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Abstract
Manual estimates without vision of the hand are thought to constitute a form of cross-modal matching between stimulus 
size and finger opening. However, few investigations have systematically looked at how manual estimates relate a perceived 
size to the response across different ranges of stimuli. In two experiments (N = 18 and N = 14), we sought to map out the 
response properties for (1) manual estimates of visually presented stimuli as well as (2) visual estimates of proprioceptive 
stimuli, and to test whether these properties depend on the range of stimuli. We also looked at whether scalar variability 
is present in manual estimates, as predicted by Weber’s Law for perceptual tasks. We found that manual estimates scale 
linearly and with a slope of close to 1 with object sizes up to 90 mm, before participants’ hand size limited their responses. 
In contrast, we found a shallower response slope of about 0.7 when participants performed the inverse task, adjusting the 
size of a visual object to match a not actively chosen, induced finger opening. Our results were mixed with regards to scalar 
variability in large objects. We saw some indication of a plateau, but no evidence for an effect of mechanical constraints in 
the range studied (up to 90 mm). Participants also showed a clear tendency to overestimate small differences when a set of 
objects differed little in size, but not when stimulus differences were more pronounced.
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Introduction

Manual estimation (ME), the action of giving an estimate 
of a perceived size with the thumb and index finger, is a 
frequently used measure not just in behavioural research, 
but also in everyday life—think about the last time you 
described something as ‘about this big’ with the correspond-
ing gesture. As a way to measure size perception, ME is 
intuitive, flexible to execute, and due to its similarity with 
regards to motor demands potentially a very useful com-
parison to grasping measures. What is less known are the 

mechanisms of how it relates size perception to the motor 
response, and what parameters need to be considered when 
using it as a perceptual measure.

ME as cross‑modal matching

ME has been likened to a manual read-out, or cross-modal 
matching (Stevens 1959) of perceived size (Haffenden et al. 
2001; Kopiske et al. 2016a), in which the opening of the dig-
its is matched to the size of the stimulus. Most commonly, 
this stimulus would be presented visually. In one version of 
the task (‘open-loop’ ME), participants are prevented from 
seeing their own hand, in which case the match between 
modalities is that of proprioceptive cues about the hand to 
a visual percept. This is a classic concept in psychophysics: 
one sensory magnitude is adjusted until perceived equal in 
magnitude to another, allowing the researcher to determine 
a function that relates the two modalities (Stevens 1946; 
Teghtsoonian 1971). Such a matching is straightforward 
when the magnitudes are clearly defined. It is quite clear, 
for example, how loudness and vibration can be adjusted 
to match one another (Stevens 1959). However, even in a 
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simple ‘open-loop’ ME where finger opening is adjusted 
based solely on proprioceptive information, such proprio-
ceptive information may well differ depending on how aper-
ture is achieved. That is, it might matter whether an aperture 
is deliberately chosen or passively induced without being 
entirely under the participant’s control (see e.g. Shadmehr 
2017). In addition, both types of action would depend on 
information from different types of muscle fibres (i.e., type 
Ia muscle fibres for a quickly achieved active opening and 
type II muscle fibres for sensing a slow, induced opening; 
see Boyd 1980). Both actively chosen and passively induced 
apertures can be monitored online via proprioceptive signals, 
but actively chosen apertures may depend more strongly on 
movement planning processes (i.e., a type of forward model, 
Wolpert et al. 1995, although more recent work (Gallivan 
et al. 2016) has pointed out that under conditions of ambigu-
ity, participants may simply have multiple movement plans 
existing in parallel). It has also not been systematically 
investigated how the manual estimate relates to the input it 
is supposed to measure. While several studies have looked at 
responsiveness (i.e., by how much a response changes given 
a certain stimulus change, see Franz 2003; Kopiske et al. 
2016a) and precision (Bruno et al. 2016; Davarpanah Jazi 
and Heath 2014; Heath and Manzone 2017; Kopiske et al. 
2016b) of ME, its response function has never been fully 
mapped out. In other words, we do not know what goes into 
‘about this big’, and how big it really is.

Range‑dependencies in ME

Accounting for the slope, or responsiveness, of a given 
measure is crucial when comparing it to another meas-
ure on the same set of inputs. Since manual estimates are 
often compared to the maximum grip apertures of grasp-
ing movements, several previous studies have investigated 
the response properties of ME. In many cases, manual esti-
mates tend to overestimate differences such that responses 
scale with object size with a slope substantially larger than 
1 (Franz 2003; Haffenden et al. 2001; Kopiske et al. 2016a). 
However, this is not always the case, as more recent stud-
ies reported slopes much closer to 1 for manual estimates 
(Bruno et al. 2016; Heath and Manzone 2017; Kopiske et al. 
2016b). One potentially important difference between these 
two groups of studies is the range of object sizes presented. 
Indeed, it has been shown that larger ranges of input stim-
uli tend to elicit lower responsiveness in classic matching 
studies, both between (Poulton 1967) and within modali-
ties (Teghtsoonian 1973). This is consistent with findings in 
ME: the latter three studies used stimuli spanning ranges of 
over 60 mm and found slopes close to 1 (Bruno et al. 2016; 
Heath and Manzone 2017; Kopiske et al. 2016b), whereas 
studies investigating much smaller ranges (< 10 mm) found 
steeper slopes (Franz 2003; Haffenden et al. 2001; Kopiske 

et al. 2016a). While slopes can be calculated from both types 
of studies and descriptively seem to differ, this has, to our 
knowledge, not been investigated.

