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Abstract
Marken and Shaffer (Exp Brain Res 235:1835–1842, 2017) have argued that the power law of movement, which is generally 
thought to reflect the mechanisms that produce movement, is actually an example of what Powers (Psychol Rev 85:417–435, 
1978) dubbed a behavioral illusion, where an observed relationship between variables is seen as revealing something about 
the mechanisms that produce a behavior when, in fact, it does not. Zago et al. (Exp Brain Res. https ://doi.org/10.1007/s0022 
-017-5108-z, 2017) and Taylor (Exp Brain Res, https ://doi.org/10.1007/s0022 1-018-5192-8, 2018) have “reappraised” this 
argument, claiming that it is based on logical, mathematical, statistical and theoretical errors. In the present paper we answer 
these claims and show that the power law of movement is, indeed, an example of a behavioral illusion. However, we also 
explain how this apparently negative finding can point the study of movement in a new and more productive direction, with 
research aimed at understanding movement in terms of its purposes rather than its causes.

Keywords Power law of movement · Cause–effect model · Control model · Behavioral illusion · Controlled variables

It is generally assumed that the power law of movement—
the approximately 1/3 or 2/3 power relationship between 
curvature and velocity that is consistently found for volun-
tarily produced movements—reveals something about the 
mechanisms that underlie movement production (e.g., Zago 
et al. 2016). In a recent paper (Marken and Shaffer 2017), 
we showed that this assumption is likely to be based on 
what Powers (1978) called a behavioral illusion, where an 
observed relationship between variables is seen as revealing 
something about the mechanisms that produce the observed 
behavior when, in fact, it does not. Not surprisingly, the 
appearance of our paper led to considerable consternation 
inside (and outside) the power law research community, 
resulting in two published “reappraisals”; one by Zago et al. 
(2017, in the following abbreviated as Z/M) and the other by 
Taylor (2018; in the following abbreviated as Taylor). Both 
“reappraisals” rejected our conclusion, claiming that it is 
based on logical, mathematical, statistical and theoretical 
errors. In this paper, we answer each of these claims and 

show how our apparently negative findings can point to more 
useful directions for research on the mechanisms underlying 
the production of movement.

The facts of logic

We began our paper by pointing out that voluntary move-
ments are controlled rather than caused results of the mecha-
nisms—specifically, the muscle forces—that produce them. 
We made this point by noting that “… different muscle 
forces are required to produce the same movement trajectory 
on different occasions due to variations in the circumstances 
that exist each time the movement is produced” (Marken 
and Shaffer 2017, p. 1836), which is the definition of move-
ment as a controlled result of action (Marken 1988). Based 
on this observation, we concluded that the power law could 
not possibly reveal the mechanisms that produce movements 
because there is no direct causal path from mechanism (mus-
cle forces) to movement.

Z/M agree that “muscle forces will not be consistently 
related to the curvature and velocity of the movement” (p. 
13). But they assert that this fact does not imply that the 
power law cannot reveal the mechanisms of movement and 
they conclude that our “inference” that it does “…is logi-
cally a non sequitur, given the complex relationship between 
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muscle forces and movement kinematics” (p. 13). Z/M do 
not explain how the “complex relationships” to which they 
refer make our inference a logical non sequitur, but we can 
explain the logic behind our inference. We will do this using 
data from a simple voluntary movement task where a person 
is asked to use a mouse to make elliptical cursor movements 
on a computer display screen. At each instant during a trial 
the position of the cursor is determined by the sum of two 
variables: the position of the mouse and the value of a low-
pass filtered noise disturbance generated by the computer.

The results of a typical 30-s test trial are shown in Fig. 1. 
Figure 1a shows that the cursor is moved in an approximately 
elliptical trajectory. The coefficients of the power relation-
ship between radius of curvature (R) and tangential velocity 
(V) and between curvature (C) and angular velocity (A) for 
this trajectory are 0.3 and 0.7, respectively. These values are 
very close to the 1/3 and 2/3 values that are typically found 
in power law studies. The fit of the power relationship to the 
cursor trajectory is also close to what is found in power law 
studies; the R2 value for the power relationships between R 
and V and between C and A are 0.56 and 0.87, respectively.

