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Abstract
Motor learning encompasses a broad set of phenomena that requires a diverse set of experimental paradigms. However, 
excessive variation in tasks across studies creates fragmentation that can adversely affect the collective advancement of 
knowledge. Here, we show that motor learning studies tend toward extreme fragmentation in the choice of tasks, with almost 
no overlap between task paradigms across studies. We argue that this extreme level of task fragmentation poses serious 
theoretical and methodological barriers to advancing the field. To address these barriers, we propose the need for develop-
ing common ‘model’ task paradigms which could be widely used across labs. Combined with the open sharing of methods 
and data, we suggest that these model task paradigms could be an important step in increasing the robustness of the motor 
learning literature and facilitate the cumulative process of science.
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Introduction

In the context of theories in psychology, Mischel referred 
to the presence of a ‘toothbrush problem’—i.e., that “no 
self-respecting person wants to use anyone else’s” (Mischel 
2008). In this review, we show that experimental paradigms 
in motor learning suffer from a similar toothbrush problem; 
tasks used are extremely fragmented, with little to no over-
lap between different studies. We argue that this extreme 
fragmentation has negative consequences for the field from 
both theoretical and methodological perspectives. Finally, 
we propose the use of common ‘model task paradigms’ to 
address these issues.

How fragmented is motor learning?

Review of motor learning studies

To quantify the degree of fragmentation in the motor learn-
ing literature, we selected publications in 2017 and 2018 
from the following five journals: Experimental Brain 
Research, Human Movement Science, Journal of Motor 
Behavior, Journal of Motor Learning and Development 
and Journal of Neurophysiology. We included a study in 
our analysis if (i) there was change in motor performance 
arising due to practice, (ii) there were at least two a priori 
defined groups which were compared in a between-subject 
design on the same task, and (iii) the population included 
was unimpaired adults. Overall, 64 papers were included 
based on these criteria.

These criteria were based on the following rationale. 
Our focus was on motor learning studies from a behavioral 
emphasis, which led to us select journals that publish regu-
larly on this theme. The timespan of 2 years was to provide 
a reasonable sample of studies (our goal was to do at least 
50). Because one of our particular emphasis was to examine 
issues related to design and sample size, the two-group mini-
mum requirement was used so that our analysis could focus 
on the more common ‘between-group’ designs (rather than 
‘within-subject’ designs). Also, studies with within-subject 
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designs in motor learning tend to typically describe changes 
associated with learning (e.g. changes in EMG or the use 
of redundancy) rather than compare different practice strat-
egies, which make them less relevant to the central argu-
ments related to fragmentation being advanced here. Finally, 
because tasks often have to be modified for children or adults 
with movement impairments, we focused on studies with 
unimpaired adults to get an estimate of fragmentation in 
cases where the tasks do not necessarily have to be modified.

For each study, we examined the task used and classified 
it into one of six categories—adaptation, applied, coordi-
nation, sequence, tracking, and variability. This classifica-
tion was based on prior work that have highlighted such 
distinctions (e.g. scaling vs. coordination (Newell 1991), or 
adaptation vs. skill learning (Krakauer and Mazzoni 2011)), 
but these prior distinctions have typically only been dichoto-
mous. So, we expanded these into six categories to more 
accurately group the types of tasks in the studies that were 
reviewed. The broad rules for each of these categories are 
specified in Table 1. Five of these categories were based 
on the types of learning involved in the task (adaptation, 
coordination, sequence, tracking and variability), while the 
‘applied’ category was used for studies where either the task 
itself was central to the research question or it was used 
without modification from its implementation in real-world 
settings. For example, a golf putting task in a lab was cat-
egorized under ‘variability’, but a study examining profes-
sional golf players putting on an actual green was catego-
rized as ‘applied’. We adopted this category because we felt 
that these studies, where the task is integral to the research 
question, are less likely to benefit from the development of 
a common task paradigm. Moreover, although these cat-
egories were not always mutually exclusive, for the sake of 

this review, we classified each study into only one category. 
When there were conflicts on the categorization, the authors 
resolved such conflicts through discussion.

We then examined the actual tasks used in each category 
to determine if these studies used the same experimental 
paradigm. For each task, we extracted relevant parameters 
that were reported in the Methods section regarding the 
implementation of the task. For example, when reaching was 
used as a task in the ‘adaptation category’, we compared 
experimental parameters such as the type of perturbation, the 
amplitude of the reach, the number of targets, and instruc-
tions to participant such as whether they had to stop inside 
the target or shoot through it) Similarly, for a sequence 
learning task we examined the number of elements in the 
sequence, how many fingers were used, the instructions to 
the participant such as “do a fixed number of sequences” vs. 
“do as many sequences in a fixed time” etc.). It is important 
to note that these coded features were only based on the task 
itself, and did not include differences in protocol informa-
tion (such as the amount or duration of practice). Based on 
this information, a task paradigm was classified as ‘unique’ 
if it did not match any other task paradigm in its category. 
In addition to the task paradigm, the sample size/group was 
also calculated. If there were multiple experiments, the sam-
ple size/group was simply computed as the total sample size/
total number of groups. This information for each task along 
with the coded features is summarized in Table 2.

Overall, we found that a majority of the studies on 
motor learning were on adaptation (36%), followed by 
coordination (17%), sequence learning (16%), variability 
(12%), tracking (11%), and applied tasks (8%) (Fig. 1a). 
Group sample sizes were typically in the range of 10–16 
participants (25th–75th percentile) (Fig. 1b). Critically, we 

Table 1  Definition of task categories

Tasks used in prior studies were classified into one of six categories based on the processes involved during motor learning. Typical dependent 
variables and a prototypical example of such tasks is also provided. Even though categories themselves are not completely mutually exclusive, 
each study in the review was classified into one of the six categories

Task category Process involved in learning of task Typical dependent variable(s) Example

Adaptation Responding to perturbations of typically 
well-learned movements

Deviation from baseline behavior Visuomotor rotation

Applied Production of movement responses in 
‘real-world’ situations that may involve a 
combination of processes

Task-dependent Penalty kicks in soccer

Coordination Production of spatiotemporal pattern 
involving more than a single degree of 
freedom (limbs, joints, muscles)

Coordination measures that capture relative 
motion between the degrees of freedom, 
dimensionality reduction techniques

Bimanual coordination

Sequence Production of a sequence of several move-
ment responses

Speed, errors, reaction time Key pressing

Tracking Production of a desired spatiotemporal pat-
tern that is ‘time varying’

Deviation between the target pattern and 
the actual

Tracking a moving target on a screen

Variability Production of a ‘steady-state’ task perfor-
mance level over time or trials

Variability across time or trials Throwing a ball to a target



3Experimental Brain Research (2021) 239:1–19 

1 3

Ta
bl

e 
2 

 R
ev

ie
w

 o
f m

ot
or

 le
ar

ni
ng

 st
ud

ie
s f

ro
m

 se
le

ct
ed

 jo
ur

na
ls

 in
 2

01
7–

20
18

A
ut

ho
rs

C
at

eg
or

y
Ta

sk
Ta

sk
 n

ot
es

Sa
m

pl
e 

Si
ze

Sa
m

pl
e 

Si
ze

 p
er

 
G

ro
up

U
ni

qu
e 

Ta
sk

 
(Y

/N
)

C
ou

th
 e

t a
l. 

(2
01

8)
A

da
pt

at
io

n
G

ra
sp

in
g

G
ra

sp
in

g 
ha

pt
ic

 b
lo

ck
s o

f d
iff

er
en

t 
le

ng
th

s w
ith

 v
is

io
n-

ha
pt

ic
 c

on
fli

ct
48

 (2
 g

ro
up

s)
24

Y

M
cg

re
go

r e
t a

l. 
(2

01
8)

A
da

pt
at

io
n

Re
ac

hi
ng

FF
 c

ur
l k

 =
 14

 N
s/

m
. A

m
pl

itu
de

 
un

sp
ec

ifi
ed

, T
im

in
g 

37
5 ±

 10
0 

m
s, 

1 
ta

rg
et

78
 (3

 g
ro

up
s)

26
Y

M
cG

re
go

r a
nd

 G
rib

bl
e 

( 2
01

7)
A

da
pt

at
io

n
Re

ac
hi

ng
FF

 c
ur

l k
 =

 14
 N

s/
m

. A
m

pl
itu

de
 

15
 c

m
, T

im
in

g 
45

0-
55

0 
m

s, 
1 

ta
rg

et
30

 (2
 g

ro
up

s)
15

Y

M
cK

en
na

 e
t a

l. 
(2

01
7)

A
da

pt
at

io
n

Re
ac

hi
ng

FF
 c

ur
l k

 =
 15

 N
s/

m
. A

m
pl

itu
de

 
10

 c
m

, P
ea

k 
ve

lo
ci

ty
 b

et
w

ee
n 

0.
25

–
0.