Motor constraints in ME

Despite its use as a perceptual measure, a manual estimate 
ultimately consists of the motor action of moving the thumb 
and index finger into the correct positions to indicate a given 
size. This raises the question of how such actions are per-
formed and whether neural computations are based on a 
size, or perhaps rather positions for each digit (as proposed 
in the model of grasping by Smeets and Brenner 1999). It 
also introduces additional noise into the response as well as 
potentially systematic distortions, since hand gestures not 
only have a natural limit based on hand size but may also 
behave differently when nearing those limits (i.e., for large 
hand openings), as more force is needed for the action. This 
in turn may mask some properties of the perceived magni-
tudes ME is supposed to measure. For example, some con-
troversy (see Ganel et al. 2008; Smeets and Brenner 2008, or 
more recently; Bruno et al. 2016; Heath and Manzone 2017) 
has recently ensued about the possibility of the variability 
of manual estimates not scaling linearly with stimulus size 
(sometimes referred to as violating Weber’s law—Fechner 
1860) given a wide enough range of stimuli. This has been 
proposed to be due to precisely the above-mentioned motor 
constraints for large openings (Bruno et al. 2016; Löwen-
kamp et al. 2015; but see also; Manzone et al. 2017; Schenk 
et al. 2017).

Our study

Our experiment sought to investigate the basic properties 
of ME with regards to three specific questions. First, is the 
cross-modal matching of visual size and finger opening 
dependent on the way the finger opening is achieved, and 
what is the response function of ME for visual stimuli? Sec-
ond, do ME’s properties depend on the range of objects to be 
estimated? Third, at what point are those properties affected 
by motor constraints?

We conducted two experiments to help shed light on 
these questions. The first experiment was designed to map 
out the response function of ME, and to compare its prop-
erties to a task of matching a visual size to an induced fin-
ger opening. Such an ‘inverse ME’ task could potentially 
tell us about the mechanisms of ME and answer our ques-
tion whether it is as simple as ‘proprioception matched to 
vision’. To this end, we had participants perform (1) open-
loop ME (that is, ME without vision of the hand while the 
visual stimulus was presented continuously) on a range 
of objects that was chosen to exhaust each participant’s 
range of possible finger openings, and (2) adjustment of 
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a visual probe object to match an induced finger open-
ing. Our second experiment tested whether the proper-
ties of manual estimates depended on the range of objects 
presented. Participants estimated a range of object sizes 
that spanned either 50 mm or only 5 mm. In both experi-
ments, we recorded participants’ hand sizes to investigate 
whether this natural ceiling for finger spans would impact 
the response function. We also investigated the scaling of 
variability with object size. This was not the main target 
of our experiment, but several competing accounts (Bruno 
et al. 2016; Heath and Manzone 2017) make clear predic-
tions that could be tested with data obtained from a design 
like ours.

Experiment 1: ME as matching visual size 
to felt finger span

In our first experiment, we aimed to investigate basic prop-
erties of standard open-loop manual estimates. To this end, 
we explored the response slope, possible biases, as well 
as the variability of manual estimates. We also measured 
the same parameters in a task designed to be the inverse of 
open-loop ME to test whether the matching of visual size 
to finger opening depends on whether this finger opening is 
chosen actively by the participant, or passively. To do this, 
we employed two different tasks where we (1) asked par-
ticipants to manually estimate different visual sizes, as well 
as (2) to adjust visual objects to match a felt finger opening. 
In addition, we included (3) a task to measure how manual 
estimates would behave close to the physical limits imposed 
by participants’ hand span.

Participants

Nineteen participants participated in the first experiment. 
One participant could not complete the experiment due 
to technical problems, leaving us with N = 18 participants 
(17 right-handed, 13 women, age range 20–35 years, mean 
age = 25.4; this included author KKK) as the complete 
sample in all subsequent analyses. Participants were either 
volunteers from CNCS@UniTn department, or recruited 
via an online advert on facebook.com and received 6 € (8 € 
per hour). All participants gave written, informed consent 
to participate in the study and have the data collected pub-
lished in an anonymous format. The project was approved 
by the life sciences ethics committee at University of Trento 
(Comitato Etico per la Sperimentazione con l’Essere Vivente 
dell’Università degli Studi di Trento), and participant 
data were protected according to the 1964 Declaration of 
Helsinki.

