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Abstract
Predicting the time course of motion sickness symptoms enables the evaluation of provocative stimuli and the develop-
ment of countermeasures for reducing symptom severity. In pursuit of this goal, we present an observer-driven model of 
motion sickness for passive motions in the dark. Constructed in two stages, this model predicts motion sickness symptoms 
by bridging sensory conflict (i.e., differences between actual and expected sensory signals) arising from the observer model 
of spatial orientation perception (stage 1) to Oman’s model of motion sickness symptom dynamics (stage 2; presented in 
1982 and 1990) through a proposed “Normalized innovation squared” statistic. The model outputs the expected temporal 
development of human motion sickness symptom magnitudes (mapped to the Misery Scale) at a population level, due to 
arbitrary, 6-degree-of-freedom, self-motion stimuli. We trained model parameters using individual subject responses collected 
during fore-aft translations and off-vertical axis of rotation motions. Improving on prior efforts, we only used datasets with 
experimental conditions congruent with the perceptual stage (i.e., adequately provided passive motions without visual cues) 
to inform the model. We assessed model performance by predicting an unseen validation dataset, producing a Q2 value of 
0.86. Demonstrating this model’s broad applicability, we formulate predictions for a host of stimuli, including translations, 
earth-vertical rotations, and altered gravity, and we provide our implementation for other users. Finally, to guide future 
research efforts, we suggest how to rigorously advance this model (e.g., incorporating visual cues, active motion, responses 
to motion of different frequency, etc.).
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Introduction

Significance of motion sickness

Beyond self-ambulation on Earth, motion sickness per-
vades all modes of human transportation (e.g., automobiles, 
boats, trains, airplanes, and spacecraft). Often experienced 
by passive observers, motion sickness symptoms are most 
universally characterized by sweating, increases in saliva-
tion, drowsiness, and headache ultimately leading to sopite 
syndrome, nausea, and/or vomiting (Lackner 2014). Such 
symptoms spanning from slight discomfort to prolonged 

incapacitation have motivated decades of empirical studies 
and modeling efforts.

Concerning the terrestrial environment, early motion 
sickness models and severity studies were developed with 
seasickness as the primary motivation. While still applica-
ble today, a renewed interest in motion sickness has arisen 
alongside the advent of autonomous automobiles, deep space 
exploration, and commercial space travel. In the context of 
the space environment, most astronauts experience motion 
sickness upon transitioning to a microgravity environment 
from Earth and upon returning to Earth following extended 
exposure to microgravity (Davis et al. 1988; Oman 1987). 
Affecting 60–80% of space travelers (Heer and Paloski 2006) 
and coined ‘space motion sickness (SMS)’ or ‘space adap-
tion syndrome (SAS),’ this mode of motion sickness is not 
thought to be a unique diagnostic entity to terrestrial motion 
sickness (Lackner and DiZio 2006). Because SMS/SAS 
poses significant operational and performance decrements 
to crew members in the first days of travel (Ortega et al. 
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2019), more effective countermeasures to motion sickness 
must be developed to improve crew health and performance 
during future NASA exploration class missions.

Stemming from these applications, across various motion 
and environmental stimuli, there exists a principal need to 
construct the foundation of a broadly applicable, validated 
motion sickness model. This development will further ena-
ble the construction and evaluation of motion sickness coun-
termeasures, which otherwise may not always be intuitive 
(e.g., in some instances, the addition of ‘countermeasures’, 
such as the addition of visual cues and various behavioral 
approaches, may result in more severe motion sickness). 
Enabling the formulation of a quantitative computational 
model of the dynamics of motion sickness symptoms, there 
currently exists both a strong conceptual understanding of 
the cause and contributions to motion sickness and relevant 
empirical datasets.

Sensory conflict and models of self‑orientation 
perception

For the last half century, the most prominent theoretical 
explanation for motion sickness stems from sensory con-
flict theory, though alternatives exist (Bos 2011; Riccio and 
Stoffregen 1991) which are not necessarily mutually exclu-
sive. Sensory conflict, the difference between ‘sensed’ and 
the brain’s centrally ‘expected’ cues, particularly in regard 
to vestibular cues, has been proposed to drive motion sick-
ness (Oman 1982, 1990; Reason and Brand 1975). While 
other sensory pathways and associated conflicts (e.g., soma-
tosensory, visual, etc.) could contribute to motion sickness, 
motion sickness is often believed to not occur in individuals 
without functioning vestibular systems, though there is some 
evidence to the contrary (Golding 2016; Johnson et al. 1999; 
Murdin et al. 2015). Physiologically, the neural representa-
tion of this conflict may exist in the brainstem and cerebel-
lum (Laurens 2022; Oman and Cullen 2014).

The sensory conflict theory for motion sickness offers 
an explanation for the development of motion sickness 
symptoms for all known forms of motion sickness from 
both physical motion (e.g., car sickness, sea sickness, air 
sickness, etc.), apparent/illusory motion (e.g., simulator 
sickness), and changing environmental stimuli (e.g., space 
motion sickness). Apart from this crucial function of driv-
ing motion sickness, sensory conflict is thought to play a 
more fundamentally necessary role of driving perception 
of self-motion. This has been computationally captured via 
the Luenberger observer framework (Luenberger 1971), par-
ticularly for passive motions where sensory conflict is often 
most present (Wolpert et al. 1995). Over the last thirty years, 
models of self-orientation perception have been developed 
with variously defined sensory conflict signals.

A prominent perceptual model of self-orientation percep-
tion is the ‘Observer’ model (Clark et al. 2019; Merfeld et al. 
1993; Newman 2009; Zupan et al. 2002). In the Observer 
model, to produce central perception of self-motion and ori-
entation, sensory measurements for the semicircular canals 
and otoliths of the vestibular system are processed to yield 
three sensory conflict signals (angular velocity conflict, lin-
ear acceleration conflict, and gravito-inertial force (GIF) 
directional conflict); all have an associated weighting gain 
which, when multiplied by the conflicts, updates the state 
estimates (i.e., self-motion and orientation perception, see 
Appendix A1 for more information). Because the Observer 
model uses its internal estimates to inform each other (e.g., 
its internal estimate of angular velocity is used to perceive 
gravity’s direction in the head-centered reference frame [i.e., 
tilt]), it is often described as using a ‘multi-sensory integra-
tion’ approach. Multi-sensory integration is implemented 
via ‘internal models’ which are thought to take the form 
of learned neural relationships of kinematic and sensory 
dynamics.

Another relevant model is the subjective vertical conflict 
(SVC) model (Bos and Bles 1998). This model uses ‘fre-
quency segregation:’ gravity is hypothesized to be ‘sensed’ 
from the central processing of the otolith sensory measure-
ments via a low-pass filter in an Earth-fixed reference frame, 
computed from the perceived rotation rates via Mayne’s 
principal (Mayne 1974). While the SVC model does not rely 
on a truly ‘sensed’ cue to generate the SVC, this conflict 
is used to drive perception of linear acceleration through a 
gain and integration. Bos and Bles defined the SVC as the 
difference between the low-pass filtered otolith cues (i.e., the 
pseudo-’sensed’ gravity vector) and the internal estimate of 
this signal (i.e., the ‘expected’ gravity vector; see Appendix 
A1).

With the goal of bridging motion stimuli and motion sick-
ness in humans, these models of self-orientation perception, 
driving sensory conflict, have either been used (in the case 
of the SVC model) or proposed (in the case of an Observer 
model) as the first ‘stage’ in various dynamical models of 
the development of motion sickness symptoms (Oman 1982, 
1990).

Computational models of motion sickness dynamics

It has previously been proposed that the same processing 
of sensory information (multi-sensory integration, internal 
models, and sensory conflict) used for spatial orientation 
perception is also critical for producing motion sickness. 
With sensory conflict as an input, various computational 
models of motion sickness dynamics have been devel-
oped. Using motion sickness data captured during upright 
vertical oscillations across both frequency and amplitude 
(O’Hanlon and McCauley 1974), the SVC model with a 
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downstream motion sickness stage was tuned to achieve 
peak motion sickness incidence for sinusoidal oscilla-
tions at around 0.16 Hz for upright, vertical motion across 
amplitudes. Because O’Hanlon and McCauley used motion 
sickness incidence (MSI) to quantify motion sickness 
severity across subject populations, the SVC motion sick-
ness model estimates MSI by feeding the conflict through 
a Hill function and subsequent 2nd-order low-pass filter 
(Bos and Bles 1998). Later, Turan et al. presented a six 
degree-of-freedom motion implementation of this model 
aboard high-speed vessels (Turan et al. 2009).

