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Abstract
Temporal lobe epilepsy (TLE) is the most common type of epilepsy in humans. Cognitive impairment and memory con-
solidation problems are common among TLE patients. To understand the changes in the cellular process of memory in 
TLE, we studied the long-term depression (LTD) in Schaffer-collateral (Sc) CA1 synapses in an epilepsy model. Long-term 
potentiation (LTP) was investigated in patient samples and animal models by several groups, but LTD was not studied with 
the same interest in epilepsy research. Here we induced epileptiform activity in rat hippocampal slices using magnesium-
free high-potassium (7.5 mM K +) artificial cerebrospinal fluid (HK-ACSF) and characterized the LTD in Sc-CA1 synapses. 
We found that epileptiform activity abolished/impaired LTD and depotentiation in the Sc-CA1 synapses. In control slices, 
application of NMDA (30 μM for 3 min) induced chemical LTD (c-LTD) in Sc-CA1 synapses, whereas epileptiform activity 
induced slices showed slow onset potentiation. Induction of LTD using 1 Hz, 900 pulses yielded a similar outcome as c-LTD. 
Both forms of LTD were NMDA receptor dependent. In addition, we found that the polarity changes in the synaptic plastic-
ity in epileptiform-induced slices were blocked by GluN2B antagonists ifenprodil and Ro 25–6981. Our data suggest that 
epileptiform-induced metaplasticity inhibits LTD in Sc-CA1 synapses. We provide new insight into the cellular mechanism 
of memory formation during epilepsy.

Keywords LTD · Metaplasticity · NMDA receptors · GluN2B · Synaptic plasticity · Temporal lobe epilepsy · 
Depotentiation

Introduction

Epilepsy is one of the most common brain disorders, which 
is estimated to affect about 1% of the world population 
(Tripathi et al. 2012; Stafstrom and Carmant 2015; Devin-
sky et al. 2018). This neurological disorder is caused by 

hyper-synchronisation of neuronal activity in the brain and is 
characterized by spontaneous recurrent seizures. The process 
that leads to epilepsy (epileptogenesis) involves spatial and 
temporal changes in the structure and function of a neuron 
and/or neuronal networks (Heinemann 2004; Antonio et al. 
2016; Klein et al. 2018). Epilepsy patients and experimental 
models exhibited impairment in memory and cognitive tasks 
(Baker et al. 2011; Hermann et al. 2021). The real cause 
of memory and cognitive impairment in epilepsy is still 
unknown. The impairments have a multidimensional aspect; 
recurrent seizures, antiepileptic drugs, surgical therapy, and 
psychosocial matters (Aldenkamp and Bodde 2005; Hoppe 
et al. 2007; Klein et al. 2018). Many studies show that cog-
nitive impairment already exists at the time of a new diag-
nosis of epilepsy, which imparts that seizures itself might 
have generated cognitive impairment (Baker et al. 2011). 
Neuropathological investigation by many groups revealed 
neuronal cell loss, astrogliosis, and mossy fiber sprouting 
in the hippocampus of experimental models as well as in 
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TLE patient brain samples (Comper et al. 2017; Devinsky 
et al. 2018). But neurodegeneration was not observed in the 
animal model of febrile seizure, which points out that epi-
leptogenesis can also happen without neuronal loss.

Understanding the cellular and molecular mechanism of 
impaired memory formation in epilepsy is the key for treat-
ing the comorbidities of the disease. At the cellular level, 
memory is encoded via the changes in synaptic plasticity. 
The changes in the synaptic plasticity in the neuron and/or 
neuronal networks attribute to changes in the function of 
the brain. Activity-dependent synaptic plasticity long-term 
potentiation (LTP) and long-term depression (LTD) are the 
extensively studied cellular models of learning and memory 
(Malenka and Bear 2004; Kemp and Manahan-Vaughan 
2007; Collingridge et al. 2010; Sheng and Ertürk 2014; 
Vose and Stanton 2017; Nicoll 2017) in the central nervous 
system,(CNS). Impairment in LTP is well documented in 
epilepsy but the role of LTD is not investigated at the same 
level in epileptic tissue. This is due to the fact that LTP 
was regarded as the mechanism behind memory formation 
and storage. The role of LTD in learning and memory and 
bidirectional synaptic plasticity is becoming clearer that it 
is necessary for memory formation and storage in the hip-
pocampus (Kemp and Manahan-Vaughan 2007; Dietz and 
Manahan-Vaughan 2017). Bidirectional plasticity is essential 
for tuning plasticity in the brain. How the synaptic changes 
happening during epileptiform activity contribute to bidirec-
tional plasticity can be an important aspect of investigation. 
Here using an in vitro epilepsy model, we studied LTD in 
Sc-CA1 synapses. Investigating LTD in the epileptic model 
will bring new molecular/synaptic information regarding 
cognitive impairments in patients with epilepsy.