Stimuli and apparatus

Participants were seated with their head in a chin-rest in 
front of a semi-transparent mirror, slanted 45° away from the 
body midline, projecting images from a 19″ CRT monitor 
(running at 100 Hz and 1024 × 768 px, located to the left 
of the participant) to a position in front of the participant. 
The chin-rest was located on a table, 50 cm above the table’s 
surface. Infrared-emitting diodes were located on two poles 
attached to the fingernails of the right thumb and index fin-
ger, and one diode was attached to the participant’s right 
wrist. Makers on thumb and index finger were used to meas-
ure the distance between these two digits, while data from 
the wrist marker were recorded to allow us to check the con-
sistency of potentially unusual finger movements, but other-
wise not further used. An Optotrak Certus (Northern Digital, 
Waterloo, Canada) was used to track the position of these 
diodes at a frequency of 100 Hz. Stimuli were virtual red 
rectangles of 20 mm width and variable height, presented at 
a distance of 420 mm from the participant, centrally and at 
eye height, on an otherwise black screen. The stimuli were 
rendered in a custom C++ program using OpenGL and the 
GLUT toolkit. No physical objects were involved, allowing 
us to easily use small increments of visual size across a large 
range of stimuli.

Procedure

Prior to the experiment, each participant’s maximal finger 
span on their right hand was taken by asking participants to 
separate thumb and index finger as widely as possible and 
measuring the distance between the inside tip of the thumb 
and the inside tip of the index finger with a ruler. The result 
was rounded to the nearest multiple of 5 mm. Next, the right 
thumb and index finger’s fingertip positions relative to the 
diodes on the poles were calibrated by having the participant 
place each finger on a diode attached to a movable platform 
which was moved to the back of the table after calibration.

There were three blocks to each experiment, each of 
which started with five practice trials. One block was a 
standard, ‘active’ open-loop ME task (Fig. 1a) with objects 
ranging between 20 and 90 mm in steps of 10 mm. Each 
object was repeated five times, for a total of 40 experimental 
trials. Each trial started with a beep and the object appearing 
in the mirror, after which participants would indicate the size 
with their right hand, lifting it above the table and pressing 
the space bar with the left hand when they were satisfied 
with their response. The Euclidean distance between the tip 
of the thumb and the tip of the index finger at the moment 
when the space bar was pressed was used as the dependent 
variable. The object remained visible throughout the trial. 
This was done without time constraints and with no instruc-
tions about how to orient the hand, except pointing out that 



1312	 Experimental Brain Research (2018) 236:1309–1320

1 3

the back of the hand needed to face the Optotrak (which 
was located behind and to the right of the participant) for 
the markers to be visible. Another block was a visual adjust-
ment task (Fig. 1b) in which participants were instructed to 
open their hand until they heard a sound, and then adjust a 
visually presented object to match the signalled, ‘induced’ 
hand opening. The sound appeared when the opening was 
within 4 mm of the desired aperture and continued while 
participants tried to maintain the finger opening. Objects 
were adjusted to be 1 mm larger or smaller, respectively, by 
pressing the ‘,’ and ‘.’ keys of a standard Italian USB key-
board. Pressing the space bar confirmed the response. The 
initial height of each object was a random integer between 
1 and 100 mm. The same stimulus sizes and number of rep-
etitions as in the ME task (20–90 mm, 5 repetitions) were 
used. Of course, this method implies that there was some 
variability in stimulus magnitude. However, the only way 
to prevent such variability would have been moving the fin-
gers by applying force externally, which would have given 
additional haptic input and thus resulted in a poorer match 
between the information available in this task and ME. The 
third kind of block was an investigation of the full range of 
the ME response function where the stimuli were objects 
up to the maximum opening of the hand. Each object size 
between 10 mm and the maximum size (step size 10 mm) 
was repeated twice, for a maximum of 38 trials. In all tasks, 
stimuli were presented in a randomized order, and trials with 
missing data in over 20% of frames were marked as invalid 
and repeated for up to two times at a random time (this con-
cerned seven ME trials and 26 full-range trials). The order 
of blocks was counterbalanced between participants.

Results and discussion

We excluded outliers when the response in a given trial was 
3 or more inter-quartile ranges (IQRs) larger or smaller than 

the 1st or 3rd quartile, respectively (criteria used in Bruno 
et al. 2016). This concerned three trials in the adjustment 
task and one trial in ME, leaving us with 717 adjustment 
trials, 559 full-range task trials, and 718 ME trials (one trial 
in each ME and the full-range task was removed due to tech-
nical difficulties, i.e., missing frames around the response). 
All subsequent analyses were conducted on these data. All 
data processing and analysis was conducted using R (R Core 
Team 2015).

