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Abstract
Transcranial direct current stimulation (tDCS) using intensities ≤ 2 mA on physical and cognitive outcomes has been exten-
sively investigated. Studies comparing the effects of different intensities of tDCS have yielded mixed results and little is 
known about how higher intensities (> 2 mA) affect outcomes. This study examined the effects of tDCS at 2 mA and 4 mA 
on leg muscle fatigability. This was a double-blind, randomized, sham-controlled study. Sixteen healthy young adults under-
went tDCS at three randomly ordered intensities (sham, 2 mA, 4 mA). Leg muscle fatigability of both legs was assessed via 
isokinetic fatigue testing (40 maximal reps, 120°/s). Torque- and work-derived fatigue indices (FI-T and FI-W, respectively), 
as well as total work performed (TW), were calculated. FI-T of the right knee extensors indicated increased fatigability in 
2 mA and 4 mA compared with sham (p = 0.01, d = 0.73 and p < 0.001, d = 1.61, respectively). FI-W of the right knee exten-
sors also indicated increased fatigability in 2 mA and 4 mA compared to sham (p = 0.01, d = 0.57 and p < 0.001, d = 1.12, 
respectively) and 4 mA compared with 2 mA (p = 0.034, d = 0.37). tDCS intensity did not affect TW performed. The 2 mA 
and 4 mA tDCS intensities increased the fatigability of the right knee extensors in young, healthy participants, potentially 
from altered motor unit recruitment/discharge rate or cortical hyperexcitability. Despite this increase in fatigability, the TW 
performed in both these conditions was not different from sham.

Keywords  Non-invasive brain stimulation · Transcranial direct current stimulation · Muscle fatigue · High intensity · 
Isokinetic task

Introduction

The principle underpinning the neuromodulatory technique 
transcranial direct current stimulation (tDCS) to affect brain 
function is that tDCS modulates the excitability of neurons 
by changing the resting membrane potential (Bindman 
et al. 1964; Purpura and McMurtry 1965). tDCS can elicit 
changes in excitability that outlast the period of stimulation 
when applied for several minutes during and before a task 
(Nitsche and Paulus 2000, 2001, 2011). In recent years, it 
has been suggested that tDCS may be a potential treatment 

for neurological and psychiatric disorders (Kuo et al. 2014; 
Liew et al. 2014; Player et al. 2014). Currently, the majority 
(~ 96%) of tDCS sessions have been limited to intensities 
of 2 mA or less (Bikson et al. 2016). Thus, this standard 
of 2 mA has become an unofficial ‘upper limit’ in tDCS 
research. However, because tDCS technologies and meth-
odologies have improved, exploration of higher intensi-
ties is both plausible and recommended (Rothwell 2012). 
Indeed, some are already exploring tDCS at intensities as 
high as 4 mA (Chhatbar et al. 2017, 2018; Khadka et al. 
2019; Trapp et al. 2019). However, of these higher inten-
sity investigations that included a motor performance, all of 
them had small sample sizes (≤ 3), and most were primarily 
concerned with assessing tolerability and not motor per-
formance changes (Chhatbar et al. 2017, 2018; Trapp et al. 
2019). Examining a broader range of stimulation parameters 
is necessary, because recent evidence suggests that a higher 
current density (which is a function of electrode size and 
intensity) may not always result in greater increases in excit-
ability (Bastani and Jaberzadeh 2013a; Chew et al. 2015; 
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Kidgell et al. 2013). Furthermore, a recent review also high-
lighted the variable effects of tDCS on motor performances, 
especially in association with increasing stimulation inten-
sity (Esmaeilpour et al. 2018).

A few studies have compared the effect of different tDCS 
intensities on cortical excitability (Ammann et al. 2017; 
Chew et al. 2015; Ho et al. 2016; Kidgell et al. 2013; Mur-
ray et al. 2015), working memory (Papazova et al. 2018; Ste-
phens et al. 2017), and schizophrenia (Andrade 2013; Hoy 
et al. 2014; Papazova et al. 2018), with mixed results. For 
example, Ammann et al. (2017) showed that tDCS at 2 mA, 
but not 1 mA, significantly increased cortical excitability, 
whereas the findings of Ho et al. (2016) indicated that 2 mA 
tDCS did not necessarily result in increased excitability than 
1 mA tDCS in healthy participants. The effects of different 
intensities on motor performances are also sparse. Neverthe-
less, Liu et al. (2018) found a significant improvement of 
2 mA over 1 mA tDCS on performance measures of profes-
sional rowers, although this was without a comparison to 
sham. Together, these studies indicate an uncertain effect 
of increasing intensity to increase the beneficial effects of 
tDCS. As mentioned above, the uncertain dose–response 
effect of increasing intensity to enhance neurophysiologi-
cal and behavioral outcomes was also the conclusion of a 
recent review (Esmaeilpour et al. 2018). Therefore, there is 
a need to understand whether increasing current intensity 
(i.e., > 2 mA) over a given brain area enhances behavioral 
and neurophysiological outcomes, like fatigability.