35
 m

/s
, t

im
e <

 75
0 

m
s, 

1 
ta

rg
et

84
 (6

 g
ro

up
s)

14
Y

M
iln

er
 e

t a
l. 

(2
01

8)
A

da
pt

at
io

n
Re

ac
hi

ng
FF

 c
ur

l k
 =

 15
 N

s/
m

. A
m

pl
itu

de
 

25
 c

m
, T

im
in

g 
60

0 ±
 50

 m
s, 

2 
ta

rg
et

s
28

 (2
 g

ro
up

s)
14

Y

M
el

en
de

z-
C

al
de

ro
n 

et
 a

l. 
(2

01
7)

A
da

pt
at

io
n

Re
ac

hi
ng

FF
 c

ur
l k

 =
 25

 N
s/

m
, A

m
pl

itu
de

 
10

 c
m

, T
im

in
g 

50
0-

70
0 

m
s, 

3 
ta

rg
et

s
Ex

p1
: 7

 (1
 g

ro
up

); 
Ex

p2
: 3

0 
(3

 
gr

ou
ps

)
9.

25
Y

K
um

ar
 e

t a
l. 

(2
01

8)
A

da
pt

at
io

n
Re

ac
hi

ng
V

M
R

 3
0 

de
g 

C
W

 a
nd

 C
C

W
, A

m
pl

i-
tu

de
 1

3 
cm

, 8
 ta

rg
et

s (
45

 d
eg

 a
pa

rt)
48

 (6
 g

ro
up

s)
8

Y

Sc
hm

itz
 a

nd
 B

oc
k 

(2
01

7)
A

da
pt

at
io

n
Re

ac
hi

ng
V

M
R

 3
0 

de
g 

C
W

 a
nd

 C
C

W
; A

m
pl

i-
tu

de
 3

6 
cm

, 6
 v

is
ua

l a
nd

 a
ud

ito
ry

 
ta

rg
et

s (
+

 -6
/1

8/
30

 d
eg

s)

36
 (3

 g
ro

up
s)

12
Y

A
ik

en
 e

t a
l. 

(2
01

7)
A

da
pt

at
io

n
Re

ac
hi

ng
V

M
R

 3
0 

de
g 

C
W

, A
m

pl
itu

de
 3

 c
m

, 3
 

ta
rg

et
s (

60
, 1

50
 a

nd
 2

40
 d

eg
)

49
 (4

 g
ro

up
s)

12
.2

5
Y

H
ol

la
nd

 e
t a

l. 
(2

01
8)

A
da

pt
at

io
n

Re
ac

hi
ng

/S
ho

ot
in

g
V

M
R

 1
5 

an
d 

25
 d

eg
 C

W
 a

nd
 C

C
W

; 
A

m
pl

itu
de

 1
0 

cm
, 2

00
-1

00
0 

m
s 

tim
e,

 1
 ta

rg
et

 (9
0 

de
g)

Ex
p1

: 4
0 

(3
 g

ro
up

s)
; E

xp
 2

: 2
0 

(2
 

gr
ou

ps
)

12
Y

C
an

av
er

al
 e

t a
l. 

(2
01

7)
A

da
pt

at
io

n
Re

ac
hi

ng
/S

ho
ot

in
g

V
M

R
 1

5 
de

g 
C

C
W

; A
m

pl
itu

de
 1

0 
cm

, 
15

0 
m

s t
im

e,
 8

 ta
rg

et
s (

45
 d

eg
s s

ta
rt-

in
g 

fro
m

 2
2.

5)

Ex
p1

: 3
2 

(3
 g

ro
up

s)
; E

xp
 2

: 2
3 

(2
 

gr
ou

ps
)

11
Y

Jia
ng

 e
t a

l. 
(2

01
8)

A
da

pt
at

io
n

Re
ac

hi
ng

/S
ho

ot
in

g
V

M
R

 3
0 

de
g 

C
C

W
, A

m
pl

itu
de

 7
 c

m
, 

tim
in

g 
10

0-
40

0 
m

s, 
1 

ta
rg

et
19

2 
(1

6 
gr

ou
ps

)
12

Y

Ja
la

li 
et

 a
l. 

(2
01

7)
A

da
pt

at
io

n
Re

ac
hi

ng
/S

ho
ot

in
g

V
M

R
 3

0 
de

g 
C

C
W

, A
m

pl
itu

de
 8

 c
m

, 
tim

in
g 

of
 1

00
–3

00
 m

s, 
8 

ta
rg

et
s

Ex
p1

: 2
8 

(2
 g

ro
up

s)
; E

xp
 2

: 2
0 

(2
 

gr
ou

ps
); 

Ex
p 

3:
 2

7(
2 

gr
ou

ps
); 

Ex
p 

4:
 

24
 (2

 g
ro

up
s)

; E
xp

 5
: 3

6 
(2

 g
ro

up
s)

; 
Ex

p 
6:

 3
2 

(2
 g

ro
up

s)
; E

xp
7:

 2
6 

(2
 

gr
ou

ps
)

13
.7

9
Y

Le
ow

 e
t a

l. 
(2

01
7)

A
da

pt
at

io
n

Re
ac

hi
ng

/S
ho

ot
in

g
V

M
R

 3
0 

de
g 

C
W

 a
nd

 C
C

W
, A

m
pl

i-
tu

de
 9

 c
m

, 8
 ta

rg
et

s
Ex

p 
1A

: 1
4 

(1
 g

ro
up

); 
Ex

p 
1B

: 1
4 

(1
 

gr
ou

p)
; E

xp
 2

: 3
6 

(3
 g

ro
up

s)
; E

xp
 3

: 
10

 (1
 g

ro
up

)

12
.3

3
Y

So
ng

 a
nd

 S
m

ile
y-

O
ye

n 
(2

01
7)

A
da

pt
at

io
n

Re
ac

hi
ng

/S
ho

ot
in

g
V

M
R

 5
0 

de
g 

C
W

, A
m

pl
itu

de
 1

0 
cm

, 
Ti

m
in

g 
10

0-
60

0 
m

s, 
1 

ta
rg

et
44

 (4
 g

ro
up

s)
11

Y



4 Experimental Brain Research (2021) 239:1–19

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

A
ut

ho
rs

C
at

eg
or

y
Ta

sk
Ta

sk
 n

ot
es

Sa
m

pl
e 

Si
ze

Sa
m

pl
e 

Si
ze

 p
er

 
G

ro
up

U
ni

qu
e 

Ta
sk

 
(Y

/N
)

Re
ill

y 
an

d 
Pe

tti
bo

ne
 (2

01
7)

A
da

pt
at

io
n

Sp
ee

ch
5 

C
V

C
 (c

on
so

na
nt

–v
ow

el
-c

on
so

na
nt

) 
w

or
ds

 w
ith

 d
iff

er
en

t e
m

be
dd

in
g 

of
 

vo
w

el
s

40
 (2

 g
ro

up
s)

20
Y

Se
id

le
r e

t a
l. 

(2
01

6)
A

da
pt

at
io

n
Th

ro
w

in
g

Pr
is

m
 g

og
gl

es
—

40
D

; d
ar

t t
hr

ow
 fr

om
 

7f
t

60
 (4

 g
ro

up
s)

15
Y

C
at

ta
n 

et
 a

l. 
(2

01
8)

A
da

pt
at

io
n

Tr
ac

ki
ng

D
el

ay
 a

da
pt

at
io

n,
 T

ra
ci

ng
 e

lli
ps

e 
an

d 
a 

Fi
g.

 8
 p

at
te

rn
20

 (2
 g

ro
up

s)
 in

 E
xp

 1
; 2

6 
(2

 g
ro

up
s)

 
in

 E
xp

 2
11

.5
Y

Fr
en

ch
 e

t a
l. 

(2
01

8)
A

da
pt

at
io

n
W

al
ki

ng
D

ist
or

te
d 

vi
su

al
 fe

ed
ba

ck
 o

f s
tri

de
 

le
ng

th
 b

y 
up

to
 9

%
, T

re
ad

m
ill

 
Sp

ee
d—

1.
2 

m
/s

Ex
p 

1:
 2

8 
(2

 g
ro

up
s)

; E
xp

 2
: 6

 (1
 

gr
ou

p)
11

.3
3

Y

M
ae

da
 e

t a
l. 

