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Introduction

It has widely been accepted that memories are stored 
at least in part as changes in the strength of the synaptic 
connections between neurons, i.e., via synaptic plasticity. 
Metaplasticity regulates synaptic plasticity across time and 
among other things can help keep synaptic weights within 
a dynamic range by modifying the thresholds for long-term 
potentiation (LTP) and long-term depression (LTD) (Abra-
ham 2008). Mounting evidence also suggests that the com-
munication between neurons and astrocytes is critical for 
healthy brain functions. Notably, in this context, astrocytes 
can respond to neural activity and release gliotransmitters 
which feedback to neurons and regulate LTP and LTD, in 
part through generating metaplasticity (Gordon et al. 2009; 
Jones et al. 2013). Moreover, several studies have demon-
strated the active participation of astrocytes in memory for-
mation (Gibbs et al. 2008; Zorec et al. 2015).

Under neurodegenerative disease conditions, such as 
Alzheimer’s disease (AD), synaptic alterations in the hip-
pocampus and association cortices are an early feature and 
correlate with the severity of cognitive decline (DeKosky 
et al. 1996). Astrocytes become activated under these con-
ditions, undertaking amyloid-β (Aβ) clearance and degra-
dation through reactive astrogliosis which is a complex, 
multistage pathological response. Astrocytes thus provide 
nutritional support and stability to neurons and isolate them 
from the amyloid plaque deposition in the brain (Ross-
ner et al. 2005). However, signaling in astrocytes and cal-
cium homeostasis is disrupted in transgenic mouse models 
of AD (Kuchibhotla et  al. 2009; Takano et  al. 2006), and 
such pathological astrocyte function might also be directly 
involved in the early stages of neuronal pathophysiology in 
AD. This may also occur in other neurodegenerative dis-
eases such as amyotrophic lateral sclerosis (ALS), where 

Abstract Activity-dependent synaptic plasticity phenom-
ena such as long-term potentiation and long-term depres-
sion are candidate mechanisms for storing information 
in the brain. Regulation of synaptic plasticity is critical 
for healthy cognition and learning and this is provided in 
part by metaplasticity, which can act to maintain synaptic 
transmission within a dynamic range and potentially pre-
vent excitotoxicity. Metaplasticity mechanisms also allow 
neurons to integrate plasticity-associated signals over time. 
Interestingly, astrocytes appear to be critical for certain 
forms of synaptic plasticity and metaplasticity mechanisms. 
Synaptic dysfunction is increasingly viewed as an early fea-
ture of AD that is correlated with the severity of cognitive 
decline, and the development of these pathologies is corre-
lated with a rise in reactive astrocytes. This review focuses 
on the contributions of astrocytes to synaptic plasticity 
and metaplasticity in normal tissue, and addresses whether 
astroglial pathology may lead to aberrant engagement of 
these mechanisms in neurological diseases such as Alzhei-
mer’s disease.

Keywords Synaptic plasticity · Astrocytes · 
Metaplasticity · Alzheimer’s disease

 * Wickliffe C. Abraham 
 cabraham@psy.otago.ac.nz

1 Department of Psychology, Brain Health Research Centre, 
Brain Research New Zealand, University of Otago, Box 56, 
Dunedin 9054, New Zealand

http://orcid.org/0000-0001-9919-0622
http://crossmark.crossref.org/dialog/?doi=10.1007/s00221-017-4928-1&domain=pdf


1646 Exp Brain Res (2017) 235:1645–1655

1 3

astrocytes contribute to degeneration and death of motor 
neurons (Vargas and Johnson 2010; Haidet-Phillips et  al. 
2011).

This review addresses the astrocytic regulation of synap-
tic plasticity, including metaplasticity, focusing primarily in 
the hippocampus. We will also discuss whether the normal 
regulation of synaptic function becomes aberrant during 
pathological states, potentially contributing to the synaptic 
deficits in these pathologies, with a focus on Alzheimer’s 
disease. We will also consider whether astrocytes or gli-
otransmitters are potential targets for treating AD or other 
neurological disorders.