Figure 1b shows the mouse movements that were used to 
produce the elliptical cursor movements shown in Fig. 1a. 
Due to the effect of the disturbance on the position of the 
cursor, the trajectory of the mouse movements was very 
different than the resulting elliptical trajectory of the cur-
sor movements. The coefficients of the power relationship 
between R and V and between C and A for this mouse move-
ment trajectory were 0.05 and 0.98, respectively. These val-
ues are not close to the 1/3 and 2/3 values that are typi-
cally found in power law studies. Moreover, the fit of the 
power relationship to the mouse trajectory is quite poor; the 
R2 value for the power relationships between R and V and 
between C and A are 0.01 and 0.68, respectively.

In this study, mouse movements represent “…the different 
muscle forces that are required to produce the same move-
ment trajectory on different occasions” (Marken and Shaf-
fer 2017, p. 1836); the time-varying disturbance represents 
the “…variations in the circumstances that exist each time 
a movement is produced” (p. 1836); and the cursor move-
ments are the voluntary movements that follow the power 

law. The results of this study show that, contrary to Z/M, 
the mechanisms that produce voluntary movements are not 
revealed in the power law that characterizes the movement 
trajectory. This can be seen in the fact that the power rela-
tionship between curvature and velocity for the mechanism 
(mouse movements) that produces the movement trajectory 
(cursor movements) differs considerably from that for the 
voluntarily produced movement trajectory itself. It can also 
be seen in the fact that the correlation between mouse and 
cursor movements is only 0.53, meaning that only about 28% 
of the variance in the voluntary cursor movement trajectory 
is accounted for by the mechanism (mouse movement) that 
produces it.

Z/M claim that we are making a logical error by saying 
that the power law cannot reveal the mechanisms of move-
ment. We believe that this study shows that Z/M are making 
a factual error by saying that it can.

A simple twist of math

Both Z/M and Taylor claim that we made a mathematical 
error by showing that the measures of movement velocity 
and curvature used in power law studies are mathematically 
related. Specifically, we noted that:

and

where D is what we called the “cross-product” variable and 
is equal to | Ẋ ⋅ Ÿ − Ẍ ⋅ Ẏ  |, the cross-product of the first and 
second derivatives of movement in the X and Y dimensions.1 
We derived Eqs. 1 and 2 because we thought that a math-
ematical relationship between measures of the curvature and 
speed of movement might explain the consistent finding of 
the approximately 1/3 or 2/3 power law relationship between 
these variables despite the lack of a consistent causal con-
nection to the mechanisms that produce this relationship.

According to Z/M our mathematical error was a failure 
to take into account the “…simultaneous dependence of 
D on both speed and curvature” (p. 7). Based on this they 
conclude that the equation relating speed (measured as A), 
curvature (measured as C) and D, shown in Eq. 2 above, 
“…represents a simple mathematical identity and does not 
imply that A depends on two independent variables, D and 
C” (p. 7). Taylor, using V and R as the measures of speed and 
curvature, also says that our error was a failure to properly 

(1)V = R
1∕3

⋅ D
1∕3

(2)A = C
2∕3

⋅ D
1∕3,

Fig. 1  Movement trajectories of the cursor (a) and mouse (b) made 
during a typical trial of a voluntary movement task where the subject 
was asked to move the cursor in an elliptical trajectory

1 We now understand D to be a measure of affine velocity (Maoz 
et al. 2006; Pollick and Sapiro 1997), but we will continue to refer to 
D as the “cross-product” variable when we are discussing the analysis 
in Marken and Shaffer (2017).
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analyze the role of the cross-product variable, D, in our 
analysis. Taylor says that this happened because we misun-
derstood the equations for computing V and R that are given 
in Gribble and Ostry (1996).

We take these criticisms to mean that both Z/M and 
Taylor believe that Eqs. 1 and 2 are either misleading or 
incorrect. If this were true it would certainly undermine our 
analysis, which is based on the observation that the linear 
equations relating curvature to speed of movement are:

and

which imply that velocity is an exact mathematical function 
of both curvature and the variable D for any curved move-
ment trajectory. Moreover, Eqs. 3 and 4 imply that a regres-
sion analysis that omitted the variable D from the analysis 
(as is typically done in power law research) would result in 
a biased estimate of the true coefficient of the power rela-
tionship between speed and curvature, the size of the bias 
dependent on the correlation between measures of curvature 
and the variable D. So if our derivation of Eqs. 3 and 4 
is correct, power law researchers have discovered a “law” 
that is “forced” by their method of analysis. If, however, our 
derivation is wrong, then our analysis of the power law in 
Marken and Shaffer (2017) is either misleading (per Z/M) 
or incorrect (per Taylor). However, we will show that our 
mathematical derivation of Eqs. 3 and 4 is correct and, thus, 
the analysis in our paper is neither misleading nor wrong.