(2
01

6)
A

da
pt

at
io

n
W

al
ki

ng
Pr

is
m

 g
og

gl
es

—
20

D
, P

re
ci

si
on

 w
al

k-
in

g 
ta

sk
 a

cr
os

s 6
-m

 p
at

h
10

0 
(1

0 
gr

ou
ps

)
10

Y

H
in

ke
l-L

ip
sk

er
 a

nd
 H

ah
n 

(2
01

7)
A

da
pt

at
io

n
W

al
ki

ng
Sp

lit
-b

el
t t

re
ad

m
ill

 w
ith

 o
ne

 
lim

b ±
 0.

5 
m

/s
 o

f s
el

f-
se

le
ct

ed
 w

al
k-

in
g 

sp
ee

d

48
 (6

 g
ro

up
s)

8
Y

H
in

ke
l-L

ip
sk

er
 a

nd
 H

ah
n 

(2
01

8)
A

da
pt

at
io

n
W

al
ki

ng
Sp

lit
-b

el
t t

re
ad

m
ill

 w
ith

 o
ne

 
lim

b ±
 0.

5 
m

/s
 o

f s
el

f-
se

le
ct

ed
 w

al
k-

in
g 

sp
ee

d

48
 (3

 g
ro

up
s)

16
N

D
ay

 e
t a

l. 
(2

01
8)

A
da

pt
at

io
n

W
al

ki
ng

Sp
lit

-b
el

t t
re

ad
m

ill
 w

ith
 o

ne
 li

m
b 

at
 

0.
7,

 o
ne

 li
m

b 
at

 1
.4

 m
/s

40
 (4

 g
ro

up
s)

10
Y

K
im

 e
t a

l. 
(2

01
8)

A
pp

lie
d

G
ol

f p
ut

tin
g

2 
m

, 5
 m

 p
ut

ts
 o

n 
re

al
 g

re
en

20
 (2

 g
ro

up
s)

10
Y

N
av

ar
ro

 e
t a

l. 
(2

01
8)

A
pp

lie
d

Pe
na

lty
 k

ic
ks

20
 (2

 g
ro

up
s)

10
Y

C
hi

en
 a

nd
 C

he
n 

(2
01

8)
A

pp
lie

d
Pe

ta
nq

ue
75

 (2
 g

ro
up

s)
 3

7/
38

37
.5

Y
K

ra
je

nb
rin

k 
et

 a
l. 

(2
01

8)
A

pp
lie

d
Sl

in
ge

rb
al

l
5 

m
 th

ro
w

 to
 a

 2
 m

 d
ia

 ta
rg

et
16

2 
(2

 g
ro

up
s)

81
Y

H
eb

er
t (

20
18

)
A

pp
lie

d
Sp

ee
d 

cu
p 

st
ac

ki
ng

11
7 

(3
 g

ro
up

s)
39

Y
Li

n 
et

 a
l. 

(2
01

8)
C

oo
rd

in
at

io
n

A
rm

-T
ru

nk
 re

ac
hi

ng
Re

ac
hi

ng
 fo

r t
ar

ge
ts

 w
ith

 tr
un

k 
m

ot
io

n
48

 (4
 g

ro
up

s)
12

Y
Pa

nz
er

 e
t a

l. 
(2

01
8)

C
oo

rd
in

at
io

n
B

im
an

ua
l

1:
2 

pa
tte

rn
 u

si
ng

 fo
re

ar
m

s
32

 (4
 g

ro
up

s)
8

Y
B

in
gh

am
 e

t a
l. 

(2
01

8)
C

oo
rd

in
at

io
n

B
im

an
ua

l
90

 d
eg

 re
l p

ha
se

 u
si

ng
 jo

ys
tic

ks
20

 (2
 g

ro
up

s)
10

Y
D

ye
r e

t a
l. 

(2
01

7)
C

oo
rd

in
at

io
n

B
im

an
ua

l
B

im
an

ua
l s

ha
pe

 tr
ac

ki
ng

 w
ith

 m
us

ic
 

fe
ed

ba
ck

60
 (3

 g
ro

up
s)

20
Y

C
ar

di
s e

t a
l. 

(2
01

7)
C

oo
rd

in
at

io
n

B
im

an
ua

l
Th

ro
w

in
g 

vi
rtu

al
 p

uc
k 

w
ith

 b
ot

h 
ha

nd
s 

to
w

ar
d 

a 
ta

rg
et

50
 (5

 g
ro

up
s)

10
Y

Th
or

p 
et

 a
l. 

(2
01

6)
C

oo
rd

in
at

io
n

B
im

an
ua

l
V

irt
ua

l r
ea

ch
in

g 
ta

sk
 w

ith
 IM

U
s

16
 (2

 g
ro

up
s)

8
Y

K
im

ur
a 

et
 a

l. 
(2

01
7)

C
oo

rd
in

at
io

n
D

ua
l t

as
k 

of
 is

om
et

ric
 k

ne
e 

ex
te

n-
si

on
 a

nd
 e

lb
ow

 fl
ex

io
n

K
ne

e 
ex

te
ns

io
n 

re
qu

ire
d 

fo
rc

e 
pr

od
uc

-
tio

n;
 R

ea
ct

io
n 

tim
e 

ta
sk

 w
ith

 e
lb

ow
45

 (3
 g

ro
up

s)
15

Y

Sh
ug

gi
 e

t a
l. 

(2
01

8)
C

oo
rd

in
at

io
n

H
ea

d-
co

nt
ro

l r
ea

ch
in

g
Re

ac
hi

ng
 to

 ta
rg

et
s w

ith
 a

 ro
bo

t a
rm

 
w

hi
le

 av
oi

di
ng

 b
ou

nd
ar

ie
s

20
 (2

 g
ro

up
s)

10
Y



5Experimental Brain Research (2021) 239:1–19 

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

A
ut

ho
rs

C
at

eg
or

y
Ta

sk
Ta

sk
 n

ot
es

Sa
m

pl
e 

Si
ze

Sa
m

pl
e 

Si
ze

 p
er

 
G

ro
up

U
ni

qu
e 

Ta
sk

 
(Y

/N
)

C
hu

a 
et

 a
l. 

(2
01

8)
C

oo
rd

in
at

io
n

M
ax

im
um

 v
er

tic
al

 ju
m

p
H

ei
gh

t m
ea

su
re

d 
us

in
g 

a 
w

ea
ra

bl
e 

ac
ce

le
ro

m
et

er
36

 (2
 g

ro
up

s)
18

Y

Lo
Ja

co
no

 e
t a

l. 
(2

01
8)

C
oo

rd
in

at
io

n
O

bs
ta

cl
e 

cr
os

si
ng

Re
al

 a
nd

 v
irt

ua
l e

nv
iro

nm
en

ts
40

 (2
 g

ro
up

s)
20

Y
W

ul
f e

t a
l. 

(2
01

8)
C

oo
rd

in
at

io
n

Th
ro

w
in

g
La

ss
o 

to
 a

 ta
rg

et
 1

0 
fe

et
 aw

ay
Ex

p1
: 3

2 
(2

 g
ro

up
s)

 E
xp

2:
 4

2 
(3

 
gr

ou
ps

)
14

.8
Y

K
ra

us
e 

et
 a

l. 
(2

01
8)

Se
qu

en
ce

El
bo

w
 fl

ex
io

n–
ex

te
ns

io
n

70
, 2

0,
 7

0 
de

gs
 in

 1
20

0 
m

s
42

 (2
 g

ro
up

s)
21

Y
So

bi
er

aj
ew

ic
z 

et
 a

l. 
(2

01
7)

Se
qu

en
ce

K
ey

pr
es

s
5 

el
em

en
t k

ey
pr

es
s s

eq
ue

nc
e 

w
ith

 
bo

th
 si

ng
le

 a
nd

 4
 fi

ng
er

s-
 a

s f
as

t a
s 

po
ss

ib
le

 b
ut

 fo
r a

 fi
xe

d 
nu

m
be

r o
f 

se
qu

en
ce

s

24
 (2

 g
ro

up
s)

12
Y

N
ev

ill
e 

an
d 

Tr
em

pe
 (2

01
7)

Se
qu

en
ce

K
ey

pr
es

s
5 

el
em

en
t k

ey
pr

es
s s

eq
ue

nc
e 

w
ith

 4
 

fin
ge

rs
—

as
 fa

st 
as

 p
os

si
bl

e 
w

ith
ou

t 
pa

us
e 

in
 3

0 
s

42
 (3

 g
ro

up
s)

14
Y

Yo
ko

i e
t a

l. 
(2

01
6)

Se
qu

en
ce

K
ey

pr
es

s
5 

el
em

en
t k

ey
pr

es
s s

eq
ue

nc
e 

w
ith

 5
 

fin
ge

rs
- a

s f
as

t w
ith

ou
t p

au
se

 fo
r 

fix
ed

 n
um

be
r o

f s
eq

ue
nc

es

32
 (4

 g
ro

up
s)

8
Y

K
ar

lin
sk

y 
an

d 
H

od
ge

s (
20

18
)

Se
qu

en
ce

K
ey

pr
es

s
5 

el
em

en
t k

ey
pr

es
s s

eq
ue

nc
e 

w
ith

 o
ne

 
fin

ge
r a

nd
 sp

ec
ifi

ed
 m

ov
em

en
t t

im
es

94
 (6

 su
bg

ro
up

s)
15

.6
7

Y

Ru
ffi

no
 e

t a
l. 