Mean trial durations (from the start beep until the ‘space’ 
bar was pressed) were 3243 ms in the ME task, 3575 ms in 
the full-range task, and 16,360 ms in the adjustment task. 
An 8 (stimulus size, within-participant factor) × 6 (order 
of tasks standard ME, full-range ME, adjustment, between-
participant factor) mixed ANOVA was conducted for ME 
to test whether (a) participants scaled with stimulus size 
and (b) whether it mattered in which order the tasks were 
conducted. Such an ANOVA cannot be calculated for the 
adjustment task, since there is variability in the predictor 
variable; hence, we only modelled the response function. 
Greenhouse–Geisser correction (Greenhouse and Geisser 
1959) was applied for all results involving within factors 
with more than two levels. We report the corresponding 
correction factor εgg in these cases. For ME, we found an 
effect of size (F(7, 84) = 241.5, pgg < 0.001, εgg = 0.33) and 
no effect of order (F(5, 12) = 1.7, p = .213), as well as no 
statistically significant interaction (F(35, 84) = 2.1, pgg = 
0.053, εgg = 0.33).

To investigate the response functions more closely, we fit 
the mean responses (for each participant) to three different 
models: a linear function y = a + bx , a simple power model 
y = a × xb (as proposed by Stevens 1957) and a power func-
tion with an additive constant y = a × xb + c (see Teghtsoo-
nian 1973). In both tasks, the more complex power model 
failed to predict the data better than the simpler model (as 
indicated by the difference in Akaike’s information criterion, 

Fig. 1   Schematic illustration of 
the tasks used in experiment 1. 
a ME task, where the height of 
a rectangle is estimated between 
thumb and index finger, b the 
visual adjustment task, where 
participants opened their fingers 
until a sound indicated the cor-
rect opening and a rectangle’s 
height could be adjusted to 
match the opening. Infrared-
emitting diodes were attached 
to the thumb and index finger to 
record the finger opening
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ΔAIC—Akaike 1974; Burnham and Anderson 2004), as the 
responses were already fitted very well with two free param-
eters (especially on aggregate, see Fig. 2). The AIC slightly 
preferred the linear model in ME and the power function in 
the adjustment task (ΔAIC of − 0.5 and − 1.9, respectively). 
For the sake of simplicity and comparability, we chose the 
linear models for further analysis. The mean responses by 
size, as well as best-fitting linear models are shown in Fig. 2. 
As can be seen, participants scaled slightly shallower than 
unity in ME, with a mean slope of 0.91 ± SEM of 0.06. 
Results were similar for the adjustment task, with a mean 
slope of 0.68 ± 0.08. For the latter regression, we had to 
account for the noise of the predictor (the finger aperture) 
introduced by the fact that the ‘go’ tone was present when 
the aperture was within a region, not when it assumed a 
precise value. Thus, we corrected for dilution bias by a factor 
of � = 1 +

�
2
w

�
2
b

 , with �2
b
 being the underlying, long-term 

variability of the predictor and �2
w
 being the random error in 

its measurement (Frost and Thompson 2000; Searle et al. 
1992). To estimate the random error, we assumed a uniform 
distribution of apertures within the possible range of 
± 4 mm. This gave us a correction factor of 1.01. Standard 
errors of the slope were estimated using 1,000 bootstrap 
samples (Efron and Tibshirani 1993). Importantly, these 
results show that ME and the inverse adjustment task do not 
display inverse response functions (contrary to what would 
follow from the principles named by Stevens 1959), see the 
dotted black line in Fig. 2b. That is, participants’ responses 
scaled with a slope of less than 1 in ME, so that an inverse 
response function would have to show slopes larger than 1. 

However, slopes in the adjustment task (which was designed 
to employ the input modality of ME as the response and the 
response modality of ME as the input) were also signifi-
cantly smaller than 1 (t(17) = − 4.0, p < 0.001). In addition, 
the slopes were also not inversely related on an individual 
level (product–moment correlation of − 0.28, t(16) = − 1.2, 
p = 0.266; see Fig. 3).

We also included a full-range task to confirm that 
responses tended to tail off at a certain size. As can be seen 
in Fig. 4, this was the case for all participants. While this 
was to be expected, we note that there is virtually no sign of 
nonlinearity to be seen in the range employed in our other 
tasks.

To investigate scalar variability of responses in our data 
and contribute to the recent debate about whether ME fol-
lows the predictions of Weber’s Law (e.g., Bruno et al. 2016; 
Heath and Manzone 2017), we calculated the SD and inter-
quartile range (IQR) for responses to each stimulus size. 
Means of the SDs computed for each participant and each 
size separately can be seen in Fig. 5. Repeated-measures 
ANOVA on SDs with the factor ‘size’ (eight levels) revealed 
a significant main effect in ME (F(7, 119) = 3.5, pgg = 0.005, 
εgg = 0.78), indicating that variability did indeed differ with 
stimulus size. Fitting a spline with a single knot at 40 mm 
to the ME data (40 mm being a proposed starting point for 
where ME’s variability may start to plateau by Bruno et al. 
2016) gave us a mean slope of 0.18 (t(17) = 3.8, p = .001) for 
the first component and − 0.01 (t(17) = − 0.5, p = .636) for 
the second component, consistent with the notion that scalar 
variability was only present at small stimulus sizes (Fig. 5a). 
Since it has been proposed that mechanical constraints might 