First, we note that the analysis in Marken and Shaffer 
(2017) is not misleading because, contrary to the criticisms 
of Z/M, regression analysis does not assume that the cri-
terion variable (speed) “depends on two independent vari-
ables”. The regression analysis takes into account any corre-
lation that might exist between the predictor variables when 
solving for the coefficients that give the best fit to the speed 
measurements. So the fact that the cross-product variable is 
functionally related to curvature does not give a misleading 
impression of the meaning of Eqs. 1 and 2 or of the linear 
equations (Eqs. 3 and 4) derived from them.

And second, our analysis is not wrong because, contrary 
to Taylor, we did not misunderstand the equations for com-
puting V and R that are given in Gribble and Ostry (1996). 
Our purported misunderstanding was taking Ẋ and Ẏ  to be 
the same variables in the Gribble and Ostry equations for 
both V and R. According to Taylor, it should have been obvi-
ous to us that Ẋ and Ẏ  are actually different in these two 
equations (even though they were notated the same) because, 
in the equation for V, Ẋ and Ẏ  “…are values observed in 
an experiment and are used to compute the corresponding 
velocity” (p. 5), whereas in the equation for R, Ẋ and Ẏ  “…
are arbitrary parameters, corresponding to any velocity ” (p. 

(3)log (V) = 1∕3 ⋅ log (R) + 1∕3 ⋅ log (D)

(4)log (A) = 2∕3 ⋅ log (C) + 1∕3 ⋅ log (D),

5). In fact, Ẋ and Ẏ  are not parameters in the equation for V 
or R but, rather, are values calculated from the data to get 
the measures of both V and R.

Taylor also argues that our analysis is wrong because 
it should have been obvious that Ẋ and Ẏ  are derivatives 
with respect to time in the expression for V, whereas they 
are derivatives with respect to space in the expression 
for R (p. 5). In fact, the Gribble and Ostry equations are 
derived from those given in Viviani and Stucchi (1992), 
where the denominators of the equations for both V and R 
are expressed in terms of derivatives of a spatial variable, 
φ, (Viviani and Stucchi 1992, Appendix Eqs. A5 and A6, 
respectively). Gribble and Ostry transformed the Viviani and 
Stucchi equations so that all derivatives that had been with 
respect to φ became derivatives with respect to time. So we 
were correct to treat Ẋ and Ẏ  as being the same in the Grib-
ble and Ostry equations for both V and R.

Further evidence that our mathematical derivation of 
Eqs. 3 and 4 is correct is the fact that the same derivation 
has been used by other power law researchers, specifically 
Maoz et al. (2006) and Pollick and Sapiro (1997), whose 
work was referenced favorably by Z/M in their “reappraisal” 
of our analysis. In particular, we find in Maoz et al. the fol-
lowing equation:

which is equivalent to our Eq. 1 but with the curvature vari-
able, κ, equal to 1/R, so that the exponent of κ is − 1/3 rather 
than 1/3. The variable α is the same as our variable D; it is 
called α because what we had called the “cross-product vari-
able” is actually a measure of affine velocity. Maoz et al. go 
on to note that Eq. 5 can be linearized as

which is equivalent to our Eq. 3. We take the fact that Z/M 
found no fault with the Maoz et al. analysis that led to Eq. 6 
as an implicit recognition of the correctness of our Eqs. 3 
and 4 and of Eqs. 1 and 2 from which they are derived.

Tangled up in statistics

The results of our mathematical analysis led us to infer that 
the consistent finding of a power law might be the result of 
the failure to include what we called the cross-product vari-
able (D) in the regression analysis that is typically used to 
determine whether a movement trajectory follows the power 
law. The typical approach to determining whether the rela-
tionship between curvature and speed is fit by a power law 
is to do a regression analysis with the log of the measures of 
curvature as the predictor variable and the log of the meas-
ures of speed as the criterion variable. For example, the 
regression equation used to evaluate the fit of a 2/3 power 

(5)V = �−1∕3
⋅ �1∕3,

(6)log (V) = − 1∕3 ⋅ log(�) + 1∕3 ⋅ log(�),
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function to the relationship between curvature measured as 
C and velocity measured as A is:

However, our analysis suggests that the appropriate 
regression equation for evaluating the relationship between 
C and A should include the cross-product variable D:

We pointed out that if C alone is used as a predictor vari-
able then β will be a biased estimate of the true value of the 
coefficient, β1, of log (C) in Eq. 8; according to Eq. 4 the 
true value of β1 is 2/3. The bias results from omitting log 
(D) from the regression analysis and the amount of bias is 
given by a statistical technique called omitted variable bias 
(OVB) analysis (Wooldridge 2009).

