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Abstract
In the postnatal brain, three regions show high mitotic activity. These brain areas are neurogenic niches, and each niche 
harbors a microenvironment favorable for the proliferation and differentiation of neural stem cells. These multipotential 
cells maintain the capacity to self-renew and generate intermediate precursors that will differentiate into neuronal and glial 
lineages (astrocytes and oligodendrocytes). The most well-studied niches are the ventricular-subventricular zone (V-SVZ) of 
the lateral ventricles, the subgranular zone (SGZ) of the dentate gyrus in the hippocampus, and the subcallosal zone (SCZ), 
located in the limit between the corpus callosum and the hippocampal formation. The discovery of these three neurogenic 
niches has gained much interest in the field because they may be a therapeutic alternative in neural regeneration and neu-
rodegenerative disorders. In this review, we describe in brief all these regions and explain their potential impact on solving 
some neurological conditions.
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Introduction

From the first descriptions made by Altman (1962) refer-
ring to the birth of neurons in the adult mammalian brain to 
subsequent studies that demonstrate the presence of multi-
potential neural stem cells that generate in vivo neurons 
and oligodendrocytes in specific neural niches (Kriegstein 
and Alvarez-Buylla 2009), the study and manipulation of 
endogenous neural progenitors have generated a growing 
interest in regenerative medicine to fight against neurode-
generative disorders. However, plenty of questions remain 
to be elucidated about the mechanisms that regulate the pro-
liferation, differentiation, function, and self-renewal of these 

multipotential neuronal cells, as well as the design of the 
appropriate techniques for their manipulation both in vitro 
and in vivo.

In mammals, including non-human and human primates, 
two of the adult brain's most studied neurogenic regions are 
the ventricular-subventricular zone (V-SVZ) and the sub-
granular zone (SGZ). The V-SVZ is located along the lateral 
ventricles as a thin layer that lies between the ventricular 
space and the brain parenchyma, whereas the SGZ is located 
between the hilus and the granular layer of the dentate gyrus 
within the hippocampal formation (Obernier and Alvarez-
Buylla 2019). Most recently, a third proliferative niche, the 
subcallosal zone (SCZ), has been described and consists of 
small islets located between the corpus callosum and the 
CA1 and CA2 regions of the hippocampus (Seri et al. 2006; 
Kim et al. 2016). Adult neural stem cells have been iso-
lated and purified in these three regions. These cells retain 
their astrocytic characteristics and multipotentiality that, in 
addition to self-renewal, give rise to precursors that differ-
entiate into the main neural cell lines (Doetsch et al. 1999; 
Menn et al. 2006; Seri et al. 2006). These characteristics 
are preserved because the precursor cells are immersed in a 
microenvironment that provides the necessary nutrients and 
signals to keep them in a quiescent state and regulate their 
proliferation. Several elements of the extracellular matrix, 
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cerebrospinal fluid, vascular system, etc. have been involved 
in this process (Li and Guo 2020). In the adult human brain, 
these three regions have also been described, but to date, 
only from the V-SVZ and SGZ has it been possible to iso-
late neural stem cells (Eriksson et al. 1998; Gonçalves et al. 
2016) and there is currently no study that has described the 
isolation of neural stem cells in the human SCZ.

Under experimental conditions, neural progenitor cells 
obtained from these regions have been used in experimental 
protocols to generate new therapeutic alternatives for degen-
erative processes in the central nervous system (CNS), such 
as cerebral ischemia, multiple sclerosis, Alzheimer's dis-
ease, and Parkinson's disease, among others. Therefore, a 
crucial element to achieving the manipulation and isolation 
of neural stem cells is the knowledge of the cytoarchitectural 
organization and the molecular signals involved in regulat-
ing brain germinal niches. Herein, we describe the cellular 
composition and anatomical location of the three niches in 
the postnatal brain of rodents. Although we also described 
some findings discovered in the human brain.

