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Abstract
Crack cocaine is the crystal form of cocaine, produced by adding sodium bicarbonate to cocaine base paste. Brazil is the 
largest consumer of crack cocaine in the world. Users of crack cocaine show important physiological and behavioral altera-
tions, including neuropsychiatric symptoms, such as anxiety-related symptoms. Nevertheless, few pre-clinical studies have 
been previously performed to understand the neurobiological effects of crack cocaine. The purpose of the present study was 
to investigate effects of the subchronic treatment (5 days, IP) of rats with crack cocaine in an animal model of anxiety/panic, 
the elevated T-maze (ETM). The ETM model allows the measurement of two behavioral defensive responses, avoidance and 
escape, in clinical terms, respectively, associated to generalized anxiety and panic disorder, the two main psychiatric condi-
tions that accompany substance use disorders. Immediately after the ETM model, animals were tested in an open field for 
locomotor activity assessment. Analysis of delta FosB protein immunoreactivity was used to map areas activated by crack 
cocaine exposure. Results showed that crack treatment selectively altered escape displayed by rats in the ETM test, induc-
ing either a panicolytic (18 mg/kg IP) or a panicogenic-like effect (25 and 36 mg/kg IP). These effects were followed by the 
altered functioning of panic-modulating brain regions, i.e., the periaqueductal gray and the dorsal region and lateral wings 
of the dorsal raphe nucleus. Treatment with 36 mg/kg of crack cocaine also increased locomotor activity. These are the first 
observations performed with crack cocaine in a rodent model of anxiety/panic and contribute to a better understanding of 
the behavioral and neurobiological effects of crack cocaine.
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Introduction

The use of addictive drugs has becoming a worldwide trend 
and represents a major health problem (Ali et al. 2011). 
Among drugs of abuse, cocaine causes great concern due to 
its powerful addictive properties and related-health issues 
(Nutt et al. 2010). According to the World Drug Report 
(UNODOC 2014) the American continent is the major 
consumer of cocaine. In particular, in South American 

developing countries the drug of abuse consumption has 
dramatically increased (Johnson et al. 2013). In fact, Bra-
zil is considered both a destination and a transit area for 
cocaine, and the second largest market for consumption, 
outside the United States of America (United States Depart-
ment of State Bureau for International Narcotics and Law 
Enforcement Affair: International Narcotics Control Strategy 
Report 2013).

The main central mechanism of action of cocaine is the 
inhibition of dopamine reuptake (Nestler 2005). This seems 
to be particularly prominent in limbic regions that control 
emotional responses and memories, and where dopamine 
terminals are concentrated, such as the amygdala, hip-
pocampus, frontal cortex and the nucleus accumbens (Nes-
tler 2005; Hyman 2001; Kalivas and McFarland 2003). The 
pleasure of cocaine consumption and the desire to repeat 
the experience are associated to this mechanism. Neverthe-
less, higher doses and/or the chronic use of cocaine leads to 
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important physiological and emotional/behavioral changes, 
and increases the risk for psychiatric-related disturbances, 
such as paranoia, anxiety and, particularly, panic (Rosen and 
Kosten 1992; Lacayo 1995; Bolla et al. 1998; Shanti et al. 
2013; Pires and Cavaco 2014). Some of these changes have 
been associated to altered gene-expression due to chronic 
drug use. The effect of cocaine on one particular product of 
immediate gene expression, the delta FosB protein, has been 
the subject of several studies during the last years (Nestler 
2008, 2012; Perrotti et al. 2008).

Crack cocaine is produced by adding sodium bicarbo-
nate to cocaine base paste (Falck et al. 2008), resulting in 
a more alkaline product, which may be injected or inhaled 
(Lankenau et al. 2004; Butler et al. 2017). Brazil is the larg-
est consumer of crack cocaine in the world (Ribeiro et al. 
2019). A national population-based survey, conducted in 
2012, showed that approximately two million Brazilians 
were using crack cocaine (Laranjeira and Mitsuhiro 2012). 
Crack users show physiological and behavioral alterations 
that greatly affect their personal lives, also resulting in 
important economic and social burdens (Vaughn et al. 2010; 
Riezzo et al. 2012).

A recent literature review, published by our research 
group, showed that the chronic use of crack cocaine induces, 
in particular, cognitive and emotional changes, together with 
neurobiological and molecular alterations (Rosário et al. 
2018). Among the psychiatric symptoms that accompany 
crack cocaine use are depression and anxiety-related symp-
toms (Zubaran et al. 2010, 2013). Nevertheless, one of the 
main findings of this literature review was the lack of, in 
particular, pre-clinical studies, to allow a better understand-
ing of the effects of crack cocaine on brain and behavior 
(Rosário et al. 2018).

Taking into account that: (1) crack cocaine is a largely 
abused drug that leads to important behavioral and physi-
ological sequelae, among of which are anxiety-related symp-
toms, and (2) that few studies have been performed to better 
understand these behavioral and physiological alterations, 
the purpose of the present study was to investigate effects 
of the subchronic treatment (5 days, IP) with crack cocaine 
in rats submitted to the elevated T-maze (ETM) test (Viana 
et al. 1994; Teixeira et al. 2000; Poltronieri et al. 2003). 
This model allows the measurement of two distinct behav-
ioral defensive responses, inhibitory avoidance and one-
way escape. According to the ethoexperimental analysis of 
the defensive repertoire of rodents (Gray and McNaughton 
2000; Blanchard et  al. 2001), anxiety is mainly associ-
ated to behavioral inhibition and risk assessment behavior, 
reactions observed in situations of potential danger. Thus, 
avoidance behavior displayed by rats in the ETM test is an 
example of an anxiety-associated reaction. The main behav-
ioral responses associated to panic, on the other hand, are 
escape/flight, which are presented when animals are faced 

with proximal, real danger (Gray and McNaughton 2000; 
Blanchard et al. 2001), such as escape behavior from the 
open arms of the ETM test. While anxiolytic drugs, such 
as benzodiazepines and buspirone, selectively impair avoid-
ance, chronic treatment with antidepressants inhibit escape 
responses (Viana et al. 1994; Graeff et al. 1998; Teixeira 
et al. 2000; Graeff and Zangrossi 2002; Poltronieri et al. 
2003; Campos et al. 2013). These results are compatible 
with the view that inhibitory avoidance relates to general-
ized anxiety and one-way escape to panic disorder (Viana 
et al. 1994; Teixeira et al. 2000; Graeff and Zangrossi 2002; 
Poltronieri et al. 2003; Campos et al. 2013). Generalized 
anxiety and panic disorder are the two main psychiatric 
conditions associated to substance use disorders (Compton 
et al. 2007; Smith and Book 2010). Immediately after tests 
with the ETM, all animals were tested in an open field for 
locomotor activity assessment.

