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Abstract
The sensorimotor system prefers sway velocity information when maintaining upright posture. Sway velocity has a unique 
characteristic of being persistent on a short time-scale and anti-persistent on a longer time-scale. The time where the transi-
tion from persistence to anti-persistence occurs provides information about how sway velocity is controlled. It is, however, 
not clear what factors affect shifts in this transition point. This research investigated postural responses to support surface 
movements of different temporal correlations and movement velocities. Participants stood on a force platform that was trans-
lated according to three different levels of temporal correlation. White noise had no correlation, pink noise had moderate 
correlation, and sine wave movements had very strong correlation. Each correlation structure was analyzed at five different 
average movement velocities (0.5, 1.0, 2.0, 3.0, and 4.0 cm·s−1), as well as one trial of quiet stance. Center of pressure veloc-
ity was analyzed using fractal analysis to determine the transition from persistent to anti-persistent behavior, as well as the 
strength of persistence. As movement velocity increased, the time to transition became longer for the sine wave and shorter 
for the white and pink noise movements. Likewise, during the persistent time-scale, the sine wave resulted in the strongest 
correlation, while white and pink noise had weaker correlations. At the highest three movement velocities, the strength of 
persistence was lower for the white noise compared to pink noise movements. These results demonstrate that the predict-
ability and velocity of support surface oscillations affect the time-scale threshold between persistent and anti-persistent 
postural responses. Consequently, whether a feedforward or feedback control is utilized for appropriate postural responses 
may also be determined by the predictability and velocity of environmental stimuli. The study provides new insight into 
flexibility and adaptability in postural control. This information has implications for the design of rehabilitative protocols 
in neuromuscular control.
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Introduction

The control of upright stance is a fundamental aspect of 
motor control. Being able to maintain and successfully adapt 
posture is crucial to interacting with constantly changing 
and novel environments. The neuromuscular system plays 
a prominent role in the control of posture (Macpherson and 
Horak 2013). Information about the body’s position and 

movement in space, and in relation to the environment, is 
gained through the somatosensory, visual, and vestibular 
systems (Macpherson and Horak 2013). The afferent sensory 
information is integrated and weighted in the central nervous 
system, and efferent motor potentials are elicited to maintain 
postural control. Understanding how the control of posture 
is modulated during changing environmental conditions is 
important to understand the flexibility and adaptability of 
postural control.

One way of changing the environmental conditions dur-
ing the study of postural control is to move the support sur-
face and analyze the response to those movements. Exten-
sive work has been done with support surface translations, 
both using discrete and continuous translations (Buchanan 
and Horak 1999; Corna et al. 1999; Ko et al. 2013). Discrete 
translations provide a simulation of a slip or trip and then 

 * Mukul Mukherjee 
 mmukherjee@unomaha.edu

 Troy J. Rand 
 trand@unomaha.edu

1 Department of Biomechanics, University of Nebraska 
at Omaha, 6001 Dodge Street, BRB #210, Omaha, 
NE 68182, USA

http://orcid.org/0000-0001-9653-0556
http://crossmark.crossref.org/dialog/?doi=10.1007/s00221-018-5235-1&domain=pdf


1492 Experimental Brain Research (2018) 236:1491–1500

1 3

analyze the postural response, while continuous translations 
provide a constantly changing environment and analyze how 
the postural control system adapts to the new environment. 
Continuous support surface translations have mostly been 
performed using sinusoidal translations that vary in fre-
quency and amplitude (Buchanan and Horak 2001; Corna 
et al. 1999; Nardone et al. 2000); however, research related 
to studies on adapting to complex signals is still limited. 
One previous study from the authors using complex support 
surface translations found that the structure of postural sway 
in healthy young subjects would trend towards the struc-
ture of the support surface movements (Rand et al. 2015). It 
was shown that when the complexity of the support surface 
movement was reduced, there was also a reduction in the 
complexity of postural sway (Rand et al. 2015).