Methods

All animal experimental procedures were in accordance 
with the institutional animal ethics committee, SCTIMST, 
Trivandrum, Kerala, India-SCT/ABS/IAEC-83/18, dated 
11/03/2014 and PGIMER, Chandigarh, India-106/IAEC/730 
dated 06/02/2020. We used Wistar rats of both sexes aged 
between P12–P28. The rats were anesthetized with isoflu-
rane, and brains were removed carefully after decapitation. 
250–500 µm-thick transverse hippocampal slices were pre-
pared from the brain in ice-cold ACSF continuously bub-
bled with 95%  O2 and 5%  CO2 mixture (carbogen) using 
the vibratome (Tedpella, USA). The slices were incubated 
in an incubation chamber for 30 min at 32 °C in ACSF 
containing (in mM): 125 NaCl, 25  NaHCO3, 2.5 KCl, 1.21 
 NaH2PO4.2H2O, 1  MgSO4, 10 D-glucose, 2  CaCl2, bubbled 
with carbogen (pH 7.4) (Punnakkal and Dominic 2018). 
After 30 min of incubation, the slices were kept at room 
temperature in ACSF and used for the experiments.

High potassium (HK)-ACSF containing (in mM): 125 
NaCl, 25  NaHCO3, 7.5 KCl, 1.21  NaH2PO4.2H2O, 10 
D-glucose, 2  CaCl2 (pH 7.4) was used to induce epileptiform 
activities in the brain slices as described earlier (Punnakkal 
and Dominic 2018). Drugs (AP5, NMDA, TCN-201, Ro 
25-6981, and Ifenprodil) were dissolved in ACSF before per-
fusion. All chemicals used for ACSF were purchased from 
Merck. TCN 201 was from Sigma. The rest of the drugs 
were from Abcam. The antagonists AP5, TCN201 (Edman 
et al. 2012) Ro 25-6981and ifenprodil (Fischer et al. 1997) 
were perfused with ACSF.

The slices were placed in a recording chamber for the 
experiments and were kept alive by continuous perfusion of 
carbogen bubbled ACSF. The flow rate of the perfusion sys-
tem was maintained at ~ 1.5–2 ml/min. Glass pipettes were 
made from borosilicate glass capillaries using a PC-10 puller 
from Narishige, Japan. The glass pipettes filled with ACSF 
were used for stimulating Sc-pathway and recorded field 
potentials using AM systems microelectrode amplifier 
(model 1800). Schaffer collateral pathway was stimulated 
using AM systems isolated pulse stimulator (model 2100). 
The LTP was induced by the application of high-frequency 
stimulus (HFS) (100 Hz stimulus, 3 pulses, 10 s interval) 
(Malenka and Bear 2004; Müller et al. 2013). The LTD was 
induced by chemical method (30 µM NMDA application for 
3 min, cLTD) or electrically by delivering low-frequency 
stimulation (LFS) (900 pulses of 1 Hz stimulus) (Kamal 
et al. 1999; Malenka and Bear 2004; Lanté et al. 2006; 
Collingridge et al. 2010). The degree of LTD/LTP/depoten-
tiation was measured as an average of the peak amplitude of 
the last 3 min of the recording post-LTD/LTP/depotentiation 
protocol. The signals were filtered between 1 Hz to 5 kHz 
and then acquired using NI PCI 6221 data card. The data 
were recorded and analyzed using WinWCP V5.5.5 (Strath-
clyde Electrophysiology Software).