Additionally, analysis of delta FosB protein immunore-
activity was used to map areas activated by crack cocaine 
exposure. Previous results suggest that members of the AP1 
family, the so-called chronic Fos-related antigens (Fras), 
mediate the effects of chronic stimulation, such as repeated 
drug administration (Nestler 2005; Nankova et al. 2000). 
The chronic Fras are truncated splice variant of the FosB 
gene-delta FosB isoforms and remain stable for longer peri-
ods of time when compared to other markers of neuronal 
activation such as c-Fos.

Methods

Subjects

Forty-eight male Wistar rats, weighing approximately 300 g 
in weight at the time of the experiments (Universidade Fed-
eral de São Paulo, CEDEME, Brazil), were used. Animals 
were housed in groups of four in polypropylene boxes cov-
ered with stainless steel grids, under a 12-h light–dark cycle 
(lights on from 7:00 am to 7:00 pm) and room-controlled 
temperature (22 ± 1 °C). Throughout the experiments, ani-
mals had free access to food and water.

The animals remained in the laboratory, for habitu-
ation, for a period of 10 days, until the beginning of the 
experiments.

The project was approved by the Ethical Committee for 
Animals Research of the Federal University of São Paulo 
(CEUA, UNIFESP), under the number 2117061017. All pro-
cedures were conducted in conformity with the Brazilian 
Society of Neuroscience and Behavior Guidelines for Care 
and Use of Laboratory Animals, which are also in compli-
ance with international laws and policies. All efforts were 
made to minimize animal suffering.
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Chemical analysis

The drug was donated as a courtesy by the Criminal 
Department of Limeira City, São Paulo State, Brazil, for 
research purposes. The drug used in all experiments was 
from a same lot obtained from trade seizing. The quan-
tification of cocaine in the samples used in the present 
work was verified and the results obtained have already 
been published in previous articles (Maranhão et al. 2017; 
Moretti et al. 2016).

Briefly, a 100 mg aliquot of crack cocaine was evalu-
ated by Liquid Chromatography–Mass Spectrometry 
(LCMS/MS) for the quantification of cocaine. Samples 
were analyzed by High Performance Liquid Chromatogra-
phy Agilent 1260 (Agilent Technologies, USA) combined 
with a 3200 QTRAP hybrid triple quadrupole/linear ion 
trap (LIT) mass spectrometer (Sciex, Canada) (Shiho-
matsu et al. 2017; Pereira et al. 2016). Cocaine samples 
(FE07271503, Cerilliant, USA) were used as analytical 
reference standards. Injection volumes of 10 μL were 
analyzed by an Agilent Eclipse XDB-C18 4.6 × 50 mm, 
1.8 μm column at 25 °C. The eluent flow rate was 0.7 ml/
min−1. The mobile phase for positive mode analysis was 
0.1% formic acid (LC–MS Grade, Sigma Aldrich, USA) 
in water (solvent A) and acetonitrile (LC–MS Grade, JT 
Baker, Brazil) (solvent B). A linear gradient of 0.7 ml/
min was adopted, beginning with a 95% solvent A and 5% 
solvent B mixture. A linear decrease from 95 to 5%, over 
5 min, was acquired for solvent A, which was maintained 
for 1 min. The mixture was then returned to the original 
condition, for 2 min. Cocaine was detected and quantified 
using Electrospray Ionization (ESI) and Multiple Reac-
tion Monitoring (MRM) mode, with the selection of a pre-
cursor ion and two ion products to quantify and qualify 
the compound. Data were recorded and processed using 
Analyst® 1.5.2 (Sciex, Canada). MRM parameters, limit 
of detection (LOD) and limit of quantification (LOQ). 
Results showed that the aliquot of crack cocaine analyzed 
by LC–MS/MS contained 37.99% of cocaine and that the 
drug was the main constituent of the sample (Maranhão 
et al. 2017; Moretti et al. 2016). Apart from cocaine, there 
were two additional substances identified in the sample: 
methlylecgonine cinnamate and truxilines. Methylecgo-
nine cinnamate is a natural occurring tropane alkaloid. It 
is structurally similar to cocaine and considered pharma-
cologically inactive, if not smoked (Plowman and Rivier 
1983). Truxilines are a group of 11 stereoisomers present 
in coca leaves, which are extracted along with cocaine and 
other alkaloids during the refining process (Lurie et al. 
1990). The detailed spectrometry description of the ali-
quot was presented in a previous study performed by our 
research group (Moretti et al. 2016).

Drug administration

Due to its low solubility in water, crack cocaine was first 
dissolved in dimethylsulfoxide (DMSO). Crack cocaine 
experimental groups were treated with either 18 (n = 8), 25 
(n = 8) or 36 mg/kg (n = 8) of crack cocaine, administered 
intraperitonially for five consecutive days (in the volume of 
1 ml/kg, IP). The 5-day administration period and the doses 
administered (18, 25 and 36 mg/kg) were chosen from previ-
ous reported results (Moretti et al. 2016; Lipaus et al. 2019) 
and from pilot studies performed in our laboratory. Taking 
into account the percentage of cocaine present in the sample 
of crack cocaine used, the doses administered contained, 
respectively, 6.8, 9.5 and 13.68 mg/kg of cocaine. As con-
trols for each one of the three experimental crack cocaine 
groups, we simultaneously tested vehicle-treated animals 
(1 ml/kg, IP; 3 groups of 8 animals each), also adminis-
tered for a period of five consecutive days. Drug and vehicle 
administration were performed in the testing room.