One way to measure complexity is by looking at the 
fractal properties of a time series. The term fractal refers 
to the property of self-similarity, where different scales 
of observation result in similar properties. Fractals can be 
mathematically perfect such as the Koch snowflake, Cantor 
set, or the Sierpinski triangle. However, in nature fractals 
exist in a non-perfect form and instead have a statistical self-
similarity (Mandelbrot 1982). Utilizing this concept in time 
series analysis allows the detection of self-similar patterns 
across different time-scales (Goldberger and West 1987). 
Fractal properties have been shown to be ubiquitous in time 
series of human action, including walking (Delignieres and 
Torre 2009; Hausdorff et al. 1996), reaction time (Van Orden 
et al. 2003, 2005), neuronal firing rates (Bhattacharya et al. 
2005), team interaction dynamics (Gorman et al. 2010), 
and standing posture (Duarte and Zatsiorsky 2000; Rand 
et al. 2015), to name a few. Furthermore, fractal properties 
have been associated with adaptability (Gorman et al. 2010) 
and complexity (Bak and Paczuski 1995), with changes in 
fractal properties being associated with aging and disease 
(Goldberger et al. 2002; Stergiou and Decker 2011). It has 
been recognized in recent years that although there is ade-
quate research demonstrating the ubiquitousness of fractal 
processes in human movement, what is lacking is experi-
mentation that attempts to alter fractal processes through 
systematic manipulation of independent variables (Likens 
et al. 2015).

When analyzing the fractal properties of a time series, 
there are two main behaviors that can emerge, persistence 
and anti-persistence. In a persistent time series, increases 
are more likely to be followed by increases and decreases 
are more likely to be followed by decreases. An anti-per-
sistent time series is one where increases are more likely to 
be followed by decreases, and decreases are more likely to 
be followed by increases. Biological processes can exhibit 
properties of both persistence and anti-persistence within 
the observed time-scales. This is thought to arise from the 
fact that biological systems tend to be bounded, so on some 

time-scale increases will have to be followed by decreases 
(Liebovitch and Yang 1997). The work by Liebovitch and 
Yang used both biological data and models, and came to 
the conclusion that the transition from persistence to anti-
persistence in biological systems most likely occurs due to a 
persistent random walk that is bounded. Furthermore, it has 
also been shown that when comparing position, velocity, and 
acceleration information about postural sway, the sensorimo-
tor system prefers velocity information (Jeka et al. 2004). 
This makes center of pressure velocity  (COPvel) a sensitive 
variable to use when investigating changes in postural sway 
due to experimental manipulation.

The  COPvel characterizes a multifractal process that 
exhibits strong persistence on the short time-scale and 
anti-persistence on the longer time-scale (Delignieres et al. 
2011). Starting at a point where the sway velocity is zero, the 
velocity will continue to increase (persistence) until a thresh-
old is reached. If the threshold is passed, then the center of 
mass would be moving too fast to slow down and stop before 
reaching the boundaries of the base of support, and a fall 
may occur. Upon reaching the threshold, the sway velocity 
would start to decrease persistently in order to stop the sway 
and start moving in a different direction. This alternating 
between increasing and decreasing sway results in an anti-
persistent behavior (Fig. 1). The time where the shift occurs 
between persistence and anti-persistence indicates the length 
of time the system allows increases or decreases in sway 
velocity before a transition occurs. While not demonstrated 
before, it is intuitive that support surface translation velocity 
would affect the time-scale threshold between persistent and 
anti-persistent postural responses.

Collins and De Luca showed that during quiet stance 
stabilogram, diffusion plots demonstrated distinct regions 
showing short- and long-term control mechanisms (Col-
lins and De Luca 1993). Although this analysis was per-
formed on COP position data, lack of an integration step 
in the algorithm makes the results comparable to perform-
ing fractal techniques such as detrended fluctuation analy-
sis (DFA) to  COPvel data. For a complete comparison of 
the algorithmic differences, see Delignieres and colleagues 
(2003). The inference from the Collins and De Luca work 
was that the short-term persistent region was indicative of 
open-loop (feedforward) control which could be on a time-
scale that did not allow the sensorimotor loops to effectively 
provide feedback, and the long-term anti-persistent region 
was indicative of closed-loop (feedback) control. However, 
it has been shown through a modeling study that stabilogram 
diffusion plots with two distinct regions can be obtained by 
varying time delays within a closed-loop system (Peterka 
2000). This shows that feedforward control is not required 
to produce persistent and anti-persistent regions. Further-
more, Peterka’s model (Peterka 2000) demonstrates that 
the stabilogram diffusion plots can be considered outside 
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of the context of fractal analysis. Only when the time series 
is approximated as a piecewise linear function and different 
time-scales are compared, does the analysis investigate the 
fractal relationship.