(2
01

7)
Se

qu
en

ce
Pe

g 
pl

ac
in

g
M

od
ifi

ed
 v

er
si

on
 o

f t
he

 N
in

e 
H

ol
e 

Pe
g 

Te
st

20
 (2

 g
ro

up
s)

10
Y

B
ar

ro
s e

t a
l. 

(2
01

7)
Se

qu
en

ce
Re

ac
hi

ng
3 

ite
m

 se
qu

en
ce

 w
ith

 sp
ec

ifi
ed

 ti
m

es
 

(E
xp

1)
 o

r s
pe

ci
fie

d 
fo

rc
es

 (E
xp

2)
Ex

p1
: 6

0 
(4

 g
ro

up
s)

; E
xp

2:
 6

0 
(4

 
gr

ou
ps

)
15

Y

K
ai

pa
 e

t a
l. 

(2
01

7)
Se

qu
en

ce
Sp

ee
ch

N
on

 m
ea

ni
ng

fu
l p

hr
as

e 
w

ith
 ti

m
e 

co
ns

tra
in

ts
80

 (4
 g

ro
up

s)
20

Y

Le
va

c 
et

 a
l. 

(2
01

7)
Se

qu
en

ce
St

ep
pi

ng
6 

ste
p 

se
qu

en
ce

s
40

 (2
 g

ro
up

s)
20

Y
H

aa
rm

an
 e

t a
l. 

(2
01

7)
Se

qu
en

ce
W

al
ki

ng
7 

ste
p 

se
qu

en
ce

 (6
 st

ep
 le

ng
th

s)
 w

ith
 

ta
rg

et
s p

ro
je

ct
ed

 o
n 

to
 tr

ea
dm

ill
20

 (2
 g

ro
up

s)
10

Y

D
ot

ov
 a

nd
 F

ro
es

e 
(2

01
7)

Tr
ac

ki
ng

A
ud

ito
ry

-m
ot

or
 sy

nc
hr

on
iz

at
io

n 
ta

sk
H

an
d-

he
ld

 a
cc

el
er

om
et

er
 m

ov
e-

m
en

ts
 c

re
at

ed
 so

un
ds

 th
at

 h
ad

 to
 b

e 
m

at
ch

ed
 to

 ta
rg

et
 so

un
d

48
 (3

 g
ro

up
s)

16
Y

Ita
gu

ch
i a

nd
 F

uk
uz

aw
a 

(2
01

8)
Tr

ac
ki

ng
D

ra
w

in
g

D
ra

w
 a

 sp
ec

ifi
c 

cu
rv

ed
 sh

ap
e 

in
 o

ne
 

str
ok

e
14

(2
 g

ro
up

s)
7

Y

Fi
al

ho
 a

nd
 T

re
si

lia
n 

(2
01

8)
Tr

ac
ki

ng
In

te
rc

ep
tio

n
H

itt
in

g 
a 

m
ov

in
g 

ta
rg

et
 u

si
ng

 a
 

m
an

ip
ul

an
du

m
21

 (3
 g

ro
up

s)
7

Y

Ye
n 

et
 a

l. 
(2

01
8)

Tr
ac

ki
ng

Re
ac

hi
ng

M
ov

e 
cu

rs
or

 in
 a

 v
irt

ua
l m

az
e 

us
in

g 
is

om
et

ric
 fo

rc
e

20
 (2

 g
ro

up
s)

10
Y

C
re

sp
o 

et
 a

l. 
(2

01
7)

Tr
ac

ki
ng

Tr
ac

ki
ng

Tr
ac

ki
ng

 a
 v

irt
ua

l l
oo

p 
th

ro
ug

h 
a 

co
nt

in
uo

us
 o

r d
is

cr
et

e 
w

ire
30

 (3
 g

ro
up

s)
10

Y



6 Experimental Brain Research (2021) 239:1–19

1 3

Ta
bl

e 
2 

 (c
on

tin
ue

d)

A
ut

ho
rs

C
at

eg
or

y
Ta

sk
Ta

sk
 n

ot
es

Sa
m

pl
e 

Si
ze

Sa
m

pl
e 

Si
ze

 p
er

 
G

ro
up

U
ni

qu
e 

Ta
sk

 
(Y

/N
)

B
oy

er
 e

t a
l. 

(2
01

7)
Tr

ac
ki

ng
Tr

ac
ki

ng
Tr

ac
ki

ng
 ra

nd
om

ly
 m

ov
in

g 
ta

rg
et

 w
ith

 
so

ni
fic

at
io

n 
of

 e
rr

or
s

Ex
p 

2:
 3

6 
pa

rti
ci

pa
nt

s (
3 

gr
ou

ps
); 

Ex
p 

3:
 3

6 
pa

rti
ci

pa
nt

s (
3 

gr
ou

ps
); 

12
 

pa
rti

ci
pa

nt
s (

1 
co

nt
ro

l g
ro

up
)

12
Y

K
ai

pa
 a

nd
 K

ai
pa

 (2
01

8)
Tr

ac
ki

ng
Tr

ac
ki

ng
U

se
d 

el
ec

tro
m

yo
gr

am
 fr

om
 m

ou
th

 to
 

tra
ck

 ra
m

p 
of

 u
pt

o 
40

%
 m

ax
im

um
 

vo
lu

nt
ar

y 
co

nt
ra

ct
io

n

45
 (3

 g
ro

up
s)

15
Y

M
an

sfi
el

d 
et

 a
l. 

(2
01

7)
Va

ria
bi

lit
y

B
al

an
ce

O
sc

ill
at

in
g 

pl
at

fo
rm

s w
ith

 v
ar

yi
ng

 
fr

eq
ue

nc
ie

s
48

 (3
 g

ro
up

s)
; 1

5/
15

/1
8

16
Y

O
ng

 a
nd

 H
od

ge
s (

20
18

)
Va

ria
bi

lit
y

B
al

an
ce

St
an

d 
on

 S
ta

bi
lo

m
et

er
Ex

p1
: 4

8 
(4

 g
ro

up
s)

; E
xp

2:
 4

0 
(4

 
gr

ou
ps

)
11

Y

M
ei

ra
 a

nd
 F

ai
rb

ro
th

er
 (2

01
8)

Va
ria

bi
lit

y
B

al
an

ce
St

an
d 

on
 S

ta
bi

lo
m

et
er

Ex
p1

: 5
6 

(4
 g

ro
up

s)
; E

xp
2:

 4
8 

(4
 

gr
ou

ps
)

13
N

Fr
an

k 
et

 a
l. 

(2
01

8)
Va

ria
bi

lit
y

G
ol

f p
ut

tin
g

3 
m

 p
ut

t t
o 

ho
le

 o
n 

ar
tifi

ci
al

 g
re

en
24

 (2
 g

ro
up

s)
12

Y
R

ai
sb

ec
k 

an
d 

D
ie

kf
us

s (
20

17
)

Va
ria

bi
lit

y
Pi

sto
l s

ho
ot

in
g

15
 fe

et
 fr

om
 ta

rg
et

; 2
.5

/5
 c

m
 ta

rg
et

68
 (4

 g
ro

up
s)

17
Y

Pa
ch

ec
o 

an
d 

N
ew

el
l (

 2
01

8)
Va

ria
bi

lit
y

Th
ro

w
in

g
B

al
l t

os
s t

o 
he

xa
go

na
l a

nd
 sq

ua
re

 
ta

rg
et

s p
la

ce
d 

2.
05

 m
 aw

ay
24

 (3
 g

ro
up

s)
8

Y

G
in

ne
ke

n 
et

 a
l. 