Fig. 2   Mean responses by 
stimulus size in a ME and b 
visual adjustment task. Dashed 
grey line indicates unity, solid 
black line indicates the best 
linear fit, for which mean 
coefficients are given. Dotted 
black line in panel b indicates 
inverted response function from 
the ME task. Vertical error 
bars indicate within-subject 
SEM for the pooled differences 
between levels of factor size 
(Franz and Loftus 2012; Loftus 
and Masson 1994), horizontal 
bars represent the ± 4-mm range 
of apertures that would have 
triggered the ‘correct aperture’ 
tone during the adjustment. 
Slope in the adjustment task 
was corrected for an estimated 
correction factor 𝜆̂ (see below 
and Frost and Thompson 2000; 
Searle et al. 1992)
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affect the variability in relatively large apertures during 
grasping (Löwenkamp et al. 2015; Utz et al. 2015) as well as 
ME (Bruno et al. 2016), we also show the skew of responses 
by stimulus size (Fig. 5e). If motor constraints biased the 
variability depending on size (i.e., if larger responses were 
rarer due to being more effortful for the participant), we 
would predict fewer responses above the mean for larger 
objects, leading to a negatively skewed (or left-skewed) dis-
tribution of responses. While there is a relationship between 
skewness and object size relative to hand span (Fig. 5f), this 
relationship is quite weak, and not apparent when looking 
just at object size.

Experiment 2: ME and stimulus range

To investigate the degree of range dependence of the prop-
erties of ME, we conducted a second experiment in which 
we manipulated the set of stimuli presented, with each par-
ticipant completing one session of an ME task with a large 
range of stimuli and one session with a small range of stim-
uli. Chiefly, we expected the response slope to be larger in 
the small-range condition than in the large-range condition, 
as is typically found in cross-modal matching (Teghtsoonian 
1973) and also in the ME literature (e.g., compare Franz 
2003 and; Bruno et al. 2016). In a within-subject design with 
two blocks conducted on consecutive days, each participant 
performed an ME task with a narrow range of object sizes as 
well as an ME task with a wide range of object sizes, allow-
ing us to test this notion.

Participants

A total of N = 14 participants (all right-handed, nine women, 
mean age 23.4 years, age range 19–39) took part in experi-
ment 2. Recruitment, ethics, and data protection issues 
were treated the same way as in experiment 1. Participants 
received 8 € in compensation. None of the participants from 
experiment 1 participated in this experiment.

Stimuli and apparatus

Participants completed a similar ME task to the one admin-
istered in experiment 1. Only the height of the stimuli dif-
fered: Each participant completed a ‘narrow range’ session, 
in which the stimuli were rectangles of 40, 41, 42, 43, 44, 
45 mm height, as well as a ‘wide range’ session with objects 
of 30, 40, 50, 60, 70, 80 mm height.

Procedure

Each participant completed two sessions (narrow range, 
wide range) of open-loop ME. The two sessions were always 

Fig. 3   Slopes in the visual adjustment plotted by slopes in ME. Each 
point represents one participant: The x-coordinate indicates that par-
ticipant’s response slope in ME (in the linear model), y-coordinate 
that same participant’s (linear) slope in visual adjustment. We see a 
slight negative correlation. Grey area depicts 95% confidence interval 
based on 10,000 bootstrap samples (Efron and Tibshirani 1993)

Fig. 4   Individual responses by size in the ‘full-range’ task of experi-
ment 1, where participants manually estimated objects from 10 mm 
up to an object size almost equal to their maximal finger span (i.e., 
rounded down to the nearest multiple of 10). Dashed line indicates 
unity, solid black line indicates the mean response
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completed on consecutive days to avoid learning effects (as 
found in classic rating tasks where participants may develop 
and retain a scale for their responses based on trials at the 
beginning of the experiment, Haubensak 1992). Order was 
counterbalanced between participants. Each participant was 
given five practice trials in each session, and completed 20 
repetitions for each size, for a total of 120 experimental trials 
per session. Other than the stimulus sizes and the number of 
repetitions, the task was identical to the ME task in experi-
ment 1. Overall, each session lasted between 20 and 30 min.

Results and discussion

A total of 43 trials were missing due to technical difficulties 
due to missing frames or were filtered as outliers, primarily 

in one participant (where too many frames were missing in 
29 trials; despite this, no cell had fewer than 15 trials usable 
for evaluation). In the large range, 19 trials were repeated 
during the experiment due to missing frames, and 5 trials 
in the small range. A further 12 trials had to be removed 
in other participants’ data due to a too high proportion of 
frames being invalid (see section “Results and discussion”). 
The same criteria as in experiment 1 were used to remove 
outliers, which concerned 2 trials, leaving us with a total of 
1667 trials in the wide range and 1650 trials in the narrow 
range.