Astrocyte communication and signaling

Astrocytes encase many synaptic contacts and thus help to 
ensure normal neuronal excitability by maintaining extra-
cellular ion homeostasis through clearing glutamate and 
potassium ions from the regions around synapses. Astro-
cytes, by synthesizing glutamine which is utilized by neu-
rons to form glutamate, also contribute significantly to neu-
ronal metabolic homeostasis. Importantly, astrocytes are 
well equipped to communicate bidirectionally with neurons 
at tripartite synapses (Araque et al. 1999). In the hippocam-
pus, one astrocyte is in close vicinity to approximately 100 
neurons (Agulhon et al. 2008; Hamilton and Attwell 2010) 
and can connect to thousands of synapses (Bushong et al. 
2002). It is well established that neurotransmitters released 
from the neurons can induce elevations in astrocytic cal-
cium levels. For example, activation of pyramidal neurons 
in the hippocampus induces elevations in astrocytic  Ca2+ 
levels by stimulation of astrocytic metabotropic glutamate 
receptors (Porter and McCarthy 1996). This activation state 
can be communicated to neighboring astrocytes via gap 
junctions or release of extracellular signaling molecules 
(Giaume et al. 2010). In retina and the embryonic ventric-
ular zone, for example, induction of intracellular calcium 
signals in astrocytes leads to  Ca2+ waves that spread across 
astrocytic networks (Weissman et al. 2004). In turn, either 
electrical or mechanical stimulation of a single astrocyte 
raises their intracellular calcium levels causing extrasyn-
aptic glutamate release and resulting in elevated calcium 
levels in neighboring neurons (Charles et al. 1991; Parpura 
et  al. 1994). Through release of a variety of gliotransmit-
ters such as glutamate, d-serine, ATP, GABA, tumor necro-
sis factor-α (TNF-α), and endocannabinoids, astrocytes are 
also capable of regulating synaptic plasticity (see Fig. 1).

Although the molecular mechanisms underlying 
release of these gliotransmitters from astrocyte are not 
well understood, both  Ca2+-dependent exocytosis and 
 Ca2+-independent mechanisms have been reported. Stud-
ies report that  Ca2+-dependent release of gliotransmitter is 

based on  Ca2+ and SNARE protein-dependent mechanisms 
(Bezzi et al. 2004; Araque et al. 2000) and through astro-
cytic vesicular compartments (Bezzi et  al. 2004; Mothet 
et  al. 2005) or lysosomal exocytosis (Jaiswal et  al. 2007; 
Zhang et al. 2007). Such release can be triggered by activa-
tion of astrocytic G-protein coupled receptors (GPCRs) that 
couple by Gq to phospholipase C, the hydrolysis of which 
generates the second messenger  IP3 which binds with the 
Type 2  IP3 receptor in the membrane of the astrocytic 
smooth endoplasmic reticulum to open  Ca2+ channels and 
raise intracellular free calcium levels (Parpura and Zorec 
2010; Pascual et  al. 2005). Surprisingly, calcium-depend-
ent entry of astrocytic mitochondria into neighboring neu-
rons is also possible and this entry is believed to be vital 
for enhancing neuronal survival signals (Hayakawa et  al. 
2016). In certain cases,  Ca2+-independent mechanisms 
for the release of gliotransmitters appear to coexist with 
 Ca2+-dependent mechanisms. Such mechanisms include 
release through astrocytic hemi-channels (Ye et  al. 2003), 
release by vesicles (Parpura et  al. 1994), backward trans-
port of  Na+- dependent glutamate uptake (Anderson and 
Swanson 2000; Nicholls and Attwell 1990), through the 
channel pore of P2X7 receptors (Duan et  al. 2003), and 
by volume regulated anion/Cl− channels (Kimelberg et al. 
2006; Ye et  al. 2009).  Ca2+-independent mechanisms are 
known to occur in cultured astrocytic cells, but their rel-
evance in vivo remains inconclusive.