Fatigue is a commonly assessed outcome measure in 
tDCS studies, and is defined as “the decrease in physi-
cal and/or mental performance that results from changes 
in central, psychological, and/or peripheral factors” 
(Rudroff et al. 2016). These changes depend on the task 
being performed, the environmental conditions in which 
it is performed, and the physical and mental capacity of 
the individual (Rudroff et al. 2016). Specifically, perfor-
mance fatigability can be defined as the magnitude or rate 
of change in a performance criterion relative to a reference 
value over a given time of task performance. On the other 
hand, perceptions of fatigue can be defined as a subjective 
sensation of weariness, increasing sense of effort, mis-
match between effort expended and actual performance, 
or exhaustion (Kluger et al. 2013). Improving perceived 
and performance fatigue in healthy participants and people 
with neurological disorders, such as multiple sclerosis, has 
been an important topic for several years (Finsterer and 
Mahjoub 2014; Lefaucheur et al. 2017). Non-medication 
treatments (e.g., resistance exercise, yoga, and occupa-
tional therapy) and prescription medications (e.g., amanta-
dine, modafinil, and methylphenidate) have yielded small 
effects, or effects that are insignificant at the individual 
level (Finsterer and Mahjoub 2014). Thus, alternative 
treatments for fatigue, like tDCS, have been investigated in 

healthy participants (see Angius et al. 2018b for a review) 
and in people with neurological impairments (Cancelli 
et al. 2018; Ferrucci et al. 2014; Lefaucheur et al. 2017; 
Tecchio et al. 2014). Furthermore, as both the Angius 
et al. (2018b) and the Esmaeilpour et al.’s (2018) reviews 
highlight performance outcomes in tDCS research (e.g., 
fatigue), especially with different intensities and intensities 
beyond the 2 mA standard, which can be unpredictable.

The mechanisms underscoring the effects of excita-
tory tDCS on performance fatigue could be related to an 
increased cortical excitability within the primary motor 
cortex (M1), which could lead to hypothetical reductions 
in supraspinal fatigue and ratings of perceived exertion 
(Alix-Fages et al. 2019; Angius et al. 2017). Increased cor-
ticospinal excitability, together with alterations in motor 
unit recruitment strategies (Krishnan et al. 2014), could 
theoretically explain the observed improvements in perfor-
mance fatigue after or during unilateral or bilateral tDCS 
(Abdelmoula et al. 2016; Alix-Fages et al. 2019; Angius 
et al. 2016, 2018a; Cogiamanian et al. 2007; Lattari et al. 
2018; Okano et al. 2015; Oki et al. 2016; Radel et al. 2017; 
Williams et al. 2013). However, there are also reports of 
no effects of tDCS on fatigue (Flood et al. 2017; Hameau 
et al. 2018; Kan et al. 2013; Muthalib et al. 2013; Vitor-
Costa et al. 2015). Most of these previous studies have 
investigated fatigue at submaximal performances, often 
with isometric contractions (Alix-Fages et al. 2019). How-
ever, isometric testing has poor applicability to real-world, 
dynamic performances (Kollock et al. 2015) and isokinetic 
testing may better reflect functional performance (Sli-
wowski et al. 2018). Interestingly, only one has reported 
the effects of tDCS on isokinetic performance fatigabil-
ity of the knee extensor muscles (Ciccone et al. 2019), 
and the authors found no improvements in performance 
fatigability with 2 mA tDCS over the temporal lobe. The 
results of fatigue investigations may also be ambiguous, 
because fatigue is often not clearly defined or is used as an 
outcome without meaningful measurements in clinical and 
research settings (Rudroff et al. 2016). Furthermore, the 
lack of standardized tDCS protocols makes it difficult to 
compare fatigue studies. Nevertheless, most have used (1) 
isometric contractions, (2) tDCS administered prior to the 
task, and (3) intensities less than 2 mA. Thus, the effects 
of tDCS on isokinetic performance fatigue, especially at 
intensities > 2 mA, are uncertain.