Mean trial durations were 2878 ms in the narrow range 
and 3104 ms in the wide range. For both the wide and the 
narrow range, we first conducted a mixed 2 (order of blocks; 
between-subject factor) * 6 (stimulus size) ANOVA akin to 

Fig. 5   Variability measures in the four tasks, top row: Experiment 1, 
bottom row: Experiment 2. Plotted are SDs (black) and IQRs (grey) 
by stimulus size in experiment 1, a ME and b visual adjustment, as 
well as experiment 2, in the c wide range and d narrow range. Error 
bars indicate pooled within-subject SEMs for within-subject differ-
ences between levels of the factor size (Franz and Loftus 2012; Loftus 

and Masson 1994). Dotted line shows spline regression with a knot 
at 40 mm. Skewness by object size in the ME task of experiment 1 
(e) and the large-range task of experiment 2 (g). Skewness plotted 
by object size relative to maximal hand span in panels (f) and (h), 
exploring the possibility of mechanical constraints driving skew. 
Error bars in panels e–h show between-subject SEMs
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the one conducted for experiment 1 to ascertain that par-
ticipants scaled their estimates with the height of the stimu-
lus. In the wide range, we found the expected main effect 
of size (F(5, 60) = 136.9, pgg < 0.001, εgg = 0.28), with no 
main effect of order (F(1, 12) = 1.1, p = .324) and no interac-
tion (F(5, 60) = 2.2, pgg = 0.150, εgg = 0.28). For the narrow 
range, the pattern was the same: A main effect of size (F(5, 
60) = 17.4, pgg < 0.001, εgg = 0.24), but not of order (F(1, 
12) = 1.1, p = .308) and no interaction (F(5, 60) = 1.0, pgg = 
0.361, εgg = 0.24).

To investigate scaling more in-depth, we fit linear and 
power function models to the data as was done in experi-
ment 1. In both blocks, the linear model provided the best 
fit, although in each case the difference in fit with the power 
function was minimal, with ΔAIC = − 0.1 in both cases1. 
We also found that participants’ estimates were more respon-
sive in the narrow range (y = − 19.97 + 1.65 × x) than in the 
wide range (y = 8.03 + 1.00 × x), as was expected. This can 
be seen in Fig. 6. Comparing the slopes for the linear model 
revealed no significant difference, however (t(13) = 2.0, 
p = .063). As was also expected, the slopes for the wide 
range varied less than the slopes for the narrow range (SEMs 
of 0.08 and 0.26, respectively). This can also be seen in 

Fig. 7, whereas slopes in the wide range fell between 0.54 
and 1.47, slopes computed from the narrow range showed 
some participants barely responding to sizes differences 
(minimum slope: − 0.12) with others strongly exaggerating 
the same differences (maximum slope: 3.95).

Interestingly, the slopes of these functions were strongly 
related across participants (r = .8; t(12) = 4.7, p < .001), by a 
mean function of slopelarge = 0.72 + 0.17 × slopesmall (with 
SEMs of 0.03 and 0.07 for that function’s slope and inter-
cept, respectively; estimated via 10,000 bootstrap samples, 
Efron and Tibshirani 1993), indicating that the larger slopes, 

Fig. 6   Mean ME responses 
in experiment 2 by stimu-
lus size in a the wide range 
(30–80 mm) and b the narrow 
range (40–45 mm). Dashed grey 
line indicates unity, solid black 
line indicates the best linear 
fit, for which mean coefficients 
are given. Error bars indicate 
within-subject SEMs (Franz and 
Loftus 2012; Loftus and Mas-
son 1994)

Fig. 7   Slopes in the narrow range plotted by slopes in the wide range 
(both according to the linear model). Analogous to Fig. 3, each point 
represents one participant. Here, we see a strong correlation between 
slopes in the two ranges. Grey area depicts 95% confidence interval 
based on 10,000 bootstrap samples (Efron and Tibshirani 1993)

1  Two things should be noted for the fits in the narrow range: 
First, while these models provided a nearly perfect fit on aggregate 
(Fig.  6b), they did not provide a good fit on an individual basis. 
The reason for this is primarily the huge inter-individual variability 
of both the mean responses and the slopes (Fig. 7). Second, for the 
three-parameter power function y = a × xb + c , the fitting algorithm 
did not converge due to the small spacing of values on the x axis.
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as well as the larger variance in the narrow range, were not 
just random noise, but likely a systematic amplification of 
an existing inter-individual tendency to scale more or less 
strongly in ME (Fig. 7). This systematic variation may be a 
further indication that the higher slope in the narrow range 
is not a statistical fluke, but depends on a mechanism simi-
lar to results found in classic psychophysics (Poulton 1967; 
Teghtsoonian and Teghtsoonian 1971; Teghtsoonian 1973).

Once again, we tested for variability scaling with object 
size (plotted in Fig. 5c, d) by conducting repeated-measures 
ANOVAs with mean SDs as the dependent variable and 
stimulus size as the only factor. We conducted this analy-
sis only for the wide range, as the narrow range would be 
poorly suited to investigate this effect. The main effect of 
size was significant (F(5, 60) = 3.7, pgg = 0.034, εgg = 0.44). 
A spline regression with a knot at 40 mm revealed no dif-
ference between slopes before (mean slope = 0.06, t test 
against 0: t(13) = 1.0, p = .339) and after the knot (mean: 
0.06, t(13) = 2.3, p = .038), although the latter was signifi-
cantly different from 0.

