects with
visual (Hainich et al. 2021; Karjanto et al. 2018), auditory
(Kuiper et al. 2020a; b) and vibrotactile cues (Li and Chen
2022) of motion ahead of motion (~ 1-3 s beforehand) have
found varying levels of reductions in reported motion sick-
ness symptoms. Additionally, when subjects are presented
repeated motions which do not vary in frequency, direc-
tion, or start time, motion sickness is less severe than for
more random motions which do vary across these variables
(Kuiper et al. 2020a, b). Importantly, the experiments used
to train the model all used repeated motions, and thus the
model is expected to be biased toward less severe motion
sickness predictions for the average subject when presented
with motions that are not predictable (e.g., a sum-of-sines
motion or an unfamiliar trajectory for a passive observer).
It may be expected that less repetitive motions would yield
higher severity than the model predictions.

Suggested future experiments
We suggest a number of future studies to rigorously evalu-
ate motion sickness characteristics for future modeling

efforts. For all of these recommended future efforts, we
urge that individual subject response curves be provided
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in the literature or in an online database, rather than just
mean scores of surviving subjects. Only providing the latter
hinders future modeling efforts by biasing the mean scores
toward surviving subject scores (which are lower).

Earth-vertical oscillation motion sickness studies

A host of earth-vertical motion sickness studies could prove
useful for isolating individual weights for each conflict type.
Earth-vertical translational motions in an upright configura-
tion result in only e, sensory conflict. Further, these motions
in the supine configuration result in purely e, conflict, and
lateral recumbent configurations result in purely ¢, conflict.
These experiments enable honing the value of W, (or Wery. o)
which is the primary driver of SMS/SAS symptoms accord-
ing to this model.

Earth-vertical rotations, while previously studied in a
non-provocative constant rotation motion paradigm (Leger
et al. 1981), can isolate the rotational conflicts, €o, > in roll,
pitch, and yaw respectively. Such future experiménts may
validate or refute our assumption that individual conflicts do
not vary by coordinate axes. It should be noted that Golding
et al. conducted an experiment of this nature (Golding et al.
1995); however, subjects’ heads were not restrained
(received only a rear head support), and they conduct£d a
visual search task inside a cabin.

Visual effects studies

Motion sickness for passive motions shoy'ld also bg assessed
with and without visual cues (i.e., in thi ydark){ This will
inform whether the visual sensgconflicts"(which may
occur due to incongruence betweenithe v 9l and vestibular
cues) contribute to motiong@fness. \t is suggested that they
do not, since individuaX wvitl aut a_unctioning vestibular
system typically do sfowexp sience motion sickness (Gold-
ing 2016; Johnsoxf'€ al. 19997 Vlurdin et al. 2015). In order
to maintain cggruenc_hbstween the perceptual stage and
experimenfgl dafa, visuai pathways must be included in the
Observer me ¥t (Clak et al. 2019) for any modeling efforts
leverdg i iy expe yiental data with visual cues.

Future hsdel advancements
Frequency effects

Following decades of experiments, it has been commonly
accepted by researchers of motion sickness that there is a
significant variation in severity across frequency, often peak-
ing around 0.2 Hz. For upright vertical oscillations (e, con-
flict) in an illuminated cabin, MSI was found to peak around
0.2 Hz in men (O’Hanlon and McCauley 1974). Similarly,
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fore-aft (x-axis) oscillations (a combination of e,, ¢, and
e; conflicts) in an illuminated cabin (while performing a
visual search task and with the head not fully restrained)
were shown to peak around 0.2 Hz (Golding et al. 2001).
While undoubtedly crucial for understanding sea sickness
from an operational perspective, these experimentg, are not
applicable to this model because they do not mest the crite-
ria of passive motions without visual cues (arid )#utlinyd
in the introduction, modelers of motion gickness 1. s not
historically adhered to this understandifiy;