Relying on a single vestibular conflict to drive motion 
sickness, the SVC model contains multiple supposed 
limitations (Khalid et al. 2011a, b). These include: the 
inability to capture different frequency effects between 
earth-vertical and upright earth-horizontal translations 
(Donohew and Griffin 2004; Golding et al. 2001; Grif-
fin and Mills 2002a; O’Hanlon and McCauley 1974) and 
faster onset of symptoms for earth-horizontal motions 
(Golding et al. 1995). A proposed remedy to these limi-
tations, a subjective vertical-horizontal (SVH) conflict 
model was developed (Khalid et al. 2011a, b; Khalid et al. 
2011a, b). Critically, the SVH conflict model was tuned 
to additionally match the frequency response for Earth-
horizonal translations observed empirically (Donohew and 
Griffin 2004) by incorporating a second conflict as input 
to the motion sickness stage. This ‘horizontal conflict’ is 
similar to the subjective vertical conflict but instead relies 
on components of the gravito-inertial force vector nor-
mal to gravity in order to estimate MSI. Fundamentally 
the same as SVC model, a coined ‘six degree-of-freedom’ 
model was developed (Kamiji et al. 2007) and augmented 
with the addition of active head-tilt control (Wada et al. 
2018) and later, with the addition of visual information 
(Wada et al. 2020). This chain of model development has 
been centered around predicting car sickness.

Beyond these iterations of the SVC model, Irmak et al. 
(2022) constructed a temporal model based on Oman’s heu-
ristic model of motion sickness. Oman iteratively proposed 
a heuristic model of motion sickness (Oman 1982, 1990) to 
capture the temporal dynamics of motion sickness severity 
from a scalar input comprised the vestibular sensory conflict 
signals. Considering augmentations to Oman’s proposal in 
1990 (such as input scaling) Irmak et al. (2022)’s model 
of motion sickness severity estimates, the time course of 
motion sickness symptoms where the model output is a 
continuous Misery Scale (MISC) estimate. The MISC is a 
unidimensional, qualitative 11-point scale that roughly cor-
responds to the progression of motion sickness symptoms, 
where an increase in the magnitude of the MISC score cor-
responds to an increase in the severity of motion sickness 
symptoms (Bos et al. 2005). Notably, this model did not 
contain a perceptual processing stage and instead assumed 

the conflict vector to be proportional to the acceleration 
stimulus.

Limitations of existing models

The aforementioned models of motion sickness have been 
structured around the hypothesis that sensory conflict from 
spatial orientation perception also drives motion sick-
ness. Despite this theoretical foundation, these models 
have manipulated the spatial orientation stage to produce 
desirable estimates of motion sickness severity (despite not 
revalidating the spatial orientation stage in terms of predict-
ing spatial orientation perception). For example, in the Bos- 
and Bles SVC-driven motion sickness models, the effect of 
oscillatory motion frequency (i.e., motion sickness peak-
ing around 0.16 Hz) of the emetic response was tuned by 
modifying parameters in the perceptual stage of the model 
(by adjusting the feedback gain driving perception of head 
acceleration), thus not guaranteeing a valid model of self-
orientation perception [the validity of resultant perceptions 
have been recently explored for various motion paradigms 
(Groen et al. 2022, p. 20; Irmak et al. 2023)]. Critically, the 
tuned parameters in the perceptual stage imply that adaption 
to a changing gravity magnitude occurs in seconds rather 
than days. For others (Wada et al. 2018, 2020), no validation 
of the perceptual stages have occurred. In fact, other works 
have found the validity of the perceptual stage to be incon-
sistent with empirical data (Yunus et al. 2022a; b). In the 
case of Irmak et al. (2022), the spatial orientation perception 
stage was omitted (using acceleration as a proxy for sensory 
conflict), precluding the model from predicting motion sick-
ness from arbitrary motions where different combinations 
and amplitudes of sensory conflict are present.

Beyond not containing a validated spatial orientation per-
ception stage, the augmented ‘six degree-of-freedom’ mod-
els (Wada et al. 2018, 2020) include pathways that suggest 
the central nervous system has direct access to the actual/
ground-truth acceleration and angular velocity state vectors 
when modeling active head tilts. This model violates our 
current understanding of the neural processes governing 
how active motion commands (efference copies), forward 
models, and active motion sensory feedback (reafferent 
signals) are integrated into motion perception. While it is 
likely that their proposed pathways were intended to serve 
as proxies for more detailed active pathways, it is unlikely 
that the resultant sensory conflicts produced by their model 
are generalizable to other motion paradigms.

Further, it is important that the empirical data of motion 
sickness severity used to tune or optimize a model is con-
gruent with the perceptual model used to produce sensory 
conflict. Both the presence of active motions (e.g., postural 
control, in which the brain is aware of commanded self-
motion, informing the expectation of sensory measurements) 
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and visual cues (either congruent with a fixed Earth ref-
erence frame or some moving reference frame e.g., inside 
of a ship cabin) have been found to affect motion sickness. 
Active motion augments sensory conflict due to the pres-
ence of an efference copy, forward internal model, and 
expected reafferent signals modifying the expected ves-
tibular sense. Active head movements have been found to 
significantly affect motion sickness symptoms (Johnson 
and Mayne 1953; Lackner and Graybiel 1987). Moreover, 
experiments where subjects (particularly subjects’ heads) 
are not well-constrained may provide the vestibular system 
with additional self-motion stimuli not accounted for when 
fitting models to experimental data. Illustrating these points, 
less-restrained (low-backrest seating) conditions have been 
found to produce more severe motion sickness symptoms 
compared to more restrained (high-backrest seating) during 
identical whole-body lateral oscillations (Mills and Griffin 
2000), likely due to differences in vestibular stimulation with 
less restraint.

The presence of visual cues (either Earth-fixed or sub-
ject-fixed) also augments the expected vestibular sense, 
changing the sensory conflict experienced by the subject 
(and may even introduce additional ‘visual sensory conflict’ 
terms influencing motion sickness symptoms). To this point, 
motion sickness severity (resulting from primarily physical 
motion stimuli) has been found to be affected in the presence 
of visual cues (Bos et al. 2005), and simulator-driven motion 
sickness is worsened by visual scenes incongruent with ves-
tibular cues (Kolasinski 1995). Therefore, it is critical that 
models of motion sickness based on sensory conflict are 
conceptually congruent with the experience of the subject in 
the experiment(s) to which the model is tuned/fit.

Contrary to this requirement, Bos and Bles used a per-
ceptual model based on passive motion without visual cues 
(and additionally but less crucially, without somatosensory 
cues) while the data used to tune the model (O’Hanlon and 
McCauley 1974) allowed subjects to keep their eyes open in 
a lit cabin (and subjects’ heads were not strictly restrained). 
When devising their SVH model, Khalid et al. used data of 
horizontal oscillations (Donohew and Griffin 2004), where 
subjects were instructed to use active postural control to 
align themselves with the perceived upright while perform-
ing a visual search task. In all cases, this presence of active 
posture control and visual cues is not present in the percep-
tual stage of the SVH model. Furthermore, in the Donohew 
and Griffin study, the motion device trajectory (which was 
input into the model) ignores the substantial self-motion of 
the subject’s postural control, such that the empirical stimu-
lation to the vestibular system differs from that input into 
the model.

Efforts that do not use a validated spatial orientation stage 
(via manipulating parameters or by not modeling pathways) 
no longer offer a rigorous evaluation of the hypothesis that 

the same neural processing mechanism that drives spatial 
orientation perception is also driving motion sickness. This 
also holds if the spatial orientation stage and the empirical 
data used to fit/tune are incongruent, implying that the spa-
tial orientation perception stage of the model is incomplete. 
Of additional note is that none of these modeling efforts 
use multiple datasets or motion paradigms to fit/tune their 
models, so it is unclear if these models should generalize to 
arbitrary 6-degree-of-freedom motion stimuli.