As we did in experiment 1, we explored the possibility 
of mechanical constraints for larger objects by plotting the 
skewness of responses. Once again, we found little indica-
tion that these might have affected the results (see Fig. 5c, 
g, h), as skewness differed almost not at all by stimulus size 
and only slightly by size-hand span. In combination with 
the fact that the variability of responses scaled linearly with 
stimulus size, this is not consistent with an account of bio-
mechanical constraints in manual estimates of large stimuli.

General discussion

Our experiments sought to provide a more detailed look at 
the properties of manual estimates to visual stimuli. Com-
paring the response functions obtained from two different 
matching procedures of visual size and finger opening, 
and from two stimulus ranges, we found the scaling of the 
response with stimulus size to be highly dependent on the 
task at hand. An active finger opening was matched to a 
different visual size than was matched to an induced open-
ing, and narrow and wide ranges differed substantially with 
regards to the responsiveness of ME. Under all conditions, 
however, manual estimates scaled linearly with size.

Prior to running experiment 1, we fully expected the 
response functions of ME on the one hand and of match-
ing visual size to a hand opening on the other hand to be 
inversely related. The fact that this was clearly not the case 
is not what one would expect following the simple model of 
cross-modal matching following Stevens (1959), but con-
sistent with recent findings on matching positions, where 
Kuling and colleagues (Kuling et al. 2017) found system-
atic mismatches between proprioception and vision. Similar 

to our results, Kuling et al. (2017) reported different (and 
not mutually predictive) systematic errors in a task where 
participants moved either an unseen finger to a seen posi-
tion, or a seen target to the position of an unseen finger. 
These response biases occur even in the absence of time 
constraints (Kuling et al. 2013), which is also in line with 
our findings. Kuling et al. (2017) takes this as evidence that 
the transformation of visual to proprioceptive information 
biases the encoding of position in a different way than the 
inverse transformation from proprioception to vision. Such 
a mechanism could also explain our results. Another pos-
sible explanation is that the action of deliberately creating 
a finger opening contains information that is not available 
when the aperture is induced (van Kemenade et al. 2016). 
This would involve feed-forward mechanisms (Wolpert et al. 
1995) using efference copies of motor commands to pre-
dict hand postures. Such an explanation would be consist-
ent with the fact that we found a steeper slope (and closer 
to unity) when participants had this information, indicative 
of a stronger signal for the size of the aperture. It is also 
consistent with the much higher variability in adjustment 
responses, see Fig. 5, which can only be due to the differ-
ence in how the aperture is felt, as the visual information 
should be equally precise in both tasks—and in any case, it 
is known that visual perception is typically much less noisy 
than haptic or proprioceptive information (see e.g. Ernst and 
Banks 2002).

Note that the noise inherent in this signal is not to be con-
fused with noise inherent in our design. Using an auditory 
beep as indication of the correct aperture (as opposed to e.g. 
an object inserted between the fingers, Stevens and Stone 
1959) would necessarily introduce some noise since we had 
to specify a correct “region” of apertures. However, since 
the beep was either present or not, there was no uncertainty 
for the participant as to whether the aperture was correct or 
not. In addition, the added noise could only have been very 
small relative to the observed noise of the manual estimates. 
Assuming a uniform distribution for apertures within the 
specified region of 8 mm (four in each direction), the added 
variance would have been 5.33 mm², which—if added to 
the variance inherent in ME—would result in an increase 
in SD of under 10% even for the smallest object, which is 
much smaller than the observed increase in visual adjust-
ment (Fig. 5). Thus, like its effect on the slope (see sec-
tion “Results and discussion”), the impact of stimulus-vari-
ability is small here. The issue of hand-opening judgements 
depending on how the opening was induced need not be a 
problem for standard ME tasks. In such tasks, the aperture 
will always be formed actively and in a very similar way 
in any experiment. It does, however, reiterate the question 
of whether ME is a purely perceptual task, as well as how 
strongly its properties depend on the exact design of the task. 
This relates to our second main finding.
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The second major finding is that the responsiveness of 
ME is highly range-dependent (Fig. 6). This is not surpris-
ing, but it has consequences, as the property of responsive-
ness has been much-discussed (e.g., Franz 2003; Haffenden 
et al. 2001; Kopiske et al. 2017; Kopiske et al. 2016a; Whit-
well and Goodale 2017), and is of particular importance 
when comparing ME to other output measures. The good 
news is that our findings support the use of linear slope-
correction as a viable way to account for mean ME slopes 
different from 1, since the mean responses reliably showed 
linear scaling with stimulus size. It is also important to note 
that even different response functions in different ranges 
seem to be indicative of similar processes, seeing that they 
are highly correlated between subjects (Fig. 7). The specific 
nature of these processes is still unknown (and has been 
for a long time, see e.g. Poulton 1967; Teghtsoonian 1973), 
especially given that not all hand openings are created (and 
sensed!) equal. An unfortunate implication of the demon-
strated range dependence of slopes is that raw effects across 
studies cannot be usefully compared. Rather, it is necessary 
to estimate slopes for each study individually, which is a 
noisy affair especially for small stimulus ranges (e.g., see 
Fig. 7).