Apparatus

The elevated T-maze (ETM) was a device made of wood, 
with 3 arms of equal dimensions (50 cm × 12 cm). A closed 
arm, with walls 40-cm high, was located perpendicular to the 
two opposed open arms. The entire apparatus was elevated 
50 cm from the ground. The open arms were surrounded by 
transparent acrylic (1 cm high), for fall prevention.

The open field used was composed of a round arena 
(900 mm in diameter), with 45 cm high transparent acrylic 
walls and a base made of milky acrylic (1000 × 1000 mm), 
with floor divided into 12 squares.

Luminosity at the center of the ETM and open field was 
60 lx. After the experimental sessions, the equipments were 
cleaned with a 70% ethanol solution.

Procedure

On the morning of the fourth day of treatment, before drug 
or vehicle administration, the animals were pre-exposed 
to one of the open arms of the ETM. A wooden barrier 
mounted on the border of the open arm, between the central 
area of the maze and the proximal extremity of the ETM 
arm, isolated this arm from the rest of the maze. It has been 
shown that this forced pre-exposure potentiates the expres-
sion of escape behavior, reducing behavioral reactions to 
novelty (Teixeira et al. 2000).

On the next day, 30 min after treatment (fifth day of crack 
or vehicle solution administration), the animals were tested 
in the ETM. For inhibitory avoidance measurements, each 
animal was placed at the distal end of the closed arm of the 
ETM, and the latency to exit this arm with the four paws 
towards the open space was measured (baseline latency). 
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This same measurement was repeated for two consecutive 
times (avoidance 1 and avoidance 2), with 30 s intertrial 
intervals. The animal was then placed at the end of the 
same open arm, where it had been previously exposed on 
the day before and the time taken to leave this arm with the 
four paws was also measured (escape 1). This procedure 
was repeated for two consecutive times for the acquisition 
of escape 2 and 3 measurements, again with 30 s intertrial 
intervals.

Thirty seconds after tests with the ETM, each animal was 
placed in the center of the open field and allowed to freely 
explore the apparatus for 5 min, for the measurement of the 
number of lines crossed and the number of rearings.

Delta FosB immunoreactivity

Immediately after the behavioral tests, six animals from each 
experimental group were randomly chosen for immunohis-
tochemical analysis. Animals were anesthetized with a mix-
ture of ketamine (75 mg/kg), xylazine (10 mg/kg), fentanil 
(0.5 mg/kg) and acepromazine (1 m/kg) in the same syringe, 
and perfused with ≈100 ml of 0.9% saline for approximately 
1 min, followed by 500–700 ml of 4% formaldehyde (from 
paraformaldehyde heated to 60–65 °C) and H2O at 4 °C, 
pH 9.5, for approximately 25 min. The brains were post-
fixed for 1 h in the same fixative, plus 20% sucrose, at 4 °C. 
Regularly spaced series (5 × 1-in-5) of 30 µm-thick frozen 
sections were cut in the coronal plane, collected in ethylene 
glycol-based cryoprotectant solution and stored at − 20 °C 
for later determination of delta FosB.

Delta FosB immunoreactive neurons were identified using 
a polyclonal anti-serum raised in rabbit against delta-FosB 
protein (anti-FosB, 1:1,000; Sigma, St. Louis, MO, USA). 
Immunohistochemistry was performed using a conventional 
avidin–biotin immunoperoxidase protocol (Hsu and Raine 
1881; Hsu et al. 1981) and Vectastain Elite reagents (Vector 
Laboratories, Burlingame, CA, USA). Tissue was pretreated 
with hydrogen peroxide (0.3%; Sigma, St. Louis, MO, USA) 
before addition of the primary antibody to squelch endog-
enous peroxidase activity in the tissue. The reaction with 
diaminobenzidine-DAB (0.05%; Sigma) was amplified using 
nickel ammonium sulfate. The sections were then mounted 
on gelatin-coated slides, allowed to dry for approximately 
18 h and counterstained with thionin to visualize the labeled 
cells within the borders of each nucleus. Adjoining series 
of sections were stained with 0.25% thionin for reference 
purposes.

Cell counting

Delta FosB cells were quantified in sections, having as 
reference the following AP coordinates (Paxinos and 
Watson 2008), using Bregma as a reference: cingulate 

cortex: + 1.68 mm; hippocampus and septum: + 2.28 mm; 
amygdala: − 2.92 mm; dorsal columns of the periaqueductal 
gray matter: − 7.68 mm; median raphe nucleus: − 8.04 mm; 
dorsal region of the dorsal raphe nucleus: − 8.04 mm, lateral 
wings of the dorsal raphe nucleus/ventrolateral periaque-
ductal gray matter: − 8.04 mm under bright-field illumina-
tion using the Image-Pro Plus software (Media Cybernetics, 
Silver Spring, MD, USA). These regions were selected on 
the basis of their involvement with the modulation of anxi-
ety/panic responses (Gray and McNaughton 2000; Brandão 
et al. 2003; Sela et al. 2011; Spiacci et al. 2012; Paul and 
Lowry 2013). Sections were analyzed by an observer blind 
to the treatment conditions. Cells were considered delta 
FosB immunoreactive if their nuclei contained dark, punc-
tate gray-black immunolabeling, and were counted using 
constant minimum and maximum OD and object size crite-
ria, which were validated with visual counts.