Therefore, the purpose of this study was to determine the 
effects of 2 mA and 4 mA tDCS on leg muscle fatigability in 
healthy young adults, using objective performance fatigabil-
ity data (peak torque and total work; Gleeson and Mercer 
1992), obtained from an isokinetic system. It was hypoth-
esized that M1 tDCS would decrease leg muscle fatigability 
and that the 4 mA intensity would yield greater decreases in 
fatigability than the 2 mA intensity.
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Materials and methods

Participants

Sixteen physically active young adults were recruited 
(females = 9; mean ± SD, age = 24.5 ± 3.8  years, 
height = 170 ± 11.7 cm, weight = 71.1 ± 14.4 kg). Inclusion 
criteria included: (1) young adult (18–30 years); (2) right-
side dominant; (3) performing at least 30 min of moderate 
intensity physical activity on 3 days/week for the previ-
ous 3 months; (4) no chronic neurological, psychiatric, or 
medical conditions; and (5) no psychoactive medications. 
The exclusion criteria were: (1) pregnancy; (2) holes or fis-
sures in the skull; (3) metal objects or devices implanted in 
the skull (e.g., metal plate). All participants were naïve to 
tDCS stimulation. This study was approved by the Univer-
sity of Iowa’s Institutional Review Board and all partici-
pants provided written informed consent before beginning 
participation.

Experimental protocol

This was a double-blind, randomized sham-controlled study 
design. Participants completed four laboratory visits, with 
a 5–8 day separation between visits. At the first session, 
right-side dominance was objectively determined with an 
isokinetic maximal strength test of the knee extensors and 
flexors of both legs (see “Isokinetic strength test”) and the 
participants performed a familiarization trial of the isoki-
netic fatigue test (FT; see “Isokinetic fatigue test”). Only 
participants that had right-side dominance were recruited 
to avoid the potential for functional brain morphology dif-
ferences between right- and left-dominant people (Jang 
et al. 2017). After strength testing, the FT was performed 
on each leg, with a short (< 2 min) interval between the 
right leg FT (R-FT) and the left leg FT (L-FT). For consist-
ency between participants and subsequent tDCS sessions, 
the R-FT was always completed first during all four sessions. 
For the remaining visits (i.e., two, three, and four), one of 
three tDCS sessions (sham, 2 mA, and 4 mA; see “tDCS 
sessions”) were randomly administered and R-FT and L-FT 
were completed in the same order as the first session (i.e., 
R-FT first).

Isokinetic strength test

All isokinetic tests (i.e., strength and fatigue) were admin-
istered with an isokinetic dynamometer (HUMAC NORM, 
CSMi, Stoughton, MA). The strength test for the right leg 
commenced with a submaximal warm-up of the knee exten-
sors and flexors (15 concentric/concentric repetitions, 60°/s). 

After a ≥ 30 s rest interval, the participants performed five 
sets of one maximal effort knee extension and flexion (con-
centric/concentric, 60°/s; Montenegro et al. 2015), with a 
≥ 30 s rest between sets. After ~ 2 min, the left leg strength 
test was performed in the same manner as the right. For 
dominance verification, the highest peak torque from the five 
maximal efforts was retained. In addition, the test adminis-
trators provided verbal encouragement to help the partici-
pants achieve maximal efforts.

Isokinetic fatigue test

The FT involved 40 continuous maximal contractions [con-
centric/concentric 120°/s (Saenz et al. 2010)] of the knee 
extensors and knee flexors. Similar muscle fatigue protocols 
have previously been used in healthy and neurological popu-
lations (Ciccone et al. 2019; Hameau et al. 2018; Lambert 
et al. 2001; Mackey et al. 2018; Thorstensson and Karlsson 
1976). In sessions during which tDCS was administered 
(i.e., visits two, three, and four), the participants undertook 
the same 15 repetition warm-up as described above. After 
the warm-up, and at the designated time during tDCS (see 
“tDCS sessions” below), the R-FT followed immediately by 
the L-FT was performed. Because some have suggested that 
tDCS might improve the performance of limbs ipsilateral to 
stimulation (Schambra et al. 2011), the FT was performed 
with both legs. The total time to complete both FTs was 
4.5–5 min, including the transition time between right and 
left legs. To maximize participant effort, the work achieved 
in each contraction was visually displayed (i.e., as a series 
of bars) and verbal encouragement was provided.