In summary, astrocytes are in close contact with neu-
rons, regulating neuronal function at the synaptic and net-
work levels and thus are well placed to respond to neu-
ral network activity, and impose a significant impact on 
that activity under both physiological and pathological 
conditions.

Astrocytes and the regulation of synaptic 
transmission

Numerous studies have demonstrated that gliotransmit-
ters released from astrocytes can modulate synaptic trans-
mission. Astrocytic glutamate release modulates brain 
networks in multiple brain regions in  situ including hip-
pocampus, thalamus, etc. Slow inward currents are evoked 
by astrocytic glutamate in CA1 hippocampal pyramidal 
neurons by activating extrasynaptic NMDARs (Araque 
et  al. 1998; Fellin et  al. 2004; Angulo et  al. 2004; Perea 
and Araque 2005; De Pitta and Brunel 2016). Astrocytic 
glutamate has been shown to synchronously excite hip-
pocampal pyramidal neurons, indicating that gliotrans-
mission may contribute to the coordinated neuronal firing 
patterns of neurons (Angulo et  al. 2004). Moreover, acti-
vation of astrocytic CB1 receptors potentiates synaptic 
transmission via calcium-dependent release of glutamate 
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(Navarrete and Araque 2010). ATP released from astro-
cytes during neuronal activity is able to influence synaptic 
transmission by acting on P2X or P2Y receptors (Palygin 
et al. 2010). Alternatively, ATP can be converted to adeno-
sine by ectonucleotidases to act on pre-synaptic adenosine 
receptors (A1/A2) to increase (A2) or decrease (A1) trans-
mitter release (Guthrie et  al. 1999; Palygin et  al. 2010). 
In the hypothalamus, the afferent activity-induced activa-
tion of astrocytes causes an enhancement in the amplitude 
of synaptic currents at glutamate synapses that depend on 
the release of glial ATP (Gordon et  al. 2009). At CA3-
CA1 synapses, astrocyte-derived ATP causes a quick and 
short-lasting form of pre-synaptic depression (Zhang et al. 
2003). However, astrocytes can also regulate inhibitory 
synaptic transmission (Kang et  al. 1998). Astrocytes may 
release ATP to stimulate interneuron excitability by acting 
on P2Y1 receptors and thereby potentiate GABAergic syn-
aptic transmission (Bowser and Khakh 2004). Conversely, 
glutamate release from astrocytes in CA1 can promote 
pre-synaptic inhibition of inhibitory interneurons via acti-
vation of Group II/III mGluRs, although activation of neu-
ronal kainate receptors by astrocyte-derived glutamate can 
counterbalance this inhibitory state and enhance inhibitory 
neurotransmission (Liu et  al. 2004). In a nutshell, astro-
cytic-mediated gliotransmitter signaling regulates diverse 
synaptic and network functions under normal physiological 
conditions.

Astrocytic contribution to synaptic plasticity

The activation of mGluR and muscarinic cholinergic recep-
tors generates LTP in the hippocampus in vivo and in vitro, 
an effect that requires simultaneous postsynaptic activity 
and astrocyte glutamate release and hence activation of 
neuronal mGluRs (Navarrete et  al. 2012). Stimulation of 
single astrocytes in the hippocampus can cause glutamate 
release that elicits slow inward NMDAR-mediated currents, 
enhances the probability of glutamate release, and induces 
Group I mGluR-mediated LTP (Perea and Araque 2007). 
Conversely, the high affinity glutamate transporter-1 (GLT-
1) coexists with aquaporin (AQP4) and reduced GLT-1 
levels in AQP4-null mice results in decreased glutamate 
uptake by astrocytes and impaired LTP (Zeng et al. 2007).