Statistics

Statistical analysis was generated using SPSS software pack-
age. All data was analyzed for homogeneity. In case of het-
erogenous results, data was submitted to a Log10 transform. 
ETM data were analyzed by two-way ANOVA for repeated 
measures, with treatment as the independent factor and trials 
(avoidance or escape latencies) as the dependent factor. In 
case of significant results of the treatment or of the treat-
ment x trial interaction, between group comparisons in each 
trial were performed using unpaired Student t-test. Open 
field and immunohistochemical data were analyzed using 
unpaired Student t-test. A value of p ≤ 0.05 was considered 
significant.

Results

Crack cocaine (18 mg/kg) induces panicolytic‑like 
effects and decreases delta FosB immunoreactivity 
in panic‑modulating regions

Figure  1 (upper panel) shows the effects of 18  mg/kg 
of crack cocaine on avoidance behavior. According to 
repeated measures ANOVA, there was a significant effect 
of trials [F (2,24) = 8.67; p = 0.001], but not of treatment 
[F(1,12) = 0.86; p = 0.77] or of treatment × trials interaction 
[F(2,24) = 0.83; p = 0.45].

Figure 1 (lower panel) shows the effects of the drug 
on escape behavior. According to repeated measures 
ANOVA there was a significant effect of treatment 
[F(1,12) = 13.55; p = 0.003] and of treatment × trials inter-
action [F (2,24) = 23.84; p = 0.036], but not of trials [F 
(2,24) = 0.88; p = 0.43]. Animals treated with crack took 
a longer time to leave the open arm on escape 2 [Student 
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t-test: T(8.13) =− 3.79; p = 0.005] and 3 [Student t-test: 
T(6.71) = − 3.19; p = 0.016], a panicolytic-like effect.

Table 1 shows the effects of the drug on locomotor activ-
ity. According to unpaired Student t-test, there were no dif-
ferences between vehicle and crack-treated animals, neither 

with respect to the number of crossings [T (13) = − 0.57; 
p = 0.58] nor with respect to the number of rearings [T 
(13) = − 0.87; p = 0.40].

Figure  2 and Table  2 show the effects of treatment 
with 18 mg/kg of crack on delta FosB immunoreactivity. 
According to unpaired Student t-test, treatment with crack 
decreased the number of delta FosB immunoreactive cells 
in the dorsomedial [T(10) = 6.07; p < 0.002] (2A), dorsolat-
eral [T(10) = 6.23; p < 0.001] (2B) and lateral periaqueductal 
gray [T(10) = 3.92; p = 0.003] (2C), lateral wings of the dor-
sal raphe/ventrolateral periaqueductal gray [T(7.34) = 4.67; 
p = 0.002] (2D) and in the dorsal region of the dorsal raphe 
[T(10) = 4.31; p = 0.002] (2E). No other significant results 
were found.

Crack cocaine (25 mg/kg) induces panicogenic‑like 
effects and increases delta FosB immunoreactivity 
in panic‑modulating regions

Figure 3 (upper panel) shows the absence of effects of 
25 mg/kg of crack cocaine on avoidance behavior. According 
to repeated measures ANOVA, there was a significant effect 
of trials [F (2,26) = 7.88; p = 0.002], but not of treatment 
[F(1,13) = 1.13; p = 0.31] nor of treatment × trials interac-
tion [F(2,26) = 1.23; p = 0.31].

Figure 3 (lower panel) shows the panicogenic-like effects 
of the drug on escape behavior. According to repeated 
measures ANOVA, there was a significant effect of trials 
[F (2,26) = 6.48; p = 0.005] and treatment [F(1,13) = 12.17; 
p = 0.004], but not of treatment × trials interaction [F 
(2,26) = 1.05; p = 0.37]. Animals treated with crack took a 
shorter time to leave the open arm on escape 1 [unpaired 
Student t-test: T (12.77) = 2.32; p = 0.04], 2 [T (13) = 3.17; 
p = 0.007] and 3 [unpaired Student t-test: T (13) = 2.79; 
p = 0.015], a panicogenic-like effect.

Table 1 shows the effects of the drug on locomotor activ-
ity. According to unpaired Student t-test, there were no 
significant differences between vehicle and crack-treated 
animals, neither with respect to the number of crossings [T 
(13) = 0.62; p = 0.55] nor with respect to the number of rear-
ings [T (13) = 1.21; p = 0.25].

Figure 4 and Table 3 show the effects of treatment with 
25 mg/kg of crack on delta FosB immunoreactivity. Accord-
ing to unpaired Student t-test, treatment with crack increased 
the number of delta FosB immunoreactive cells in the dor-
somedial [T(7.13) = − 8.87; p < 0.001] (4A), dorsolateral 
[T(9.07) = − 11.51; p < 0.001] (4B) and lateral columns of 
the periaqueductal gray [T(10) = − 11.33; p < 0.001] (4C), 
in the lateral wings of the dorsal raphe/ventrolateral periaq-
ueductal gray [T(9.73) = − 4.03; p = 0.003] (4D) and in the 
dorsal region of the dorsal raphe [T(7.76) = − 2.76; p = 0.02] 
(4E). No other significant results were found.

Fig. 1   Avoidance (upper panel) and escape latencies (lower panel) 
(mean ± SEM) in the elevated T-maze performed by vehicle- and 
18  mg/kg crack-treated animals (5  days, IP). N = 8 per treatment 
group. *p < 0.05, compared to control animals in the same trial 
(ANOVA followed by the independent Student t-test)

Table 1   Number (mean ± SEM) of crossings and rearings performed 
during a 5-min exploration of an open field by vehicle and crack-
treated animals

*p ≤ 0.05 unpaired Student t-test

Treatment Crossings Rearings

Vehicle 31.75 ± 5.29 11.62 ± 2.47
18 mg/kg crack cocaine 43.50 ± 11.15 20.17 ± 7.07
Vehicle 58.63 ± 8.15 10.75 ± 1.39
25 mg/kg crack cocaine 53.00 ± 2.56 8.57 ± 1.09
Vehicle 27.50 ± 2.86 7.50 ± 1.63
36 mg/kg crack cocaine 56.00 ± 10.09* 16.17 ± 2.64*
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Crack cocaine (36 mg/kg) increases panic‑like 
responses, but also alters locomotor activity