tDCS sessions

tDCS was administered with a battery powered 1X1 tDCS 
Low-Intensity Stimulator (Model 1300A, Soterix Medi-
cal Inc., New York, NY). Two carbon electrodes were 
inserted into 5 × 7 cm EASYpad sponges (35 cm2 surface 
area; Soterix Medical Inc., New York, NY). Current den-
sity was 0.06 mA/cm2 and 0.11 mA/cm2 for the 2 mA and 
4 mA intensities, respectively. Each sponge was saturated 
with 10–15 ml of 0.9% NaCL saline and held in place using 
an EASYstrap (Soterix Medical Inc., New York, NY). The 
active electrode was located over C3, using the 10–20 EEG 
placement convention (Klem et al. 1999), and the return 
electrode was localized over the supraorbital area on the 
contralateral side (Fig. 1). This montage, which targeted the 
dominant M1, was chosen to maximize motor performance 
(Schambra et al. 2011). It is noted that because size of the 
electrodes was relatively large (5 cm × 7 cm), the edge of 
the active electrode either abutted or covered the center of 
the skull (Cz), similar to previous studies targeting unilat-
eral M1 leg areas (Jayaram and Stinear 2009; Foerster et al. 
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2018). Thus, the leg areas of the dominant M1, which are 
located in the longitudinal fissure (Foerster et al. 2018), were 
also covered by the electrodes. Active tDCS conditions (i.e., 
2 mA and 4 mA) began with a 30 s ramp-up, after which the 
intensity remained at the specified level for 20 min before 
a 30 s ramp-down to 0 mA. For sham tDCS, the stimulator 
performed a 30 s ramp-up to 2 mA and a 30 s ramp-down to 
0 mA, after which the intensity stayed at 0 mA for 20 min. 
After the 20 min stimulation time, the stimulator again per-
formed a 30 s ramp-up to 2 mA and a 30 s ramp-down to 
0 mA.

The tDCS device included a ‘PRE-STIM TICKLE’ 
function, which activated a 1 mA stimulation for ~ 30 s. 
This function was performed before each tDCS session 
to investigate the contact quality between the active and 
return electrodes, and helped to ensure that the electrodes 
were adequately soaked and securely placed; adjustments 
to sponge saturation and scalp contact were made as nec-
essary. During the first tDCS session, the location of the 
active and return electrodes on the EASYstrap were recorded 
for each participant and the electrodes were secured in the 
same place for subsequent sessions. Stimulation was always 
delivered with the participant seated in the dynamometer 
chair. At minute 15, the participants performed R-FT and 
then L-FT. As mentioned above, the total time to complete 
both FTs was 4.5–5 min. Even though most have adminis-
tered tDCS before a task (Alix-Fages et al. 2019), this may 
activate neuronal populations in a non-specific way (Nitsche 
et al. 2008). However, there is also some evidence, particu-
larly from motor and cognitive learning studies (Ammann 
et al. 2016; Martin et al. 2014; Stagg et al. 2011, 2013), that 
performing tDCS during a task, which could theoretically 
enhance endogenous signals activated during task execution, 

may be more beneficial. Thus, tDCS stimulation (active or 
sham) was performed both before and during the FT of the 
right and left legs.

At the end of each tDCS session, the participants were 
asked to describe any sensations experienced [e.g., itching, 
tingling, burning, etc. (Aparicio et al. 2016)] and to rate 
sensation severity on a 10-point Likert-type scale (1 = low-
est, 10 = highest). The participants were also asked to guess 
which tDCS intensity which they experienced (sham, 2 mA, 
4 mA). Feedback about the guesses was not provided until 
the end of the final session.

Data analysis

To investigate the effects of different intensities of tDCS on 
leg muscle fatigue, two fatigue indices for the knee exten-
sors and flexors of both legs were calculated: one for torque 
production (FI-T; percent decline in torque production from 
the beginning to the end of the FT) and one for work per-
formed (FI-W; percent decline in work performed from the 
beginning to the end of the FT). The peak torque for each 
repetition of each FT was used to calculate FI-T as follows: 
FI-T = ([mean of the first five repetitions − mean of the last 
five repetitions]/mean of the first five repetitions) × 100 (Cic-
cone et al. 2019; Hameau et al. 2018; Mackey et al. 2018; 
Thorstensson and Karlsson 1976). The peak work of each 
repetition was used to calculate FT-W as follows: (total work 
performed in the last half/total work performed in the first 
half) × 100 (Lambert et al. 2001). In addition, the total work 
(TW) performed during the FT (i.e., sum of the work per-
formed in each repetition) was calculated for fatigue indi-
ces that were significantly different between tDCS condi-
tions. However, because several participants were unable 

Fig. 1   Left: location of the active (primary motor cortex) and return (contralateral supraorbital area) electrodes for all tDCS conditions. Right: 
model of the electrical field for the 2 mA intensity
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to achieve a maximum effort at the beginning of the FT, the 
first two repetitions were considered adaptation and were 
not included in either FI calculation or the TW calculation. 
Sensation reports and blinding accuracy of tDCS were deter-
mined by averaging the severity of similar sensation descrip-
tions and calculating the percent of correct tDCS condition 
guesses, respectively.