Both Z/M and Taylor are very critical of our use of OVB 
analysis, but their criticisms reflect a lack of understanding 
of some fundamentals of both OVB and multiple regres-
sion analysis. For example, Taylor says that we used OVB 
analysis “…to “correct” the power relation between V and 
R by adding a value ∂ found using the statistical analysis” 
(p. 7). Actually, we used OVB analysis to predict the degree 
to which the power law coefficient, β, found by regressing 
log R on log V deviates from the “true” (mathematically 
derived) value. The “true” value of β is 1/3 if Eq. 1 describes 
the correct mathematical relationship between R and V. The 
variable Taylor calls ∂ is the one we called δ and it is not a 
“correction” factor but, rather, a measure of how much the 
observed value of β is expected to deviate from the true 
value, 1/3, in a regression analysis that omits the variable 
D. The value of δ is calculated from the trajectory data—
specifically, what is calculated is the covariance between the 
curvature and the cross-product measures—and it was found 
to predict the deviation of observed from the “true” value of 
β exactly (Marken and Shaffer, 2017, p. 1841).

Z/M claim that our application of OVB analysis is “…
ill-grounded, since OVB applies to linear regressions of a 
dependent variable on one or more independent variables, 
and here C is an independent variable but D is not.”(p. 12) 
But, as we mentioned earlier, multiple regression analysis 
does not depend on the predictor variables being “independ-
ent”, either in the sense of their being uncorrelated with each 
other or in the sense of their being the variables manipulated 
in an experiment.

Z/M go on to claim that our OVB analysis is useless for 
learning about the physiological underpinnings of the rela-
tionship between speed and curvature because it is based 
on equations “…that are a mathematical identity that must 
always be satisfied” (p. 12). Taylor seems to agree when 
he states that “the “cross-product” correction [in the OVB 
analysis] is exactly enough to remove the observed effect of 
R on V, leaving only the tautology log (V) = log (V)” (p. 7).

(7)log (A) = k + � ⋅ log (C).

(8)log (A) = k + �1 ⋅ log (C) + �2 ⋅ log (D).

Despite the alleged uselessness of OVB analysis, Z/M 
allow that such an analysis would be useful in the study 
of noise effects on the power law and they point to the 
work of Maoz et al. (2006) as an example. Maoz et al. used 
OVB analysis to estimate the average amount by which 
the regression-based estimate of the power coefficient, β, 
relating velocity (measured as V) to curvature (measured as 
κ = 1/R) would deviate from the “true” value of − 1/3 (per 
Eq. 6 above) when the variable α (affine velocity, which cor-
responds to our cross-product variable, D) is omitted from 
the analysis. They did this analysis on randomly generated 
movement trajectories and found that the average deviation 
of the regression-based estimate of β from − 1/3 was quite 
small, only 0.05. Since, per OVB analysis, the size of the 
deviation of β from − 1/3 depends on the size of the correla-
tion between log(κ) and log(α), the small average deviation 
from − 1/3 means that this correlation is typically close to 
zero for arbitrarily produced movement trajectories.

Z/M say that the message of the Maoz et al. (2006) study 
is the opposite of ours, their message being that empirical 
speed–curvature power laws are not mathematical/statistical 
artifacts but, rather “…real and require a critical investiga-
tion of the properties of D to account for compliance or 
deviation of empirical β values relative to the prototypical 
2/3 value found in elliptic drawings” (p. 12). But this is the 
message of Moaz et al. only if one assumes that the “true” 
value of the power coefficient (− 1/3 for Moaz et al.) is the 
one that results from the physiological processes that pro-
duce the movement and that the variance in the affine veloc-
ity variable, α (or, equivalently, D), that results in compli-
ance or deviation from that value is the result of “noise” 
factors. This amounts to assuming that one’s theory of the 
cause of the power law is correct and any deviation of data 
from the theory is the fault of the data. In fact, when the 
results of the Moaz et al. study are interpreted correctly we 
see the message of their and other similar studies (e.g., Pol-
lick, and Sapiro 1997) as being perfectly consistent with 
ours, which is that the power law coefficient that is found 
using a regression analysis that omits the cross-product (or 
affine velocity) variable depends on characteristics of the 
trajectory itself and says nothing about the mechanisms that 
produced those trajectories.