Besides glutamate, d-serine, traditionally considered 
to be released from astrocytes, enables LTP induction in 
cultures and acute hippocampal slices (Henneberger et  al. 
2010; Yang et al. 2003) and is essential for NMDA recep-
tor-dependent synaptic plasticity in the supraoptic nucleus 
(Panatier et  al. 2006). For example, local LTP induction 
at Schaffer collateral synapses in CA1 was abolished by 
clamping intracellular  Ca2+ levels within a single nearby 
astrocyte. This LTP was rescued by bath application of 

d-serine (Henneberger et  al. 2010). Similarly, blocking 
glial cell activation with fluoroacetate (a metabolic inhibi-
tor) blocked LTP in the prefrontal cortex by attenuating the 
amount of D-serine present extrasynaptically (Fossat et al. 
2012). d-Serine is a product of serine racemase, an enzyme 
first found in astrocytes (Schell et al. 1995) but later discov-
ered to be primarily found in neurons (Kartvelishvily et al. 
2006; Miya et al. 2008). In contrast to the traditional view 
therefore, it appears that it is l-serine that is synthesized 
and released by astrocytes and this is used by serine race-
mase in neurons to synthesize d-serine, which then modu-
lates synaptic plasticity (Wolosker et  al. 2016). In accord 
with this model, neuronal serine racemase conditional 
knockout mice display a significant reduction in LTP and 
reduced NMDAR currents, whereas astrocytic serine race-
mase conditional knockout mice show neither effect (Ben-
neyworth et al. 2012). Taken together, these data indicate a 
key contribution by astrocytes to the D-serine regulation of 
LTP, but that this is an indirect role via the production and 
release of the precursor l-serine.

ATP release has also been implicated in hippocampal 
LTP (Wieraszko and Ehrlich 1994). ATP released from 
astrocytes, when converted to adenosine via ectonucleoti-
dases, tonically suppressed synaptic transmission and sub-
sequently enhanced the dynamic range for long-term poten-
tiation and associated transient heterosynaptic depression 
in CA1 (Pascual et  al. 2005). Glial ATP, when converted 
to adenosine, can also generate heterosynaptic LTD, thus 
amplifying the effect of the homosynaptically induced LTP, 
akin to lateral inhibition (Chen et al. 2013).

Another key set of gliotransmitters is cytokines. For 
example, TNF-α, possibly released from astrocytes in 
developing visual cortex, is essential for experience-
dependent change in synaptic transmission (Kaneko et  al. 
2008). Mice deficient in TNF-α exhibited not only the nor-
mal loss of deprived eye responses following monocular 
visual deprivation, but also a lack of subsequent enhance-
ment in open eye responses (Kaneko et al. 2008). Interest-
ingly, acute application of TNF-α increased surface expres-
sion of AMPARs in both hippocampal culture and acute 
slices, resulting in increased synaptic strength and modula-
tion of neuronal activity (Beattie et al. 2002). Even in the 
presence of tetrodotoxin, TNF-α upregulates postsynap-
tic AMPAR surface expression in culture, suggesting that 
astrocyte-derived TNF-α may be a crucial signal for syn-
aptic up-scaling (Stellwagen and Malenka 2006). Similarly, 
interleukins can modulate synaptic plasticity in the brain. 
Treatment of hippocampal slices with recombinant human 
interleukin-6 (IL-6) impaired LTP in the CA1 (Li et  al. 
1997) and there was impaired LTP in a mouse model over-
expressing IL-6 release from astrocytes in the dentate gyrus 
(Bellinger et  al. 1995). Similarly, human recombinant 
IL-2 (Tancredi et al. 1990) and IL-1β inhibit hippocampal 
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LTP (Bellinger et  al. 1993), while IL-10 antagonizes the 
LTP inhibition by IL-1β (Kelly et al. 2001). Besides inter-
leukins, intracerebroventricular injection of interferon 
gamma (IFN-ϒ) (Maher et  al. 2006) and bath application 
of IFN-α (Mendoza-Fernandez et al. 2000) attenuates LTP 
in rat hippocampus. Thus, it is clear that cytokines play an 
active role in modulating synaptic plasticity, and although 
astrocytes (as well as microglia) are capable of releasing 
cytokines, the conditions under which astrocytes are stimu-
lated to do so in vivo remain unclear.