Figure 5 (upper panel) shows the absence of effects of 

Fig. 2   Photomicrographs of delta FosB immunoreactive cells (dark 
spots) in coronal sections through brain regions with significant 
decreases in delta FosB immunoreactivity in animals submitted to 
a 5-day IP treatment with 18  mg/kg of crack, in respect to vehicle-
treated animals. N = 6 per treatment group. a dorsolateral column of 

the periaqueductal gray matter, b lateral column of the periaqueductal 
gray matter, c dorsal region of the dorsal raphe nucleus, d lateral 
wings of the dorsal raphe nucleus/ventrolateral column of the periaq-
ueductal gray matter. Magnification: 200 ×. *cerebral aqueduct

Table 2   Delta FosB (mean ± SEM) immunoreactive cells in control 
animals and in animals treated with 18 mg/kg of crack cocaine in dif-
ferent brain regions related to anxiety and panic modulation

CA cornus of ammon, PAG periaqueductal grey, vl ventrolateral
*p ≤ 0.05 unpaired Student t-test

Region Control Crack 18 mg/kg

Cingulate cortex 140.3 ± 30.1 106.3 ± 17.9
Intermediate septum 163.8 ± 30.3 131.6 ± 15.5
Ventrolateral septum 83.3 ± 21.5 90.3 ± 11.0
Hippocampus CA1 54.0 ± 5.8 42.5 ± 4.8
Hippocampus CA2 255.6 ± 41.3 155.0 ± 26.4
Hippocampus CA3 33.1 ± 5.5 27.8 ± 1.9
Dentate gyrus 154.8 ± 47.2 77.3 ± 34.7
Central amygdala 94.8 ± 15.8 86.6 ± 20.0
Medial amygdala 68.6 ± 18.1 77.0 ± 12.0
Basolateral amygdala 21.6 ± 2.7 19.8 ± 2.4
Basomedial amygdala 10.5 ± 1.4 11.6 ± 1.1
Lateral amygdala 28.8 ± 11.5 22.0 ± 7.0
Dorsomedial PAG 211.5 ± 25.7 75.3 ± 8.4*
Dorsolateral PAG 247.3 ± 24.6 95.0 ± 7.4*
Lateral PAG 215.5 ± 29.8 80.6 ± 9.0*
Dorsal raphe dorsal region 172.1 ± 31.5 58.5 ± 9.5*
Dorsal raphe ventral region 164.3 ± 37.8 173.8 ± 40.3
Dorsal raphe lateral wings/vlPAG 85.00 ± 11.14 26.83 ± 5.55*
Median raphe 141.6 ± 19.7 125.6 ± 26.3

Fig. 3   Avoidance (upper panel) and escape latencies (lower panel) 
(mean ± SEM) in the elevated T-maze performed by vehicle- and 
25  mg/kg crack-treated animals (5  days, IP). N = 8 per treatment 
group. *p < 0.05, compared to control animals in the same trial 
(ANOVA followed by the independent Student t-test)
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treatment with 36 mg/kg of crack cocaine on avoidance 
behavior. According to repeated measures ANOVA, 
there was a significant effect of trials [F(2,24) = 14.53; 
p < 0.001], but not of treatment [F(1,12) = 2.43; p = 0.15] 

Fig. 4   Photomicrographs of delta FosB immunoreactive cells (dark 
spots) in coronal sections through brain regions with significant 
decreases in delta FosB immunoreactivity in animals submitted to 
a 5-day IP treatment with 25  mg/kg of crack, in respect to vehicle-
treated animals. N = 6 per treatment group. a dorsomedial column of 

the periqueductal gray matter, b dorsolateral column of the periaque-
ductal gray matter, c lateral column of the periaqueductal gray mat-
ter, d dorsal region of the dorsal raphe nucleus, e lateral wings of the 
dorsal raphe nucleus/ventrolateral column of the periaqueductal gray 
matter. Magnification: 200 ×. *cerebral aqueduct

Table 3   Delta FosB (mean ± SEM) immunoreactive cells in control 
animals and in animals treated with 25 mg/kg of crack cocaine in dif-
ferent brain regions related to anxiety and panic modulation

CA cornus of ammon, PAG periaqueductal grey, vl ventrolateral
*p ≤ 0.05 unpaired Student t-test

Region Control Crack 25 mg/kg

Cingulate cortex 177.3 ± 8.0 211.8 ± 3.5
Intermediate septum 117.5 ± 10.5 123.5 ± 13.1
Ventrolateral septum 85.0 ± 8.4 80.0 ± 9.3
Hippocampus CA1 67.5 ± 2.9 71.6 ± 2.3
Hippocampus CA2 190.3 ± 6.8 201.0 ± 3.3
Hippocampus CA3 38.1 ± 1.5 43.8 ± 2.2
Dentate gyrus 203.3 ± 6.4 191.5 ± 6.1
Central amygdala 83.3 ± 4.7 74.6 ± 3.5
Medial amygdala 72.5 ± 4.7 61.3 ± 4.8
Basolateral amygdala 31.5 ± 2.9 37.6 ± 1.7
Basomedial amygdala 23.6 ± 2.3 28.8 ± 2.3
Lateral amygdala 30.0 ± 2.1 28.1 ± 2.9
Dorsomedial PAG 215.5 ± 6.2 301.8 ± 11.6*
Dorsolateral PAG 127.5 ± 5.3 207.1 ± 9.9*
Lateral PAG 102.5 ± 5.3 204.0 ± 6.9*
Dorsal raphe dorsal region 199.8 ± 15.0 321.5 ± 14.3*
Dorsal raphe ventral region 176.6 ± 19.2 216.8 ± 12.3
Dorsal raphe lateral wings/vlPAG 93.50 ± 4.86 119.17 ± 4.11*
Median raphe 180.8 ± 6.2 186.8 ± 3.5

Fig. 5   Avoidance (upper panel) and escape latencies (lower panel) 
(mean ± SEM) in the elevated T-maze performed by vehicle- and 
36  mg/kg crack-treated animals (5  days, IP). N = 8 per treatment 
group. *p < 0.05, compared to control animals in the same trial 
(ANOVA followed by the independent Student t-test)
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or of trials × treatment interaction [F(2,24) = 1.93; 
p = 0.17].