An error, in theory

At the heart of the criticisms of our paper by Z/M and 
Taylor is the assumption that the power law is a result of 
a direct causal connection between curvature and speed of 
movement or between these variables and the physiological 
mechanisms that produce them. That is, it is assumed that 
the power law is a reflection of what Powers (1978) called 
the “general cause–effect model of behavior” (p. 423). This 
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assumption is made explicit in the statement by Z/M that 
the power law involves a “…causal relationship between 
curvature and speed...” (p. 13). Since the main conclusion 
of our paper was that these apparent causal relationships are 
misleading—indeed, an illusion—it is not surprising that the 
main thrust of the responses to our paper have been to show 
that this is not the case. This can be seen in Taylor’s efforts 
to show that measures of curvature and speed are “independ-
ent” in the sense that measures of speed (V) cannot be cor-
rectly represented as a mathematical function of measures 
of curvature (C). Presumably this would show that curvature 
and speed can be causally related. While it is not clear to 
us how the mathematical independence of these variables 
would justify this conclusion, the question is moot since, as 
we have shown above (Eqs. 5 and 6), there is a mathematical 
dependence between measures of speed and curvature and 
this fact is well known to power law researchers.

Z/M take several different approaches to showing that the 
power law is a result of causal processes. They start by not-
ing that “Empirical speed-curvature power laws for human 
drawing have different exponents” (p. 3). Z/M replicate the 
Huh and Sejnowski (2015) finding that different movement 
trajectories can result in quite different power law exponents 
and conclude that this reveals differences in the physiologi-
cal mechanisms that cause these different movements. How-
ever, the difference in exponents for different trajectories 
can also be explained by the difference in the mathematical 
properties of the trajectories themselves. Indeed, this has 
already been pointed out by Moaz et al. (2006) and Pol-
lick and Sapiro (1997), who note that the observed expo-
nent of the power law for a particular movement trajectory 
will deviate from the “ideal” or “prototype” value (1/3 or 
2/3) depending on the degree to which measures of affine 
velocity (the variable D in Eqs. 3 and 4) are correlated with 
measures of curvature. That is, variations in the exponent 
of the power law for different movement trajectories depend 
on the nature of the trajectory itself and not on how it was 
produced.

Z/M go on to argue that “Empirical power laws do not 
depend on how curvature is computed” (p. 5). The goal was 
to show that a power law relationship between curvature 
(C) and speed (A) is not a consequence of the mathematical 
relationship between C and A shown in Eq. 4. We derived 
that relationship under the assumption that C is computed as:

If a power law relationship between C and A is found 
using a different computational formula for C it would pre-
sumably rule out the possibility that the power law is a sta-
tistical artifact of the mathematical relationship between C 
and A that is based on computing C per Eq. 9.

Z/M computed C using two formulas other than Eq. 9 
and found that the estimates of the power law coefficient, 

(9)C = |
|Ẋ ⋅ Ÿ − Ẍ ⋅ Ẏ||∕(Ẋ

2 + Ẏ
2)3∕2.

β, using these values were the same as when C was com-
puted using Eq. 9. We have confirmed this result with one 
of their alternative measures of C:

This result does seem to show that the power law is not 
a consequence of the mathematical relationship between 
curvature and velocity shown in Eq. 4. However, we found 
that Eq. 4 still holds when C is computed according to 
Eq. 10. That is, when we do a log—log regression analysis 
predicting speed (A) as a function of curvature measured 
as C′ and the cross-product variable D, we found that the 
coefficient of C′ (β1) is exactly 2/3 and the coefficient of 
the cross-product variable (β2) is exactly 1/3, as predicted 
by Eq. 4; and the R2 value for the regression is 1.0. We 
take this to mean that a log–log regression of an appro-
priate measure of curvature (C) and affine velocity (the 
cross-product variable D) as the predictor variables will 
account for all the variance in the speed (A) of movement 
at each instant in the trajectory.