(2
01

8)
Va

ria
bi

lit
y

Th
ro

w
in

g
B

al
l t

os
s t

o 
ta

rg
et

 4
 m

 aw
ay

40
 (2

 g
ro

up
s)

20
Y

G
ra

nd
 e

t a
l. 

(2
01

7)
Va

ria
bi

lit
y

Th
ro

w
in

g
B

ea
nb

ag
 to

ss
 o

ve
r a

 b
oa

rd
 to

 ta
rg

et
 

3 
m

 aw
ay

70
 (2

 g
ro

up
s)

35
Y

FF
 F

or
ce

 fi
el

d,
 V

M
R 

vi
su

om
ot

or
 ro

ta
tio

n,
 C

W
 c

lo
ck

w
is

e,
 C

C
W

  c
ou

nt
er

cl
oc

kw
is

e



7Experimental Brain Research (2021) 239:1–19 

1 3

found that out of the 64 studies reviewed, there were 62 
unique task paradigms, a fragmentation of ~ 97% (Fig. 1c). 
In fact, of the two matches found, one was from the same 
group of authors, and the second was a standard commer-
cially available device. Although many of studies used 
task paradigms that belong to what could be considered 

the same task category (e.g., visuomotor adaptation in 
reaching), they varied in the implementation of the task 
in terms of relevant task parameters (see Table 2). These 
results highlight the high degree of fragmentation in task 
paradigms in the field.

Fig. 1  Fragmentation of task paradigms in motor learning. a Dis-
tribution of task categories across all studies—studies were divided 
into six categories based on the criteria shown in Table 1. b Distri-
bution of sample size/group across all studies. The majority of stud-
ies ranged between 10–16 participants in a group. c Plot of the num-
ber of studies reviewed in the current paper on the x-axis against the 
number of uniquely different tasks on the y-axis. The two dots high-

light the two studies that were not classified as unique. The almost 
perfect diagonal line indicates that there was little to no overlap in 
tasks between studies across all six categories, (d) Variability in putt 
distance across golf putting tasks shows fragmentation of task para-
digms even within the same task. The peak at 3 m is almost exclu-
sively driven by a single author group
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Review of task fragmentation within the same 
task—golf putting

One possible reason for the high level of task fragmenta-
tion could be a consequence of the fact that motor learn-
ing is a diverse field, and tasks are tailored for specific 
research questions. Therefore to examine if task fragmen-
tation exists even when researchers seemingly choose 
the same task, we performed a second analysis where 
we focused on studies that all used a relatively common 
task—golf putting. We used the search phrases ‘golf’ and 
‘motor learning’ in Web of Science, and studies from 
2013–2018 were examined (we changed the timeframe to 
increase the number of articles that were included). The 
same inclusion criteria were used as before, and we only 
focused on putting studies (e.g. studies on the golf swing 
or chip shots were not included). The relevant parameters 
that were extracted for this task were the putt distance, 
target type, target size, the surface type, and the scor-
ing system were extracted (Table 3). The scoring system, 
while not strictly part of the task itself, was included as 
a factor because it has a direct influence on how results 
from different studies can be interpreted relative to each 
other. Overall 22 studies were selected.

Once again, results showed that even within the context 
of the same task, studies used a variety of different putt 
distances (Fig. 1d). Even though there were several stud-
ies that used a putting distance of 3 m, this was almost 
exclusively driven by a single group of authors. In addi-
tion, there were also variations in the hole type, diam-
eter, and the scoring system (Table 3). As emphasized 
earlier, even though such differences may seem trivial 
at first glance, they can create important differences 
between studies. For example, the use of an actual hole 
(as opposed to a circle) increases ecological validity but 
adversely affects estimation of error and variability. This 
is because a range of ball velocities will land the ball in 
the hole and be ‘compressed’ as zero error. Similarly, 
from a scoring standpoint discretizing a continuous error 
measure, such as the distance of the ball from the center 
of the target into measures such as the number of suc-
cessful putts or a points system, has the potential to sig-
nificantly distort learning curves (Bahrick et al. 1957). 
Finally, other information was incomplete to the extent 
that it would be difficult to perform a direct replication. 
For example, in the putting surface, the term ‘synthetic’ 
or ‘artificial’ green was used in several papers; however, 
only two papers mentioned the ‘speed’ of the green used, 
which is a critical variable for replication. These results 
highlight that even when the same general task is chosen, 
there is still a high degree of fragmentation in task para-
digms across studies.

Consequences of task fragmentation

Given the evidence for fragmentation, one argument could 
be that these variations in parameters are trivial and do not 
alter our understanding of motor learning in any meaning-
ful way. We wish to highlight two things in this regard—(i) 
there is evidence that at least some of these trivial param-
eters can have a significant influence on the dependent 
variables, which in turn may affect inferences about learn-
ing. For example, in visuomotor rotation, the choice of the 
number of targets and the rotation angle has been shown to 
influence the rate of learning and the magnitudes of implicit 
and explicit learning (Bond and Taylor 2015) (ii) in rare 
cases, these parameter changes do have the potential to 
completely alter the conclusions observed. For example, the 
presence or absence of catch trials during training in force 
field adaptation has been shown to influence whether motor 
memory consolidation is observed (Overduin et al. 2006). 
Given these possibilities, we describe both the theoretical 
and methodological consequences of task fragmentation in 
detail.

Theoretical consequences

From a theoretical standpoint, the fragmentation of tasks 
across studies makes every finding an ‘island’ and ham-
pers the cumulative progress of science, where research-
ers can replicate the findings and then build off of previ-
ous research (Zwaan et al. 2018). This issue is critical in 
light of the recent ‘replication crisis’, where well-known 
effects in many fields have either failed to replicate or have 
had smaller effects than once originally assumed (Camerer 
et al. 2018; Open Science Collaboration 2015). Although 
one argument for using different tasks is that they can be 
useful in testing the generality of theories and hypotheses 
in different contexts, the utility of exclusively relying on 
such ‘conceptual replications’ has been challenged because 
it is subject to confirmation bias (Chambers 2017). In other 
words, if the results of the original and the conceptual rep-
lication agree, then it is taken as evidence of the generality 
of the effect; however, if the results of the original study and 
the conceptual replication differ (i.e. the replication ‘failed’), 
then these differences are directly attributed to the changed 
task parameters in the conceptual replication. This leads to 
a situation where the robustness of the original finding can 
never be questioned. Moreover, it has been argued that even 
when such conceptual replications fail, current incentive 
structures at many journals make the likelihood of publish-
ing these results low, leading to a biased literature (Pashler 
and Harris 2012).

This issue of being able to exactly replicate a study (i.e. 
a direct replication) is especially important in the context 
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Table 3  Review of selected motor learning studies using golf putting as a task in 2013–2018

Authors Putting distance Target type Target size Description of surface Performance measure(s)

Chauvel et al. (2013) 0.25, 0.5, 0.75, 1, 1.25, 
1.5, 1.75, 2, 2.25

Hole 11.4 cm dia Artificial turf indoor green 
2 m × 2.7 m

Number of successful putts

Daou et al. (2016) 1.2 m Point target cross 
made up of 
two 10.8 cm 
pieces of tape

Artificial grass surface Radial error, bivariate error

Fazeli et al. (2017) 1.22, 2.44, 3.66 m Circle 4 cm dia Synthetic 9 m × 4 m put-
ting green (STI Pro Putt)

Radial error measured from 
edge of target

Palmer et al. (2016) 1.5 m Square 2 × 2 cm square 4 m × 0.55 m level artifi-
cial-turf indoor green

Distance between center 
of target and edge of 
ball; distance counted as 
100 cm if rear border of 
green was contacted

Zhu et al. (2015) 1.9 m Hole 12 cm dia Artificial grass putting 
surface

Number of successful putts

Chauvel et al. (2015) 2 m Circle 10.4 cm dia 4 m × 0.55 m level artifi-
cial-turf indoor green

Distance between center 
of target and edge of 
ball; distance counted as 
100 cm if rear border of 
green was contacted

Ziv and Lidor ( 2015) 2 m Circle 10.8 cm dia 1 m × 4 m artificial grass Absolute error, variable 
error

Abbas and North ( 2018) 2, 5 m; target behind 
opaque curtain

Hole 10.61 cm dia Flat carpeted surface Radial error

Land et al. (2014) 2.0, 2.75, 3.5, 4.25, 5.0 m Circle 10.8 cm dia 4 m × 9 m artificial indoor 
putting green