The goal of this research was to determine whether the 
commonly observed time-scale threshold between persis-
tent and anti-persistent postural behavior was dependent on 
the velocity and/or structure of support surface oscillations. 
To reach our goal, we analyzed the postural responses to 
support surface translations ranging from predictable (sine 
wave) to unpredictable (white noise), as well as at differ-
ent movement velocities (0.5–4.0 cm·s−1). A modified DFA 
algorithm was used to identify the time-scale where the 
 COPvel transitioned from a persistent to an anti-persistent 
behavior, and the strength of persistence. We hypothesized 
that as movement velocity increases, the time to transition 
of  COPvel and the strength of persistence will both decrease. 
We also hypothesized that the movements with weaker tem-
poral correlations will result in shorter time to transition and 
weaker persistence.

Methods

Twenty healthy participants were recruited from the univer-
sity campus (11M/9F, Age 24 ± 4 years, Height 175 ± 11 cm, 
Mass 76 ± 10 kg). Exclusion criteria included any lower limb 
dysfunction, and history of neuromuscular or orthopedic 
dysfunction. The Institutional Review Board at the Univer-
sity of Nebraska Medical Center approved all procedures 
and all participants provided informed consent.

The  Neurocom® Balance  Master® (Natus Medical Inc., 
Pleasanton, CA) was used to perform this research. The 
force platforms were translated in the AP direction and 
the resultant COP was recorded and converted to  COPvel. 
The translations had absolute average movement velocities 
ranging from 0.1 to 4.0 cm·s−1, and different strengths of 
temporal persistence [no temporal persistence (white noise), 
moderate temporal persistence (pink noise), and strong tem-
poral persistence (sine wave)]. The platform was translated 
at 10 Hz and all trials were 3 min in length. One trial was 
also conducted where there was no platform movement. This 
resulted in 19 trials in total and all trials were randomized. 
Participants stood in a side-by-side stance with the width of 
the feet normalized for height. This width was based on the 
Neurocom standard specifications, with the lateral calcanei 
separated by 22, 26, or 30 cm based on three height ranges 
(76–140, 141–165, and 166–203 cm, respectively).

All signals used to drive the platform translations were 
created using Matlab functions. The white noise signal was 
created using the built-in randn function and pink noise sig-
nals were created using a custom function that removed the 
high-frequency components from white noise to create a 1/f 
power spectrum. These signals were run through the DFA 
algorithm (Peng et al. 1995) with a scaling region of 16 data 
points to 200 data points and only accepted if they were 
within ± 0.02 of the theoretical α-value (0.5 for white noise 
and 1.0 for pink noise). Once the signal was accepted based 
on the α value, it was scaled for the six conditions. For the 
white and pink noise, this was done for 20 individual signals 
for each participant to have a unique signal that still con-
tained the correct structure and scaling. The sine wave was 
also created in Matlab and scaled, but due to the periodicity 

Transition
Point

Persistent
Region

Anti-persistent
Region

Theoretical boundary

Center of Pressure velocity

Arrows are examples of short term
persistence

Dotted line is an example of
long term anti-persistence

Fig. 1  Examples of center of pressure velocity time series and associ-
ated log/log plot. a Center of pressure velocity displays persistence 
on a short time-scale and anti-persistence on a longer time-scale. b 
Example of a log/log plot where root-mean-square fluctuation is on 
the y-axis and time-scale is on the x-axis. The transition point where 

the slope of the plot changes from > 0.5 to < 0.5 indicates the time-
scale where the behavior shifts from persistent to anti-persistent. The 
slope of the linear regions indicates the strength of persistence and 
anti-persistence
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of a sine wave, there was no need to create individual sine 
waves for each participant. These signals were then printed 
to a text file and loaded into the Neurocom utilizing the 
researcher module.