Whole cell patch clamp experiments were done in CA1 
pyramidal neurons. Patch pipettes had a resistance of 4–6 
MΩ and were filled internal solution containing: (in mM) 
130 Cs-methanesulfonate, 5 CsCl, 5 EGTA, 1 Mg-ATP, 
0.1 Na-GTP, 10 HEPES, 5 QX-314 (pH 7.4, adjusted with 
CsOH, 280–300 mOsm). Spontaneous excitatory postsyn-
aptic currents (EPSCs) and inhibitory postsynaptic currents 
(IPSCs) were recorded from CA1 pyramidal neurons in both 
control and epileptiform-induced slices. The cells were held 
at − 70 mV for recording spontaneous EPSCs and at 0 mV 
for recording spontaneous IPSCs for at least 5 min. A mini-
mum 2 min recording duration was used for analysis. The 
recordings were made using HEKA double patch, EPC10 
amplifier and Patch master software. The signals were fil-
tered at 2.9 kHz and sampled at 10 kHz. The peaks were 
analyzed using Minianalysis software (Synaptosoft, USA).
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In vitro epilepsy model

Hippocampal slices were transferred to the recording cham-
ber, perfused with ACSF bubbled with carbogen. Glass elec-
trode filled with ACSF was placed in the CA1 region and 
recorded baseline activity. After recording the control activ-
ity, epileptiform activity was induced in the slices by per-
fusing 7.5 mM KCl and zero magnesium containing ACSF 
(HK-ACSF). We used this model, because the increase in 
potassium during epilepsy is a natural process and to avoid 
interference of drugs during plasticity experiments. Epilep-
tiform activity was observed in 8–12 min after the perfusion 
of HK-ACSF (Fig. 2A) as reported earlier (Punnakkal and 
Dominic 2018). After confirming a stable epileptiform activ-
ity in slices for 15 min, it was shifted to normal ACSF then 
the slices were studied for synaptic plasticity in the Sc-CA1 
synapses.

Statistical analysis

All data were pooled across animals and were presented as 
mean ± SEM. Statistical significance was evaluated using 
a two-tailed Student’s t test or ANOVA. ***p < 0.0001, 
**p < 0.005, *p < 0.05. N represents the number of animals 
and n the number of slices/experiments.

Results

Epileptiform activity impaired chemical LTD 
in hippocampal Sc‑CA1 synapses

We recorded excitatory postsynaptic field potentials (EPSPs) 
from stratum radiatum of CA1 region by stimulating the 
Schaffer collaterals with glass electrodes filled with ACSF. 
After recording a stable base line EPSPs for 5 min, LTD 
was induced in the slices by applying NMDA 30 μM for 
3 min (Kamal et al. 1999; Malenka and Bear 2004; Huang 
and Kandel 2007; Collingridge et al. 2010). The applica-
tion of NMDA induced a stable LTD (Fig. 1, filled circle) 
(0.81 ± 0.010, n = 7, N = 5, P < 0.001) in control slices and 
no change in EPSPs was observed in the slices without 
NMDA application (Fig. 1, open circle) (0.98 ± 0.011, (n = 4, 
N = 2). We repeated the experiments in slices after observing 
the epileptiform activity (Punnakkal and Dominic 2018). In 
epileptiform-induced slices, application of NMDA showed 
an impaired LTD (Fig.  2C, open circle). Interestingly, 
we observed a slow onset potentiation lasted during the 
entire recording period. The LTD-induced in control slices 
(Fig. 2C, filled circles, LTD data from Fig. 1 for comparison) 
and epileptiform-induced slices were significantly different 
(Fig. 2C) (0.81 ± 0.010, n = 7, N = 5 vs 1.21 ± 0.014, n = 7, 
N = 5, p < 0.0001). Instead of inducing LTD, the synaptic 
plasticity changed its sign and induced LTP.
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Fig. 1  Chemical LTD induced in Sc-CA1 synapses in hippocampal 
slices. Summary of the cLTD induced in Sc-CA1 synapses. Applica-
tion of 30 μM NMDA for 3 min induced LTD in Sc-CA1 synapses 
in hippocampal slices (filled circles), whereas no LTD was observed 
in controls (open circles) without NMDA application. Representative 
traces (black—before LTD induction, grey—after LTD 25–30  min, 

averaged traces) show the LTD induction in NMDA perfused slices, 
but no LTD was observed in control slices. Scale bars 0.2  mV and 
5 ms. The bar diagram summarizes the LTD induced in Sc-CA1 syn-
apses. Error bars indicate the standard error of the mean. Values are 
means ± SEM and statistically significant differences (unpaired t test, 
two-tailed) are indicated as *** means p < 0.0001
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Epileptiform activity impaired depotentiation 
in the hippocampal slices