Given the evidence of brainstem and cerebellar neurons 
that respond analogously to the hypothesized sensory con-
flict signals [i.e., signaling is greatly reducing during active 
motions, where the brain can better “expect” sensory signals, 
as opposed the same motion experienced passively; (Brooks 
and Cullen 2009; Jamali et al. 2009; Roy and Cullen 2004)], 
we have chosen to leverage the Observer spatial orienta-
tion model, and implement its integration with the Oman 
emetic pathway model. Our goal is to tune and validate this 
comprehensive model implementation using several motion 
paradigms that are definitively congruent with the mecha-
nisms in the model (i.e., passive motion without visual cues).

Motion sickness model formulation

We propose using a motion sickness severity model driven 
by sensory conflict resulting from a perceptual model vali-
dated across several motion paradigms (i.e., the “Observer” 
model for spatial orientation perception during passive 
motions). This choice reflects the decision to build a com-
putational model based on sensory conflict theory. Param-
eters of the Observer model were consistent with the imple-
mentation of Clark et al. (2019) and not further modified 
here. The downstream motion sickness dynamic pathways 
are based on Oman’s heuristic model (1982, 1990). With 
passive motion over time as an input, the model produces 
predictions of motion sickness symptoms over time. The 
overarching framework of this model is depicted in Fig. 1.

The Observer model achieves its main function, producing 
estimates of self-motion and self-orientation, by first simulat-
ing the peripheral dynamics of the vestibular organs. For both 
the semicircular canals and otolith organs, transfer function 
representations of how angular velocity and GIF are trans-
duced produce afferent signals, which are then compared to 
central expectations of these signals. These central expecta-
tions are generated through internal, central models of ves-
tibular dynamics and kinematic relationships. The differences 
between actual and expected sensory measurements yields 
sensory conflict. For the passive Observer model depicted in 
Fig. 1, central perceptions of angular velocity, gravity, and 
linear acceleration are driven by weighted sensory conflict.

Oman’s model of motion sickness severity takes some 
weighted and rectified sensory conflict signal, h, and passes 
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this time-varying scalar through the motion sickness symp-
tom dynamics. The sensory conflict stems directly from the 
central nervous system estimate within the Observer model 
of self-orientation perception. The motion sickness symptom 
dynamics first comprised slow- and fast-pathway leaky inte-
grators in the form of 2nd-order low-pass filters. The Oman 
gain, K, dictates the gain ratio between the fast and slow 
pathways, and the slow pathway acts as an additional gain 
on the fast pathway [inspired by the hypersensitivity phe-
nomenon (Oman 1990)]. The fast and slow pathways have 
unique time constants, �f  and �s respectively (with 𝜏f < 𝜏s ). 
The outputs of these two pathways are summed and passed 
through a ‘threshold’ function with a dead-zone described 
by [0, I0 ] (and inspired by low intensity conflicts resulting in 
no discernable or delayed motion sickness intensity onset). 
Following thresholding, motion sickness intensity is output 
through a power law with exponent n.

Excluding the sensory conflict weights, W (detailed in the 
following section), there are five trainable free parameters in 
the motion sickness symptom dynamics. Further, we include 
a mapping function to map the model output onto the MISC 
reporting metric.

Processing of sensory conflicts

Within the Observer model, there are nine sensory conflicts 
for passive motion without visual cues: three vector compo-
nents for each ea , e� , and ef  (note that while we use a naming 
convention consistent with Merfeld and colleagues, these 
conflicts are differences between actual and expected meas-
urements of the vestibular system and are detailed further 
in Appendix A1). Oman proposed a scalar conflict, h, for 
input into the motion sickness symptom dynamics stage. As 
defined by Oman, this scalar conflict, h, should always be 
positive, with larger values corresponding to greater sensory 
conflict, which will in turn eventually lead to more severe 
motion sickness. Oman conceptually suggests that the multi-
dimensional and multi-aspect sensory conflict signals should 
undergo “conflict weighting and rectification” to produce the 
scalar conflict (also referred to as “weighted sensory con-
flict (scalar)” or “neural mismatch signal”). To quantitatively 
implement this concept, we propose a form of h based on the 
Normalized Innovation Squared (NIS statistic), which has 
been proposed to drive central adaption to changing envi-
ronmental stimuli Kravets et al. (2021, 2022):

Fig. 1   The two-stage model of motion sickness developing from 
physical motion. Stage 1 (the spatial orientation stage) is the observer 
model, where sensory conflict drives internal state estimates of 

self-motion. Sensory conflicts  from stage 1 are fed into stage 2 (the 
motion sickness symptom dynamics) as proposed by Oman (1982, 
1990)
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where ek =
[
eaxeayeaze�x

e�y
e�z

efxefyefz

]T
and

The normalization matrix, shown here as W, is a diagonal 
matrix of conflict-specific weighting terms because we do 
not consider cross-conflict contributions (e.g., eax × eay ). 
Effectively, this process squares each component (ensuring 
rectification), weights them (accounting for differences in 
units and contributions to h ), and sums them up (yielding a 
scalar value). While the exact form of the neural circuitry 
connecting sensory conflict to motion sickness is currently 
undetermined and remains a theory in premise, the central 
nervous system would have access to a NIS statistic, or an 
equivalent constant, based on the sensory conflict signals 
(without knowing ‘ground truth’ signals). This approach, 
where each conflict component contributes toward h, is a 
general possibility for how each sensory conflict signal may 
contribute toward the neural mismatch signal. However, in 
tuning, it may be found that one or more of the weightings 
within W  are zero (or near zero) implying that sensory con-
flict signal does not contribute to the neural mismatch signal 
and thus does not drive motion sickness.

It has been proposed that (as a proxy to the neural mis-
match signal) simply a signal proportional to the accelera-
tion amplitude alone could be used as a stand in for h (Irmak 
et al. 2022). While this may suffice as a rough approxima-
tion for a single-axis translation motion paradigm, the NIS 
statistic captures specific conflict contributions to motion 
sickness, enabling prediction of motion sickness for any 
arbitrary 6-degree-of-freedom passive motion trajectory. To 
determine how the individual conflict components from the 
perception processing should be weighted (i.e., values of W) 
for input into the motion sickness dynamics, weighting terms 
were fit via an optimization scheme using existing empirical 
motion sickness data for passive motions in the dark.

Experimental data

For empirical datasets measuring motion sickness, we 
chose to only consider experiments in which subjects expe-
rienced passive motions without active head/torso tilts and 
no visual cues. We note that this substantially reduced the 
number of studies that could be leveraged but ensured that 
the mechanisms included in the model were congruent with 
the empirical datasets (i.e., we did not include datasets with 
the head unrestrained, where visual cues were provided, 
etc. which are not captured in the existing observer per-
ceptual model). There were five datasets identified which 
matched this criterion (Bijveld et al. 2008; Cian et al. 2011; 

hk = eT
k
Wek

(1)W = diag
(
Wax

Way
Waz

W�x
W�y

W�z
Wfx

Wfy
Wfz

)
.

Dai et al. 2010; Irmak et al. 2021; Leger et al. 1981), with 
four unique motion paradigms (see Appendix A2 for fur-
ther details).

As an additional constraint for training this model, we 
were only able to leverage motion sickness reporting data 
which contained individual subject responses over time or 
averaged subject responses over time with all subjects com-
pleting the experiment. In the latter case, averaging only 
surviving subjects (while ignoring or otherwise assuming 
a motion sickness severity for subjects that stop the experi-
ment due to excessive motion sickness) does not faithfully 
represent the temporal dynamics of motion sickness in the 
sample population due to selection bias.

The final dataset used for training our model, leverag-
ing upright x-axis (fore-aft) oscillation data (Irmak et al. 
2022) and off-vertical axis of rotation (OVAR) data (Dai 
et al. 2010), consisted of 77 subject response curves across 
2 motion paradigms and 5 unique stimuli magnitudes (one 
at 0.168 Hz and four at 0.3 Hz). There were 26 unique sub-
jects, and the average MSSQ of the subject population is 
inferred to be in the 42nd and 65th percentile range. While 
there was an asymmetry between the number of male and 
female subjects (7F to 19 M), a subject population MSSQ in 
this range should yield a representative training dataset for 
the human population despite known differences in motion 
sickness susceptibility between sexes.