Data processing

After data collection, the motor position of the Neurocom 
was exported and ran through the DFA algorithm to ensure 
that the temporal correlations of the output were similar to 
the input signal. Criteria was set at ± 0.05 from the theoreti-
cal α-value for white and pink noise signals. Due to limita-
tions of the Neurocom, the signals that were generated at 
0.1 cm·s−1 did not maintain the correct temporal correla-
tions during the trials. These three trials were discarded for 
each participant and 16 trials were used for analysis. The 
COP in the anteroposterior direction was exported from the 
Neurocom and converted to  COPvel. These data were down 
sampled from 100 to 50 Hz and the first 5 s of each trial 
was removed to eliminate any startling effect from the start 
of the support surface translations. Two different analyses 
were conducted. Frequency response functions were calcu-
lated to explore the linear gain and phase responses to plat-
form movements. A DFA based fractal analysis was used to 
determine the time to transition between persistent and anti-
persistent behavior as well as the strength of the persistence 
within the persistent range.

The transfer function was calculated between the Neuro-
com’s motor and the COP response. The transfer function is 
the ratio of the COP power spectrum and the stimulus power 
spectrum, and this describes the response gain (magnitude) 
and phase (timing) at different frequencies of the stimulus. 
The transfer function was estimated using the built-in Matlab 
function tfestimate, the magnitude of the transfer function is 
the gain and the angle of the transfer function is the phase. 
The power spectrum was binned into frequencies of 0.05 Hz 
and 100 values from 0.05 to 5 Hz were displayed.

The fractal analysis followed the procedures of DFA up 
to the point of plotting a log/log plot. These procedures are 
as follows: First, integrate the times series and divide into 
boxes of length n, where n will range from 3 to the length of 
the data/2. Detrend the boxes by subtracting a linear line of 
best fit and calculate the root-mean-square fluctuation of the 
remaining data. Average the root-mean-square fluctuations 
across the number of boxes. After performing this proce-
dure for all box sizes, then plot these values on a log/log 
plot with box size (or number of data points) on the x-axis 
and root-mean-square fluctuation on the y-axis. The standard 
DFA algorithm would then determine the slope at a chosen 
scaling region and return the slope of the line as the α-value. 
An α value of 0–0.5 indicates an anti-persistent temporal 
correlation, an α value of 0.5 indicates a completely uncor-
related time series, or white noise, and increasing α values 

beyond 0.5 indicate an increase in the strength of the tempo-
ral correlations. An α value of 1.0 indicates a time series that 
contains a pink noise structure, and an α-value 1.5 indicates 
a red noise structure (Brownian motion), or a random walk 
in the temporal evolution of the time series. In the modi-
fied algorithm used in this study, boundaries of lower and 
upper limits of the scaling region in the log/log plot were 
determined. This was based on a combination of previous 
work (Rand et al. 2015), theoretical boundaries (Damouras 
et al. 2010), and the specific data length. Using the gin-
put function in Matlab, a point was chosen on the log/log 
plot where the slope changed from greater than 0.5 to less 
than 0.5. Then, lower and upper boundaries for the short- 
and long-scaling regions were chosen. The point of transi-
tion was returned along with α values and upper and lower 
boundaries for the short and long regions. Figure 2 shows an 
example of the analysis for one subject across all conditions.

Statistical analysis

Two-way repeated-measures ANOVAs were used to deter-
mine the effect of temporal correlation and movement veloc-
ity on the time to transition and strength of short-term per-
sistence of  COPvel. Tukey post hoc analyses were used to 
determine differences within groups. To compare all trials 
against quiet standing one-way repeated-measures ANOVAs 
were used with Dunnet’s post hoc. All statistics were calcu-
lated using GraphPad Prism V6 (Graph Pad Software, La 
Jolla, CA). The frequency response function was calculated 
as exploratory analysis and was not put through any statisti-
cal testing.

Results

The two-way repeated-measures ANOVA of time to 
transition showed no effect of movement velocity (F(4, 
76) = 0.1209, p = 0.9812), an effect of temporal correla-
tion (F(2, 38) = 103.2, p < 0.001), and a movement veloc-
ity by temporal correlation interaction (F(8, 152) = 4.382, 
p < 0.0001). Post hoc showed that the time to transition was 
greater in the sine wave conditions compared to pink and 
white noise for all movement velocities (all p < 0.0001). 
The one-way ANOVA of time to transition was significant 
(F(4.794,91.08) = 23.16, p < 0.001). Post hoc revealed sev-
eral changes in time to transition compared to quiet stance. 
There was a decrease during pink noise at 0.5 cm·s−1, as 
well as increases for sine wave and decreases for white and 
pink noise at 2.0, 3.0, and 4.0 cm·s−1. These results are pre-
sented in Fig. 2. Mean differences and post hoc p values are 
presented in Table 1.