The above results are explained by the fact that when 
both the alternative measure of curvature and the cross-
product variable are included in a regression, the analy-
sis “partials out” the component of the variance in the 
cross-product variable that is correlated with both speed 
and curvature and “reallocates” it to curvature, resulting 
in the “true” estimate of the coefficient of the curvature 
variable, 2/3. Because of this, OVB analysis exactly pre-
dicts how much the regression-based estimate of the power 
coefficient of curvature, measured as C′ (per Eq. 10), will 
differ from the “true value (2/3, per Eq. 4), when the cross-
product variable, D, is left out of the regression analysis. 
So the use of alternative measures of curvature to deter-
mine the power law does not nullify our conclusion that a 
regression analysis that omits measures of affine velocity 
(the variable D) from the analysis forces a biased estimate 
of the true (mathematical) coefficient (1/3 or 2/3) of the 
power function that relates curvature to the velocity of a 
movement trajectory.

Z/M then argue that “The power law is not obligatory in 
physical systems.” They note, for example, that, unlike the 
movement trajectories produced by biological systems, the 
movement trajectories of some physical systems, such as 
the orbits of the planets, do not follow the 1/3 or 2/3 power 
law, a fact that we confirmed for ourselves. However, we 
found that, while the power law is not obligatory in physi-
cal systems, it is found for many of the trajectories that are 
produced by such systems. For example, we found a good 
fit of the power law to the trajectories produced by the toy 
helicopters in the experiment conducted by Shaffer et al. 
(2013) and analyzed in Marken and Shaffer (2017). We 

(10)C
� =

|
|
|
|

d

dt
arctan(Ẏ∕Ẋ)∕(Ẋ2 + Ẏ

2)
1∕2|

|
|
|

.
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also found a good fit of the power law to the movement 
trajectories of Frisbees thrown to dogs (Shaffer et al. 2004) 
and of footballs thrown to oneself (Shaffer et al. 2015).

We also found that the power law is no more obligatory 
for biological systems than it is for physical systems, as 
can be seen in Fig. 1b. Here the trajectory of the mouse 
movements that were produced by a biological system—
the person making the cursor movements in Fig. 1a—was 
not obligated to follow the power law. As noted above, 
the power coefficients for the mouse movement trajectory 
were 0.05 and 0.98, rather than the “prototypical” values 
of 0.33 and 0.67, respectively. Moreover, we have shown 
(Marken and Shaffer 2017, p. 1836) that whether a tra-
jectory is produced by a biological or physical system, a 
regression analysis based on Eqs. 3 or 4 always finds that 
the “true” power coefficient for the relationship between 
the speed and curvature of the movement trajectory is 1/3 
(for R versus V) or 2/3 (for C versus A), with an R2 value of 
1.0 in both cases. Again, this result shows that the value of 
the power coefficient relating speed to curvature depends 
on the nature of the trajectory itself and not on how it was 
produced.

Finally, Z/M argue that “Different biological constraints 
may give rise to the speed curvature power law” (p. 9). The 
point here is that the power law is “non-trivial” (in the sense 
that it is not a statistical artifact) because it reflects the phys-
iological constraints that underlie the production of these 
movements. Z/M make this point by comparing the move-
ments made by biological systems to those made by orthog-
onal harmonic oscillators. They note that such oscillators 
will produce elliptical movement trajectories that precisely 
follow the power law even when they are “… generated by 
coupled angular motions at the limb joints” (p. 9). They 
point to research that suggests that these non-orthogonal 
limb movements can still produce these elliptical trajectories 
because the limb segments are moved “…with appropriate 
inter-segmental phase shifts” (p. 9). Z/M imply that these 
“appropriate phase shafts” are the result of “physiological 
constraints” that are revealed by analyzing the relationship 
between the speed and curvature of the resulting movement.

We had some difficulty imagining the kind of physiologi-
cal constraints that could be clever enough to know what 
phase shifts would be “appropriate” to compensate for the 
varying non-orthogonal effects of limb coupling at every 
instant during the production of a movement. Therefore, we 
suggest that it is more likely that these phase shifts are the 
result of muscle forces that are part of a negative-feedback 
control loop, as in the control model of arm movement 
developed by Powers (2008, pp. 134–144). And, like the 
mouse movements shown in Fig. 1, the muscle forces that 
compensate for the varying non-orthogonal effects of limb 
coupling are not revealed by analyzing the movements that 
these forces produce.

Power law as behavioral illusion

As noted above, our fundamental theoretical error, accord-
ing to Z/M and Taylor, was the failure to see that move-
ment production is a cause–effect process. This can be 
seen in the fact that their criticisms of our paper are all 
aimed at showing that the speed of a movement depends 
on (is caused by) its curvature and/or that the relationship 
between the speed and curvature of a movement depends 
on a third variable, such as “physiological constraints. But 
we believe it is Z/M and Taylor who are making the theo-
retical error—the error of seeing voluntary movement as 
a cause–effect rather than a control process. As a result, 
we see evidence that in their criticisms of our paper Z/M 
and Taylor are succumbing to the “behavioral illusion”, the 
very phenomenon that is demonstrated by our analysis of 
the power law in the paper that they criticize.