As we mentioned earlier, ME tasks can be employed in 
several different ways, which should be kept in mind when 
considering the generalizability of our results. In particu-
lar, we decided to use an open-loop task without vision of 
the hand, whereas others have used closed-loop ME tasks 
with full vision of the hand and stimulus (e.g., Dewar and 
Carey 2006; Kopiske et al. 2016a). These are known to 
have different response properties compared to open-loop 
ME (Kopiske et al. 2016a), such as shallower response 
slopes even when employing small ranges of stimuli. Thus, 
it is not clear whether the range dependence found in our 
experiment would also be present under closed-loop con-
ditions. Similarly, presenting participants with virtual 2D 
stimuli throughout the entire trial is slightly different than 
the limited-duration presentations used in many previous 
studies. These studies often used real objects and removed 
vision not just of the hand but also of the stimulus during 
ME (e.g., Bruno et al. 2016; Franz 2003; Haffenden et al. 
2001; Heath and Manzone 2017; Kopiske et al. 2016a). It 
has been shown that matching 2D and 3D stimuli produces 
an excellent match, both in size comparison tasks and in 
ME (Franz 2003; Kopiske et al. 2016a), but it is plausible 
that keeping the stimulus visible throughout each trial might 
lead to slightly different behaviour than estimation based 
on memory. However, our main goal was to study ME as a 
measure of visual perception. To the best of our knowledge, 
none of the investigations into its responsiveness or vari-
ability rely on memory mechanisms for their interpretation.

Finally, we want to address the recent discussion about 
scalar variability in ME. It has been argued that ME shows 

scalar variability and that this can tell us something about 
the mode of visual processing in grasping, which does 
not show scalar variability (Davarpanah Jazi and Heath 
2014; Ganel et al. 2008). However, this finding has been 
disputed, as others have reported that ME’s variability 
increases with size only for relatively small objects (Bruno 
et al. 2016), or only for ‘functionally graspable’ objects 
(Heath and Manzone 2017). Mechanical constraints (Utz 
et al. 2015) or motor actions using finger positions rather 
than magnitude for movement planning (Smeets and Bren-
ner 2008) have been put forward as possible explanations 
(although it is an open question whether these accounts, 
originally put forward to explain grasping behaviour, apply 
to different motor actions like ME; see Schenk et al. 2017). 
While our experiments were not designed to test these 
hypotheses, some make quite explicit predictions for a 
design like ours, which we compared to our actual data. 
Specifically, we see perhaps some indication of a vari-
ability plateau in experiment 1, but nothing of the sort in 
experiment 2. Note that despite our use of fewer trials in 
experiment 1 than in previous experiments (5 repetitions, 
compared to 20 for Bruno et al. 2016; Heath and Man-
zone 2017), this should not result in a problem of power 
for the spline analysis, at least if we assume effects of the 
magnitude found in the literature: an effect of size on SD 
that is of the magnitude as reported by Bruno et al. (2016) 
would have been easily detectable (the reported t value 
for the initial slope would work out to a Cohen’s d > 2; 
our sample would have given us 90% power to detect an 
effect in the range of d = 0.8, Cohen 1988; computed using 
G*Power; Faul et al. 2007). Of course, initial estimates for 
effects are known to often be somewhat inflated (Button 
et al. 2013), which might be the case here. If indeed there 
are effects of mechanical constraints but those are more 
subtle, then our design might well have been insufficient 
to detect them, which would also explain the somewhat 
inconsistent results from our two experiments. In our view, 
this would be a plausible possibility, which also relates to 
our next point: We see no evidence of any effect of hand 
size on variability or skewness of responses for the largest 
stimuli used in the ME blocks (Fig. 5f, h), although as can 
be seen in Fig. 4, the corresponding apertures for these 
stimuli were rarely close to the mechanical limits. This 
kind of effect would be predicted based on certain bio-
mechanical constraints as well as the notion of functional 
graspability. Similarly, an absence of scalar variability has 
been found recently for bimanual grasping, where such 
considerations should not apply (Ganel et al. 2017). Here, 
the relatively large uncertainty and small differences in 
effect make this a case where more data might be needed 
to provide a strong test of these hypotheses (seeing that 
other studies used similar sample sizes to ours).
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Conclusion

In our study, we explored the properties of manually estimat-
ing object size by conceptualizing it as the matching of vis-
ual size to felt finger opening. We find that properties such as 
responsiveness differ markedly depending on which size is 
used as the standard and which size is matched to it, in a way 
inconsistent with a simple cross-modal matching. We also 
find ME’s responsiveness to be strongly dependent on the 
range of stimuli presented. Scaling was clearly linear, within 
the bounds set by hand span. Results are mixed with respect 
to whether ME’s variability scales with stimulus size.
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