The two-way repeated-measures ANOVA of short-term 
persistence showed an effect of movement velocity (F(4, 
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Fig. 2  Example of the log/log 
plots for one subject. The col-
umns are white, pink, and sine 
wave stimulus and the rows are 
the different movement veloci-
ties. Solid vertical lines indicate 
the approximate transition point 
from persistence to anti-persis-
tence and the time-scale of this 
line is displayed in seconds
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76) = 16.19, p < 0.0001), an effect of temporal correlation 
(F(2, 38) = 33.20, p < 0.0001), and a movement veloc-
ity by temporal correlation interaction (F(8, 152) = 19.93, 
p < 0.0001). Post hoc revealed several differences in the 
strength of short-term persistence. Sine wave had weaker 
persistence than pink noise at 0.5 cm·s−1 and stronger persis-
tence than white noise at 1.0 cm·s−1. At movement velocities 
of 2.0, 3.0, and 4.0 cm·s−1, there were differences between 
all three temporal correlations, with white noise being the 
weakest, sine wave being the strongest, and pink noise in the 
middle. The one-way ANOVA of short-term persistence was 
significant (F(5.751, 109.3) = 20.54, p < 0.0001). Post hoc 
revealed several changes in the strength of persistence. There 

was an increase in pink noise at 0.5 cm·s−1, an increase in 
sine wave at 2.0 and 4.0 cm·s−1, and decreases for white 
and pink noise at 4.0 cm·s−1. These results are presented in 
Fig. 3. Mean differences and post hoc p values are presented 
in Table 1.

The frequency response function for gain and phase 
showed clear differences between the noise signals and the 
periodic signal, with some slight differences between the 
white and pink noise (Fig. 4). At low frequencies (< 0.5 Hz), 
the pink noise gain was lower than white noise or sine wave, 
especially at the slower movement velocities. For all move-
ment velocities, the white and pink noise gain peaked around 
the 0.75 Hz range and then slowly dropped until about the 

Table 1  Mean differences and associated p values for the comparisons between the temporal correlations (Tukey post-hoc), and comparisons to 
baseline standing (Dunnet’s post hoc)

All p values have been adjusted for multiple comparisons. All statistically significant differences are indicated in bold

Velocity Tukey post hoc Time to transition Short-term persistence

Mean difference Adjusted p value Mean difference Adjusted p value

0.5 cm·s−1 White vs. pink 0.66 0.1728 − 0.04 0.3042
White vs. sine − 1.92 < 0.0001 0.07 0.0617
Pink vs. sine − 2.58 < 0.0001 0.11 0.0007

1.0 cm·s−1 White vs. pink 0.61 0.2198 − 0.06 0.0702
White vs. sine − 1.66 < 0.0001 − 0.09 0.0074
Pink vs. sine − 2.27 < 0.0001 − 0.02 0.6923

2.0 cm·s−1 White vs. pink 0.19 0.6646 − 0.07 0.0479
White vs. sine − 3.24 < 0.0001 − 0.21 < 0.0001
Pink vs. sine − 3.43 < 0.0001 − 0.14 < 0.0001

3.0 cm·s−1 White vs. pink − 0.32 0.8615 − 0.08 0.0146
White vs. sine − 3.98 < 0.0001 − 0.17 < 0.0001
Pink vs. sine − 3.67 < 0.0001 − 0.09 < 0.0001

4.0 cm·s−1 White vs. pink 0.46 0.4162 − 0.12 0.0001
White vs. sine − 3.55 < 0.0001 − 0.40 < 0.0001
Pink vs. sine − 4.01 < 0.0001 − 0.28 < 0.0001

Dunnet’s post hoc

0.5 cm·s−1 White noise 0.91 0.5355 − 0.05 0.6767
Pink noise 1.57 0.0358 − 0.09 0.0329
Sine wave − 1.01 0.3501 0.01 0.9993