The ventricular‑subventricular zone (V‑SVZ) 
of the lateral ventricles

The V-SVZ is a thin layer located adjacent to the walls 
of the lateral ventricles of the brain (Doetsch et al. 1997; 
García-Verdugo et al. 1998), which is the main adult neu-
rogenic region in the adult brain (Alvarez-Buylla and 
Garcia-Verdugo 2002). This region derives from the ven-
tricular zone (VZ), which also originates the ganglionic 
eminences during embryonic development. Thus, the adult 
V-SVZ contains multipotential cells that share functional 

and biochemical properties with the neuroepithelium 
(García-Verdugo et  al. 1998). The cytoarchitecture of 
V-SVZ is composed of ependymal cells (type-E cells) that 
form a layer that delimits the parenchyma of the ventricu-
lar cavity (Fig. 1). Two types of ependymal cells have been 
described: type E1 and type E2. Type E1 cells have multi-
ple cilia in the ventricular space, and their beating estab-
lishes the movement of the cerebrospinal fluid. Ependymal 
cells also serve as a “cellular filter” for brain molecules 
and facilitate the dispersion of neural messengers. Type E2 
cells have an elongated basal body with one or two cilia, 
comprise around 5% of the cell population, and have been 
involved in controlling the proliferative stage of neural 
precursors (Mirzadeh et al. 2008).

Beneath the layer of type E cells, other precursors called 
type-B cells are distributed in the V-SVZ. Two subtypes 
of type-B cells have been described in this region: type-
B1 and type-B2 cells (Doetsch and Alvarez-Buylla 1996). 
This categorization is based on the functional properties 
and molecular markers of these cells. Hence, type-B1 cells, 
which express radial-glia cell markers, are known as the 
neural stem cells of V-SVZ (Fig. 1), whereas the cells that 
express typical astrocytic markers are classified as type-B2 
cells (Morshead et al. 1994; Doetsch et al. 1999). Type-B1 
cells give rise to rapidly dividing cells known as transit 
amplifying cells, or type-C cells, which are in close con-
tact with the chains of migrating neuroblasts (Cebrian-Silla 
et al. 2021) and local blood vessels (Snapyan et al. 2009; 
Fujioka et al. 2019). Some proteins that regulate the func-
tion of type-B1 and type-C cells throughout this neurogenic 
process include epidermal growth factor (EGF), insulin-like 
growth factor 2 (IGF-2) (Lim and Alvarez-Buylla 2016), 
neuroglobin (Haines et al. 2013), among others.

Fig. 1   Three-dimensional representation of the ventricular-subven-
tricular zone (V-SVZ). This neurogenic region contains two types of 
ependymal cells or type-E cells (E1 and E2) that form the first layer 
of this region. Note the difference between the cilia of both type-E 
cells. Beneath the ependymal layer, clusters of type-B1 and -B2 
astrocytes (blue) are distributed along the ventricular wall. Type-B1 

cells are neural stem cells and can be identified by their radial-glia-
like processes that contact blood vessels (BV). Type-B1 cells gener-
ate transit-amplifying cells referred to as type-C cells (green). Type-C 
cells, in turn, give rise to migrating neuroblasts (type-A cells—pink) 
that will reach the olfactory bulb to differentiate in mature interneu-
rons. Blood vessel (BV); cortex (Ctx); striatum (Str)
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Type-C cells give rise to migrating neuroblasts, also 
known as type-A cells, which are identified with migrating 
cell markers such as drebrin, doublecortin, PCA-NCAM, 
β-tubulin, and others (Sonego et  al. 2015). The rodent 
V-SVZ neuroblasts migrate tangentially via the rostral 
migratory stream (RMS) until reaching the olfactory bulb, 
where they migrate radially and differentiate in olfactory 
interneurons (Doetsch and Alvarez-Buylla 1996; Bressan 
and Saghatelyan 2021). Most of the V-SVZ neuroblasts 
differentiate into glomerular interneurons (~ 95%) and the 
rest of these new neurons are incorporated into the periglo-
merular region. In both subregions of the olfactory bulb, 
V-SVZ-derived interneurons produce gamma-aminobutyric 
acid (GABA) (Lois and Alvarez-Buylla 1994). However, 
in the periglomerular region, a small percentage of these 
new interneurons (~ 3%) release dopamine (Höglinger et al. 
2014), and another subpopulation appears to be able to dif-
ferentiate into glutamatergic subtypes (less than 2%) (Brill 
et al. 2009). These novel interneurons seem to participate in 
olfactory discrimination, learning, and the perception of new 
olfactory memories. In humans, the RMS is only observed 
during fetal development and the early stages of postnatal 
life (Sanai et al. 2004; Guerrero-Cázares et al. 2011; Huang 
et al. 2020). Nevertheless, the differentiation pattern of 
these neuronal precursors may represent a promising tool 
for manipulating endogenous cells that can be used for cell-
based therapies.