Figure 5 (lower panel) shows that similar to that observed 
with 25 mg/kg of crack cocaine, the highest dose of the 
drug (36 mg/kg) decreased escape latencies. According to 
repeated measures ANOVA there were no significant effect 
of trials [F(2,24) = 0.31; p = 0.73] or of trials × treatment 
interaction [F(2,24) = 0.26; p = 0.78], but there was a sig-
nificant effect of treatment [F(1,12) = 15.61; p = 0.002]. 
Escape 1 [unpaired Student t-test: T(12) = 3.08; p = 0.01], 
2 [unpaired Student t-test: T(10.37) = 3.29; p = 0.008] and 3 
latencies [unpaired Student t-test: T(8.30) = 2.76; p = 0.024] 
were significantly decreased by treatment with 36 mg/kg.

Nevertheless, Table 2 shows that treatment with 36 mg/
kg also induced increases in locomotor activity. Accord-
ing to unpaired Student t-test both the number of cross-
ings [T(5.81) = − 2.72; p = 0.036] and the number of rear-
ings [T(12) = − 2.94; p = 0.012] were increased. Therefore, 
behavioral results observed with the ETM cannot be attrib-
uted to panic solely.

Figure 6 and Table 4 show the effects of treatment with 
36 mg/kg of crack on delta FosB immunoreactivity. Again 
here, according to unpaired Student t-test, treatment with 
crack increased the number of delta FosB immunoreactive 
cells in the dorsomedial [T(9.98) = − 15.55; p < 0.001] (6A), 
dorsolateral [T(10) = − 19.68; p < 0.001] (6B) and lateral 
columns of the periaqueductal gray [T(8.01) = − 24.18; 
p < 0.001] (6C), in the lateral wings of the dorsal raphe/
ventrolateral periaqueductal gray [T(9.07) = −  3.85; 
p = 0.004] (6D), and in the dorsal region of the dorsal raphe 
[T(8.32) = − 2.53; p = 0.03] (6E). No other significant dif-
ferences were found (p > 0.05).

Fig. 6   Photomicrographs of delta FosB immunoreactive cells (dark 
spots) in coronal sections through brain regions with significant 
decreases in delta FosB immunoreactivity in animals submitted to 
a 5-day IP treatment with 36  mg/kg of crack, in respect to vehicle-
treated animals. N = 6 per treatment group. a dorsomedial column of 

the periqueductal gray matter, b dorsolateral column of the periaque-
ductal gray matter, c lateral column of the periaqueductal gray mat-
ter, d dorsal region of the dorsal raphe nucleus, e lateral wings of the 
dorsal raphe nucleus/ventrolateral column of the periaqueductal gray 
matter. Magnification: 200 ×. *cerebral aqueduct

Table 4   Delta FosB (mean ± SEM) immunoreactive cells in control 
animals and in animals treated with 36 mg/kg of crack cocaine in dif-
ferent brain regions related to anxiety and panic modulation

CA cornus of ammon, PAG periaqueductal grey, vl ventrolateral
*p ≤ 0.05 unpaired Student t-test

Region Control Crack 36 mg/kg

Cingulate cortex 190.3 ± 6.3 220.5 ± 4.6
Intermediate septum 135. 5 ± 17.2 174.1 ± 11.0
Ventrolateral septum 102.6 ± 8.5 111.1 ± 9.4
Hippocampus CA1 70.3 ± 2.1 75.3 ± 3.6
Hippocampus CA2 169.1 ± 11.6 153.3 ± 15.2
Hippocampus CA3 42.6 ± 3.3 46.6 ± 2.3
Dentate gyrus 182. 8 ± 4.9 170.1 ± 11.3
Central amygdala 104.1 ± 9.0 100.3 ± 11.1
Medial amygdala 79.8 ± 6.3 83.0 ± 2.9
Basolateral amygdala 35.0 ± 1.7 45.5 ± 5.1
Basomedial amygdala 28.1 ± 2.8 33.5 ± 3.1
Lateral amygdala 53.0 ± 4.0 48.3 ± 3.4
Dorsomedial PAG 224.1 ± 3.2 313.6 ± 10.0*
Dorsolateral PAG 107.3 ± 9.7 200.0 ± 6.6*
Lateral PAG 213.3 ± 4.6 301.1 ± 5.4*
Dorsal raphe dorsal region 232.0 ± 8.1 395.1 ± 6.3*
Dorsal raphe ventral region 176.6 ± 19.2 216. 8 ± 12.3
Dorsal raphe lateral wings/vlPAG 89.67 ± 4.81 121.50 ± 6.72*
Median raphe 218.6 ± 14.3 224.0 ± 12.2
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Discussion

The findings of the present study showed that: (1) 
subchronic IP treatment with a lower dose of crack cocaine 
(18 mg/kg, containing 6.8 mg/kg of cocaine) induces pan-
icolytic-like effects, followed by a decrease in delta FosB 
protein immunoreactivity in the dorsomedial, dorsolateral 
and lateral periaqueductal gray, in the dorsal region of the 
dorsal raphe and in the lateral wings/ventrolateral peri-
aqueductal gray; (2) Increases in the dose administered 
(25 mg/kg, containing 9.5 mg/kg of cocaine) generate the 
opposite effects: panicogenic-like results, followed by 
increases in delta FosB immunoreactivity in the dorso-
medial, dorsolateral and lateral aspects of the periaque-
ductal gray, in the dorsal region of the dorsal raphe and 
in the lateral wings/ventrolateral periaqueductal gray; (3) 
Even higher doses (36 mg/kg, containing 13.68 mg/kg of 
cocaine), apart from increasing panic-related responses 
and delta FosB immunoreactivity in the same columns of 
the periaqueductal gray and subregions of the dorsal raphe, 
also induce increases in locomotor activity.