1.0 cm·s−1 White noise 0.85 0.3387 0.02 0.9990
Pink noise 1.46 0.0662 − 0.04 0.8099
Sine wave − 0.81 0.4032 − 0.07 0.1274

2.0 cm·s−1 White noise 1.64 0.0051 0.08 0.2996
Pink noise 1.83 0.0027 < 0.01 0.9999
Sine wave − 1.60 0.0029 − 0.09 0.0127

3.0 cm·s−1 White noise 1.97 0.0012 0.15 0.0805
Pink noise 1.66 0.0326 0.07 0.5264
Sine wave − 2.01 0.0013 − 0.06 0.2195

4.0 cm·s−1 White noise 1.66 0.0348 0.26 < 0.0001
Pink noise 2.12 0.0006 0.14 0.0283
Sine wave − 1.90 0.0027 − 0.14 0.0063
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2.5 Hz range, after which it slowly increased again up to 
5 Hz. The sine wave gain did not follow a specific pattern; 
however, at the frequency of the signal (0.18 Hz), the gain 
was almost 0, which indicates that the subjects were follow-
ing the platform movement very well, this was true for all 
movement velocities and the variability of responses at this 

frequency was also very low (not shown). This indicates 
that all participants were following the platform movement 
at all velocities for the sine wave signal at this frequency. 
The phase also showed differences between the sine wave 
and noise signals. The sine wave had phases between − 90° 
and 90°, but this fluctuated across all frequencies with no 
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Fig. 3  Results for the time to transition and short-term persistence. 
#Difference compared to baseline, *difference between temporal cor-
relations. a Compared to baseline standing, the time to transition was 
increased for sine wave and decreased for white and pink noise at all 
movement velocities 2 cm·s−1 and greater. The white and pink noise 
signals had a shorter time to transition compared to the sine wave 
signal at all movement velocities. b Compared to baseline standing, 

the short-term persistence was stronger in the sine wave and weaker 
in the white and pink noise conditions at 4.0  cm·s−1. At 2.0  cm·s−1 
and greater, there were differences in all three conditions, with white 
noise having the weakest persistence, sine wave the strongest, and 
pink noise in the middle. There were a few other significant differ-
ences noted on the figure, and all mean differences and exact p values 
are provided in Table 1

Fig. 4  Average frequency response function of all subjects for gain 
and phase changes across the three types of stimuli (white, pink, and 
sine) and different velocity conditions. Overall the gain was higher 
for lower velocity movements. White noise and pink noise had simi-
lar patterns for gain and phase; however, pink noise had lower gains 
for the three slowest movement velocities in the low frequency range. 

The solid vertical line in the white and pink noise graphs of gain 
shows the median frequency of the stimulus and dashed vertical line 
the mean frequency of the signal. Sine wave had a similar response 
across frequencies, with a very consistent response at the frequency 
of the stimulus (solid vertical line)
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specific pattern. The white and pink noise had a similar pat-
tern, the phase was between − 90° and 0° up until around 
the 0.75 Hz range and then stayed between 0° and 90° until 
about 2 to 2.5 Hz, at which point it dropped back to the − 90° 
to 0° range and from 3 to 5 Hz it stayed close to − 90°.

Discussion

We explored four main hypotheses within this study. Num-
ber one is that as movement velocity increases, the time to 
transition of  COPvel would decrease. This hypothesis was 
supported for the white and pink noise signals at movement 
velocities 2 cm·s−1 and greater, but the sine wave signal had 
an increased time to transition at velocities 2 cm·s−1 and 
greater. Second, we hypothesized that the strength of persis-
tence would decrease as the movement velocity increased. 
This result was like the first hypothesis where the strength 
of persistence was decreased for the white and pink noise 
signals at 4 cm·s−1 but was increased in the sine wave con-
dition at 4 cm·s−1. Third, we hypothesized that movements 
with weaker temporal correlations would result in shorter 
time to transition of  COPvel. This was supported when com-
paring the sine wave to white and pink noise but not sup-
ported between the white and pink noise signals. Finally, we 
hypothesized that movements with weaker temporal corre-
lations would result in weaker persistence. This hypothesis 
was supported for all movements 2 cm·s−1 and greater, with 
white noise showing the weakest persistence, pink noise in 
the middle, and sine wave showing the strongest persistence. 
Therefore, all our hypotheses were partially supported with 
some unexpected differences in the response to the sine wave 
input, which resulted in temporal correlation by movement 
velocity interactions.