If experiments are able to quantfye freq ,enfy-motion
sickness severity relationship for{»assive motions without
visual cues, this relationship ¢fn b modeldd by augmenting
our proposed computational me tel. We propose two poten-
tial augmentations of th#model. F\ )¢, a representative filter
(e.g., high, low, bandjass, Jic.) can be attached to the con-
flict terms feeding® ) neural i .ismatch signal. Alternatively
(or in conjunctic Zwi Sethisfilter), the fast-pathway low-pass
filter dynamics ca’dbe,modified to no longer be critically
damped. ile Omgza assumed the 2nd-order dynamics to
be critically danyy =d, others (Yunus et al. 2022a; b) have pro-
posed usingian underdamped system to augment the motion
SICk_Bss severity dynamics. Doing so will expand the num-
ber ol ree parameters to include a damping ratio, and the
1 adsi can be optimized with a new set of parameters.

tere we explore the frequency response of our model
across OVAR rotation speeds at 30° tilt and for both earth-
horizontal (e.g., y-axis) and earth-vertical (z-axis) trans-
lations. Denise et al. (1996) found peak sickness (mini-
mum time to moderate nausea) to occur at chair speeds of
105 deg/s for 30° tilt (see Fig. 5). Compared to the Denise
et al. (1996) data, our model performs well in the low fre-
quency (< 0.3 Hz) range but overpredicts the development
of motion sickness at higher frequencies. One could remedy
this by applying a low-pass filter (the first potential augmen-
tation mentioned above) to the conflicts before weighting
and combining the conflicts into the neural mismatch sig-
nal. To demonstrate this augmentation, an nth-order But-
terworth low-pass filter was manually fit to match the model
predictions to the Denise et al. (1996) data as an exploratory
effort (filter parameters: n=28 and f, = 0.34 Hz). A corner
frequency (f.) above 0.3 Hz was chosen to minimize the
impact of the filter on the training fit and preclude retraining
the model. Our alternative approach (the second potential
augmentation) was not explored here because a full re-fit
of the set of model parameters would be required for this
exploratory comparison.

While applying an ad hoc low-pass filter to match empiri-
cal data is consistent with the heuristic model of motion
sickness for symptom dynamics, we caution that this filter
is exploratory. Future works may explore how differences
in the perceptual stage could circumvent the need for this
modification; however, it is entirely possible that the CNS



Experimental Brain Research (2023) 241:2311-2332

2323

25r

— ¥ Denise Data
—&$— Dai Data

=== Model Predictions
=== Model w/LPF

5
£
[ay]
[0}
(%]
3 151
815
q) —
g -,
3
§10— -
L |

o ’ :
o V4
£ 5¢
l—

0 1 1 1 1 1 1 1

60 80 100 120 140 160 180
Chair Speed (deg/s)

Fig. 5 Denise et al. (1996) empirical means (square shapes) and 95%
confidence intervals are shown in red for OVAR motions, expressed
as time to moderate nausea. All motions occurred at 30° of tilt. Also
included are the Dai et al. (2010) empirical results with the mean (cir-
cle shape) and 95% confidence interval shown in gray (first converted
to MISC, then time to MISC 7, roughly corresponding to moderate
nausea). Model predictions (no filter) were made in this chair spe
range, shown in blue (solid line). Model predictions with the i

“X1996) found faster chair
fsult in less-severe motion

in the 0.01 Hz to 0.2 Hz range for the filtered model predic-
tions. Irmak et al. (2023) suggests that a variable estimate
of the magnitude of gravity enables more frequency vari-
ability; however, it is unclear that the CNS would update its
estimate of the magnitude of gravity during these motions.
For earth-horizontal translations (Fig. 6b), peak sickness
occurs around 1 Hz for the raw model predictions and
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Fig.6 Normalized sickness responses computed as the final predicted
MISC after ten minutes of motion normalized by the peak sickness
over the frequency range shown, with peak acceleration held con-
stant between simulations. a Earth-vertical translational frequency
response. b Earth-horizontal translational frequency response. Raw
model predictions are shown in blue (solid line), and filtered-model
predictions are shown in purple (dashed line)

around 0.3 Hz (near the low-pass filter cutoff frequency) for
the filtered model predictions. Recently of note, Irmak et al.
(2021) found the population-level susceptibility to motion
sickness to be invariant during passive fore-aft motions in
the dark at a peak acceleration amplitude of 2 m/s*; however,
the authors warn that this null finding may be due to the
aggregation of individual differences over 23 subjects. If
no population-level frequency effects are present, the above
modifications can still be considered for modeling individ-
ual-level dynamics. Moreover, it is likely that the inclusion
of other channels of sensory information (e.g., visual and
active motion pathways) further augments these frequency
response curves.
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Visual effects and active motion effects

