
Vol.:(0123456789)1 3

Exp Brain Res (2017) 235:3023–3031 
DOI 10.1007/s00221-017-5035-z

RESEARCH ARTICLE

Effect of training status on beta‑range corticomuscular coherence 
in agonist vs. antagonist muscles during isometric knee 
contractions

Fabien Dal Maso1   · Marieke Longcamp2 · Sylvain Cremoux3 · David Amarantini4 

Received: 16 February 2017 / Accepted: 15 July 2017 / Published online: 19 July 2017 
© Springer-Verlag GmbH Germany 2017

contraction. CMC magnitude decreased more in antagonist 
than in agonist muscles as torque level increased. Finally, 
CMC magnitude was higher in strength-trained than in 
endurance-trained participants. These findings provide 
experimental evidence that the motor cortex directly regu-
lates both agonist and antagonist muscles. Nevertheless, the 
mechanisms underlying muscle activation may be specific to 
their function. Between-group modulation of corticomuscu-
lar coherence may result from training-induced adaptation, 
re-emphasizing that corticomuscular coherence analysis may 
be efficient in characterizing corticospinal adaptations after 
long-term muscle specialization.

Keywords  Co-activation · Cortical regulation · Primary 
motor cortex · Time–frequency analysis · Training-induced 
adaptation

Introduction

Antagonist co-activation is defined as the “unintentional 
concurrent activation of antagonist muscles during the acti-
vation of agonist muscles” (Duchateau and Baudry 2014). 
Antagonist muscles produce significant torque around the 
joint in the direction opposite to net torque, which increases 
joint stiffness to improve movement accuracy (Miller et al. 
2000; Gribble et al. 2003; Stokes and Gardner-Morse 2003) 
and protect joints [for review, see Remaud et al. (2007)]. 
Despite the crucial functional role of antagonist muscles 
during both isometric and dynamic actions, the cortical 
mechanisms underlying their regulation are not fully under-
stood (Duchateau and Baudry 2014).

Based on early investigations that revealed common fir-
ing rate fluctuations between agonist and antagonist motor 
unit pairs (De Luca and Mambrito 1987; De Luca and Erim 
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2002), a large body of evidence suggests that cortical level 
regulates the excitation of agonist–antagonist muscle pairs 
as a single pool via a common descending oscillatory drive 
(Boonstra et al. 2009; Mohr et al. 2015). This hypothesis is 
supported by other electromyography (EMG) studies show-
ing similar fatigue-related changes in agonist and antagonist 
muscles during a fatigue protocol (Psek and Cafarelli 1993; 
Levenez et al. 2005; Levenez et al. 2008) and significant 
intermuscular oscillatory coupling of agonist and antago-
nist muscles (Wang et al. 2015). The possible role of the 
cortex in the regulation of antagonist muscle co-activation 
has been inferred from analysis of motor cortex oscillations 
recorded by electroencephalography (EEG) (Dal Maso et al. 
2012). Consequently, measurement of functional coupling 
between activities of the motor cortex and antagonist mus-
cles is required to confirm direct motor cortex involvement 
in the regulation of antagonist co-activation.

Corticomuscular coherence (CMC) analysis directly 
assesses frequency coupling (Rosenberg et al. 1989) between 
brain and muscle electrophysiological oscillatory activities 
recorded by EEG and EMG, respectively. Since the past 2 
decades, CMC between the primary motor cortex and ago-
nist muscles has been well characterized (Conway et al. 
1995; Kristeva et al. 2007; Gwin and Ferris 2012; Muth-
uraman et al. 2012; Ushiyama et al. 2012; Campfens et al. 
2013; Enders and Nigg 2015; Poortvliet et al. 2015; Lai 
et al. 2016). Indeed, during isometric contractions, motor 
cortex oscillations, which are carried down to the alpha-
motoneurons via the corticospinal tract (Baker et al. 2003; 
Lemon 2008; Negro and Farina 2011), are significantly 
coupled with muscle activity in the 13–31 Hz, ‘beta’ band 
(β-band) (Muthuraman et al. 2012; Campfens et al. 2013; 
Poortvliet et al. 2015). Although the underlying mechanisms 
are still being debated (Witham et al. 2011), CMC reveals 
large-scale communication between remote populations of 
neuronal networks (Buzsaki and Draguhn 2004; Schnitzler 
and Gross 2005; Joundi et al. 2012) and represents suitable 
analysis for characterizing the cortical regulation of muscle 
activation (Ushiyama et al. 2010; Boonstra 2013). Conse-
quently, comparison of CMC magnitude between EEG from 
the motor cortex and EMG from muscles acting as agonists 
and antagonists may help to further elucidate cortical mech-
anisms controlling antagonist muscle co-activation.