Hippocampal Sc-CA1 synapses are known for their bi-
directional plasticity (Wagner and Alger 1996). LTP and 
LTD are shown to exist in the same synapses (Park et al. 
2019). Here we induced LTP in Sc-CA1 synapses using high 
frequency stimulation (100 Hz, 3 times, 10 s interval) in 
the control slices as well as in epileptiform induced slices 
(Fig. 3A, filled and open circles, respectively) (1.29 ± 0.010, 
n = 6, N = 4 vs 1.44 ± 0.042, n = 6, N = 5, p < 0.005) and sum-
mary of LTP was shown in Fig. 3B. The LTP induced in 
epileptic slices showed a significant increase compared to 
control slices, which was matching with previous reports 
(Müller et al., 2013). After inducing LTP in control slices 
for 25 min, we depotentiated the synapses by bath apply-
ing 30 μm NMDA for 3 min into the slices. Application of 
NMDA, depotentiated the synapses to the base line value 
(Fig. 3A, filled circles) (1.06 + 0.016, n = 6, N = 4) in control 
slices, but in epileptiform-induced slices NMDA applica-
tion depotentiated the synapses (for about 10–15 min), but 
gradually started increasing the amplitude and reversed to 
the initial potentiation by 25–30 min (Fig. 3A, open circle) 

(1.23 ± 0.013, n = 6, N = 5, p < 0.0001) and the summary 
is shown in Fig. 3C. These experiments showed that the 
epileptiform activity determines the direction of synaptic 
plasticity.

LTD induced with 1 Hz, 900 pulses stimulation 
was abolished in epileptic hippocampal slices

Next, we induced LTD in hippocampal Sc-CA1 using 
the protocol 1 Hz, 900 pulses (Sajikumar and Frey 2003; 
Lanté et al. 2006; Collingridge et al. 2010). This protocol 
applied for 15 min induced comparable LTD in control slices 
(Fig. 4A, filled circles) (0.77 ± 0.010; n = 5, N = 4). But in 
slices with epileptiform activity, 1 Hz LFS protocol induced 
LTP, instead of LTD (Fig. 4A, open circles) (1.28 ± 0.013, 
n = 10, N = 8, p < 0.0001). These experiments confirm the 
change in the property of the Sc-CA1 synapses after epi-
leptiform activity (Rajasekaran et al. 2013). This pointed 
out that epileptiform activity might have changed the excit-
ability of the synapses. To characterize the 1 Hz LTD in 
Sc-CA1 synapses, we applied NMDA receptor antagonist 
MK801/AP5, which completely blocked the induction of 
LTD in the control as well as in the epileptic slices (Fig. 4A, 

Fig. 2  Protocol and summary of 
cLTD induced in epileptiform-
induced slices. A Schematic 
diagram of the protocol. B 
Example traces of field record-
ings, base line and epileptiform 
activity induced in slices by 
perfusing HK-ACSF. C cLTD 
induced in control slices (filled 
circles). cLTD protocol induced 
LTP in epileptiform-induced 
slices (open circles). Represent-
ative traces (black—before LTD 
induction, grey—after LTD 
induction 25–30 min, averaged 
traces) show the LTD induc-
tion in control slices and LTP 
in epileptiform-induced slices. 
Error bars indicate the standard 
error of the mean. Scale bars 
0.2 mV and 5 ms. Bar diagram 
summarizes the LTD in control 
and LTP induced in epilepti-
form induced slices. Values are 
means ± SEM and statistically 
significant differences (unpaired 
t test, two-tailed) are indicated 
as *** means p < 0.0001
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open squares, and 4D) (1.05 ± 0.00, n = 8, N = 5; 1.08 ± 0.01, 
n = 5, N = 3 for MK801 and AP5, respectively). This has 
been confirmed that the LTD induced in Sc–CA1 synapses 
was NMDA receptor dependent (Malenka and Bear 2004; 
Collingridge et al. 2010).

Change in synaptic plasticity 
in the epileptiform‑activated Sc‑CA1 synapses 
is GluN2B subtype dependent

We next asked the question whether NMDAR subtypes have 
any role in determining the direction of plasticity. For this 
purpose, we performed experiments using NMDA receptor 
subtype specific antagonists TCN 201(GluN2A specific), 
Ifenprodil and Ro 25-6981 (GluN2B specific) in epilepti-
form-induced slices. Induction of LTD in the presence of 
GluN2A-specific antagonist (TCN-201) produced LTP 
(Fig. 4B, open triangle) (1.24 ± 0.02, n = 4, N = 4). No differ-
ence was found when compared with the LTP induced in epi-
leptiform-induced slices via LTD protocol Fig. 4B (closed 