To our knowledge, this is the first study directed to 
the evaluation of crack cocaine’s effects in anxiety/panic, 
using a rodent model. Several pre-clinical and clinical 
studies, however, have been performed with cocaine. 
Clinical evidences (Gawin 1988, 1989) show that after 
the initial use and/or the administration of lower doses of 
cocaine, users frequently describe feelings of wellbeing 
and decreases in anxiety-related responses. With animal 
models of anxiety, most observations performed describe 
the anxiogenic-like effects of cocaine administration (Rog-
erio and Takahashi 1992; Yang et al. 1992; Blanchard and 
Blanchard 1999; Paine et al. 2002; Kohtz et al. 2010). A 
few studies also describe either no effect or anxiolytic-
like effects after the acute IP administration of cocaine 
(Rogerio and Takahashi 1992; Yang et al. 1992; Blan-
chard and Blanchard 1999; Paine et al. 2002; Kohtz et al. 
2010) or decreases in anxiety followed by the self-admin-
istration of the drug (Waters and See 2011). Kohtz et al. 
(2010) showed that the acute IP injection of 5–20 mg/kg 
of cocaine increased the time spent by female rodents in 
the center of an open field, although no significant effects 
were seen in males. The authors associate these effects to 
progestogens levels. Using the same dose-interval, Taka-
hashi and Rogerio (1991), showed no effects of cocaine 
in the elevated plus-maze. Nevertheless, in a subsequent 
study (Rogerio and Takahashi 1992), the same authors 
showed that acute cocaine administration (10 mg/kg, IP) 
either did not alter elevated plus-maze measurements or 
presented anxiogenic-like effects, depending on the anx-
ious phenotype of the animals (if not anxious or anxious, 
respectively). Together, these observations indicate that, 

apart from dose and treatment regimen, gender and anx-
ious phenotype might influence the results observed in 
rodent models. It would be interesting to investigate the 
effects of crack cocaine in female rats in future studies.

However, of particular importance is also the fact that 
in the present work only escape behavior was altered by 
crack cocaine administration. No effects in avoidance meas-
urements were observed. In this regard, it is interesting to 
mention that most of the pre-clinical studies, that report 
the effects of cocaine in anxiety, do not use tests that spe-
cifically model panic disorder, but rather tests that have 
been described as non-selective for the distinct subtypes of 
anxiety-related disorders found in clinical settings, that is 
“mixed” animal models (Graeff and Zangrossi 2002). Thus, 
the use of non-selective animal models might explain some 
of the discrepant results found in the literature. An important 
exception to this observation is the study performed by Blan-
chard and coworkers (Blanchard and Blanchard 1999). These 
authors showed that the acute IP (10–30 mg/kg) administra-
tion of cocaine in mice significantly and dose-dependently 
enhanced flight and escape behaviors measured in the mouse 
defense test battery. Similarly, the intravenous administra-
tion (4 mg/kg) of cocaine in rats induced well-directed flight 
responses in a rat runaway test. Although defensive threat/
attack and risk assessment behaviors were altered after the 
administration of higher doses of the drug, the drug’s effect 
over flight/escape behavior was much clearer, thus indicat-
ing that panic-associated responses are the critical reac-
tions altered by cocaine exposure (Blanchard and Blanchard 
1999). Our results with crack cocaine go in the same direc-
tion. Also, and reinforcing the association between crack 
cocaine and flight/escape reactions, one of the few previous 
reports (Areal et al. 2015) performed with the administra-
tion of crack cocaine described that, after inhaling the drug, 
crack-treated mice frequently elicited what the authors called 
an “escape jumping” behavior, which reminded escape 
attempts from a restricted environment (Areal et al. 2015).

Although the higher dose of crack cocaine (36 mg/kg, 
13.68 mg/kg of cocaine) used in the present study also 
increased escape behavior, it altered locomotor activity. Sim-
ilar observations have been reported with the IP administra-
tion of doses superior to 10 mg/kg IP of cocaine, although 
variables such as animal species/strain and the duration of 
the treatment might interfere with the results (Gulley et al. 
2003; Enhardt et al. 2006; Thomsen and Caine 2011).

The effects of crack cocaine on escape behavior were 
followed by a selective decrease (18 mg/kg, 6.8 mg/kg of 
cocaine) or increase (25 and 36 mg/kg, 9.5 and 13.68 mg/kg 
of cocaine, respectively) in delta FosB immunoreactivity in 
the periaqueductal gray and in two subregions of the dorsal 
raphe, respectively, related to anxiety and panic modula-
tion, the dorsal region and the lateral wings (Thomsen and 
Caine 2011; Johnson et al. 2005; Hale et al. 2012; Spiacci 
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et al. 2012; Paul and Lowry 2013). Decreases in delta FosB 
immunoreactivity accompany a panicolytic-like effect 
while increases in delta FosB immunoreactivity follow a 
panicogenic-like effect. No significant effects in delta FosB 
immunoreactivity were found in other brain regions. Only 
one previous study measured delta FosB immunoreactiv-
ity after crack cocaine treatment (Areal et al. 2015). This 
study showed that a 5-min long exposure to 5 g of inhaled 
crack cocaine, twice a day, for 11 days, induced increases 
in delta FosB immunoreactivity in the nucleus accumbens. 
Other brain regions, however, were not investigated. Another 
report, performed with cocaine, showed increases in delta 
FosB immunoreactivity in different brain areas, including 
the frontal cortex, lateral septum, hippocampus, amygdala 
and periaqueductal gray, after a 14-day IP treatment regi-
men of 15 mg/kg of cocaine, two times a day (Perrotti et al. 
2008). The periaqueductal gray, however, was not divided in 
columns and the dorsal raphe was not analyzed. Differences 
regarding these results and ours most possibly rely on the 
dose and duration of drug administration.