The subgranular zone (SGZ) of the adult 
hippocampus

The hippocampus is involved in the acquisition of episodic 
and declarative memories. The hippocampal formation has 
several subregions: CA1, CA2, CA3, hilus, subiculum, and 
dentate gyrus (DG). In the DG, there is a thin layer of cells 
referred to as the SGZ that is located between the granule 
cell layer and the hilus. The SGZ is a neurogenic region 
that comprises a niche of primary cells, immature precur-
sors, and a permissive microenvironment, which help gen-
erate new neurons in rodents (Altman 1962; Obernier and 
Alvarez-Buylla 2019), shrews (Gould et al. 1997), macaques 
(Kornack and Rakic 1999) and humans (Eriksson et al. 1998; 
Kominami et al. 2023). Around 250,000 cells are incorpo-
rated into the rat dentate gyrus per month (Cameron and 
McKay 2001). However, these authors state that not all these 
cells survive for long periods; thus, under naturalistic condi-
tions, the number of new neurons that remain in the DG after 
a month might be around 138,000 (6% of its total volume).

The neural stem cells of the SGZ region maintain self-
renewal characteristics, and under in  vitro conditions, 
they can differentiate into neurons, astrocytes, and oligo-
dendrocytes (Palmer et al. 1997; Seri et al. 2004). These 

multipotential cells are known as type-1 hippocampal astro-
cytes (Gonçalves et al. 2016) or type-B cells (Seri et al. 
2004), which divide and give rise to local migrating neuro-
blasts also called type-2 cells (Fig. 2). Type-2 cells display 
some morphological characteristics and molecular markers 
during their differentiation process, which help categorize 
them as type-2a and type-2b (Gonçalves et al. 2016). Type-
2b cells continue their fate specification process, leading 
to type-3 neuroblasts that differentiate into granule neurons 
(type-G cells) (Seri et al. 2004; Gonçalves et al. 2016). Dur-
ing this stage, type-3 cells move a small distance within DG 
layers under the influence of stromal cell factor 1 (SDF-1) 
(Catavero et al. 2018) and project their axons to the CA3 
region to establish dendritic synapses with the entorhinal 
cortex (Hastings and Gould 1999). Most of these newborn 
neurons are glutamatergic, and only a small subpopulation 
is GABAergic (Abrous et al. 2005). Some of the molecules 
involved in the neurogenic process of the adult hippocam-
pus include brain-derived growth factor (BDNF), vascu-
lar growth factor (VEGF), N-methyl-d-aspartate (NMDA) 
receptor, glutamate, GABA, and serotonin, among others 
(Liu et al. 2003; Aimone et al. 2014; Gonçalves et al. 2016).

Hippocampal neurogenesis is regulated by multiple com-
ponents such as stress, sleep problems, exercise, inflamma-
tion, and tactile deprivation (Gonzalez-Perez et al. 2018; 
Ibarra-Castañeda et al. 2022). Hence, this region has been 
primarily related to spatial learning, spatial mapping, 
memory encoding, and navigational skills. However, some 
authors have proposed that hippocampal neurogenesis plays 
a role as a regulator of emotional processes and may be 
involved in the pathological process of depression (Toda 
et al. 2019).

Two main hypotheses have been generated about the 
function of hippocampal neurogenesis. One of them sug-
gests that new neurons play an important role in the encod-
ing, storage, and recall of new memories. Hence, the pro-
cess favors perhaps through synaptogenesis, either by these 
new connections reinforcing the functional integration of 
existing neurons or by forming new connections (Zhao 
et al. 2008). The second theory indicates that neurogenesis 
modulates emotional aspects because the hippocampus is 
one of the structures most affected in affective disorders, 
such as depression (Denoth-Lippuner and Jessberger 2021), 
and this brain region has significant connections with other 
regions related to emotional control, such as the amygdala 
and nucleus accumbens (O'Donnell and Grace 1995). How-
ever, neurogenesis cannot be related solely to mood control 
because the decrease in hippocampal neurogenesis by itself 
did not cause depressive-like behavior (Samuels and Hen 
2011). Thus, the functional relevance of newborn hippocam-
pal neurons has been implicated in many processes, such 
as resilience, stress remission, pattern separation, memory 
formation, and learning.
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The subcallosal zone (SCZ)