Radial error, Bivariate 
radial error

Nunes et al. (2019) 2.2, 2.4, 3.2 m Hole N/A 1.5 m × 4 m artificial grass Point system
Lawrence et al. (2014) 2.25 m Hole 10 cm dia Astroturf surface, 90-cm 

incline slope of 22 
degrees that started 
72 cm from the start 
position

Number of successful putts, 
radial error

Ring et al. (2015) 2.4 m Hole 10.8 cm dia Flat artificial putting 
surface (Turf tiles) with 
stimpmeter reading of 
3.05 m

Number of putts, radial 
error; zero radial error if 
putt was holed

Daou et al. (2019) 3 m Point target cross 
made up of 
two 10.8 cm 
pieces of tape

Artificial grass surface Radial error, bivariate vari-
able error

Frank et al. (2013) 3 m Circle 10.8 cm dia 4 m × 7 m artificial indoor 
putting green

Radial error, bivariate vari-
able error

Frank et al. (2014) 3 m Circle 10.8 cm dia Artificial indoor putting 
green

Radial error, bias, bivariate 
variable error

Frank et al. (2016) 3 m Circle 10.8 cm dia 4 m × 9 m artificial indoor 
putting green

Radial error, bivariate vari-
able error

Kim et al. (2017) 3 m Circle 10.8 cm dia 4 m × 9 m synthetic put-
ting green

Radial error

Vine et al. (2013) 3.05 m Hole 10.8 cm dia 6 × 2.5 m artificial putting 
green, stimpmeter read-
ing 3.28 m

Radial error; zero if putt 
was holed

Krause et al. (2014) 3.3 m; putt from behind a 
curtain

Point N/A Carpet with comparable 
conditions to a green

Absolute error in distance 
and angle

Kearney (2015) 4 m Circle 10 cm dia Indoor putting surface Points system
Lewthwaite et al. (2015) 4 m Circle 20 cm dia Floor Points system
Munzert et al. (2014) 4.50 m Point N/A Indoor green Absolute error
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of motor learning because of the recognition of the role of 
tasks and task constraints in determining behavior (New-
ell 1986, 1989). Given that tasks can vary along several 
dimensions, it is perhaps not surprising that many of these 
dimensions have been used as explanations for discrepancies 
in results across studies—e.g., practice spacing effects are 
affected by whether tasks are discrete or continuous (Lee 
and Genovese 1989), frequency of augmented feedback 
effects are affected by whether tasks are simple or complex 
(Wulf and Shea 2002), and sleep consolidation effects are 
affected by whether the tasks involve sequence learning or 
adaptation (Doyon et al. 2009). Although these task dimen-
sions certainly play an important role, it is also important to 
recognize that the true effect that they play cannot be fully 
understood without ensuring the robustness of the original 
findings through direct replications.

Methodological consequences

In addition to theoretical consequences, there are also meth-
odological consequences of task fragmentation. Here, we 
focus on three primary consequences of such fragmenta-
tion—(i) arbitrariness in choice of task parameters, (ii) arbi-
trariness in choice of sample size, and (iii) inability to com-
pare magnitudes of effects across different manipulations.

Arbitrariness in task parameters.

At the experimental design stage, the use of a new task poses 
a challenge for the experimenter because it requires mak-
ing choices about several task parameters that are critical to 
the experiment without sufficient information. For example, 
in a motor learning study, a common parameter that is a 
critical part of the experiment is the practice duration; yet 
this choice is rarely explicitly justified. Instead, research-
ers are likely to choose these values through a combination 
of unpublished pilot testing, applying rules of thumb based 
on other published studies, and convenience (e.g., choosing 
the shortest duration possible). These arbitrary choices can 
greatly limit the generalization of motor learning findings 
to the real-world—for example, in spite of the seemingly 
diverse range of tasks used, very few studies focus on the 
period after extended practice, when an effective perfor-
mance plateau has been reached (Hasson et al. 2016).

An even bigger challenge is the choice of the experimen-
tal manipulation itself. Typically, studies in motor learning 
involve a between-group manipulation of an independent 
variable with the experimenter having to decide on what 
the values of these variable are. For example, a study on 
variable practice may use a throwing task and compare two 
groups—a ‘constant’ group that always practices throws 
to a target from the same distance, and a ‘variable’ group 
that practices throws to different distances (Kerr and Booth 

1978). However, the critical parameter choice of how much 
variability the variable group experiences can have a major 
influence on the observed results (Cardis et al. 2018). This 
is because most practice strategies (e.g., practice variability, 
practice spacing, feedback frequency) are likely to be ‘non-
monotonic’ with respect to their influence on learning—i.e., 
there is an optimal level that maximizes learning, and there 
is a decrease in the amount of learning both above and below 
this optimal level (Guadagnoli and Lee 2004).

When the choice of this task parameter is made without 
sufficient information, it means that the experimenter does 
not know where the groups lie on this non-monotonic func-
tion (Fig. 2). As a result, even when the underlying effect 
of a manipulation is consistent across studies, different 
studies may get seemingly ‘contradictory’ results simply 
because they are sampling at different points of this function 
(Fig. 2a–c). To further compound this problem, when stud-
ies use different tasks, these discrepancies in results caused 
by variations in sampling may get incorrectly attributed to 
the task itself. One potential solution for this problem is to 
characterize a full ‘dose–response curve’ for each task and 
task manipulation by increasing the number of groups and 
sampling across the full parameter range (Fig. 2d). How-
ever, given the amount of effort needed to establish this 
dose–response curve, doing it for every new task would 
likely be impractical. These highlight the need for fewer 
tasks, and more data on these tasks to make more informed 
decisions on these task parameters.

Arbitrariness in sample size planning

Another key parameter choice in experimental design is the 
sample size. Several reviews have emphasized the need for 
a priori sample size planning, because the lack of adequate 
power stemming from small sample sizes can greatly reduce 
the reliability of the findings in the literature (Button et al. 
2013). However, just like the task parameters, sample size 
planning tends to become arbitrary when a new task is used. 
Consistent with a prior review of studies in motor learning 
(Lohse et al. 2016), sample sizes seen in our current review 
were around the 10–16/group (25th–75th percentile), regard-
less of the effect being studied. These sample sizes suggest 
that they are likely driven by heuristics for meeting a ‘pub-
lication threshold’ for journals.

The major barrier to doing a priori sample size planning 
in a new task is the lack of information on the expected 
effect size, or alternatively the ‘smallest effect size of inter-
est’ (Lakens et al. 2018). Effect sizes estimated from small 
samples of pilot data are not reliable (Albers and Lakens 
2018), and even meta-analytic estimates of effect size in 
motor learning seem to suffer from issues of small sample 
size and publication bias (Lohse et al. 2016). Moreover, as 
mentioned in the task parameters section, heterogeneity in 
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the effect size across different studies could also be driven 
by factors such as variation in the tasks and task parameters. 
These issues again point to the need for more data on fewer 
tasks to obtain reliable estimates of effect sizes, and thereby 
determine an appropriate sample size.

Uninformative magnitude of effects

Finally, if motor learning studies are to be of relevance to the 
real world (and not just mere demonstrations of effects), the 
goal is not only to detect ‘if’ there is an effect of an interven-
tion, but also to estimate the size of the effect—i.e., what can 
cause the ‘biggest’ effect. A literature with fragmented tasks 
is detrimental to this goal because it prevents any relative 
comparisons of magnitude of effects across different experi-
mental manipulations. For example, how do we compare 
the relative benefits of manipulations like practice spacing, 
variable practice, or self-controlled practice if each of these 
manipulations uses a different task with different depend-
ent variables? Although this might seem like an ‘apples to 
oranges’ comparison, knowing at least the effective range of 
performance improvements for each of these manipulations 
is critical to determining an effective training paradigm in 
the real world. For example, in rehabilitation studies, this 

comparison between different types of therapies (e.g., robot-
ics vs. conventional therapy) is routinely done by comparing 
the improvement in movement impairment measured on a 
common scale (e.g. the Fugl-Meyer score) (Lo et al. 2010). 
However, in motor learning studies, this common scale 
requires the use of the same task because (i) unlike meas-
ures of movement impairment, measures of motor learning, 
by definition, are specific to the task, and (ii) using stand-
ardized effect sizes (e.g. Cohen’s d) to make comparisons 
across tasks can be problematic because factors other than 
the mean difference, such as sample variability influence 
these effect sizes (Baguley 2009). These issues highlight 
that for comparing magnitudes of effects between different 
manipulations, there is a need for common tasks (and associ-
ated dependent variables), where improvements in perfor-
mance can be directly compared across studies in raw units 
of measurement (e.g., error measured in centimeters).