COPvel is a bounded system, since too large of a veloc-
ity will result in a fall. Furthermore, COP must alternate 
between increasing and decreasing velocities on a semi 
regular basis, which results in transition from persistence to 
anti-persistence at a specific time-scale (Delignieres et al. 
2011; Liebovitch and Yang 1997). The time to transition 
indicates how long the system allows increases in veloc-
ity before decreases occur, or decreases in velocity before 
increases occur. During the short time-scale, before the time 
to transition, there will be some level of persistence. This is 
because  COPvel will continue to increase or decrease until 
it reaches its threshold and changes directions. The strength 
of persistence in this short region indicates how persistently 
the system increases or decreases velocity.

Predictable vs. unpredictable signals

There were clear differences in the sine wave and noise 
(white and pink) signals. The sine wave signal resulted in 

longer time to transition as movement velocity increased, 
while the white and pink noise signals resulted in shorter 
time to transitions. At the same time, the strength of short-
term persistence remained steady and even increased with 
the sine wave, while it decreased for the white and pink 
noise. In this case, the white and pink noise signals are not 
responding differently from each other, but both are respond-
ing differently from the sine wave signal. These differences 
could indicate a divergence in the way in which the central 
nervous system processes the different postural demands. It 
has been shown previously that support surface oscillations 
of different structures elicit characteristic postural responses 
(Rand et al. 2015).

The differences between the predictable and unpredict-
able signals may indicate the ability to utilize feedforward 
vs. feedback control. In the case of  COPvel, a feedforward 
mechanism would mean that the system can predict when the 
body needs to increase or decrease velocity to maintain bal-
ance. A feedback mechanism would mean the system must 
rely more on sensory input to determine when to increase 
or decrease velocity to maintain balance (Gahéry and Mas-
sion 1981; Macpherson and Horak 2013). Because the sine 
wave is a predictable signal and the noise signals are not as 
predictable, it would be logical to conclude that the system 
can utilize a feedforward mechanism during the sine wave 
condition more than in either of the noise conditions. Using 
measures of temporal correlation may be a unique way to 
understand how the system is utilizing feedforward or feed-
back mechanisms.

Differences in the strength of persistence

Even in the two noise signals, there were differences in the 
strength of persistence at all movement velocities 2 cm s−1 
and greater. The white noise signal resulted in the weakest 
persistence, pink noise was stronger than white (although 
still weaker than baseline), and sine wave resulted in the 
strongest persistence. The strength of persistence in response 
to the three signals follows the same trend as the temporal 
correlation of the signal itself. This supports the previous 
findings that the temporal correlation of the environmental 
constraint drives the temporal correlation of the postural 
response (Rand et al. 2015). In the case of white noise move-
ment, the feedback provided no useful information, because 
each movement of the support surface was randomly deter-
mined, the system could make no prediction about future 
movements based on the sensory feedback. However, with 
pink noise, there is a temporal persistence, meaning that 
the movements of the support surface have a relationship to 
the previous movements. This provides information that the 
system can use to determine whether it needs to increase or 
decrease velocity, which results in a stronger persistence of 
 COPvel for the pink noise movement. Therefore, although 
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both white and pink noise appear to result in a feedback 
mechanism being dominant, the useful information in the 
pink noise signal allows the system to maintain a stronger 
persistence in the  COPvel.

These data indicate that the central nervous system has 
different responses to sensory inputs that contain different 
strengths of temporal correlation. If information is perceived 
as very predictable, such as the sine wave, then a feedfor-
ward mechanism can remain dominant, which may reduce 
the computational load. If the information is unpredictable, 
such as in the white and pink noise conditions, then feed-
back processes may become more dominant, since the sys-
tem cannot predict future movements as reliably. However, 
differences in the strength of persistence within these noise 
signals indicate that there may be a threshold where the sys-
tem would transition from feedback to feedforward control. 
Testing signals that contain more persistence and, therefore, 
are more predictable, will be useful in determining where 
this threshold exists.