Evidences gathered during the last decades show that the 
electrical or chemical stimulation of the dorsal and lateral 
aspects of the periaqueductal gray decreases the aversive 
stimulus intensity necessary to induce an escape/flight reac-
tion and is followed by a series of autonomic reactions, such 
as tachycardia, increases in blood pressure and exophthal-
mia (Fernandez-de-Molina and Hunsperger 1959; Brandão 
et al. 1982; Nogueira and Graeff 1991; Bandler and Shipley 
1994; Graeff 2004, 2012). Freezing behavior may also be 
present, prior to escape/flight, or when escape routes are 
not available (Roelofs, 2017). Data obtained with human 
subjects support pre-clinical observations (Nashold et al. 
1969; Amano et al. 1978; Young et al. 1992). Also, using 
the ETM test, it has been previously shown that activation of 
the dorsal periaqueductal gray by local administration of the 
benzodiazepine inverse agonist FG 7142 decreases escape 
displayed by rats in the ETM test, a panicogenic-like effect 
(Bueno et al. 2005). On the other hand, the chemical inac-
tivation of the structure by intra-dorsal periaqueductal gray 
administration of either the benzodiazepine midazolam, the 
GABAA agonist muscimol or the GABAB agonist baclofen, 
causes the opposite effect: increases escape latencies, a pan-
icolytic-like action (Bueno et al. 2005). In the present study, 
crack cocaine, dose-dependently, induced neuroadaptations 
in the dorsal and lateral columns of the periaqueductal gray 
region what might explain the behavioral effects presently 
described.

The main subnuclei of dorsal raphe that modulate panic-
related reactions are the lateral wings, which work together 
with the ventrolateral column of the periaqueductal gray 
(Johnson et al. 2005; Hale et al. 2012; Wscieklica et al. 
2017; Paul and Lowry 2013). A previous study performed 
with the ETM test showed that the exposure of laboratory 

animals to the escape task significantly increases the activa-
tion of these subregions (Spiacci et al. 2012). The reversible 
chemical inhibition of the lateral wings/ventrolateral column 
of the periaqueductal gray by cobalt chloride, an inhibitor of 
synaptic neurotransmission, increases ETM escape latencies, 
a panicolytic-like effect (Spiacci and Zangrossi, personal 
communication). Also, we have previously shown that deep 
brain stimulation, applied to the lateral wings of the dorsal 
raphe and leading to the functional blockage of the region 
(through a process called depolarization block), induces 
similar effects (Wscieklica et al. 2017).

Although the dorsal subregion of the dorsal raphe does 
not seem to be the main subnucleus involved with panic 
regulation, it also modulates escape behavior displayed by 
rats in the ETM test (Spiacci et al. 2012). It is interesting 
to mention that previous reports show that dopamine neu-
rons are the most abundant group of neurons of the dor-
sal raphe nucleus, apart from serotonergic cells (Huang 
et al. 2019). Also, the majority of the dopamine neurons in 
the dorsal raphe nucleus are located in the rostral pole of 
the region, particularly in its dorsal subnucleus (Yoshida 
et al. 1989), where they are intermingled with serotonergic 
neurons. Remarkably, previous results with L-dopa show 
that chronic treatment with the drug results in a significant 
decrease in serotonin in particularly in the dorsal division 
of the dorsal raphe nucleus (Stansley and Yamamoto 2014), 
thus confirming dopamine-serotonin interactions in this area 
of the mesencephalic tegmentum. These interactions might 
also underlie the panic-related reactions observed after crack 
cocaine administration. In future studies, it will be impor-
tant to verify the neurochemical identity of the delta FosB 
activated cells to allow a better understanding of the neu-
robiology of crack cocaine addiction and, consequently, to 
promote therapeutic strategies.

At last, it is important to mention that since crack cocaine 
is frequently smoked, there are some points that should be 
taken into account in the interpretation of the current results. 
The first of them concerns the pharmacokinetics of the drug. 
Pharmacokinetics play a decisive role in determining behav-
ioral and neurobiological effects of a drug administration. 
When cocaine is smoked it is promptly absorbed and dis-
tributed to the central nervous system (Allain et al. 2015). 
Therefore, its effects may be more rapidly and intensively 
experienced. A second point of concern is the presence of 
different substances in the sample, according to its route of 
administration. For instance, it has been previously reported 
that one of the main substances responsible for the toxicity 
of crack is anhydroecgonine methyl ester (AEME), a cocaine 
pyrolysis metabolite (Areal et al. 2015; Garcia et al. 2017). 
In this respect, we are currently validating a protocol to 
investigate the effects of inhaled crack in male and female 
rats´ anxiety/panic behavior, which will allow further com-
parisons with our present results.
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To conclude, the results reported herein show, for the 
first time, that crack cocaine treatment selectively alters a 
panic-related response, escape behavior elicited by exposure 
to the open arms of the ETM test, inducing either a pani-
colytic or a panicogenic-like effect, depending on the dose 
administered. These behavioral effects are accompanied by 
the alteration of the functioning of panic-modulating ence-
phalic structures, i.e., the dorsal and lateral aspects of the 
periaqueductal gray and two subregions of the dorsal raphe 
nucleus, the dorsal region and the lateral wings/ventrolateral 
column of the periaqueductal gray. While the panicolytic 
lower dose decreases delta FosB immunoreactivity in these 
regions, the higher panicogenic doses increase FosB pro-
tein expression. Increases in locomotor activity were also 
induced by the higher dose administered, thus corroborat-
ing literature reports obtained with higher doses of cocaine. 
These are the first results obtained with crack cocaine in 
a rodent model of anxiety/panic and contribute to a better 
understanding of behavioral and neurobiological effects of 
crack cocaine intake.
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