A call for ‘model’ task paradigms

In light of these issues, we feel there is a necessity to cre-
ate a few ‘model’ task paradigms for motor learning stud-
ies. These model task paradigms could serve as a common 

Fig. 2  Arbitrary selection of 
task parameters can lead to 
seemingly ‘contradictory’ 
results. Considering that the 
effect of many manipulations in 
motor learning (e.g., variability, 
spacing, feedback frequency 
etc.) are likely non-monotonic, 
task parameter selection 
becomes critical. For example, 
in a simple two group design 
(the `low’ group in blue, and 
the `high’ group in red), even 
though the underlying rela-
tion is the same in all cases, 
arbitrary selection of the task 
parameter can lead to (a) the 
high group learning more than 
the low group, (b) no difference 
between groups, or (c) the low 
group learning more than the 
high group. d A dose–response 
curve with more groups avoids 
this issue by providing a 
complete description of the non-
monotonic relation, however 
given the much larger sample 
size required, establishing such 
dose–response curves becomes 
impractical when each study 
uses a different task
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testbed for several studies on motor learning and labs all over 
the world could run identical (or nearly identical) experi-
ments using these paradigms. This proposal is analogous to 
the study of model organisms in related fields like biology 
and neuroscience. In such model systems, there is a recogni-
tion that it is not fully possible to study all possible varia-
tions, but that the knowledge gained from systematic study 
of a few carefully chosen representative systems can provide 
important insights for the field.

Characteristics of model task paradigms

What would be the characteristics of model task paradigms 
used for motor learning? Although a number of factors may 
be involved in determining this (e.g., whether the timescale 
of learning is feasible, whether the difficulty is appropriate 
so that a majority of the participants can learn the task etc.), 
our view is that a task chosen for a model paradigm would 
have to score high at least on two dimensions: (a) relevance 
and (b) replication.

The ‘Relevance’ dimension measures how well the par-
adigm addresses the scientific question of interest. Tasks 
that score high on relevance would include consideration of 
features such as face validity (e.g., how well does the task 
represent the motor learning process of interest), high inter-
nal validity (the ability to tightly control extraneous factors 
in the experiment) and high external validity (the ability to 
generalize to other contexts) including ecological validity 
(the ability to generalize to learning of real-world tasks). 
It is important to note that many of these factors may be 
unknown at the time of the task development—so there is a 
need for domain expertise and qualitative judgment in deter-
mining relevance. Given that motor learning likely involves 
distinct types of processes in the different categories speci-
fied in Table 1, it is likely that model tasks for each of these 
processes would also have to be distinct to directly address 
these specific processes (i.e. a model task for adaptation 
would be different from a model task for sequence learning 
or one for variability). Importantly though, by specifying 
these model tasks at the level of these processes associated 
with learning (which are relatively few in number), research-
ers would be capable of reusing the tasks to address multiple 
research questions. For example, a model task of sequence 
learning could be used to address multiple varied research 
questions such as the role of sleep and consolidation (i.e. 
whether sleep enhances learning), contextual interference 
(i.e. whether random practice is superior to blocked prac-
tice), or the effect of self-controlled practice (i.e. whether 
having control of the practice sequence is superior to ran-
domly practicing sequences).

The ‘Replication’ dimension measures how easy it is to 
replicate the paradigm in different labs, with access to poten-
tially different resources. Tasks that score high on replication 

would involve tasks with low reliance on specialized equip-
ment while still allowing high measurement precision. For 
example, for a task involving control of variability, an under-
hand throw to a target would score higher on the replica-
tion dimension compared to a golf putt because it does not 
require a specific putter nor is it affected by environmental 
factors such as the friction between the ball and the surface. 
Similarly, a model task paradigm using inexpensive tools 
like webcam-based marker tracking (Krishnan et al. 2015) or 
markerless video tracking (Mathis et al. 2018) would score 
higher on the replication dimension than tasks requiring the 
use of specialized expensive equipment because it is likely to 
be more easily replicated in more labs with access to fewer 
resources.

Once an appropriate task is identified, the next step in 
making it a ‘model task paradigm’ is to ensure sufficient 
transparency that other researchers can replicate and build 
off these results. This involves two major steps—(a) the tasks 
are specified in enough detail that other groups can replicate 
the tasks as closely as possible, and (b) the data and analyses 
from these experiments are shared in a public repository 
so that the results from prior experiments can be combined 
and compared with results from future experiments. Practi-
cal guidelines for sharing of methods and data have been 
extensively reviewed in other domains (Gorgolewski and 
Poldrack 2016; Klein et al. 2018). Specifically in terms of 
motor learning, because of the richness and complexity of 
behavior possible, a particularly relevant solution is the use 
of video to help other researchers replicate the procedure 
more closely (Gilmore and Adolph 2017).

Advantages of using model task paradigms

The use of model task paradigms directly addresses the chal-
lenges raised in the previous section. First, from a theoreti-
cal standpoint, model task paradigms permit direct replica-
tions which increases the likelihood of finding effects that 
are robust. Second, by adopting a ‘replicate and extend’ 
strategy (i.e. the experiment involves direct replication of 
a previous experiment but also collects data on some new 
parameter values), data from the first few studies would 
effectively yield ‘dose–response curves’ (such as those 
shown in Fig. 2d) that can provide important information 
about designing task parameter values for experimental 
manipulations. In fact, the use of model task paradigms 
opens the door for large scale studies across the globe that 
multiple labs can collaborate on—see for e.g. Psych Sci-
ence Accelerator (Moshontz et al. 2018). These approaches 
may allow answering questions with large sample sizes that 
are currently not being investigated (e.g. individual differ-
ences) because they are beyond the scope of a single lab. 
Third, the presence of openly available data on a single 
task paradigm can produce more reliable estimates of effect 
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sizes, and also facilitate discussion on what theoretically 
meaningful effect sizes are. This information, analogous to 
the minimally clinical important difference (MCID) used in 
rehabilitation studies, is critical to making the distinction 
between ‘statistically significant’ and ‘meaningful’ results. 
Finally, using model task paradigms across different types 
of manipulations will allow direct comparisons in terms of 
raw effect sizes between different types of practice strategies, 
allowing practitioners with a good understanding of the rela-
tive utility of these strategies.

Beyond addressing these challenges, another feature 
of using model task paradigms is that they can effectively 
constrain ‘researcher degrees of freedom’ (Simmons et al. 
2011). Although the term has been used to describe how 
undisclosed flexibility in data collection and analyses (such 
as flexibility in sample size or choosing among dependent 
variables) can make anything look ‘statistically significant’, 
the same issue also arises in the context of flexibility in 
task paradigms. For example, early studies on the role of 
augmented information in motor learning often chose task 
paradigms with extremely poor intrinsic information, such 
as drawing a line of a specified length. As a result, the role of 
augmented information was overrated in these tasks because 
it was often the only way participants could know what the 
task goal was (Swinnen 1996). Relatedly, the measurement 
of learning in these contexts has also used somewhat arti-
ficial situations such as No-KR tests, which often involve 
blindfolding participants from seeing the natural outcome 
of their actions (Russell and Newell 2007). Such criticisms 
have raised an important question of how relevant principles 
derived from simple tasks are to real-world learning (Wulf 
and Shea 2002; Russell and Newell 2007). Because model 
task paradigms are common only to broad themes in motor 
learning, and not at the level of individual research ques-
tions, they can effectively constrain flexibility in ‘tweaking’ 
of the task (intentional or unintentional) because the task and 
analyses are largely fixed in advance.

Last but not least, the use of model task paradigms also 
allows ‘data-driven’ discovery that could complement the 
dominant ‘hypothesis-driven’ approach in motor learning. 
The availability of relatively large data sets on a few stand-
ardized tasks could yield answers to questions that were not 
originally the focus of the work. An example of this in the 
motor learning has been the DREAM database (Walker and 
Kording 2013). Originally established as a collection of dif-
ferent experiments on reaching, data from these experiments 
were subsequently used to address a question about variabil-
ity and rate of motor learning (He et al. 2016). In addition, 
these large data sets can also help serve to generate and test 
new theories or models of learning, as any new proposed 
theory or model at least needs to adequately accommodate 
for these data before making other testable predictions for 
future experiments.