While not leveraged quantitatively to train the model, 
Leger et al. (1981)’s earth-horizontal rotation data were 
used to gain insight into the motion sickness dynamics and 
reduce the total number of free parameters in our model. 
Specifically, this study found that there were no significant 
differences between earth-horizontal roll, pitch, and yaw 
rotations. While the null hypothesis cannot be proven, this 
finding implies that the following equivalence in corre-
sponding axes is true:

A similar inference could be drawn from an extensive 
(N = 192) comparison to y-axis (lateral) and x-axis (fore-aft) 
oscillations which found no significant difference in illness 
ratings (from 0.2 Hz to 0.8 Hz) in males (Griffin and Mills 
2002a). While notable, this study was not included in this 
inference because the experiment did not meet the criteria of 
well-restrained, passive motions (subjects were seated with 
a low backrest, no head restraint) in the dark (subjects had 
a fixed cabin view).

Should the weights of the individual conflict compo-
nents be equal, the above approximate equivalences are 
always satisfied. This assumption reduces our matrix for 
weighting sensory conflicts and rectifying them via the NIS 
statistic from 9 to only 3 free parameters ( {Wa , W� , Wf } ), 

(2)
h
(
eay , eaz , e�x

, efx

)
≈ h

(
eax , eaz , e�y

, efy

)
≈ h

(
eax , eay , e�z

, efz

)
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such that the neural mismatch signal becomes the follow-
ing (where ‖V‖ is the 2-norm of the x, y, and z component 
vector V):

Predicting reporting metrics

The output of Oman’s model of motion sickness symptom 
dynamics (Oman 1982, 1990) is a magnitude of motion sick-
ness severity (also termed “nausea magnitude estimate” or 
“subjective discomfort”). This value ranges from zero (cor-
responding to no motion sickness experienced) to techni-
cally infinity (as the motion profile could always be made 
more intense). However, empirically motion sickness is 
often best measured using subjective reporting scales with 
finite bounds (Lawson 2014). We formulated a monotonic 
mapping to allow motion sickness symptom magnitude pre-
dictions from Oman’s model of motion sickness symptom 
dynamics to be converted to MISC symptom magnitude 
predictions. Ideally, there would be different channels of 
responses (e.g., separate nausea, emetic, discomfort, etc.) 
to fully characterize motion sickness symptoms in an indi-
vidual. However, because the existing motion sickness data 
we leveraged did not distinguish these channels when que-
rying subjects, a single all-encompassing motion sickness 
response is incorporated via MISC [consistent with Irmak 
et al. (2022)’s modeling effort].

In order to map from the continuous output of the 
Oman model to the MISC reporting metric, a piece-wise 

(3)h = Wa‖ ��⃗ea‖
2
+W𝜔‖���⃗e𝜔‖

2
+Wf‖��⃗ef‖

2

linear map with a slope of one and maximum of 10 was 
established:

Here x is the input to the reporting mapping function 
(Oman’s magnitude of motion sickness severity). By for-
mulating the model output mapping in this manner, the opti-
mal model parameters were tuned to a time-history of MISC 
reports provided by subjects on a continuous scale.

Furthermore, two additional reporting mappings were 
formulated to convert from other reporting metrics to MISC; 
Dai et al. (2010) used a simplified Pensacola 0–20 scale 
and Cian et al. (2011) used a six-point, 1–6, scale. Thus, 
piecewise linear maps were formulated to convert from these 
scales to MISC. These mappings were constructed by equat-
ing anchor points in each of the scales, as outlined by their 
respective authors, to the MISC equivalent anchor points. 
All intermediate values were then interpolated between 
anchor points. These two maps are shown in Fig. 2a and 
b, respectively (slight modifications to these mappings had 
only minor impacts upon model fit). Because the Irmak et al. 
(2022) data were already in a MISC reporting format, no 
additional mapping was required. While MISC reports are 
ordinal and qualitative, we treat MISC as a continuous quan-
titative measure because it has been found to track a general 
progression of symptoms (Bos et al. 2005, p. 20), and, bol-
stering this design decision, there is a positive, monotonous 
relationship between MISC and subjective discomfort (de 
Winkel et al. 2022). Therefore, all model predictions and 
fitting were done on a MISC scale, similar to the model 
proposed by Irmak et al (2022). Consequentially, final model 

(4)MapMISC(x) =

{
x, x < 10

10, x ≥ 10
.

(a) (b)

Fig. 2   a A piecewise linear map between the  Pensacola 0–20 and 
MISC scales. b A piecewise linear map between the  six-point 1–6 
and MISC scales. These conversions allow data from Dai et al. (2010) 
and Cian et al. (2011), respectively, to be compared to the model pre-

dictions (MISC scale) during training and validation, respectively. 
The data from Irmak et al. (2022) does not require a mapping because 
it was recorded using MISC reporting
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parameters resulting from the fitting process are dependent 
on the chosen MISC output, likely a non-linear expression 
of symptom progression (de Winkel et al. 2022; Reuten et al. 
2021).

Cost function

In summary, we aimed to fit the free parameters in the 
motion sickness model described above by minimizing the 
differences between model predictions of motion sickness 
severity over time and those empirically observed in subjects 
experiencing various motion paradigms. The cost function 
for minimizing errors in model predictions was formulated 
to be equally weighted for each subject, regardless of their 
underlying susceptibility to motion sickness. To accom-
plish this, each subject’s individual mean squared error was 
normalized by their total measurement reports so that sub-
jects with shorter survival times (i.e., because they experi-
enced excessive motion sickness and did not complete the 
motion exposure) were not deemphasized during the opti-
mization procedure (and to not overemphasize studies with 
higher frequency reports). For each subject, a subject mean 
squared error cost, was calculated, where yk was reported 
sickness severity (in MISC units), Pk is the correspond-
ing MISC model prediction at the same discrete point in 
time (k), m is the total measurements for a given subject, 
and θ is the set of trainable free parameters in the model: 
θ = {Wa,Wω,Wf ,K, τ1, τ2, I0, n}.

The full cost function across all subjects (where N is the 
total number of subjects in an experiment) is the following:

By minimizing the above cost function, we find 
P(�̂) = argminJMMSE(P(�);Y1∶N) . Because our optimization 
problem is formulated as a minimum mean squared error 
estimator, our model optimal solution universally equates 
to P(�̂) = E[P(�)|Y1∶N] , or the mean human motion sickness 
symptom dynamics conditioned on all subjects leveraged 
for training. Thus, we coin our model predictions to be the 
sample population mean symptom response (SPMSR) as it 
is conditioned on the measurements gathered from sample 
data in the literature ( Y1∶N ). If a representative, generalizable 
sample was provided from the collected data, then the model 
predictions will be equivalent to the population mean symp-
tom response (PMSR), which we refer to from this point for-
ward. This modeling approach produces an expected motion 

(5)Js
MMSE

�
θ;y1∶m

�
=

∑m

k=1

�
Ps
k
(�) − ys

k

�2

m
,

(6)JMMSE

�
θ;Y1∶N

�
=

∑N

s=1
J
s

MMSE
(θ)

N
.

sickness severity for an “average” individual, yielding a use-
ful prediction of the severity of motion sickness with no 
known insight to individuals’ susceptibilities.

Optimization procedure

We present our best-case found solutions, which were found 
via an optimization routine in MATLAB using fmincon. A 
lower bound was enforced on all optimization parameters of 
greater than zero to produce real and interpretable solutions. 
Intermittent results over optimization iterations, as well as 
the initial values, are presented in Appendix A3.

Results

Model optimization results

All instances of optimization (even outside the best results, 
described here), returned non-zero weighting param-
eters (Wf ,Wa,W�) , indicating that all three conflict vec-
tors contribute to the neural mismatch signal and thus to 
the development of motion sickness symptoms. Further, 
Wf ≫ {Wa,W𝜔} , suggesting the GIF angle conflict con-
tributed the most (though note that the units of the sensory 
conflicts to which these weights are applied each have dif-
ferent units: g’s, rad/s, rad, respectively). The final values 
of the weights are the following: Wa = 6.72, W� = 11.7, and 
Wf  = 562.