Astrocytes and metaplasticity

How are LTP and LTD balanced in the healthy brain? One 
contributing mechanism is metaplasticity, whereby neural 
activity results in a change in neural state that alters the 
cell’s response to subsequent plasticity-inducing events 
(Abraham and Bear 1996). Metaplasticity mechanisms are 
capable of regulating events across time and space (from 
minutes to hours) to maintain synaptic plasticity and neu-
ronal homeostasis inside the brain. Classical examples of 
metaplasticity are the ability of transient NMDAR activa-
tion (by weak HFS or by LFS) to inhibit subsequent LTP 
induction in hippocampal CA1, an effect lasting for less 
than an hour (Coan et  al. 1989; Fujii et  al. 1991), or the 
activation of Group I mGluRs to facilitate and prolong LTP 
(Raymond et  al. 2000). Metaplasticity-like mechanisms 
have also been reported in human cortex (Bocci et al. 2014; 
Muller-Dahlhaus and Ziemann 2015), Xenopus (Dunfield 
and Haas 2009), and Aplysia (Fischer et al. 1997).

Metaplasticity phenomena can be broadly divided into 
homosynaptic and heterosynaptic subtypes. Homosynap-
tic metaplasticity is expressed at synapses that participate 
in the initial bout of priming activity, while heterosynap-
tic metaplasticity occurs when an episodic priming event at 
one set of synapses regulates subsequent plasticity at syn-
apses in either nearby dendritic compartments or through-
out the cell (Abraham 2008). In one recently studied exam-
ple of heterosynaptic metaplasticity in hippocampal area 
CA1, high-frequency priming stimulation of one set of syn-
apses caused a cell-wide shift in plasticity thresholds, such 
that subsequent LTD was enhanced and LTP was impaired 
(Hulme et  al. 2012; Wang and Wagner 1999). This phe-
nomenon appears to be mediated via astrocytes as the effect 
did not require postsynaptic neuronal depolarization, but 
involves release of calcium from intracellular stores by 
 IP3, the opening of connexin-43 channels or hemi-chan-
nels located on astrocytes, the release and extracellular 
conversion of ATP to adenosine, and subsequent activa-
tion of adenosine type 2 receptors (A2Rs) (Hulme et  al. 
2012; Jones et  al. 2013). Moreover, the stratum radiatum 
astrocytes were widely activated by priming stimulation 

in the stratum oriens, an effect that was almost completely 
blocked by an inhibitor of gap junctions and hemi-chan-
nels (Hulme et  al. 2014). This range of evidence strongly 
supports the potential role of astrocytes in mediating at 
this type of heterosynaptic metaplasticity, although which 
glial transmitter may be exerting the plasticity regulation 
remains to be determined. Other examples of astrocyte-
mediated metaplasticity have recently been reviewed (Jones 
2015).

Astrocytic signaling in disease conditions

Neurodegenerative diseases are characterized by synaptic 
dysfunction, apoptotic cell death, and neuroinflammation, 
and are typically associated with severe cognitive decline 
and/or motor deficits. Accumulating evidence suggests 
a role for dysfunction in astrocyte-neuron signaling as an 
important contributor to pathology for most neurodegen-
erative diseases including Alzheimer’s disease (AD), Par-
kinson’s disease (PD) and Huntington’s disease (HD), and 
ALS. There is in particular substantial evidence for a role 
of astrocytes in AD and this section will focus mainly on 
how astrocytes are affected in AD and may contribute to 
the disease pathophysiology.