circle, data from 4A for comparison). This result suggests 
that the change in plasticity is not caused by GluN2A recep-
tors. To study the contribution of GluN2B, we induced 
LTD in the presence of Ifenprodil and Ro25-6981. Both the 
GluN2B antagonists inhibited the LTP induction (Fig. 4C, 
open squares ifenprodil; closed circle epi-data from 4A for 
comparison and Fig. 4D) (1.28 ± 0.013 vs 1.11 ± 0.01, n = 5, 
N = 3, p < 0.0001; 1.28 ± 0.01 vs 1.11 ± 0.02, n = 6, N = 3 
p < 0.0001) and it was comparable with AP5 (1.08 ± 0.01, 
n = 5, N = 3, p < 0.0001) effect in epileptiform-induced slices 
(Fig. 4D). Our experiments confirmed that GluN2B contrib-
utes to the change in the sign of the plasticity.

Epileptiform activity changed the inhibitory 
synaptic transmission in Sc‑CA1 synapses

To study whether the epileptiform activity changed the 
excitatory and inhibitory synaptic transmission, we con-
ducted single cell patch clamp experiments (Banerjee 
et al. 2013). Spontaneous excitatory postsynaptic currents 
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Fig. 3  Summary of the depotentiation in control and epileptiform 
induced slices. A HFS-induced LTP in control slices, following 
NMDA application induced complete depotentiation, in control 
slices (filled circles). In epileptiform-induced slices, HFS showed an 
increase in LTP, but NMDA application-induced LTD soon potenti-
ated to LTP (open circles).  Representative traces (black—before 
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traces). Error bars indicate the standard error of the mean. Scale 
bars 0.2 mV and 5 ms. B Bar diagrams summarize the LTP in con-
trol slices and epileptiform-induced slices. C Bar diagrams summa-
rize the depotentiation in control slices and impaired depotentiation 
in epileptiform-induced slices. Values are means ± SEM and statisti-
cally significant differences (unpaired t test, two-tailed) are indicated 
as **p < 0.005, *** means p < 0.0001
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(sEPSC) were recorded from CA1 pyramidal neurons at 
− 70 mv. We found no change in the amplitude (13.7 ± 0.42 
pA vs. 13.5 ± 0.35pA, n = 6, N = 5) and inter event interval 
(1.54 ± 0.122 s vs 1.47 ± 0.115 s, n = 6, N = 5) of the sEP-
SCs of control and epileptiform-induced slices (Fig. 5A). 
But when we studied the spontaneous inhibitory postsyn-
aptic currents (sIPSCs) at 0 mV in CA1pyramidal neurons 
there was a significant reduction in the peak amplitude 
(25.7 ± 1.20 pA vs 20.3 ± 0.97 pA, n = 5, N = 5, p < 0.005) 
as well as inter event interval (0.56 ± 0.05 s vs 0.36 ± 0.03 s, 
n = 5, N = 5, p < 0.005) (Fig. 5B). Picrotoxin perfusion con-
firmed the IPSCs were GABA A receptor currents. The 
cumulative probability distribution also showed a signifi-
cant difference in amplitude (Kolmogorov–Smirnov test, 
p < 0.005), and inter event interval (Kolmogorov–Smirnov 
test, p < 0.05) of sIPSCs. These experiments suggested a 
transformation of inhibitory GABA A currents in the epi-
leptiform activity-induced slices.

Discussion

In the present study, we unraveled a new aspect of LTD in 
the epilepsy model. LTD is a less explored area of research 
in epilepsy. Our results showed that LTD and depotentia-
tion were abolished/impaired in the hippocampal Sc-CA1 
synapses after the epileptiform activity. The data imply that 
metaplasticity was induced in the synapses during epilep-
tiform activity and inhibited LTD in the Sc-CA1 synapses. 
The LTD induced in these synapses was NMDA receptor-
dependent. Moreover, NMDA receptor subtype GluN2B was 
responsible for the impaired synaptic plasticity. So, targeting 
the GluN2B receptors may have a therapeutic value in treat-
ing cognitive impairments in patients with epilepsy.