The key steps involved in developing a model task are 
illustrated in Fig. 3. To demonstrate this with an example, 
consider the underarm ball toss to a target as a model task for 
learning to control variability (Rossum and Bootsma 1989). 
First, this task scores relatively high on relevance (it has 
good face validity because throwing the ball accurately to 
the target requires control of motor variability, internal valid-
ity can be increased through control of extraneous factors, 
and it also likely has ecological validity given several real-
world motor learning tasks like the basketball free throw or 
golf putting require control of variability). Second, this task 
also scores relatively high on replication (because the only 
implement being used is a ball, such a paradigm is easy to 
replicate in any lab without the need for expensive or spe-
cialized equipment). Third, to make data in this task useful 
for other researchers, the dependent variable of task perfor-
mance would have to be measured in ‘real-world units’—for 
e.g., the error from the target would need to be measured in 
centimeters (instead of a points scale for example). Fourth, 
initial studies using the task would aim to establish learning 
under a range of conditions involving variations of experi-
mental parameters—for example, varying target distances or 
the amount of practice. Sample sizes for these initial stud-
ies may rely on broad ‘thumb rules’ for effect sizes (such 
as Cohen’s d of 0.5 etc.). Fifth, the data then have to be 
examined for how well they can be used to make inferences 
about the underlying learning—e.g., does task performance 
plateau too quickly, is the learning too variable between sub-
jects, is the learning retained over a period of time? These 
questions will depend on what the underlying question of 
interest is—for example, high between-subject variability 
may actually be desirable if the goal is to examine individual 
differences. Sixth, the protocol and data is then deposited 
in a public repository (e.g., Open Science Framework) that 
is available for other researchers to use. The last and final 
step is how other scientists in the field perceive the pro-
posed task—if the community is convinced of the utility 
of the proposed task to examine the motor learning process 
of interest, this task is adopted for further experiments and 
becomes a ‘model task’.

Once a model task is established, subsequent studies 
could then leverage this information in different ways. 
For example, one could start getting into manipulating 
practice strategies through dose–response studies. Using 
the underhand throw example, a study on variable prac-
tice could use multiple groups with wide range of practice 
variations (instead of the conventional two group design) 
to examine in what parameter range the ‘strongest’ effect 
of variable practice occurs in this task. Moreover, the 
learning curves established in the initial studies would 
also be informative in making magnitudes of effects more 
interpretable in terms of the time scale of learning (Day 
et al. 2018)—for e.g., if two groups differ by a throwing 
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error of 2 cm at the end of practice, that could be poten-
tially translated into something like ‘using this practice 
strategy produced an improvement that would normally 
take 100 additional trials of practice’. Finally, because 
data are collected under the same standard conditions and 
shared across studies, it would become easier for future 
studies to determine effect sizes more precisely, which 
would then lead to more efficient sample sizes and a 
robust base of evidence for findings.

Costs to using model task paradigms

From a practical standpoint, there is a cost in terms of the 
initial effort involved in developing model task paradigms 
compared to the status quo. Potential factors that drive this 
effort are (a) more careful consideration of tasks, (b) precise 
specification of associated measurement, (c) the use of larger 
sample sizes with more groups, and (d) the effort involved 
in making data and resources openly available. However, 

Fig. 3  A roadmap for constructing model tasks. At each stage of 
research (experimental design, data collection and analysis, and dis-
semination), the key steps and examples of associated questions that 
may need to be addressed are highlighted. The final step “acceptance 
by broader scientific community” is not undertaken directly by the 
experimenter but indicates how a proposed task eventually becomes 

a model task. It is important to note that these processes and ques-
tions are not intended to be an exhaustive list for every context but 
rather provide a guide for such decisions. Ultimately, the goal of these 
model tasks is to enable work to be combined across multiple studies 
and labs in a way that can establish robust findings



15Experimental Brain Research (2021) 239:1–19 

1 3

we think that benefits are cumulative, with subsequent stud-
ies becoming much easier to plan and execute because it 
would allow investigators to skip over repeated pilot-testing 
phases, and use previously published data to make informed 
estimates about new experiments. Second, there is a poten-
tial risk of duplication if two research groups run the same 
experiment using the same model task. However, with the 
rising popularity of pre-prints and formats such as registered 
reports which allow for ‘results-blind’ acceptance (Caldwell 
et al. 2019; Chambers 2013), we believe that such concerns 
can be overcome.

More broadly for the field, there is a potential concern 
that model task paradigms may narrow the impact or gener-
ality of the field by decreasing the diversity of phenomena 
being studied. This concern has been expressed in the con-
text of model organisms in biology (Yartsev 2017) and it is 
important not to fall back on the ‘easy’ route of only study-
ing questions that can be answered using existing model 
task paradigms. At the level of the individual researcher, 
an overreliance on model tasks may hamper creativity and 
limit new discoveries. However, given that motor learning 
is currently at the other extreme with excessive fragmenta-
tion, we think that this concern, is at least for the moment, 
not a major one. In fact, as model task paradigms emerge 
for different themes, they may in fact actually help increase 
the diversity of problems studied by more clearly revealing 
which issues have received less attention, and provide oppor-
tunities for addressing such gaps through creative discovery. 
Moreover, model tasks themselves are not fixed but shaped 
by the scientific community—as some tasks reach a point of 
diminishing returns in terms of their utility, these could be 
replaced by other model tasks.

It is also perhaps worth re-iterating that model task 
paradigms are not meant to be a requirement for every 
experiment. Research questions at either extreme of the 
theoretical-applied spectrum are likely to continue to use 
customized tasks that suit their purpose. On the theoretical 
side, studies may involve a very specific manipulation (e.g., 
using a robotic exoskeleton to perturb a single joint) that 
requires the use of a task which does not fall into one of the 
model tasks. Similarly, on the applied side, there will always 
be a need for applied studies where the task itself is critical 
to the research question being answered (e.g., improving 
surgical technique). However, for the vast majority of studies 
in the middle of this spectrum, which have some flexibility 
in the choice of tasks, model task paradigms may provide a 
solution to the current level of fragmentation. These para-
digms will also continue to evolve with greater theoretical 
understanding and improvements in measurement tools. 
Ultimately the success of any model task paradigm will 
depend on how other researchers in the field see its value, 
both in terms of the insights it generates, and in terms of 
how these insights generalize to the real world.

Conclusion

In his highly influential paper on motor learning, Jack 
Adams (Adams 1971) criticized the use of real-world 
tasks saying that they resulted in ‘disconnected pockets 
of data’ that was unsuitable for the development of general 
scientific principles’. However, with the current level of 
fragmentation, we show that the same problem also exists 
even with laboratory tasks in motor learning. As a result, 
we believe that addressing this critical issue is vital for the 
field of motor learning. Many of the key steps outlined in 
Fig. 3 (standardizing protocols, dependent variables and 
open data sharing practices) have been recently discussed 
in other behavioral sciences for conducting large-scale 
multi-lab studies and clinical trials (Open Science Col-
laboration 2015; Adolph et al. 2012; Kwakkel et al. 2017; 
Frank et al. 2017), and it is our view that the field of motor 
learning may also benefit from such an effort.

Two related questions remain—(i) has this fragmen-
tation always been the case in motor learning, and (ii) 
what are the underlying reasons for fragmentation? For 
the first question, we note that an early attempt to stand-
ardize tasks was undertaken in the “Learning Strategies 
Project” (Donchin 1989), which developed a computer 
game called Space Fortress (Mané and Donchin 1989) to 
allow direct comparisons between different learning strat-
egies. Strikingly, the primary rationale stated for build-
ing a common computer game was task fragmentation as 
evidenced by the following quote “…it was quite evident 
that the diversity of paradigms and theoretical approaches 
within which the phenomena were studied, and the mod-
els tested, made it very difficult to compare results across 
studies” (Donchin 1989). Therefore, we do not think that 
the problem of task fragmentation is recent, although it 
is likely that the problem may have worsened in recent 
years as experimenters developed the tools to build their 
own hardware and software. For the second question of 
why such fragmentation exists, we can only speculate that 
there may be a number of factors that drive this fragmenta-
tion—incentives for novelty over replication, experimental 
‘traditions’ that are handed down from mentors to graduate 
students, or even seemingly mundane issues like the lim-
ited availability of space or equipment, which increases the 
likelihood of creating new paradigms to shoehorn them to 
existing resources. Regardless of the underlying reasons, 
we suggest that it is time for research efforts to coalesce 
around a few model task paradigms for a more robust sci-
ence that researchers in the field can build upon.
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