Statistical analysis

Because differences between the knee extensors and knee 
flexors were expected a priori (Gur et al. 1999), and the 
focus of this study was to determine the effects of different 
intensities of tDCS on leg muscle fatigability, a stimulation 
(sham vs. 2 mA vs. 4 mA) repeated-measures ANOVA of 
the FI-T and FI-W data was performed for each leg mus-
cle group (right extensor, left extensors, right flexors, and 
left flexors). Additionally, any participant that had an FI-T 
≤ 0% (i.e., torque production higher at the end compared 
to the beginning of the FT) was not included in the sta-
tistical analysis. This exclusion helped to avoid bias from 
less-motivated participants. Pairwise post hoc comparisons 
(paired t tests) and effect sizes (Cohen’s d) were calculated 
to clarify any significant tDCS differences. Also, TW was 
assessed using paired t tests on tDCS conditions that had 
significant FI-T and FI-W pairs. Because this analysis and 
study were exploratory in nature, significance was accepted 
at p < 0.05, uncorrected. In the case of a violation of the 
sphericity assumption for a repeated-measures ANOVA, 
Greenhouse–Geisser corrections were used. The assumption 
of homogeneity of variance was tested using Leven’s test of 
equal variances and adjustments to the degrees of freedom 
were made as necessary. Statistical analyses were performed 
using SPSS 25 (IBM Corp, Armonk, NY, USA).

Results

All participants completed all study visits and none had FI 
results below the bias correction cutoff (FI-T ≤ 0%). The 
assumptions for the statistical tests were sufficiently met and 
no corrections were made. Data are reported as mean ± SD 
in the text and mean ± SEM in the figures. The results of the 
repeated-measure ANOVA for FI-T indicated a significant 
effect of stimulation for the right knee extensors (p < 0.001), 
but not for the right knee flexors (p = 0.80), the left knee 
extensors (p = 0.57), or the left knee flexors (p = 0.11). Fig-
ure 2 shows the results of the post hoc testing, and revealed 
that both the 2 mA (54.4 ± 8.2%) and the 4 mA (56.4 ± 7.4%) 
tDCS conditions had significantly higher FI-T (i.e., more 
fatigability) compared with sham (50.4 ± 6.7%; p = 0.01, 
d = 0.73 and p < 0.001, d = 1.61, respectively), but 2 mA was 
not different from 4 mA (p = 0.143, d = 0.39).

For FT-W, the repeated-measures ANOVA indicated 
a significant effect of stimulation, again for the right 
knee extensors (p < 0.001), with the pairwise testing 
(Fig. 3), indicating that 2 mA (62.6 ± 5.1%) and 4 mA 
(59.1 ± 7.4%) conditions had significantly smaller FI-W 
(i.e., more fatigability) than sham (56.7 ± 5.4%; p = 0.01, 
d = 0.57 and p < 0.001, d = 1.12, respectively) and that 
the 4 mA condition was significantly smaller than the 
2 mA condition (p = 0.034, d = 0.37). The results of the 
repeated-measures ANOVA for TW did not reveal any sig-
nificant differences between any of the tDCS conditions 
(sham = 3642.6 ± 1331.2  J; 2  mA = 3539.6 ± 1292.5  J; 
4 mA = 3622.9 ± 1235.6 J; Fig. 4).

Fig. 2   Fatigue index derived from the torque data for the right knee 
flexors, stratified by stimulation intensity. Data are presented as 
mean ± SEM. *Significantly larger (i.e., increased fatigability) than 
sham (p < 0.01)

Fig. 3   Fatigue index derived from the work data for the right knee 
flexors, stratified by stimulation intensity. Data are presented as 
mean ± SEM. *Significantly smaller (i.e., increased fatigability) than 
sham (p < 0.01) and #Smaller than the 2 mA condition (p = 0.034)
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The tolerability and blinding results of the different tDCS 
conditions are shown in Table 1. Most of the participants 
reported feeling similar sensations across all three conditions 
(i.e., tingling, itching, and burning), accompanied by a slight 
increase in severity. The most intense of these common sen-
sations, burning, occurred in the 4 mA condition, but was 
still considered moderate. Notably, there were rare (i.e., 
n = 1–3), but novel sensations reported in the 2 mA and the 
4 mA, most of which were mild—moderate. However, there 
were a few moderate—severe sensations in each condition 

(sham: poking = 6; 2 mA: prickling = 5.5, spike = 6; 4 mA: 
pressure = 7, and headache = 8).