Interestingly, training status alters antagonist co-acti-
vation. Indeed, studies have reported lower antagonist co-
activation in strength-trained (ST) than in endurance-trained 
(ET) or untrained participants during isometric contractions 
(Tillin et al. 2011; Dal Maso et al. 2012; Amarantini and 
Bru 2015). Significant changes also occur at the cortical and 
corticospinal tract levels between ST and ET participants 
(Carroll et al. 2002; Griffin and Cafarelli 2005; Falvo et al. 
2010; Dal Maso et al. 2012). For instance, event-related 

desynchronization of 13–21 Hz cortical oscillations was 
higher in ST than ET during isometric contractions. Further-
more, CMC magnitude is sensitive to neural adaptations—
induced by extended motor practice (Ushiyama et al. 2010; 
Perez et al. 2012; Ushiyama et al. 2012; Larsen et al. 2016). 
Therefore, CMC comparison between individuals with dif-
ferent training status may provide an in-depth understanding 
of the mechanisms that participate in the control of antago-
nist muscles.

The aim of the present study was to compare CMC 
between the motor cortex and agonist muscles versus CMC 
between the motor cortex and antagonist muscles to pro-
vide further insights regarding cortical mechanisms under-
lying antagonist co-activation. The current work is based 
on the same sample as in Dal Maso et al. (2012) where the 
effects of training status on event-related desynchroniza-
tion of motor cortex oscillations were investigated during 
isometric voluntary contractions. Following the method 
developed by Bigot et al. (2011) for accurate assessment of 
CMC, the first general hypothesis was that CMC would be 
significant in both agonist and antagonist muscles, but of 
different magnitudes according to muscle function. Moreo-
ver, based on previous results showing higher event-related 
desynchronization in ST than in ET in the lower β-band 
(13–21 Hz), it was hypothesized that CMC magnitude 
would differ between ST and ET in this frequency band. In 
the upper β-band (21–31 Hz), event-related desynchroniza-
tion was found to be modulated according to torque level 
and training status during flexion exertions only. These 
results led to further postulation that CMC magnitude dif-
fers with torque level with specific modulation according 
to training status in the upper β-band during flexion exer-
tion only.

Methods

Ethics approval

The study protocol was in accordance with the Declara-
tion of Helsinki for research on human subjects and fol-
lowed local ethics guidelines of the Université de Toulouse 
(France). Study participants received explicit information 
about the experimental design and gave signed informed 
consent before the experimental procedures began.

Participants

Twenty-one right-footed men (assessed by inventory of foot 
preference (Chapman et al. 1987)) volunteered to participate 
in this study. They were assigned to 1 of the 2 following 
groups:
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•	 The ST group included ten participants engaged in regu-
lar lower limb strength training at least three times per 
week since at least 3 years (age 24.10 ± 4.31 years; height 
1.77 ± 0.07 m; mass 79.60 ± 7.73 kg; mean ± SD). None 
of these participants was significantly involved in another 
physical activity.

•	 The ET group included 11 participants engaged in 
endurance disciplines involving the lower limbs 
at least three times per week since at least 3  years 
(age 22.09 ± 2.30 years; height 1.80 ± 0.07 m; mass 
77.45 ± 7.49 kg; mean ± SD). None of these participants 
was involved in an ST program.

The two groups were age-, height-, and mass-matched 
(p > 0.05). All participants had no lower limb injuries or 
neurological disorders.