As noted above, the behavioral illusion occurs when 
an observed relationship between variables is seen as 
revealing something about the mechanisms that produce 
a behavior when, in fact, it does not. For example, the 
behavioral illusion occurs when “reinforcement” is seen 
as “selecting” the behavior that produced it (Marken and 
Powers 1989; Yin 2013, pp. 342–343) or when a tap on 
the patellar tendon is seen as the cause of the knee-jerk 
response (Marken 2014b, p. 123). The illusion occurs 
when the behavior under study is assumed to be that of an 
open-loop, cause–effect system when it is actually that of 
a closed-loop control system (Powers 1978).

Our analysis shows that the power law of movement is 
just such an illusion. The power law is seen as revealing 
something about the mechanisms that produce movement 
trajectories when these trajectories are seen as the out-
puts of an open-loop, cause effect system. We have argued, 
however, that these trajectories are variables controlled by 
a closed-loop control system, a fact demonstrated by the 
results of the movement trajectory experiment shown in 
Fig. 1. The power law relationship between the speed and 
curvature of these trajectories, like the one in Fig. 1a, is 
a consequence of the mathematical relationship between 
these variables (Eqs. 1 and 2 above) and reveals noth-
ing about the mechanisms, like the mouse movements in 
Fig. 1b, that produce it.

Taylor expresses some doubt about whether or not we 
have shown the power law to be an example of a behavio-
ral illusion. But he asserts that “Whether it is or not, and 
whether their analysis is correct or not, the research ques-
tions would have been unaffected” (p. 12). Presumably one 
of the main research questions alluded to is “…the issue 
that has been the object of so much research: why does 
the observed velocity of movement of a living organism 
along a curve so often approximate a power function of 
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the local radius of curvature, and under what conditions 
does the power vary over such a wide range?” (p. 6). This 
statement actually contains two questions, both of which 
are “affected”—indeed, answered—if the power law is an 
example of a behavioral illusion.

The answer to the first question is that velocity always 
approximates a 1/3 or 2/3 power function of curvature 
because measures of velocity are mathematically a power 
function of measures of curvature, per Eqs. 1 and 2. The 
closeness of the approximation depends on the covariance 
between measures of curvature and affine velocity. The 
answer to the second question is that the range of varia-
tion in the power coefficient for movements made by living 
organisms is not actually that wide (e.g., Maoz et al. 2006). 
But to the extent that there is variation in the power coef-
ficient, the reason for it is the difference in the relationship 
between affine velocity and curvature in different trajecto-
ries. This answer is based on our OVB analysis of the power 
law which shows that a power coefficient that is determined 
by a regression analysis that omits measures of affine veloc-
ity as a predictor variable from the analysis will deviate from 
the “prototype” value (1/3 or 2/3) by an amount that is pro-
portional to the covariance between the curvature and affine 
velocity of the observed trajectory.

Doing research on purpose

Our aim in Marken and Shaffer (2017) was not to bury 
power law research but to point it in a new and more pro-
ductive direction; one based on an understanding of behavior 
as a control rather than a cause–effect process. This new 
approach to research is aimed at finding the purposes rather 
than the causes of behavior (Marken 2014b). When behavior 
is viewed as a control process, its purpose can be seen as 
maintaining perceptual inputs in goal or reference states that 
are specified by the behaving system itself. The perceptual 
inputs that the behaving system is maintaining in reference 
states are called controlled variables and the main goal of 
research when behavior is viewed as a control process is to 
determine what perceptual input variables the system is con-
trolling. This general approach to the study of the behavior 
of living control systems is called the test for the controlled 
variable (Powers 1978, p. 432) or simply the test.

There are various ways to do the test, one of which 
involves inserting into computer models different hypotheses 
about the perceptual input variables that are under control 
when organisms are performing various behaviors to see 
which of these hypotheses results in model behavior that is 
most like that of the system under study (Marken 2014a). 
This was the approach we took in our study of the variables 
a person controls when intercepting a toy helicopter (Shaffer 
et al. 2013). We were able to show that one of the variables 

controlled when a person moves to intercept the helicopter is 
the velocity rather than the commonly assumed acceleration 
of the vertical motion of the image of the helicopter. Once 
we had identified the inputs controlled when intercepting toy 
helicopters we were able to use the model to account for the 
object interception behavior that is seen under many differ-
ent circumstances (e.g., Shaffer et al. 2015).