Discussion

The purpose of this study was to investigate the effects of 
standard intensity tDCS (2 mA) and higher intensity tDCS 
(4 mA) on leg muscle fatigability in young, healthy par-
ticipants. Contrary to our hypothesis, the results of the FI 
analyses indicated increased fatigability of the right knee 
extensors in the 2 mA and the 4 mA tDCS conditions com-
pared with sham (Figs. 1, 2) and between the 2 and 4 mA 
conditions (Fig. 2). Interestingly, the total work performed 
by this muscle group was the same in all three conditions 
(Fig. 3). Taken together, these results indicate that, despite 
a significant increase in the fatigability of the right knee 
extensors from tDCS stimulation, the participants performed 
an equal amount of work in each condition. The stimula-
tion tolerability reports also revealed that the severity of the 
sensations felt during sham, 2 mA, and 4 mA stimulation 
were very similar for most participants (Table 1). A few 
participants reported moderate—severe sensations (i.e., > 6), 
but these were rare and occurred in each tDCS condition, 
including sham. However, it is noted that all of the partici-
pants reported that these sensations were only present during 
the stimulation period, and even the most severe sensations 
(pressure = 7 and headache = 8, both reported in the 4 mA 
condition) resolved within minutes after stimulation ended. 
Nevertheless, future studies using stimulation intensities 
> 2 mA warrant considerate application and consistent com-
munication with participants before and during higher inten-
sity tDCS application. For the stimulation blinding, approxi-
mately two-third of participants correctly guessed the sham 
and 2 mA conditions, while slightly less than half correctly 
guess the 4 mA condition (43.8%). However, an equal num-
ber of participants incorrectly guessed 2 mA (43.8%) for the 
4 mA condition. Thus, only 12.5% of participants incorrectly 
guessed sham for the 4 mA condition, which may indicate 
that participant blinding at higher intensities may not be as 
feasible as more moderate intensities (i.e., ≤ 2 mA) (Ferto-
nani et al. 2015; Kessler et al. 2012).

Previous studies showed a decrease in fatigability (Angius 
et al. 2016; Cogiamanian et al. 2007) and increased total 
work (Sales et al. 2016) from tDCS. However, the fatiguing 
protocols and measurements of these studies differ from the 
present study in potentially important ways. For example, 
Angius et al. (2016) and Cogiamanian et al. (2007) used a 
submaximal isometric contraction and measured the time 
to fatigue, and Sales et al. (2016) found increased TW with 
tDCS, but only used five maximal isokinetic contractions. 
The present fatigue task included repetitive maximal isoki-
netic contractions and measured TW over 38 contractions. 

Fig. 4   Total work performed by the right knee extensors during the 
isokinetic fatigue test, stratified by stimulation intensity (n = 38 repe-
titions). There were no significant differences in total work performed 
in the three conditions (p > 0.05) despite the increased fatigability of 
this muscle group

Table 1   Blinding and tolerability results for sham, 2 mA, and 4 mA 
tDCS (n = 16)

Sensation data were collected with a ten-point Likert-type scale, with 
1 = low and 10 = high. Blinding results are percent of correct guesses. 
Data are mean ± SD with the number of subjects that reported a given 
sensation in parentheses

Sensation Sham 2 mA 4 mA

Blinding accu-
racy

68.8% 62.5% 43.8%

Tingling 1.5 ± 1.0 (n = 6) 2.4 ± 1.1 (n = 8) 3.2 ± 1.6 (n = 5)
Burning 3.3 ± 1.3 (n = 4) 2.3 ± 2.4 (n = 6) 5.2 ± 1.6 (n = 9)
Itching 2.3 ± 1.5 (n = 4) 4.3 ± 1.2 (n = 8) 3.6 ± 2.0 (n = 7)
Prickling 3.0 ± 1.2 (n = 4) 5.5 ± 0.7 (n = 2) 4.0 ± 0.0 (n = 1)
Poking 6.0 ± 0.0 (n = 1) 2.0 ± 0.0 (n = 1)
Stinging 1.0 ± 0.0 (n = 1) 2.0 ± 0.0 (n = 2)
Needle 3.0 ± 0.0 (n = 1) 3.3 ± 2.5 (n = 3)
Pinching 4.0 ± 0.0 (n = 1)
Shock 4.0 ± 0.0 (n = 1)
Spike 6.0 ± 0.0 (n = 1)
Pressure 7.0 ± 0.0 (n = 1)
Headache 8.0 ± 0.0 (n = 1)
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Thus, the differences in effects of tDCS on muscle fatigue 
and TW might be task dependent and warrants further 
investigation.