If visual sensory conflicts are found to not contribute to
motion sickness, our model of motion sickness severity
can be used to predict motion sickness with the presence of
visual cues if the visual cues are sufficiently modeled using
existing visual pathways in the Observer model (Clark et al.
2019; Newman 2009). Further, it is possible that the empiri-
cally observed frequency response naturally results from a
validated visual Observer model with a cabin-fixed visual
scene. Additionally, if an active pathway Observer model
is developed without additional sensory conflict terms, our
model and weights can be used to predict motion sickness
for these motion paradigms as well [e.g., (Donohew and
Griffin 2004, 2009; Griffin and Mills 2002b)]. This includes
datasets which use active postural control to remain upright
as well as Coriolis cross-coupled datasets which required
subjects to perform active head tilts.

Modeling conflict processing and sickness dynamics
with a recurrent neural network

While this proposed framework provides the first unified
model of motion sickness based on the hypothesis that
sensory conflict from self-orientation perception drifes
motion sickness, we recognize that the exact forms ths
sensory conflict processing and motion sicknessiyhami

Table 1 Relevant sensory conflicts for driving i otion sickhess

are currently unknown. In future work, we propose training
a recurrent neural network with the nine vestibular sensory
conflict components over time as inputs and motion sickness
reports as outputs. In this proposed approach, the Observer
model of self-orientation perception will still drive the tem-
poral dynamics of motion sickness, and new insightg,into the
neural processing of sensory conflict and resultéint motion
sickness severity can be learned through exXpi pative AL
(Lundberg and Lee 2017). The same loss function p. hnésed
herein can and should be utilized to genéie ha mean popula-
tion response model, and the loss figfirthis 1\ yrg’effort can
be compared to assess model fit./in advangeOf this future
modeling effort, more data shbula® s collfcted for training
purposes (in accordance yith e experiments outlined in
the “Suggested Future J{ yoerimen. #section).

Appendix 1

Additionarc %<t information
Saplable 1)
Ta le 1 contains descriptions of how various conflicts are
=alizld within their respective models of self-orientation
pe Yeption.

Authors, year/model ConliLiame

Notation Description

Merfeld et al. (1993)/observer model

GIF angle conflict

Angular rate conflict

Bos and Bles#£1998)/SVC m¢del Vertical conflict

Khali atfai. Yla, b)/SVH conflict model Vertical conflict

Horizontal conflict

Wada et al./6-DoF
Irmak et al. (2022)/no perceptual model

Vertical conflict

Liy Zar acceleration conflict

N/A (proportional to acceleration) |a

Vector difference between the ‘sensed’ GIF (f) and
the centrally estimated GIF (f). Units are g’s

er Vector perpendicular to fandf, where the magni-
tude is radians between the two vectors

Conflict between sensed and expected angular rate.
Units are rad/s

c The scalar magnitude of the vector difference
between the low-pass filtered otolith cues (i.e.,
pseudo- ‘sensed’ gravity) and the internal esti-
mate of gravity

Same as ¢ in Bos

cy The scalar magnitude of the vector difference

between the sensed gravito-inertial force vector
normal to the Bos and Bles ‘sensed’ gravity and
the internal estimate of the gravito-inertial force
vector normal to the internal estimate of gravity

Av Same as ¢ in Bos

This conflict was not driven by a perceptual stage.
Instead, conflict was assumed to be proportional
to the absolute value of the acceleration of motion
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Appendix 2
Additional dataset information

See Table 2 and Fig. 7.