In many epilepsy patients, memory impairments were 
documented in the first diagnosis itself (Baker et al. 2011). 
But how the seizures caused this impairment is still not clear. 
Studies mainly focused on LTP as a cellular memory model, 
neglecting LTD. Now the involvement of LTD in spatial 
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3345Experimental Brain Research (2022) 240:3339–3349 

1 3

memory and novelty detection is well recognized (Kemp 
and Manahan-Vaughan 2007). Here using LTD as a cellu-
lar memory model, we studied how epileptiform activity 
modulated the synaptic plasticity in Sc-CA1 synapses. In our 
study, LTD was abolished /impaired in epileptiform activity 
induced slices. In c-LTD, NMDA perfusion in the epilepti-
form activity-induced slices reduced the amplitude of EPSPs 
at the beginning but slowly potentiated to LTP at 25–30 min. 
To confirm the changes in synaptic plasticity in Sc-CA1 syn-
apses, we also studied LFS protocol 1 Hz, 900 pulses, which 
also induced stable LTD in control slices (Huang and Kandel 
2007; Collingridge et al. 2010), but LTD was abolished in 
epileptiform activity induced slices. These two experiments 
confirmed that LTD was impaired in Sc-CA1 synapses after 
epileptiform activity. These experiments clearly showed that 
how the seizures itself can impair synaptic plasticity and 
explains the memory impairment in patients with epilepsy.

NMDA receptors are important for Sc-CA1 LTP and 
LTD (Malenka and Bear 2004; Huang and Kandel 2007). In 
Sc-CA1 synapses, the polarity of the plasticity depends on 
the frequency, strength of the stimulations, and amount of 

calcium passed through the glutamate receptors (Deisseroth 
et al. 1995; Huang and Kandel 2007). In Sc-CA1 synapses, 
HFS stimulation produced LTP, whereas LFS produced LTD 
(Malenka and Bear 2004; Huang and Kandel 2007). Coan 
et al. 1989 found that a low concentration of magnesium 
solution blocked LTP using HFS, which is due to the tonic 
activation of NMDA receptors in low magnesium. In our 
studies, we used low magnesium to induce epileptiform 
activity but LTP and LTD experiments were carried out in 
normal ACSF. In the present study, we found an increase in 
LTP in epileptiform-induced slices as reported earlier (Mül-
ler et al. 2013). The reduced inhibitory GABA A currents 
explain the increase in LTP. Conditions during mild hypoxia, 
hypoglycemia, and increased ammonia caused tonic acti-
vation of NMDA receptors and impaired LTP (Zorumski 
and Izumi 2012). We are providing the data regarding LTD 
inhibition due to epileptiform activity. We have previously 
shown that the application of NMDA antagonists reduced 
epileptiform events in Sc-CA1 synapses (Punnakkal and 
Dominic 2018). The change in plasticity may point to the 
fact that a change in the excitability of the cells due to 

Fig. 5  Change in the inhibi-
tory currents in CA1 pyramidal 
neurons after epileptiform activ-
ity. A) Spontaneous excitatory 
postsynaptic currents recorded 
at − 70 mv (control—black; 
epileptiform activity-induced 
slices—grey, shown above). 
Below, the summary and 
cumulative distribution of 
the amplitude and inter-event 
interval of control (black) and 
epileptiform activity-induced 
slices (grey). B) Spontaneous 
inhibitory postsynaptic currents 
recorded at 0 mv (control—
black; epileptiform activity-
induced slices—grey, shown 
above). Below, the summary 
and cumulative distribution of 
the amplitude and inter-event 
interval of control (black) 
and epileptiform activity-
induced slices (grey) Values 
are means ± SEM and statisti-
cally significant differences 
(paired t test) are indicated as 
**p < 0.005, *p < 0.05. The 
cumulative probability distribu-
tion significance is measured as 
the Kolmogorov–Smirnov test

0

5

10

0 5 10 15 20
0

50

100

Amplitude (pA)

con
epi

0 5 10 15
0

50

100

Inter event interval (s)

0

500

1000

1500

2000

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

A
m

pl
itu

de
(p

A
) 

15

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

15 pA

896 ms

(A)

IE
I (

m
s)

 

(B)

0 1 2 3 4 5
0

50

100

Inter event interval (s)

0

200

400

600

800

**

*

IE
I (

m
s)

 

0 20 40 60 80 100 120
0

50

100

Amplitude (pA)

con
epi

0

10

20

30

**

**

A
m

pl
itu

de
(p

A
) 

C
um

ul
at

iv
e

Pr
ob

ab
ili

tyevitalu
mu

C Pr
ob

ab
ili

ty

43 pA

896 ms



3346 Experimental Brain Research (2022) 240:3339–3349

1 3

epileptiform activity, if so then LTP studies should show 
an increased LTP in epilepsy models and human studies. 
But that is not the case. LTP in epilepsy models showed 
varying results. In many cases, epilepsy reduced the LTP 
in brain areas (Kryukov et al. 2016; Lenz et al. 2017), and 
studies also showed an increase or impairment in LTP after 
epileptic activity (Zhou et al. 2007; Müller et al. 2013). In a 
study, an organotypic culture model showed impaired LTP 
and increased LTD after incubating the culture overnight 
with GABA receptor blockers (Abegg et al. 2004). These 
variations might be due to the complexity of the disease and 
to a lesser extent due to the experimental models and proto-
cols used to study LTP. More detailed studies are needed to 
explain these differences in synaptic plasticity in epilepsy 
models.