Our best results ( JMMSE = 3.587) found I0 to be near zero 
(1e− 4 [unitless]), similar to the assumptions made by Irmak 
et al. (2022). However, it is likely that the specific train-
ing data used did not contain long enough periods of sub-
threshold sensory conflict stimuli to uncover a precise value. 
Final values of the gain ( K = 91.2), power law ( n = 0.323), 
and fast and short time constants ( �f  = 74 s and �s = 438 s) 
differed from, but remained similar to, the median values 
presented by Irmak et al. (2022) (provided in Appendix A3).

Model prediction results

Model predictions compared to the translational subset of 
training data revealed similar qualitative fits to those in 
Irmak et al. (2022), displayed in Fig. 3a. However, the under-
lying prediction here is a PMSR vs. an individual response, 
so a direct comparison is not made. Compared to the OVAR 
subset of training data (Dai et al. 2010), the PMSR is over-
laid on individual subject responses in in Fig. 3b. While 
PMSR reasonably captures the temporal dynamics of train-
ing data, individual subjects experienced more or less 
motion sickness than estimated by the model, as expected.
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For a large number of subjects, the temporal dynamics 
demonstrate first motion sickness ‘divergence’ (i.e., motion 
sickness builds more quickly over time) followed by motion 
sickness ‘convergence’ (i.e., motion sickness builds more 
slowly over time). This is both a product of the motion sick-
ness scale used (when mapping to motion sickness severity) 
and modeling the fast and slow pathways as 2nd-order low-
pass filters. For steady conflict stimuli, this leaky integra-
tor first undergoes exponential growth and then eventually 
converges to a constant value.

Further model evaluations are made on the validation 
dataset (i.e., unseen during fitting of the model’s free param-
eters), conveyed in Fig. 3c. Forty minutes of model predic-
tions (20 min of OVAR followed by 20 min of recovery with-
out motion) are compared to the mean symptom response of 

surviving subjects from Cian et al. (2011), converted from 
a six-point scale to MISC (Fig. 2b). The model prediction 
was evaluated with a Q2 metric of 0.86 (Q2 is analogous to 
R2, but for predicting unseen data, with good values near 1). 
While the model captures the temporal dynamics of motion 
sickness in this unseen dataset, it tends to underestimate the 
motion sickness severity observed empirically. This result 
is elaborated upon in the “Discussion”.

Additional example simulations

Here we explore additional model predictions for motion 
paradigms where existing individual motion sickness sever-
ity data over time is not known to have been collected dur-
ing passive motions in the dark (shown in Fig. 4). We cast 
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Fig. 3   Model Predictions (displayed in blue) compared to subject 
data (displayed in red) used for training the model in (a, b). a An 
example subset of Irmak et  al. (2022) subjects (IDs 11–14) across 
amplitudes (1–2.5 m/s2). Full results are shown in Appendix A4. The 
y-axis in all plots is the MISC motion sickness severity scale. b All 
subjects from Dai et al. (OVAR) compared to a single model predic-
tion (all subjects experienced the same motion paradigm over varying 

lengths of time). c Model validation prediction. The red, dashed line 
is the Cian et al. (2011) mean severity reports of surviving subjects 
converted from the six-point scale to MISC at the scatter (box sym-
bol) locations. The solid blue line is the model prediction. The dashed 
blue line is the model prediction with a gain of 1.5 applied to the neu-
ral mismatch signal, potentially capturing an unaccounted frequency 
effect
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predictions for upright y-axis and z-axis oscillatory transla-
tions (at 0.3 Hz, peak acceleration of 1 g) to compare earth-
horizontal (y-axis) and earth-vertical (z-axis) motions. 
Earth-vertical yaw motions (both an oscillatory rotation at 
0.3 Hz with a peak displacement of 60 degrees and constant 
spin of 360 deg/s with a 60 s constant ramping up time) 
are simulated to show how this model predicts symptoms 
for earth-vertical rotations, a motion paradigm that does not 
result in any predicted motion sickness in the SVC model. 
Finally, motion sickness symptoms are simulated for chang-
ing environmental stimuli via a gravity transition to 0 g. 
This changing environmental stimulus was modeled in the 
Observer model by setting the actual gravity to zero and 
leaving the internal estimate of gravity (a fixed parameter) at 
1 g (i.e., no transient adaptation). Motion sickness symptoms 
result during both no motion and an upright roll (an oscilla-
tory tilt at 0.3 Hz with a peak displacement of 60 degrees, 
similar to the yaw motion).

Discussion

We present a computational model predicting the dynam-
ics of MISC symptom magnitudes over time in terms of a 
population mean symptom response (PMSR). This two-stage 
model formulates predictions of motion sickness from physi-
cal motion stimulation for passive motions in the dark by 
bridging the Observer model of spatial orientation percep-
tion (stage 1) to Oman’s model of motion sickness symptom 
dynamics (stage 2) through a proposed NIS statistic, com-
prised only the information the central nervous system has 
access to. Building upon the work of many existing research 
efforts, we trained our model using data congruent with the 

perceptual stage of our model and determined the optimal fit 
of model parameters, finally applying the model to an unseen 
validation dataset using another motion paradigm.

Model predictions and fit

Because the output of the model is a PMSR for a given 
motion stimulus and not a prediction of an individual’s 
response, it is not expected that predictions match the shape 
of the dynamic response on an individual level, hence the 
differing shape compared to the individual response curves 
measured by Dai et al. (Fig. 3b). As seen with the validation 
dataset (Fig. 3c), which captures the mean response of sur-
viving participations from Cian et al. (2011)’s OVAR study, 
the model prediction does match the temporal dynamics of 
the ground-truth PMSR (which is desired from our cost 
function formulation). The Q2 value of 0.86 on the validation 
dataset demonstrates this model’s ability to match the tem-
poral behavior and suggests that this model provides a true 
prediction of the PMSR for an unseen motion that can be 
leveraged to develop countermeasures and evaluate ranked 
differences in motion sickness for a given motion paradigm.

Discussed further in the “Future Model Advancements” 
section, this model does not account for frequency effects, 
since no known frequency effects have been noted in the lit-
erature for passive motions in the dark. However, we specu-
late the underestimation of the PMSR compared to the vali-
dation dataset may be due to frequency effects for passive 
motion in the dark. The Irmak et al. (2022) dataset used for 
training subjected participants to 0.3 Hz motions, and the 
Dai et al. (2010) datasets subjected participants to 0.167 Hz 
motions. If a gain of 1.5 is applied to the neural mismatch 
signal (h) to account for increased population sensitivity 
to 0.2 Hz conflicts (the spin rate of the Cian et al. OVAR 
motion paradigm), the model prediction PMSR overshoots 
the true data near the end of the OVAR motion, before recov-
ery. This is desired since Cian et al. (2011) excluded sub-
jects here that dropped out due to experiencing excessive 
motion sickness. This bias due to dropouts is not present in 
the model prediction, such that we would expect the model 
to overestimate the biased empirical average. Frequency 
dependent gains are commonly thought to range many orders 
of magnitude (based on studies concerning sea sickness with 
either active postural control or visual cues; ISO-2631), thus 
an unaccounted-for frequency gain around 1.5 is plausible.

The additional model simulations (Fig. 4) reveal that this 
model predicts that upright y-axis translations are more nau-
seogenic than upright z-axis translation, a result that is sup-
ported by Golding et al. (1995), who found y-axis oscilla-
tions to be ~ 2 × more nauseogenic (however, subjects’ heads 
were not restrained, and they conducted a visual search task 
with visual cues). For earth-vertical yaw, we demonstrate 
that this model predicts notable motion sickness for upright 

Fig. 4   Model PMSR predictions arising in the presence of various 
physical and environmental motion stimuli over a 1-h period
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yaw oscillations [also observed in the literature, though 
again with subjects conducting a visual search task (Guedry 
et al. 1982)] but much less so for constant spin [supported by 
Leger et al. (1981)]. Finally, this model is capable of predict-
ing motion sickness from changing environmental stimuli as 
demonstrated by a 1 g to 0 g gravity transition, and motion 
sickness symptoms are worsened with the addition of physi-
cal stimuli (with roll tilts shown here) in the altered gravity 
environment, consistent with the onset of SMS/SAS.