Datasets considered for informing, training, or validating
the model are described in Table 2. One dataset leveraged
to train the model, Irmak et al. (2022) collected reports of
motion sickness severity using the MISC scale in 17 sub-
jects. The motion paradigm consisted of x-axis (fore-aft
with subject seated upright) translation oscillations at 0.3 Hz
beginning with up to 1 h of motion followed by a 10 min
rest (no motion) and 30 min of additional oscillations. Many
subjects were provided a unique, individualized sequence of
motion vs. rest because a MISC report of 6 (moderate nau-
sea) resulted in starting the rest period early. Subjects were
tested across four amplitudes of oscillatory linear accelera-
tion: 1.0, 1.5, 2.0, and 2.5 m/s2. This study captures both
motion amplitude and hypersensitivity effects [as outlined

Table 2 Empirical datasets measuring motion sickness severity during passd

by Oman (Oman 1990)] and generates four conflicts (shown
in Table 2 and Fig. 7). An additional dataset for training the
model, Dai et al. (2010) performed the off-vertical axis rota-
tion (OVAR) motion paradigm at 30° tilt and 60 deg/s rota-
tion in 9 subjects (where individual response curves were
provided). This motion paradigm offers a unique combina-
tion of conflicts compared to Irmak et al.’s datag€t ard cap-
tures motion sickness onset beyond an equivaleti a{modir-
ate nausea) on the MISC Scale, a key limisation out 28l by
Irmak et al.

Because neither individual subiglt¥sespc esfover time
nor averaged responses of all subf ects ovey tiine were pro-
vided by Cian et al. (2011) £his" atasetfwas not used to
train our model. Howeverawe \ed 1t as a central-to-lower
bound validation datagd Further: yore, because Leger did
not report subjects’ ttmpe 1l dynamics (i.e., they did not
collect motion sigi& ¥ss repory. over time during the onset of
motion sickne& wyn ntams), this dataset was also not used
to train the model:

yotion in Jue dark, considered for tuning the model

Author, Motion Paradigm # Of bject Sensory Conflicts | Sickness Use
Year Subjects | /iharad Wristic) Present Scale
Irmak et Upright, x-axis oscillations 17 | 654 percei % eq, €a, MISC Training
al. 2022 for up to 1 hour, followed MSSQ (imdan) e,
by a 10-minute rest and e Y
then a second motion phase 2506 M Ty
lasting 30 minutes. . g
Dai et al. OVAR, 30° tilt at 60 deg/s o) 9 <50 percentile €a, €a, Simplified | Training
2010 MSSQ Cw. €o. €u Pensacola
ex . ” . “ Scale
5F;4M fx “fy fz
Cianetal. | OVAR, 18°tili. 32 deg/s 24 51% percentile Same as Dai et al. | Six Point Validation
2011 MSSQ (mean) Scale
r N 12M; 12 F
Leger et Eafi Hor santal Roll for 11 N/A MSSQ €a, €q, Graybiel Inference of
al. 1981 “pvto S0 inutes ew Scale Weight
14M e * Composition
Tx
Legefat E¢ h-Horizontal Pitch for 11 N/A MSSQ €q, €a, Graybiel Inference of
al 198 up £S5 minutes ey Scale Weight
| 14 M efy Composition
Yy
Leger© Earth-Horizontal Yaw for 11 N/A MSSQ €a, €a, Graybiel Inference of
|~al. 1981 up to 5 minutes Cw Scale Weight
| 14M efz Composition

Data used to train the model [Irmak et al. (2022) and Dai et al. (2010)] is shaded in white, data used to validated/assess the trained model (Cian
et al.(2011)) is shaded in light gray, and data not used for quantitative comparison but instead used to draw insight (Leger et al. (1981)’s) three

motion paradigms are shaded in dark gray
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Appendix 3
Additional optimization information

See Table 3 and Fig. 8.

Because the final cost found during optimization is
dependent on the initial guess values for the free param-
eters, the optimization scheme may converge to local minima
rather than an obvious global minimum. Unfortunately, our
ability to perform many optimizations, with varying initial
conditions, is limited because the optimization procedure is

Table 3 Summary of optimization results

Parameter Optimize all Units
So (initial) s* (optimal)

W, 200 6.72 1/g2

w, 200 11.7 1/(rad/s)?

W, 200 562 1/rad?