Instrumentation

Net joint torque around the knee was recorded at 1000 Hz 
by calibrated dynamometer (System 4 Pro, Biodex Medi-
cal Systems, Shirley, NY, USA). Surface EMG signals 
were recorded at 1000 Hz by a Bagnoli-8 system and 
DE-2.1 single differential electrodes (Delsys, Boston, 
MA, USA). After suitable skin preparation (Hermens 
et al. 2000), EMG electrodes were placed over the bellies 
of representative right knee extensors, namely, the vastus 
medialis (VM) and rectus femoris (RF), and representative 
right knee flexors, namely, the biceps femoris (BF) and 
gastrocnemius (Ga) (Olney and Winter 1985; Amarantini 
et al. 2010). This electrode placement permitted to record 
EMG with no crosstalk contamination (Supplementary 
Figure 1). The reference electrode was placed on the left 
radial styloid. EEG signals were recorded at 1024 Hz by a 
64-channel ActiveTwo system (BioSemi, Amsterdam, The 
Netherlands). The BioSemi system works in a “zero-Ref” 
set-up with ground and reference electrodes replaced by a 
so-called CMS/DRL circuit (for further information, refer 
to http://www.biosemi.com/faq/cms&drl.htm). EEG elec-
trode locations followed the 10–20 international system. 
EMG and EEG electrode impedance was kept below 5 kΩ. 
Torque, EMG, and EEG data were time-synchronized 
offline with TTL pulse.

Experimental procedures

The experimental procedures have been described in detail 
elsewhere (Dal Maso et al. 2012). Briefly, participants were 
seated and secured to the dynamometer with the right knee 
flexed at 60°. They were then asked to perform:

1.	 Three 4-s knee isometric maximum voluntary contrac-
tions (MVC), followed by 1-min rest in flexion and 
extension.

2.	 Three 6-s so-called “relative MVC” (rMVC) in both 
directions of contraction separated by 1-min rest. Dur-
ing rMVC, participants were asked to achieve the great-
est isometric knee torque while relaxing the upper body 
(for details, see Dal Maso et al. 2012 and Cremoux et al. 
2013) to minimize contamination of EEG signals by 
contractions of muscles surrounding the head during 
MVC.

3.	 Knee flexion and extension isometric contractions at 20, 
40, 60, and 80% of rMVC are in random order. Partici-
pants were not required to stiffen their joints, so that the 
co-activation recorded over antagonist muscles was of 
unintentional origin. Participants received custom-made 
visual feedback of the target torque level (for details, see 
Dal Maso et al. 2012 and Cremoux et al. 2013). Twenty 
contractions, each lasting 6 s with 6-s rest in between, 
were recorded in each condition. A 3-min rest period 
was allowed after every 16 contractions.

Data analysis

All filters mentioned hereafter are zero-lag, fourth-order 
Butterworth filters.

Net joint torque was low-pass filtered at 10 Hz. A period 
of interest was defined for each contraction as a 3-s con-
secutive window where the sum of absolute error and the 
variability between required and exerted torque was mini-
mal. Mean squared error of torque production was computed 
according to the method of Divekar and John (2013). No 
between-group difference was seen in flexion and extension 
(p > 0.05).

Figure 1 illustrates the processing steps for computing 
CMC. Raw EEG and EMG signals were 3–100 Hz band-
pass filtered and 45–55 Hz notch filtered (Fig. 1a, b). EEG 
signals were average referenced. The Cz EEG electrode was 
selected as the electrode of interest, since (1) event-related 
desynchronization of the β-band was maximum at this elec-
trode during pre-testing with 50 right knee extension move-
ments (Supplementary Figure 1) and (2) its location on the 
EEG cap matched the location of the primary motor cortex 
of the lower limb. Previous studies on lower limb muscle 
contractions also selected the Cz electrode as the electrode 
of interest (Perez et al. 2007; Masakado and Nielsen 2008; 
Dal Maso et al. 2012). Continuous EEG and EMG data 
were then reduced to concatenated trials from −0.5 to +8 s 
relative to the onset of visual feedback and zero-aligned. 

http://www.biosemi.com/faq/cms&drl.htm


3026	 Exp Brain Res (2017) 235:3023–3031

1 3

CMC was computed in the time–frequency domain as elec-
trophysiological signals are non-stationary processes (Zhan 
et al. 2006; Allen and MacKinnon 2010). Time–frequency 
CMC between Cz EEG signal and each unrectified EMG 
signal was calculated with the WaveCrossSpec Matlab tool-
box for wavelet coherence analysis (Bigot et al. 2011: http://
www.math.u-bordeaux1.fr/~jbigot/Site/Software_files/
WavCrossSpec.zip). The parameters ‘nvoice’ (scale resolu-
tion of wavelets), ‘J1’ (number of scales), and ‘wavenum-
ber’ (Morlet mother wavelet parameter) were, respectively, 
set to 0.125, 864, and 7 to yield accurate identification of 
oscillatory activity in the [0.0021:0.9967:104.6565] Hz fre-
quency range. Magnitude-squared coherence was computed 
as follows:

where SEEG/EMG(�, u) is the wavelet cross-spectrum between 
EEG and EMG time series at frequency � and time u 
(Fig. 1e); SEEG(�, u) and SEMG(�, u) are wavelet auto-spectra 
of EEG (Fig. 1c) and EMG (Fig. 1d) time series, respec-
tively, at frequency � and time u. Refer to Bigot et al. (2011) 
for detailed equations.