In our paper (Marken and Shaffer 2017), we reported that 
we had found that the model-generated pursuit movements 
from the Shaffer et al. (2013) study “…followed a power law 
with an exponent equivalent to that found in other studies of 
similarly curved movement trajectories” (p. 1843). We noted 
that the model produced this result “without any attempt to 
produce trajectories that followed a power law” (p. 1843). 
Nevertheless, Taylor finds that this model “…contains and 
implies nothing that would explain why the movements of 
either people or toy helicopters conform to the power law” 
(p. 8). It seems to us that it does explain why these move-
ments conform to a power law; it is because the movements 
that are made in order to intercept objects follow trajecto-
ries where the correlation between curvature and the affine 
component of velocity happens to be quite low. Thus the 
regression used to determine the fit of the data to a power 
law will find a power coefficient close to the “prototype” 
value of 1/3 or 2/3.

However, Taylor’s complaint may refer to the fact that 
our model of object interception did not explain how the 
movement trajectories themselves were produced; it did not 
explain the “mechanism” that produces a movement trajec-
tory that follows the power law. So in order to show that a 
control model of the sort we described in Marken and Shaf-
fer (2017) can explain why movements conform to a power 
law, we developed a simple control model that produces cur-
sor movement trajectories like that in Fig. 1a—movements 
that conform to the power law—by the mechanism of vary-
ing mouse movements as shown in Fig. 1b.

The model explains the mechanism by which the power 
law-conforming cursor trajectories are produced to the extent 
that the model-produced mouse movements match the actual 
mouse movements that were used to produce these trajecto-
ries. And the model-produced mouse movements match the 
actual mouse movement quite well; the correlation between 
model and actual mouse movements (Fig. 1b) was 0.998. 
On average, the correlation between the model and actual 
mouse movements that produced power law-conforming cur-
sor trajectories was 0.995.

We concluded our paper on the power law by recom-
mending that future research on movement production be 
focused on understanding movement behavior by “…deter-
mining the nature of the perceptual variables that are being 
controlled (being maintained in specified reference states) 
by the behaving system” (p. 1544). Given the very general 
nature of this plea, we have to admit that Taylor is correct 
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when he says: “It is quite possible, even likely, that some-
thing about the processes involved in the control of certain 
perceptions accounts for the power law and the variations in 
the observed power, but Marken and Shaffer do not pursue 
this line of enquiry.” So we will take this opportunity to 
briefly describe what research aimed at discovering the per-
ceptions controlled in movement production would look like.

We will use as an example of such research a study by 
Viviani and Stucchi (1992). In that study the authors pre-
sented subjects with spots of light moving in ellipses and 
“scribbles” on a computer screen and had them press the “>” 
or “<” key to make the motion of the spot appear to be of 
uniform velocity. The key press increased or decreased the β 
exponent of a power function equation that was used to gen-
erate the motion of the light spot. So the subjects are asked 
to control a perception of uniform motion and they are asked 
to do it by pressing the appropriate keys to compensate for 
disturbances to the velocity of motion produced by changes 
in the power coefficient β. The researchers found that over 
many different conditions the subjects did this by keeping β 
fairly close to the “prototype” power law coefficient, 0.33. 
This hints at the possibility that the perception being con-
trolled is affine velocity and that it is being controlled at a 
constant reference level. This possibility is suggested by our 
OVB analysis and the work of Pollick and Sapiro (1997), 
both of which suggest that keeping affine velocity constant 
(and, thus, uncorrelated with curvature) will result in motion 
that conforms to the power law.

Further research using the test for the controlled vari-
able would be needed to determine exactly what perceptual 
variable is being controlled when an organism produces 
movements with uniform speed. The variable may be affine 
velocity but it may be some other, closely related variable, 
such as some function of the ratio of movement velocity to 
curvature. But once the controlled perceptual input variable 
is identified it should be possible to build a simple control 
system model that explains the movement behavior produced 
by living systems as it occurs under many different circum-
stances, as was the case with our object interception model 
noted above. To paraphrase Powers’ conclusion to his 1978 
Psychological Review paper (p. 434): for a thousand uncon-
nected empirical generalizations about movement behavior 
that are based on superficial similarities between features of 
movement trajectories, we here substitute one general under-
lying principle: control of input.
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