K 70.4 91.2 ND

7 66.2 73.8 s

7, 502.4 483 s

I 0 le—4 ND

n 0.4 0.323 ND

Final cost - 3.587

The solution found from optimizing all were considered bugfoui ¥o
have a lower local minimum (final cost) than the paragfeters foui:
from the transfer learning approach (grayed out setghf | dameters)
Units are provided, and parameters correspondiiiy o the mlative
symptom magnitude are left as non-dimensional/(ND). For reféience,
the values used to initialize the optimization p; ycedure afie provided,
which were the mean best-fit values from Irmak< jal. (26122)

4.1

a 45 B
4.4? !
4.°|

.

;4

0 50 100 150
Iteration

Fig.8 a The evolution of the cost function over all iterations. b The
evolution of the three conflict weighting terms over iterations. The
three conflict weighting terms barely change during optimization
of all eight parameters but eventually settle after the transfer learn-

computationally expensive (69 Observer model and motion
sickness dynamics simulations per function solution). We
present our best solution, and the process for finding this
best solution is described in more detail here. Notably,
all instances of optimization (even outside these results),
returned weights where Wf > {W,, W,_}, with all three
weight parameters yielding non-zero results.

The model parameters providing the lowest cost yefe found
by first optimizing all eight parameters unti} converge gsfwas
reached. Convergence was set to the defaiv nincolstopping
criteria: a first-order optimality of 1e/6. Mitiar ply€s were set
to be Irmak et al.’s group-level mg¢ lian pargmeier values for
the Oman’s motion sickness syzfiptoi Jynanfics stage, zero for
the threshold, and equal valaes ¢ sonfiict weights. After con-
vergence with all 8 traip# g parame. €, training was resumed
considering just the tifree ¢ Jaflict weighting terms (W, W,
and W) as free pafieters unjii convergence was once again
reached. This &0 ci9a,is 2 transfer learning approach com-
monly used in mac Sine,learning. The initial and final values
are presel . iyin TablZ 3. The evolution of the cost and three
conflict weightli, terms over iterations is depicted in Fig. 8a.
Before settling on the final values of the conflict weighting
teri. ) the optimization routine considers a large range of
combi lations (Fig. 8b), thus alleviating some concerns about
¢avgrging in local minima of the objective function.

Notable for predicting MISC resulting from vertical oscil-
lations and gravity transitions, the W, weighting term, which
determines the contributions of the |¢,| conflict, fluctuated
in the ~ 3 to 7 range across optimizations (depending on the
initial conditions); modulating W, in this range produces
notable differences in MISC predictions but does little to
affect the cost during optimization. Therefore, the best final
value (producing the lowest cost and presented in Table 3)

b 600

500 F e

400

300 -

Weight

200

100 [

o
[ )

100 150
Iteration

o
(o))

ing stage where all parameters are frozen except for the three conflict
weighting terms. The change from training all eight parameters to just
the three conflict weighting terms occurred at the dashed-gray line
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may underestimate or overestimate the true value due to the
limits of the training dataset in isolating the |¢,| conflict.
We additionally explored training the model with only the
W, and W,, weighting terms (setting W, to zero) to see if the
vector difference otolith and semi-circular canal sensory
conflicts alone could sufficiently drive the temporal motion
sickness dynamics. This was conducted after finding the
best-fit presented herein as a post-hoc exploratory effort.
This method yielded both a higher training cost (Jypsg =
3.64, in part likely due to a reduced number of free param-
eters) and worse qualitative predictions (found parameters

9,

@ Springer

were W, =563 W_ = 0.25) reinforcing the dependency of |?f"

when utilizing the Observer model.

Appendix 4

Additional training dataset results

2%
XY

See Fig. 9.

&
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Fig.9 Model PMSR predictions
(blue) overlaying individual
subject responses (red) from
Irmak et al. (2022) across
motion amplitudes
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Comparisons to Irmak et al. (2022) for each subject
across each motion amplitude are provided in Fig. 9. These
comparisons are all made individually because most sub-
jects received unique motion profiles (i.e., initial motion
was often stopped after hitting a stopping criterion, and so
motion resumed for most subjects at different time points).
However, each model prediction remains a population
mean symptom response prediction rather than an induvial
response prediction, the latter of which is dependent on indi-
viduals’ susceptibilities.
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