The SCZ is the germinal layer most recently discovered. 
In vitro, SCZ progenitor cells can generate the three main 
neural lineages: astrocytes, oligodendrocytes, and neurons 
(Seri et al. 2006). However, in vivo, this region only seems 
to produce glial cells (astrocytes and oligodendrocytes) 
(Seri et al. 2006). The SCZ is located on the borderline 
between the corpus callosum and the dorsal hippocam-
pus. This region is generated during neural development 
because of the wall collapse of the embryonic ventricular 
zone. Although this region may be considered a dorsome-
dial and caudal extension of the V-SVZ, the SCZ is not 
associated with the ventricular system and has no con-
nectivity with the SGZ or lateral ventricles of the ven-
tral hippocampus (Fig. 3). Instead, this region consists of 
small islets or cavities that contain cerebrospinal fluid, 
and its cellular organization differs slightly from those 
described for the V-SVZ and SGZ (Fig. 3). Ultrastruc-
tural analysis by electronic microscope indicates that the 
SCZ contains type-E, type-B, type-C, and type-A cells. 
Type-E cells of the SCZ have a 9 + 2 arrangement of 
microtubules, although unlike those located in the V-SVZ, 
these are frequently found contacting both myelinated and 

unmyelinated axons of the corpus callosum and hippocam-
pus (Seri et al. 2006).

In vivo, type-B cells generate type-C cells that, in turn, 
give rise to type-A cells that express PSA-NCAM but, unlike 
the type-A cells of the V-SVZ, these cells do not form chains 
to migrate and give rise to glia and oligodendrocytes that are 
incorporated into the neighboring white matter (Seri et al. 
2006). However, in rodents that do not express the pro-apop-
totic Bax protein, the SCZ appears to be able to generate two 
types of cells that express NeuN, a mature neuron marker 
(Kim and Sun 2013). Interestingly, these NeuN-positive cells 
derive from a precursor cell that expresses the zinc-binding 
transcription factor sp8 (Kim and Sun 2013). Although the 
molecular mechanisms that regulate the SCZ progenitor 
cells are not well known, some transcription factors have 
been highly expressed in this region, such as HOPX, NR2F2, 
ZIC2, and ZIC5 (Kim et al. 2017). In summary, under physi-
ological conditions, the SCZ is responsible for giving rise 
to oligodendrocytes that populate the corpus callosum, 
and their function has been related to myelin renewal and 
remyelination processes in vivo (Seri et al. 2006; Kim et al. 
2016). Hence, these properties make the SCZ a region with 
potential in regenerative medicine to treat demyelinating 
diseases.

Fig. 2   Schematic representation of the cytoarchitecture of the neu-
rogenic region SGZ. The region comprises multipotential astrocytes 
or type1 cells also referred to as type-B (blue) that, in turn, can be 
classified into two subtypes Type-1 (type-B1 cells) and horizontal 
astrocytes (hA). Type-1 cells express radial-glia-cell and astrocyte 
markers, whereas horizontal astrocytes do not exhibit radial-glia-cell 
markers. Radial astrocytes are the neural stem cells that give rise to 

type-2 cells. As type-2 cells mature, they can be classified into two 
subtypes according to their morphological differences and neuronal 
markers: type-2a and type-2b. Type-2b cells continue their fate speci-
fication process and give rise to type-3 cells that, in turn, differenti-
ate into functional granular neurons (G cells) that establish synaptic 
connections with the CA3 region and entorhinal cortex. Blood vessel 
(BV); cortex (Ctx); hippocampus (Hyp)
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Perspectives in regenerative medicine

The main biological function of the three neuron-gliogenic 
niches (the subventricular, subgranular, and subcallosal 
zones) is to preserve the cellular homeostasis of neural tissue 
and, depending on the demands of the brain, these regions 
can generate new neurons and glial cells that help repair the 
cerebral parenchyma. Both adult neurogenesis and oligoden-
drogenesis have an exquisite mechanism to control the born 
of new cells and their incorporation into functional circuits. 
However, the role of these neural progenitors is one of the 
most intriguing questions in neurobiology, but the evidence 
suggests that these newborn cells are required for preserving 
neural plasticity.

Experimental evidence in rodents indicates that V-SVZ 
neural progenitors may be involved in the pathogenesis of 
Parkinson’s disease (PD) and Huntington’s disease (HD). 
In the V-SVZ of patients with PD, a significant reduction 
of proliferating precursor cells has been found in this region 
(Höglinger et al. 2004; O'Keeffe et al. 2009). Transgenic 
animal models of PD (a-syn, parkin, leucine-rich repeat 
kinase 2, DJ-1, and PINK1) revealed impairments of prolif-
erative activity and survival of newly generated neurons. In 
patients with HD, neuroblast-like cells were observed near 
the caudate nucleus (Curtis et al. 2005). This phenomenon of 
neuroblasts migrating toward the striatum was also reported 
in transgenic HD mice as a compensatory response against 
striatal neurodegeneration (Phillips et al. 2005; Kohl et al. 
2010). For this reason, some authors propose that the V-SVZ 
progenitors can be redirected to the basal ganglia via BDNF 
or noggin overexpression to increase the production of new 

neurons in the ventricular wall and promote striatal plasticity 
and motor improvement (Winner and Winkler 2015).