It is well accepted that excitatory tDCS increases cortical 
excitability (Dissanayaka et al. 2017; Nitsche and Paulus 
2000), and influences a range of physiologic and cognitive 
outcomes (Berryhill and Martin 2018; Sanchez-Kuhn et al. 
2017). Increased cortical excitability could heighten the 
neural drive to the muscles and increase motor unit (MU) 
recruitment and/or rate of discharge (Krishnan et al. 2014). 
Thus, enhanced neural drive could have altered the orderly 
recruitment of MU [i.e., smallest to largest, (Henneman 
1957)] and the larger MUs could have been recruited earlier 
(Krishnan et al. 2014), resulting in an increased fatigability 
of the muscle.

It has also been suggested that current flow orientation 
also affects cortical excitability from tDCS (Rawji et al. 
2018) and individual differences in cortical alignment and 
connectivity (Lee et al. 2019) might alter the purported 
excitatory and inhibitory effects of the active and return 
electrodes, respectively. Similarly, because little is known 
about higher intensity stimulation (> 2 mA), it is also possi-
ble that the return electrode is be excitatory at higher intensi-
ties, which may affect performance. Furthermore, the size of 
the stimulating electrodes (which influences current density 
and the brain areas stimulated) may also play an important 
role in localizing stimulation effects (Bastani and Jaberzadeh 
2013b). The large electrodes in our study (35 cm2) may have 
stimulated nearby cortical functional areas, which may have 
inhibitory effects on the motor cortex. Again, as suggested 
by Bastani and Jaberzadeh (2013b), smaller electrodes may 
result in more spatially focused stimulation and may increase 
the efficacy of tDCS for the induction of effective corticospi-
nal excitability.

In addition, if it is assumed that the baseline cortical 
excitability of young, healthy participants is purposefully 
homeostatic (Chai et al. 2019), and then, increasing excit-
ability could interfere with the efficient genesis and delivery 
of desired brain signals. In other words, tDCS may induce 
hyperexcitability in healthy participants and lead to unde-
sired neuronal activity that may hamper endogenous sig-
nals. This idea is also supported by the findings of Bastani 
and Jaberzadeh (2013a), who found that low-intensity/
density tDCS (0.3 mA, current density = 0.013 mA/cm2) 
was excitatory, while relatively higher intensities/densi-
ties (0.7 mA and 1.4 mA; current density = 0.029 mA/cm2 
and 0.058 mA/cm2, respectively) were inhibitory in healthy 
participants. The authors postulated that lower intensity/
density stimulation might result in excitatory activation 
via Ca2+ channels without activating GABA and NMDA 
receptors, which are voltage-dependent (Mellor and Randall 
1998). Similarly, Fujiyama et al. (2017) found significant 
skill learning improvements from inhibitory ‘priming’ of 

M1 before excitatory stimulation of M1, compared with M1 
excitatory stimulation alone, during a force-learning task 
in young and older healthy adults. Inhibiting M1 (reducing 
excitability) may have depressed the baseline cortical activ-
ity in these participants and the subsequent excitatory stimu-
lation restored or only slightly increased excitability beyond 
baseline; thus, the net effect may have been similar to the 
previously mentioned low-intensity condition of Bastani and 
Jaberzadeh (2013a). Taken together, these results (including 
those of the present study) may question the suitability of 
young, healthy participants for exploring the motor perfor-
mance effects of higher intensity tDCS (≥ 2 mA); however, 
more definitive investigation is certainly necessary to justify 
this suggestion. Nevertheless, exploration of higher intensity 
stimulation in populations with lower baseline excitability 
resulting from injury or disease (e.g., multiple sclerosis, Par-
kinson’s disease, or stroke) is certainly warranted to deter-
mine if increasing tDCS intensity further increases benefits 
(Sanchez-Kuhn et al. 2017).

Similarly, the timing of anodal stimulation (before or dur-
ing) may differently affect leg muscle fatigability. Adminis-
tering tDCS before a motor performance might increase cor-
tical excitability in a non-specific way (Nitsche et al. 2008), 
whereas performing tDCS during the desired task might 
enhance task-specific cortical signals. However, changing 
excitability homeostasis, which is purported to alter perfor-
mance, might be modulated by administering the simulation 
before task performance (i.e., homeostatic metaplasticity; 
Ziemann and Siebner 2008). In contrast, non-homeostatic 
excitability changes, called “gating,” might occur when 
tDCS is administered during the task (i.e., online; Ziemann 
and Siebner 2008) and online gating may be better suited 
for improving motor learning (Ammann et al. 2016). In this 
study, tDCS was delivered both before and during the fatigue 
task, but the increased fatigability most likely reflects non-
homeostatic (online gating) tDCS effects. Thus, it is possible 
that accessing the homeostatic metaplastic effects of tDCS, 
by administering stimulation before the task, might yield 
different results.