There is an ongoing debate challenging the conven-
tional EMG rectification for CMC analysis (Neto and 
Christou 2010; McClelland et al. 2012; Negro et al. 2015). 

(1)
R
2

EEG/EMG
(�, u) = ||SEEG/EMG(�, u)

||
2
∕
(
SEEG(�, u)SEMG(�, u)

�
)

Rectification of a zero-mean oscillatory signal, as EMG in 
our case, is a non-linear process that distorts its power spec-
trum properties (Neto and Christou 2010; McClelland et al. 
2012). Especially for steady-state force tasks, the previous 
studies highlighted that there is no significant difference 
in CMC magnitude computed with rectified or unrectified 
EMG signals (Yao et al. 2007; Bayraktaroglu et al. 2011; 
Yang et al. 2016). Consequently, to meet both theoretical 
support and practical justification for the computation of 
CMC (Bigot et al. 2011; McClelland et al. 2012), CMC 
was computed from zero-mean centered EEG signals and 
unrectified EMG signals. As cautioned by Yang et al. (2016), 
computing CMC with unrectified EMG is suitable provided 
that EMG signals are motion artefact-free, which was the 
case of our data (Supplementary Figure 2).

CMC magnitude was quantified as volume under the 
time–frequency plane where CMC was significant, as 
detected on cross-spectrum, using the statistical test intro-
duced by Bigot et al. (2011). This magnitude quantifica-
tion was previously introduced in CMC (Yoshida et al. 
2017; Cremoux et al. 2017) and intermuscular coherence 
(Charissou et al. 2016) studies. The significant threshold 
of corticomuscular coherence was Bonferroni-corrected 
to 0.05/4 as CMC was computed with four muscles (Win-
slow et al. 2016). Finally, for each participant and experi-
mental condition, CMC magnitude in knee extensor and 

Fig. 1   Steps taken to compute corticomuscular coherence with data 
from Cz EEG and VM EMG electrodes in an ST participant during 
knee extension performed at 20% of rMVC. Signals of a Cz EEG and 
b VM EMG electrodes. Wavelet auto-spectra of c Cz EEG and d VM 
EMG signals. e Wavelet cross-spectrum between Cz EEG and VM 
EMG signals: red contours identify areas in the time–frequency plane 
where correlation between the two signals is significant. f Represen-

tation of significant areas of wavelet magnitude-squared coherence 
between Cz EEG and VM EMG signals. For each participant, experi-
mental condition, and each muscle, the corticomuscular coherence 
magnitude was quantified as the volume under magnitude-squared 
coherence values in the low-β (13–21  Hz) and high-β (21–31  Hz) 
bands where a significant correlation between EEG and EMG time 
series was detected on the wavelet cross-spectrum

http://www.math.u-bordeaux1.fr/%7ejbigot/Site/Software_files/WavCrossSpec.zip
http://www.math.u-bordeaux1.fr/%7ejbigot/Site/Software_files/WavCrossSpec.zip
http://www.math.u-bordeaux1.fr/%7ejbigot/Site/Software_files/WavCrossSpec.zip
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flexor muscle groups was obtained by averaging CMC 
magnitude in Cz EEG–VM EMG and Cz EEG–RF 
EMG and in Cz EEG–BF EMG and Cz EEG–Ga EMG, 
respectively.

Statistics

All dependent variables were tested for normality (Shap-
iro–Wilk test, α = 0.05), and all data met the assumption of 
homogeneity of variance (Levene’s test, all p > 0.05).

Three-factor group (ST vs. ET) × torque level (20 vs. 
40 vs. 60 vs. 80%) × muscle function (agonist vs. antago-
nist) analysis of variance (ANOVA) was conducted on CMC 
magnitude separately in flexion and extension with repeated 
measures on torque level and muscle function. CMC mag-
nitude was compared statistically in both 13–21 Hz and 
21–31 Hz frequency bands.