Many studies found that the prior state of the synapses 
determines the synaptic plasticity (Coan et al. 1989; Huang 
et al. 1992; Christie and Abraham 1992; Abraham 2008). 
The previous history of NMDA receptor activation deter-
mines the LTP threshold in the hippocampus (Coan et al. 
1989). When a weak tetanus (30 Hz) was followed by a high 
frequency LTP stimulation, LTP was inhibited in the hip-
pocampus (Huang et al. 1992; Abraham 2008). The priming 
dependent inhibition of LTP was caused by NMDA recep-
tors, adenosine receptors, P38 mitogen activated protein 
kinases, and phosphatases (Abraham 2008). Increasing 
the cell excitability via beta adrenergic receptor activation 
primed the synapses and increased LTP induction in hip-
pocampal synapses (Cohen et al. 1999). We also found that 
epileptiform activity increased the magnitude of LTP com-
pared to the control slices. In the present study, the increase 
in LTP might be due to the reduction in the inhibitory GABA 
A currents (Fig. 5B). LTD studies are comparatively less 
in metaplasticity. A previous study showed that priming a 
low frequency stimulation (LFS) followed by LFS protocol 
in CA1 synapses enhanced LTD in hippocampal synapses 
(Mockett et al. 2002). In the present study, epileptiform 
activity impaired LTD in cLTD and abolished LTD in LFS 
protocol. Instead of inducing stable LTD, both protocols 
produced LTP. LTP is considered as a model for learning 
and memory. However, NMDA receptor activation and pro-
tein synthesis are some of the prerequisites for considering 
LTP as a physiological model for memory. In our study, the 
LTD protocol induced LTP in epileptiform-induced slices, 
here the LTP induced might not be activating the synapses 
in a physiological way and thus the observed LTP may not 
be linked to memory formation. Moreover, it might also 
interfere with the real mechanisms of synaptic plasticity. 
Another mechanism that may contribute to the memory 
impairment was the loss of bidirectional plasticity in epi-
leptiform-induced slices. The change in inhibitory GABA 
A currents in epileptiform-induced slices was also a factor 
needed to be counted for the impaired synaptic plasticity. 

The reduction in the amplitude of sIPSCs refers to a change 
in presynaptic and/or postsynaptic function. The change in 
presynaptic quantal release and/or reduced expression of 
GABA A receptors in postsynaptic membrane contribute to 
this reduction. Internalization of GABA A is one of the main 
causes of drug resistant epilepsy (Ragozzino et al. 2005; 
Goodkin et al. 2007). The presynaptic effect might be due 
to cannabinoid or opioid receptors. In hippocampus, not all 
interneurons (GABAergic) are modulated by cannabinoid 
receptors. The increase in quantal release frequency (inter-
event interval) may be an act of compensatory mechanism 
to protect the cell from over excitation and further damage. 
More detailed studies are needed to characterize the molecu-
lar pathways of LTD in epilepsy models.