Contributions advancing upon previously proposed 
models

Because existing models (Bos and Bles 1998; Khalid et al. 
2011a, b; Wada et al. 2020) were tuned using data with 
experimental conditions not modeled in the perceptual stage 
of the model, they are not predicting motion sickness from 
sensory conflict from passive motion paradigms without 
visual cues via a bottom-up approach. Our implementation 
allows us to formulate motion sickness symptom predictions 
from arbitrary motion paradigms for passive motions in the 
dark. Since the free parameters are trained to one dataset, but 
then shown to predict another unseen validation dataset rea-
sonably well, it provides some confidence that the model is 
not overfit, but instead can generalize to arbitrary 6 degrees 
of free motion stimuli.

Further, this model provides a method of predicting the 
PMSR, an indicator of how the population will respond to 
a motion stimulus on average even if the overall form (e.g., 
variance) of the distribution is unknown. This population-
level approach to predicting the time course of motion 
sickness symptoms allows us to disregard the source of 
individual differences, which may be present in the motion 
sickness symptom dynamics stage (Irmak et al. 2022) and/
or the perceptual stage (Dai et al. 2003).

Following model predictions of motion sickness, this 
cohesive model enables further development of counter-
measures for motion sickness during passive motions. The 
results that Wf ≫ {Wa,W𝜔} suggest that most sickness 
countermeasures which reduce | ��⃗ef | , even if this reduction 
comes at the expense of slightly/moderately increasing 
| ��⃗ea| and/or |���⃗e𝜔| , may be effective at alleviating the develop-
ment of symptoms. Further, the non-zero nature of all three 
weighting terms suggests that all three conflict types may 
contribute to motion sickness and not just the vector differ-
ence conflicts ( ��⃗ef  relates the difference in direction of two 
vectors, see Appendix A1 for a detailed description). As a 
final advantage over existing models, this model can produce 
motion sickness severity predictions from conflict arising 
from changing environmental stimuli such as experienced 
by astronauts transitioning between gravity environments 
and from earth-vertical rotations (Fig. 4). The quantifica-
tion of symptoms from these additional provocative stimuli 

(physical, environmental, and a combination of the two) 
enable the subsequent evaluation of countermeasures for 
these stimuli.

Limitations of this current model

As previously stated and reemphasized here, the final model 
parameters and resultant model predictions are conditioned 
on the training data we used and are appropriate only for 
modeling passive motions without visual cues. Further, 
with the inclusion of more motion sickness data from future 
experiments (particularly those suggested below), it is pos-
sible that final parameter values change with the inclusion 
of more information. Additionally, this model of motion 
sickness predicts only a mean response and ignores indi-
vidual variability. Individual variability in the development 
of symptoms has been suggested to be related to the velocity 
storage time constant (Dai et al. 2003), and modulating this 
parameter in the perceptual stage as well as modulating sen-
sory noise (not modeled here) are two potential options for 
incorporating individual variability and quantifying uncer-
tainty bounds around the mean predictions. Since individual 
susceptibility to motion sickness varies substantially, the 
model’s PMSR prediction may greatly underestimate the 
motion sickness experienced by a highly susceptible indi-
vidual and vice versa for an unsusceptible person.

Further, our model does not consider anticipation. 
Recently, anticipation has been found to affect motion 
sickness in subjects during experimental trials (Bos et al. 
2022). For instance, experiments that provide subjects with 
visual (Hainich et al. 2021; Karjanto et al. 2018), auditory 
(Kuiper et al. 2020a; b) and vibrotactile cues (Li and Chen 
2022) of motion ahead of motion (~ 1–3 s beforehand) have 
found varying levels of reductions in reported motion sick-
ness symptoms. Additionally, when subjects are presented 
repeated motions which do not vary in frequency, direc-
tion, or start time, motion sickness is less severe than for 
more random motions which do vary across these variables 
(Kuiper et al. 2020a, b). Importantly, the experiments used 
to train the model all used repeated motions, and thus the 
model is expected to be biased toward less severe motion 
sickness predictions for the average subject when presented 
with motions that are not predictable (e.g., a sum-of-sines 
motion or an unfamiliar trajectory for a passive observer). 
It may be expected that less repetitive motions would yield 
higher severity than the model predictions.

Suggested future experiments

We suggest a number of future studies to rigorously evalu-
ate motion sickness characteristics for future modeling 
efforts. For all of these recommended future efforts, we 
urge that individual subject response curves be provided 
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in the literature or in an online database, rather than just 
mean scores of surviving subjects. Only providing the latter 
hinders future modeling efforts by biasing the mean scores 
toward surviving subject scores (which are lower).

Earth‑vertical oscillation motion sickness studies

A host of earth-vertical motion sickness studies could prove 
useful for isolating individual weights for each conflict type. 
Earth-vertical translational motions in an upright configura-
tion result in only eaz sensory conflict. Further, these motions 
in the supine configuration result in purely eax conflict, and 
lateral recumbent configurations result in purely eay conflict. 
These experiments enable honing the value of Wa (or Wax,y,z ), 
which is the primary driver of SMS/SAS symptoms accord-
ing to this model.

Earth-vertical rotations, while previously studied in a 
non-provocative constant rotation motion paradigm (Leger 
et al. 1981), can isolate the rotational conflicts, e�x,y,z

 , in roll, 
pitch, and yaw respectively. Such future experiments may 
validate or refute our assumption that individual conflicts do 
not vary by coordinate axes. It should be noted that Golding 
et al. conducted an experiment of this nature (Golding et al. 
1995); however, subjects’ heads were not restrained 
(received only a rear head support), and they conducted a 
visual search task inside a cabin.

Visual effects studies

Motion sickness for passive motions should also be assessed 
with and without visual cues (i.e., in the dark). This will 
inform whether the visual sensory conflicts (which may 
occur due to incongruence between the visual and vestibular 
cues) contribute to motion sickness. It is suggested that they 
do not, since individuals without a functioning vestibular 
system typically do not experience motion sickness (Gold-
ing 2016; Johnson et al. 1999; Murdin et al. 2015). In order 
to maintain congruency between the perceptual stage and 
experimental data, visual pathways must be included in the 
Observer model (Clark et al. 2019) for any modeling efforts 
leveraging experimental data with visual cues.

Future model advancements

Frequency effects

Following decades of experiments, it has been commonly 
accepted by researchers of motion sickness that there is a 
significant variation in severity across frequency, often peak-
ing around 0.2 Hz. For upright vertical oscillations (eaz con-
flict) in an illuminated cabin, MSI was found to peak around 
0.2 Hz in men (O’Hanlon and McCauley 1974). Similarly, 

fore-aft (x-axis) oscillations (a combination of ea , e� , and 
ef  conflicts) in an illuminated cabin (while performing a 
visual search task and with the head not fully restrained) 
were shown to peak around 0.2 Hz (Golding et al. 2001). 
While undoubtedly crucial for understanding sea sickness 
from an operational perspective, these experiments are not 
applicable to this model because they do not meet the crite-
ria of passive motions without visual cues (and as outlined 
in the introduction, modelers of motion sickness have not 
historically adhered to this understanding).

If experiments are able to quantify a frequency-motion 
sickness severity relationship for passive motions without 
visual cues, this relationship can be modeled by augmenting 
our proposed computational model. We propose two poten-
tial augmentations of this model. First, a representative filter 
(e.g., high, low, bandpass, etc.) can be attached to the con-
flict terms feeding the neural mismatch signal. Alternatively 
(or in conjunction with this filter), the fast-pathway low-pass 
filter dynamics can be modified to no longer be critically 
damped. While Oman assumed the 2nd-order dynamics to 
be critically damped, others (Yunus et al. 2022a; b) have pro-
posed using an underdamped system to augment the motion 
sickness severity dynamics. Doing so will expand the num-
ber of free parameters to include a damping ratio, and the 
model can be optimized with a new set of parameters.