Results

CMC magnitude in the 13–21 Hz frequency band

In both flexion and extension, ANOVA revealed a torque 
level effect (F3,17 = 8.34; p = 0.001 and F3,17 = 10.34; 
p  <  0.001, respectively), a muscle function effect 
(F1,19 = 30.46; p < 0.001 and F1,19 = 86.70; p < 0.001, 
respectively), and torque level × muscle function interac-
tion (F3,17 = 7.59; p = 0.002 and F3,17 = 9.72; p = 0.001, 
respectively) on CMC magnitude in the 13–21 Hz frequency 
band. CMC magnitude was higher in antagonist than in ago-
nist muscles. Low-β CMC magnitude in antagonist muscles 
decreased with torque level, while it tended to remain con-
stant across torque levels in agonist muscles (Fig. 2a, c). 
Low-β CMC magnitude was significantly higher in ST than 
in ET participants in flexion and extension (F1,19 = 5.64; 

Fig. 2   Mean (+SE) of corticomuscular coherence magnitude in 
13–21  Hz (left part) and 21–31  Hz (right part) frequency bands in 
agonist and antagonist muscles during flexion (upper part) and exten-
sion (lower part) contractions at 20, 40, 60, and 80% of rMVC. a, c, 

e and g represent significant torque level and muscle function effects 
and torque level × muscle function interaction, respectively, indicated 
by arrow, hash symbol, and triangle when applicable. b, d, f, and h 
represent the group effect indicated by asterisk when applicable
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p = 0.028; Fig. 2b and F1,19 = 4.73; p = 0.042; Fig. 2d, 
respectively).

CMC magnitude in the 21–31 Hz frequency band

In both flexion and extension, ANOVA revealed a torque 
level effect (F3,17  =  3.98; p  =  0.026 and F3,17  =  7.46; 
p = 0.002, respectively). CMC magnitude with agonist and 
antagonist muscles decreased with torque level (Fig. 2e, g). 
In extension only, high-β CMC was significantly higher than 
in ET participants (F1,19 = 7.26; p = 0.014, Fig. 2h). In flex-
ion only, high-β CMC was significantly higher with antago-
nist than with agonist muscles (F1,19 = 80.95; p < 0.001, 
Fig. 2e).

Discussion

To provide further insights into cortical involvement under-
lying antagonist co-activation, the present study compared 
CMC in agonist and antagonist muscles and in ST and ET 
participants during knee isometric contractions performed 
at different torque levels. First, these findings revealed that 
CMC was significant with antagonist muscles in the broad 
β-band, providing clear experimental evidence that the cor-
tex participates directly in the regulation of antagonist co-
activation. Second, CMC magnitude in antagonist muscles 
decreased more than CMC magnitude in agonist muscles as 
torque level increased, which suggests specific regulation of 
muscle activation according to their function. Finally, higher 
CMC magnitude in the lower β-band for ST in comparison to 
ET participants may result from training-induced adaptation.

The cortex regulates antagonist muscle co‑activation

Coherence analysis measures the strength of the coupling 
between two oscillatory signals (Rosenberg et al. 1989). 
While the previous studies repeatedly investigated CMC in 
agonist muscles (Kristeva et al. 2007; Gwin and Ferris 2012; 
Muthuraman et al. 2012; Ushiyama et al. 2012; Campfens 
et al. 2013; Enders and Nigg 2015; Poortvliet et al. 2015; Lai 
et al. 2016), the present work focused on CMC in antagonist 
muscles, considering their major functional role in human 
voluntary muscular contraction. Our findings revealed a 
significant coupling between the motor cortex and antago-
nist muscles in the broad β-band, regardless of the group 
of participants, direction of contraction, and torque level. 
Considering that CMC is thought to reflect communication 
between distant neural networks (Buzsaki and Draguhn 
2004; Schnitzler and Gross 2005; Joundi et al. 2012) via 
pyramidal pathways (Baker et al. 2003; Lemon 2008; Negro 
and Farina 2011), the present study provides direct experi-
mental evidence of the functional coupling between primary 

motor cortex and antagonist muscles during isometric knee 
contractions. This result agrees with the “common drive” 
theory (De Luca and Mambrito 1987; De Luca and Erim 
2002), confirming the role of cortical control in antagonist 
co-activation.