Frequency response function

The gain and phase of the transfer function both showed 
clear differences between the predictable and unpredict-
able signals. The sine wave stimulus resulted in a pos-
tural response that matched the input at the frequency of 
the movement, with no clear pattern across the rest of the 
frequencies. The white and pink noise stimuli resulted in 
similar COP responses, with increases in gain up to about 
0.75 Hz and then decreases to around 2 Hz. There was also 
typically a higher gain at the lower platform velocities. 
These results are similar to a study comparing support sur-
face tilts at different amplitudes and under different visual 
conditions (Asslander et al. 2015). This study used pseudo-
random ternary sequences to drive the platform tilt at four 
different amplitudes. The gain pattern across frequencies 
was similar with increases up to around 0.5 Hz and then 
decreases until around 2 Hz. They also showed a lower gain 
with a greater amplitude of movement, similar to our results 
showing a lower gain with a larger velocity of movement. 
They hypothesized that this could be due to a tendency to 
compensate better for larger tilt stimuli; a similar mecha-
nism may be present with support surface translations also. 
However, with lower amplitudes or velocities of movement, 
the natural sway tendency could also result in greater gains, 
and the biomechanical constraints may not allow large gains 
at higher movement velocities.

It should be noted that there are differing theoretical 
perspectives on whether the postural control system uti-
lizes feedforward mechanisms, or if it can rely solely on 
feedback mechanisms. It has been proposed that the pres-
ence of two scaling regions indicated that the system used 
open-loop and closed-loop control strategies (Collins and De 

Luca 1993). Subsequently, it was shown that similar results 
could be obtained by varying time delays within a closed-
loop system (Peterka 2000). This shows that a feedforward, 
or closed-loop system, is not required to produce persistent 
and anti-persistent scaling regions and physical constraints 
could produce similar changes. However, it was also noted in 
that study that complex sensorimotor transformations could 
be implicated when the support surface perturbations are 
more complex such as in this study. In the current study, we 
are not proposing that the presence of two scaling regions is 
what indicates a shift towards feedforward control; instead, 
we are hypothesizing that the shift to a longer time to tran-
sition is what indicates a shift towards feedforward control 
in the predictable signals. There is also debate about how 
the term feedforward is used in the postural control litera-
ture (van der Kooij and de Vlugt 2007). A true feedforward 
system implies that the controller is independent from the 
system, but our sensorimotor system receives constant feed-
back which makes it difficult to determine if processes are 
happening in a true feedforward manner.

These findings could have implications for designing 
rehabilitative protocols. Training with a fixed pattern, such 
as a sine wave, will likely lead to fixed responses, and may 
not emulate real-life experiences. By being aware of the 
complexity of the task, it will be possible to design train-
ing protocols that contain complex structures resembling 
the task itself. Furthermore, assessing one’s ability to tran-
sition from one behavior to another will give insight into 
the flexibility of the sensorimotor system. However, a better 
understanding of the neuronal processing involved in these 
findings will be required to fine tune these results to specific 
populations.

Future directions

Future studies could investigate whether the results of 
this study diminish, persist, or are exaggerated by aging 
or pathology. Another area of interest is to investigate our 
results with stimulus signals of other strengths of temporal 
correlation, such that a more distinct transition point can be 
determined where the system switches from reliance on feed-
back to feedforward mechanisms. A clearer picture regarding 
the transition point can also emerge through investigation 
on a wider range of velocities. Investigating stimulus sig-
nals from other sensory modalities will determine whether 
the observed responses are ubiquitous in nature. Finally, the 
utilization of neurophysiological measures such as brain 
activity measurements would provide greater insights into 
the underlying neuronal mechanisms.

In summary, we investigated two factors which could 
affect the transition point between persistent and anti-
persistent behavior in postural dynamics. It was shown 
that both velocity and the predictability of support surface 
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oscillations affected this time-scale threshold. As velocity 
of support surface oscillations increased, the time to transi-
tion became longer for sinusoidal oscillations and shorter 
for both white and pink noise movements. In addition, dur-
ing the persistent time-scale, the sine wave resulted in the 
strongest correlation, while white and pink noise had weaker 
correlations. At the highest movement velocity, the strength 
of persistence was lower for the white noise compared to 
pink noise movements. These findings point towards transi-
tions between feedforward and feedback modes of postural 
responses based on the velocity and temporal structure of 
environmental constraints.
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