Here we explore the frequency response of our model 
across OVAR rotation speeds at 30° tilt and for both earth-
horizontal (e.g., y-axis) and earth-vertical (z-axis) trans-
lations. Denise et al. (1996) found peak sickness (mini-
mum time to moderate nausea) to occur at chair speeds of 
105 deg/s for 30° tilt (see Fig. 5). Compared to the Denise 
et al. (1996) data, our model performs well in the low fre-
quency (< 0.3 Hz) range but overpredicts the development 
of motion sickness at higher frequencies. One could remedy 
this by applying a low-pass filter (the first potential augmen-
tation mentioned above) to the conflicts before weighting 
and combining the conflicts into the neural mismatch sig-
nal. To demonstrate this augmentation, an nth-order But-
terworth low-pass filter was manually fit to match the model 
predictions to the Denise et al. (1996) data as an exploratory 
effort (filter parameters: n = 8 and fc = 0.34 Hz). A corner 
frequency ( fc) above 0.3 Hz was chosen to minimize the 
impact of the filter on the training fit and preclude retraining 
the model. Our alternative approach (the second potential 
augmentation) was not explored here because a full re-fit 
of the set of model parameters would be required for this 
exploratory comparison.

While applying an ad hoc low-pass filter to match empiri-
cal data is consistent with the heuristic model of motion 
sickness for symptom dynamics, we caution that this filter 
is exploratory. Future works may explore how differences 
in the perceptual stage could circumvent the need for this 
modification; however, it is entirely possible that the CNS 
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employs low-pass filtering of the conflicts as explored here. 
Furthermore, the Denise et al. (1996) data has large uncer-
tainty bounds, and the data collected by Dai et al. (2010) 
suggests a more rapid time to moderate nausea [and found 
peak sickness to occur at 60 deg/s for 30° of tilt, which we 
leveraged for training our model, provided in Fig. 3b]. Both 
Dai et al. (2010) and Denise et al. (1996) found faster chair 
velocities above 105 deg/s to result in less-severe motion 
sickness than lower chair velocities (mimicked with our 
model via the application of a low-pass conflict filter).

Resultant raw model (i.e., no ad hoc filter added) and 
filtered-model predictions are additionally provided for 
earth-horizontal and earth-vertical translations in Fig. 6. 
For earth-vertical translations (Fig. 6a), peak sickness is 
largely constant for the raw model predictions and occurs 
in the 0.01 Hz to 0.2 Hz range for the filtered model predic-
tions. Irmak et al. (2023) suggests that a variable estimate 
of the magnitude of gravity enables more frequency vari-
ability; however, it is unclear that the CNS would update its 
estimate of the magnitude of gravity during these motions. 
For earth-horizontal translations (Fig. 6b), peak sickness 
occurs around 1  Hz for the raw model predictions and 

around 0.3 Hz (near the low-pass filter cutoff frequency) for 
the filtered model predictions. Recently of note, Irmak et al. 
(2021) found the population-level susceptibility to motion 
sickness to be invariant during passive fore-aft motions in 
the dark at a peak acceleration amplitude of 2 m/s2; however, 
the authors warn that this null finding may be due to the 
aggregation of individual differences over 23 subjects. If 
no population-level frequency effects are present, the above 
modifications can still be considered for modeling individ-
ual-level dynamics. Moreover, it is likely that the inclusion 
of other channels of sensory information (e.g., visual and 
active motion pathways) further augments these frequency 
response curves.
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Fig. 5   Denise et al. (1996) empirical means (square shapes) and 95% 
confidence intervals are shown in red for OVAR motions, expressed 
as time to moderate nausea. All motions occurred at 30° of tilt. Also 
included are the Dai et al. (2010) empirical results with the mean (cir-
cle shape) and 95% confidence interval shown in gray (first converted 
to MISC, then time to MISC 7, roughly corresponding to moderate 
nausea). Model predictions (no filter) were made in this chair speed 
range, shown in blue (solid line). Model predictions with the inclu-
sion of a low-pass conflict filter are shown in purple (dashed line). 
Model predictions are presented as time to MISC 7. The low-pass 
conflict filter was manually fit to the Denise et al. (1996) data
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Fig. 6   Normalized sickness responses computed as the final predicted 
MISC after ten minutes of motion normalized by the peak sickness 
over the frequency range shown, with peak acceleration held con-
stant between simulations. a Earth-vertical translational frequency 
response. b Earth-horizontal translational frequency response. Raw 
model predictions are shown in blue (solid line), and filtered-model 
predictions are shown in purple (dashed line)

RETRACTED A
RTIC

LE



2324	 Experimental Brain Research (2023) 241:2311–2332

1 3

Visual effects and active motion effects

If visual sensory conflicts are found to not contribute to 
motion sickness, our model of motion sickness severity 
can be used to predict motion sickness with the presence of 
visual cues if the visual cues are sufficiently modeled using 
existing visual pathways in the Observer model (Clark et al. 
2019; Newman 2009). Further, it is possible that the empiri-
cally observed frequency response naturally results from a 
validated visual Observer model with a cabin-fixed visual 
scene. Additionally, if an active pathway Observer model 
is developed without additional sensory conflict terms, our 
model and weights can be used to predict motion sickness 
for these motion paradigms as well [e.g., (Donohew and 
Griffin 2004, 2009; Griffin and Mills 2002b)]. This includes 
datasets which use active postural control to remain upright 
as well as Coriolis cross-coupled datasets which required 
subjects to perform active head tilts.

Modeling conflict processing and sickness dynamics 
with a recurrent neural network

While this proposed framework provides the first unified 
model of motion sickness based on the hypothesis that 
sensory conflict from self-orientation perception drives 
motion sickness, we recognize that the exact form of the 
sensory conflict processing and motion sickness dynamics 

are currently unknown. In future work, we propose training 
a recurrent neural network with the nine vestibular sensory 
conflict components over time as inputs and motion sickness 
reports as outputs. In this proposed approach, the Observer 
model of self-orientation perception will still drive the tem-
poral dynamics of motion sickness, and new insights into the 
neural processing of sensory conflict and resultant motion 
sickness severity can be learned through explanative AI 
(Lundberg and Lee 2017). The same loss function proposed 
herein can and should be utilized to generate a mean popula-
tion response model, and the loss from this future effort can 
be compared to assess model fit. In advance of this future 
modeling effort, more data should be collected for training 
purposes (in accordance with the experiments outlined in 
the “Suggested Future Experiments” section).

Appendix 1

Additional conflict information

See Table 1.
Table 1 contains descriptions of how various conflicts are 

realized within their respective models of self-orientation 
perception.

Table 1   Relevant sensory conflicts for driving motion sickness

Authors, year/model Conflict name Notation Description

Merfeld et al. (1993)/observer model Linear acceleration conflict ea Vector difference between the ‘sensed’ GIF (f) and 
the centrally estimated GIF ( ̂f  ). Units are g’s

GIF angle conflict ef Vector perpendicular to f and f̂  , where the magni-
tude is radians between the two vectors

Angular rate conflict eω Conflict between sensed and expected angular rate. 
Units are rad/s

Bos and Bles (1998)/SVC model Vertical conflict c The scalar magnitude of the vector difference 
between the low-pass filtered otolith cues (i.e., 
pseudo- ‘sensed’ gravity) and the internal esti-
mate of gravity

Khalid et al. (2011a, b)/SVH conflict model Vertical conflict cv Same as c in Bos
Horizontal conflict cH The scalar magnitude of the vector difference 

between the sensed gravito-inertial force vector 
normal to the Bos and Bles ‘sensed’ gravity and 
the internal estimate of the gravito-inertial force 
vector normal to the internal estimate of gravity

Wada et al./6-DoF Vertical conflict Δv Same as c in Bos
Irmak et al. (2022)/no perceptual model N/A (proportional to acceleration) |a| This conflict was not driven by a perceptual stage. 

Instead, conflict was assumed to be proportional 
to the absolute value of the acceleration of motion
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Appendix 2

Additional dataset information

See Table 2 and Fig. 7.
Datasets considered for informing, training, or validating 

the model are described in Table 2. One dataset leveraged 
to train the model, Irmak et al. (2022) collected reports of 
motion sickness severity using the MISC scale in 17 sub-
jects. The motion paradigm consisted of x-axis (fore-aft 
with subject seated upright) translation oscillations at 0.3 Hz 
beginning with up to 1 h of motion followed by a 10 min 
rest (no motion) and 30 min of additional oscillations. Many 
subjects were provided a unique, individualized sequence of 
motion vs. rest because a MISC report of 6 (moderate nau-
sea) resulted in starting the rest period early. Subjects were 
tested across four amplitudes of oscillatory linear accelera-
tion: 1.0, 1.5, 2.0, and 2.5 m/s2. This study captures both 
motion amplitude and hypersensitivity effects [as outlined 

by Oman (Oman 1990)] and generates four conflicts (shown 
in Table 2 and Fig. 7). An additional dataset for training the 
model, Dai et al. (2010) performed the off-vertical axis rota-
tion (OVAR) motion paradigm at 30° tilt and 60 deg/s rota-
tion in 9 subjects (where individual response curves were 
provided). This motion paradigm offers a unique combina-
tion of conflicts compared to Irmak et al.’s dataset and cap-
tures motion sickness onset beyond an equivalent 6 (moder-
ate nausea) on the MISC Scale, a key limitation outlined by 
Irmak et al.