The importance of NMDA receptors in learning and 
memory is well documented in the hippocampus (Sprengel 
and Single 1999; Tang et al. 1999; Malenka and Bear 2004; 
Wang et al. 2021). We investigated the role of NMDA recep-
tors in LTD of the in vitro epilepsy model. In control and 
epileptiform-induced slices, both LFS- and NMDA-induced 
LTD was blocked by NMDA receptor antagonists MK801/
AP5, which confirms the LTD induced was NMDA receptor 
dependent. GluN1 knock out mice showed impaired syn-
aptic plasticity and memory formation (Tsien et al. 1996). 
GluN2B overexpression enhanced learning and memory in 
mice. The GluN2B over expression induced enhanced LTP, 
but no change in LTD was observed in Sc-CA1 synapses 
(Tang et al. 1999). To study the impaired synaptic plas-
ticity in epileptiform induced slices, we perfused NMDA 
receptor subtype specific antagonists. The GluN2B-specific 
antagonists ifenprodil and Ro 25–6981 blocked the LTP 
induced by LFS protocol in epileptiform-induced slices. 
Whereas, the GluN2A specific antagonist TCN 201 failed 
to block the LTP in epileptiform activity induced slices. 
These results indicate that the changes in the plasticity in 
epileptiform activity induced slices were due to the change 
in the subtype composition of NMDA receptors. Change in 
the NMDA receptor subtype was reported in epilepsy mod-
els (Müller et al. 2013). Our previous study showed that 
the GluN2B antagonist reduced the epileptiform activity 
in neonatal hippocampal slices (Punnakkal and Dominic 
2018). Many studies explored the role of NMDA receptor 
subtype activation during synaptic plasticity and found that 
there is no subtype-dependent contribution to LTP in the 
hippocampus (Berberich et al. 2005; Weitlauf et al. 2005). 
LTD was also not found to be NMDA receptor subtype 
dependent in the hippocampus (Morishita et al. 2007). But 
studies in the cortex show a subtype dependence on synaptic 
plasticity (Massey et al. 2004). If LTP and LTD are sub-
type dependent then increased expression of GluN2B will 
produce an enhanced LTD in GluN2B overexpressed mice. 
But in GluN2B overexpressed mice, LTP was increased and 
no change in LTD was observed (Tang et al. 1999). In our 
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studies, GluN2A antagonist did not block the LTP induced 
in epileptiform activity induced slices, but GluN2B antago-
nists blocked the impaired synaptic plasticity, which implies 
that the GluN2B receptor was responsible for the reversal 
of synaptic plasticity in the epilepsy model. Our results 
also confirm that LTD is not subtype specific as reported 
previously (Morishita et al. 2007). Histopathological and 
immunohistochemistry of the amygdala of patients with 
epilepsy failed to show any change in glutamate receptors 
including NMDA receptor subtypes (Jafarian et al. 2019). 
Cortical dysplasia (CD) is regarded as one of the reasons 
behind drug-resistant epilepsy. In cortical slices from CD 
patients, a study found an increased expression of GluN2B, 
and the application of GluN2B-specific antagonist sup-
pressed the epileptiform activity in dysplastic slices (Möd-
del et al. 2005). Animal studies also reported a change in 
GluN2B expression in epilepsy models. Müller et al. (2013) 
reported that LTP was increased in Sc-CA1 synapses due to 
overexpression of GluN2B in the pilocarpine rat model of 
epilepsy. Epilepsy with depression rats showed a higher level 
of GluN2B phosphorylation compared to the epilepsy with-
out depression group and treatment with GluN2B blockers 
rescued the depressive behaviour (Peng et al. 2016). In PTZ 
kindling model showed an upregulation of GluN2B recep-
tors and increased astrocytosis. Treatment with GluN2B 
antagonist significantly reduced the PTZ kindled astrocy-
tosis (Zhu et al. 2015).

Impairment in synaptic plasticity was reported in many 
neuro disorders. LTP was impaired in epilepsy models and 
patients (Beck et al. 2000). In the disease model of Parkin-
son s disease and patients, LTD and depotentiation were 
impaired (Picconi et al. 2003; Huang et al. 2011). The same 
was true in the present study, depotentiation was induced 
successfully in control slices, which means that the poten-
tiated EPSPs came back to the base line potentials after 
the protocol. Epileptiform-induced slices also induced 
depotentiation in the synapses but potentiated to LTP by 
25–30 min. In the human dentate gyrus, a previous study 
reported impaired depotentiation (Beck et al. 2000), which is 
in line with our findings. The reduction in inhibitory GABA 
A currents in epileptiform-induced slices may also contrib-
ute to the impairment in depotentiation, but more studies are 
needed to find out the signaling pathways.

Conclusions

Our results show that metaplasticity was induced in the 
Sc-CA1 synapses during epileptiform activity. This plastic-
ity inhibited the LTD in Sc-CA1 synapses in epileptiform-
induced slices. LTD in control slices and epileptiform-
induced slices was NMDA receptor dependent. Moreover, 

the GluN2B subtype of NMDA receptors was responsible 
for the impaired synaptic plasticity in epileptiform-induced 
slices. The present investigation will trigger more studies 
in the direction of metaplasticity to explain the molecular 
mechanism in the impairment of memory in patients with 
epilepsy. This study identified the GluN2B subtype NMDA 
receptor as a new target for memory impairments in epilepsy.
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