Hippocampal neurogenesis appears to have a role in psy-
chiatric disorders, including anxiety, addiction, depression, 
and schizophrenia. Depressive disorders have been related 
to impaired hippocampal neurogenesis because antidepres-
sants affect the level of SGZ neurogenesis (Miller and Hen 
2015). Inherited schizophrenia is associated with a muta-
tion in the DISC1 gene; strikingly, experimental ablation of 
DISC1 in mice reduces hippocampal neurogenesis, alters 
granule cell positioning, and impairs hippocampus-depend-
ent behavior in rodents (Duan et al. 2007; Kvajo et al. 2008). 
On the other hand, temporal lobe epilepsy has been associ-
ated with an increase in neuronal excitability and aberrant 
neurogenesis in the dentate gyrus, probably because sei-
zure activity results in aberrant migration and connectivity 
of newborn cells (Parent et al. 1997). Nevertheless, more 
research is needed to know how hippocampal neurogenesis 
can be regulated, and how cell turnover changes throughout 
development.

Brain ischemia and hypoxia may represent additional 
therapeutic targets for the use of neural progenitors. Neu-
roglobin is a hypoxia-inducible, neuroprotective protein 
related to hemoglobin. This protein is concentrated in 
the mitochondria-containing areas of neurons and neural 
stem cells, and its distribution correlates with the oxygen 
consumption rates of neural cells (Burmester et al. 2007). 
A reduction in mitochondria and neuroglobin has been 
described in the aging brain (Sun et al. 2001), which may 
increase the vulnerability to hypoxia and neural degeneration 
observed in the elderly. Neuroglobin seems to have a role 

Fig. 3   Schematic representation of the cytoarchitecture of the neuro-
genic region SCZ. This region contains type-E, type-B, type-C, and 
type-A cells. Cellular composition is somehow similar to the SGZ 
and V-SVZ, although anatomically is not associated with them. This 
region comprises multipotential astrocytes (type-B or type-I cells—
blue) which generate type-C cells (green) that, in turn, give rise to 

type-A cells (red). Ciliated cells (type-E cells—yellow) enclose cavi-
ties filled with cerebrospinal fluid. Type-A cells express markers of 
migrating oligodendrocytes that, upon differentiation, help preserve 
the population of mature oligodendrocytes and myelin sheaths. Blood 
vessel (BV); cortex (Ctx); hippocampus (Hyp)
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in neurodevelopment and may promote neuronal survival 
under hypoxic conditions (Sun et al. 2001; Hümmler et al. 
2012). Interestingly, this protein is expressed early during 
neuronal differentiation of human embryonic stem cells and 
in migrating neuroblasts derived from the V-SVZ of adult 
rats (Haines et al. 2013), but its role in the regenerative pro-
cess remains to be elucidated.

The SCZ is genetically different from the other neuro-
genic niches (Kim et al. 2017), which may explain why 
this region is primarily involved in the production of oligo-
dendrocyte precursors that help preserve oligodendrocyte 
renewal and myelination in the corpus callosum (Morrison 
et al. 2020). A recent report suggests this region is regulated 
by the Mycn gene, an oncogene amplified in brain tumors 
(Chen and Guan 2022), which may have important impli-
cations for tumorigenesis or as a therapeutic target against 
brain tumors.

In summary, possible treatment with exogenous cell 
transplants in a damaged or deteriorated brain would rep-
resent a significant advance to improve the quality of life 
in people suffering from traumatic brain injuries, ischemia, 
neurological pathologies, mood disorders, or degenerative 
diseases. Yet, the manipulation of the environment of these 
niches may also cause some potential problems, including 
the conversion of these multipotent progenitors into malig-
nant cells, benign hyperplasia, or non-functional cells, which 
is a challenge to be solved before neurogenic progenitors can 
be used for clinical purposes. Thus, the best way to promote 
a healthy brain is based on preventive actions while we keep 
looking to the horizon until we get better treatments.
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