Because neither individual subject responses over time 
nor averaged responses of all subjects over time were pro-
vided by Cian et al. (2011), this dataset was not used to 
train our model. However, we used it as a central-to-lower 
bound validation dataset. Furthermore, because Leger did 
not report subjects’ temporal dynamics (i.e., they did not 
collect motion sickness reports over time during the onset of 
motion sickness symptoms), this dataset was also not used 
to train the model.

Table 2   Empirical datasets measuring motion sickness severity during passive motion in the dark, considered for tuning the model

Author, 
Year 

Motion Paradigm # Of 
Subjects

Subject 
Characteristics

Sensory Conflicts 
Present

Sickness 
Scale

Use

Irmak et 

al. 2022

Upright, x-axis oscillations 

for up to 1 hour, followed 

by a 10-minute rest and 

then a second motion phase 

lasting 30 minutes.

17 65th percentile 

MSSQ (mean)

2 F; 15 M

MISC Training

Dai et al.

2010
OVAR, 30° tilt at 60 deg/s 9 <50th percentile 

MSSQ

5 F; 4 M

Simplified 

Pensacola 

Scale

Training

Cian et al.

2011
OVAR, 18° tilt at 72 deg/s 24 51st percentile 

MSSQ (mean)

12 M; 12 F

Same as Dai et al. Six Point 

Scale

Validation

Leger et 

al. 1981

Earth-Horizontal Roll for 

up to 5 minutes

11 N/A MSSQ

14 M

Graybiel 

Scale

Inference of 

Weight 

Composition

Leger et 

al. 1981

Earth-Horizontal Pitch for 

up to 5 minutes

11 N/A MSSQ

14 M

Graybiel 

Scale

Inference of 

Weight 

Composition

Leger et 

al. 1981

Earth-Horizontal Yaw for 

up to 5 minutes

11 N/A MSSQ

14 M

Graybiel 

Scale

Inference of 

Weight 

Composition

Data used to train the model [Irmak et al. (2022) and Dai et al. (2010)] is shaded in white, data used to validated/assess the trained model (Cian 
et al.(2011)) is shaded in light gray, and data not used for quantitative comparison but instead used to draw insight (Leger et al. (1981)’s) three 
motion paradigms are shaded in dark gray
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Fig. 7   a Peak conflict signals from Irmak et  al.’s motion paradigm 
across acceleration amplitude b a representative steady sensory con-
flict signals from Irmak et  al.’s motion paradigm at 2  m/s2(conflict 
signal frequencies and phase shifts do not vary with acceleration 
amplitude)). OVAR sensory conflict signals of: c Dai et al. (2010)’s 

motion paradigm (first three minutes) d Dai et al. zoomed in. and e 
Cian et al. (2011)’s motion paradigm f Cian et al. (2011) zoomed in. 
For all plots, e

a
 conflicts are in units of g, e� conflicts are in units of 

rad/s, and e
f
 conflicts are in units of radians. All conflict types simi-

larly scaled for these motions
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Appendix 3

Additional optimization information

See Table 3 and Fig. 8.
Because the final cost found during optimization is 

dependent on the initial guess values for the free param-
eters, the optimization scheme may converge to local minima 
rather than an obvious global minimum. Unfortunately, our 
ability to perform many optimizations, with varying initial 
conditions, is limited because the optimization procedure is 

computationally expensive (69 Observer model and motion 
sickness dynamics simulations per function solution). We 
present our best solution, and the process for finding this 
best solution is described in more detail here. Notably, 
all instances of optimization (even outside these results), 
returned weights where Wf ≫ {Wa,W𝜔} , with all three 
weight parameters yielding non-zero results.

The model parameters providing the lowest cost were found 
by first optimizing all eight parameters until convergence was 
reached. Convergence was set to the default fmincon stopping 
criteria: a first-order optimality of 1e-6. Initial values were set 
to be Irmak et al.’s group-level median parameter values for 
the Oman’s motion sickness symptom dynamics stage, zero for 
the threshold, and equal values of conflict weights. After con-
vergence with all 8 training parameters, training was resumed 
considering just the three conflict weighting terms ( Wa , W� 
and Wf  ) as free parameters until convergence was once again 
reached. This later case is a transfer learning approach com-
monly used in machine learning. The initial and final values 
are presented in Table 3. The evolution of the cost and three 
conflict weighting terms over iterations is depicted in Fig. 8a. 
Before settling on the final values of the conflict weighting 
terms, the optimization routine considers a large range of 
combinations (Fig. 8b), thus alleviating some concerns about 
converging in local minima of the objective function.

Notable for predicting MISC resulting from vertical oscil-
lations and gravity transitions, the Wa weighting term, which 
determines the contributions of the || ��⃗ea|| conflict, fluctuated 
in the ~ 3 to 7 range across optimizations (depending on the 
initial conditions); modulating Wa in this range produces 
notable differences in MISC predictions but does little to 
affect the cost during optimization. Therefore, the best final 
value (producing the lowest cost and presented in Table 3) 

Table 3   Summary of optimization results

The solution found from optimizing all were considered but found to 
have a lower local minimum (final cost) than the parameters found 
from the transfer learning approach (grayed out set of parameters). 
Units are provided, and parameters corresponding to the relative 
symptom magnitude are left as non-dimensional (ND). For reference, 
the values used to initialize the optimization procedure are provided, 
which were the mean best-fit values from Irmak et al. (2022)

Parameter Optimize all Units

s0 (initial) s* (optimal)

W
a

200 6.72 1/g2

W� 200 11.7 1/(rad/s)2

W
f

200 562 1/rad2

K 70.4 91.2 ND
�
f

66.2 73.8 s
�
s

502.4 483 s
I
0

0 1e− 4 ND
n 0.4 0.323 ND
Final cost – 3.587

a b

Fig. 8   a The evolution of the cost function over all iterations. b The 
evolution of the three conflict weighting terms over iterations. The 
three conflict weighting terms barely change during optimization 
of all eight parameters but eventually settle after the transfer learn-

ing stage where all parameters are frozen except for the three conflict 
weighting terms. The change from training all eight parameters to just 
the three conflict weighting terms occurred at the dashed-gray line
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may underestimate or overestimate the true value due to the 
limits of the training dataset in isolating the || ��⃗ea|| conflict.

We additionally explored training the model with only the 
Wa and W� weighting terms (setting Wf  to zero) to see if the 
vector difference otolith and semi-circular canal sensory 
conflicts alone could sufficiently drive the temporal motion 
sickness dynamics. This was conducted after finding the 
best-fit presented herein as a post-hoc exploratory effort. 
This method yielded both a higher training cost ( JMMSE = 
3.64, in part likely due to a reduced number of free param-
eters) and worse qualitative predictions (found parameters 

were Wa = 563 W� = 0.25) reinforcing the dependency of |||��⃗ef
||| 

when utilizing the Observer model.

Appendix 4

Additional training dataset results

See Fig. 9.
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Fig. 9   Model PMSR predictions 
(blue) overlaying individual 
subject responses (red) from 
Irmak et al. (2022) across 
motion amplitudes

Amplitude: 1m/s2 Amplitude: 1.5m/s2 Amplitude: 2m/s2 Amplitude: 2.5m/s2
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Comparisons to Irmak et  al. (2022) for each subject 
across each motion amplitude are provided in Fig. 9. These 
comparisons are all made individually because most sub-
jects received unique motion profiles (i.e., initial motion 
was often stopped after hitting a stopping criterion, and so 
motion resumed for most subjects at different time points). 
However, each  model  prediction remains a population 
mean symptom response prediction rather than an induvial 
response prediction, the latter of which is dependent on indi-
viduals’ susceptibilities.
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