Regulation of muscle activation is function‑specific

CMC magnitude in the broad β-band was higher with 
antagonist than with agonist muscles in both groups of 
participants. Moreover, CMC magnitude in the low-β-band 
decreased more in antagonist than in agonist muscles as 
torque level increased. These results suggest that the regu-
lation of muscle activation is function-specific, with strong-
est direct functional oscillatory communication between 
the brain and antagonist muscles. The following potential 
mechanisms may explain the observed modulation of CMC 
magnitude with muscle function.

First, CMC may not derive from direct and simple 
motor cortex-to-muscle descending oscillation propaga-
tion. Indeed, intrinsic spinal mechanisms occurring dur-
ing voluntary contractions (Nielsen 2016) can alter CMC 
magnitude, as suggested by modeling-based investigation 
(Williams and Baker 2009; Watanabe and Kohn 2015). 
Ascending muscle-to-motor cortex drives are also essential 
in the establishment of corticomuscular coupling. Indeed, 
CMC is altered after ischemia or arm cooling (Pohja and 
Salenius 2003; Riddle and Baker 2005; Witham et al. 2011) 
and peripheral electrical stimulation (Lai et al. 2016), which 
are known to modulate peripheral nerve conduction time 
and afferent information, respectively. The contribution of 
spinal mechanisms and afferent information may, therefore, 
be specific to muscle function and torque production, caus-
ing torque level x muscle function β-band CMC magnitude 
interaction.

Second, proportions of direct corticospinal projections 
innervating muscles may have altered broad β-band CMC 
magnitude in agonist and antagonist muscles. Indeed, distal 
muscles, which have more direct corticospinal projections 
than proximal muscles, have higher CMC magnitude (Ushiy-
ama et al. 2010). The latter finding indicates that the propor-
tions of corticomotoneurons directly innervating muscles 
may be greater when they act as antagonists rather than as 
agonists.

Finally, the modulation of CMC magnitude may also be 
interpreted in light of the status quo theory (Engel and Fries 
2010). Indeed, high CMC magnitude may reflect the main-
tenance of a stable state that efficiently processes feedback 
to recalibrate the sensorimotor system with minimum com-
putational effort (Brown 2000). According to the present 
CMC results, the muscle function effect may indicate greater 
computational effort to regulate agonist muscle than antago-
nist muscle activation.
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CMC analysis as a marker of training‑induced 
adaptation

According to the previous analysis of the current database, 
both groups had comparable force capabilities, but ST par-
ticipants had lower antagonist co-activation than ET partici-
pants in flexion (Dal Maso et al. 2012). In light of numer-
ous investigations that have reported decreased antagonist 
co-activation in ST athletes (Carolan and Cafarelli 1992; 
Hakkinen et al. 2000; Griffin and Cafarelli 2005; Amarantini 
and Bru 2015), this result was interpreted as an ST-induced 
adaptation mechanism known to occur at cortical, corti-
cospinal, and motor unit levels (Carroll et al. 2002; Griffin 
and Cafarelli 2005; Folland and Williams 2007; Falvo et al. 
2010; Vila-Chã and Falla 2016). The present data indicate 
increased CMC in the ST group in the lower β-band dur-
ing flexion and extension exertions and in the upper β-band 
during extension exertions only. This result agrees with the 
previous studies showing alteration of CMC with functional 
abilities of participants (Ushiyama et al. 2010; Larsen et al. 
2016). Interestingly, the previous findings highlighted modu-
lation of task-related spectral power of motor cortex oscilla-
tions in the lower β-band between ET and ST participants in 
both directions of contraction (Dal Maso et al. 2012). CMC 
magnitude, being sensitive to cortico-motoneuronal plastic-
ity occurring after practice (Baker and Baker 2003; Hansen 
and Nielsen 2004; Perez et al. 2006; Mendez-Balbuena et al. 
2012; Larsen et al. 2016), the observed increase of CMC in 
ST participants may be interpreted as a training adaptation 
effect. Different mechanisms may, therefore, participate in 
the control of muscle activation between groups, suggesting 
that CMC magnitude is a reliable marker of corticomotor 
adaptations.

Conclusion

The present study revealed a significant CMC between 
the motor cortex and both agonist and antagonist muscle 
activities. Its findings provide experimental evidence that 
the cortex is directly involved in the regulation of both ago-
nist and antagonist muscle co-activation, and suggest that 
the mechanisms underlying muscle activation are specific 
to their function. The present observations also revealed 
that the strength of corticomuscular coupling is sensitive to 
practice-induced adaptation, emphasizing that CMC may be 
a relevant measure in investigating the effect of long-term 
corticomotor adaptation.
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