There are a few limitations of note for this study. First, 
the relatively small number of participants may decrease the 
generalizability of the results. In addition, cortical excitabil-
ity was not tested, and thus, the effects of higher intensity 
tDCS (4 mA) on the excitability of this sample are uncertain. 
Similarly, as mentioned above, the anode was centered over 
C3 and the leg areas of M1 are located in the longitudinal 
fissure (Foerster et al. 2018). Although the size of the elec-
trode was sufficiently large to border or overlap Cz in all 
participants, indicating that M1 leg areas were covered and 
potentially stimulated, the different sizes of the participants’ 
heads might have resulted in inconsistent stimulation of the 
leg areas between participants. Studies targeting unilateral 
leg areas might benefit from using smaller electrodes and 
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targeting C1/C2, or purposefully bordering/covering Cz to 
more reliably target the desired sections of M1. In addition, 
muscle activity of the knee extensors and flexors was not 
collected and the physiologic underpinnings of the results 
are ambiguous. The applicability of single-joint testing to 
functional activities may also be questionable (Kollock et al. 
2015) and suggests caution in interpreting the results to real-
world, multi-joint activities. Furthermore, the integrity of 
participant blinding in repeated-measures tDCS investiga-
tions (when participants experience more than one condi-
tion/intensity) represents a consistent limitation to studies 
in this field (O’Connell et al. 2012). This could be espe-
cially true for higher intensity (> 2 mA) tDCS. Sensation 
blinding might also be assessed by determining sensations 
experienced at different times during the stimulation period 
or by changing the ‘target’ stimulation in the sham condi-
tion. In this study, the ramp-up and ramp-down intensity for 
the sham condition was 2 mA. However, blinding integrity 
might have been enhanced by setting the intensity of the 
sham condition to the highest intensity used in the study 
(4 mA), or even exceeding the highest intensity (e.g., 5 mA). 
Such finding might prove beneficial for future repeated-
measures tDCS studies and warrants investigation. Finally, 
this study applied tDCS both before and during the FT, but 
the optimal time of tDCS application is has not been deter-
mined. Some have suggested that tDCS may be best deliv-
ered during a task (Nitsche et al. 2008), but other evidence 
may recommend a time period of several minutes after stim-
ulation (60–90 min) before peak cortical excitability occurs 
(Batsikadze et al. 2013).

Future work should explore the effects of tDCS at higher 
intensities (> 2 mA) and more closely determine the inten-
sity dose–response. Understanding this association is espe-
cially important, because a recent review concluded that the 
evidence of increasing tDCS intensity to enhance outcomes 
was inconclusive (Esmaeilpour et al. 2018). There are also 
indications that increasing stimulation time and/or inten-
sity may shift the intended tDCS effects from excitatory to 
inhibitory (Batsikadze et al. 2013; Monte-Silva et al. 2013). 
Future investigations should also include clinical popula-
tions that suffer from reduced cortical activity/excitability 
(e.g., multiple sclerosis, Parkinson’s disease, and stroke) and 
might, therefore, experience greater benefits from higher 
intensity tDCS. In addition, transcranial magnetic stimula-
tion (TMS) and electromyography (EMG) should also be 
included to test changes in cortical excitability and the physi-
ological effects (i.e., muscle activity) of altered brain excita-
bility. Similarly, functional neuroimaging to better elucidate 
the effects of different intensities of tDCS on brain activity is 
also needed. Finally, the best timing of high-intensity tDCS 
stimulation (e.g., during and before) is a key component 
to improving tDCS applicability and should be efficiently 
investigated.

Conclusion

The 2  mA and 4  mA tDCS intensities significantly 
increased the fatigability of the right knee extensors in 
young, healthy participants, potentially from altered motor 
unit recruitment/discharge rate or cortical hyperexcit-
ability. However, despite this increase in fatigability, the 
TW performed in both conditions was not different from 
sham. The 4 mA tDCS stimulation was generally well tol-
erated by the participants, and most sensation reports and 
severities were similar between the tDCS conditions. The 
few reports of moderate–severe sensations, with the most 
severe in the 4 mA condition, were transient and quickly 
resolved after stimulation had ended. Higher intensity 
stimulation, especially in clinical populations, should be 
systematically and considerately investigated.
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