Three-dimensional reconstructions of amyloid plaques 
demonstrated that astrocytes are well placed to play a major 
role in amyloid-β (Aβ) degradation (Wegiel et  al. 2000). 
Astrocytes degrade Aβ deposition by two ways—either by 
phagocytosis or by Aβ degrading proteases. There is sub-
stantial evidence that adult mouse astrocytes can phagocy-
tose and degrade Aβ deposits in  vitro (Wyss-Coray et  al. 
2003). Similarly, Aβ degrading proteases such as neprily-
sin display ability to degrade both Aβ1–40 and Aβ1–42 (Iwata 
et al. 2000; Leal et al. 2006). However, aberrant activity by 
astrocytes in disease conditions might also aggravate the 
pathophysiology. Abnormal astrocytic calcium signaling is 
seen in various pathological states including epilepsy, AD, 
stroke, and traumatic brain injury (Rodriguez et al. 2009). 
Calcium homeostasis and signaling in astrocytes are also 
disrupted in transgenic mouse models of AD (Kuchibhotla 
et al. 2009; Takano et al. 2006) and in astrocytes cultured 
with Aβ peptides (Haughey and Mattson 2003). Indeed, 
high levels of extracellular Aβ induce sporadic  Ca2+ signals 
in astrocytes but not in isolated neurons, which may be due 
to differences in their membrane lipid composition (Abra-
mov et  al. 2003). The aberrant astrocytic calcium signal-
ing begins near Aβ plaques and spreads for long distances 
through the cortex, suggesting that the astrocytic calcium 
signaling can be widespread. The ability of Aβ to dysregu-
late astrocytic calcium signaling in vitro and in vivo sug-
gests the potential for astrocytes to contribute to the early 
stages of pathogenesis in AD (Kuchibhotla et  al. 2009). 
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Astrocytic networks in aged transgenic mice are aber-
rantly coupled by submissive intercellular diffusion/spread 
through gap junctions (Kuchibhotla et al. 2009) particularly 
in the neocortex (Peters et al. 2009).

Differences of pre-synaptic function in adult AD mice 
(APP/PS1) can arise from an altered calcium dynamic 
caused by the FAD-linked mutation in presenilin 1, which 
is known to enhance  Ca2+ release from the endoplasmic 
reticulum (Megill et  al. 2015). Hyperactive spontaneous 
short-lived astrocytic calcium waves, independent of neural 
activity and seen in many transgenic mice models, might 
influence neuronal signaling at synapses (Takano et  al. 
2006). Although the amyloid plaques have been one of the 
cardinal neuropathological feature of AD, it is now recog-
nised that soluble Aβ oligomers are themselves toxic and 
lead to synaptic deterioration early in the disease process 
(Coleman et  al. 2004). Of particular interest here, solu-
ble Aβ oligomers contribute to impairments in astrocytic 
metabolism (Tarczyluk et  al. 2015) and enhanced astro-
gliosis (Carrero et  al. 2012). Atrophic astrocytes appear 
in the entorhinal cortex, hippocampus, and prefrontal cor-
tex of 3xTg AD mice even before occurrence of extracel-
lular β-amyloid depositions (Olabarria et  al. 2010; Yeh 
et  al. 2011) indicating a possible response to soluble Aβ 
oligomers.

Another neuropathological feature is reactive astro-
cytosis, during which astrocytes proliferate in response 

to ischaemia, injury, or disease, and show hypertrophy of 
the cell soma and increased gene expression of glial fibril-
lary acidic protein (GFAP) (Wisniewski and Wegiel 1991). 
Interestingly, hyperactive calcium signaling occurs in astro-
cytes that surround plaques, while atrophy occurs further 
away from plaques (Rodriguez et al. 2009), indicating that 
there is a complex alteration of astrocytic function in AD. 
Moreover, morphological atrophy of astrocytes results in 
reduced ability to envelop synapses which may lead to thin-
ning and reduced numbers of synaptic contacts and thus 
decline in synaptic function (Coleman et  al. 2004; Terry 
2000). Reactive astrocytes along with microglia release 
proinflammatory cytokines, including interleukin-1β, 
interferon-γ, cyclooxygenase-2 (COX-2), interleukin-6, and 
TNF-α (Benzing et al. 1999; McGeer and McGeer 2010), 
noted above as being potent inhibitors of LTP. It is inter-
esting, therefore, that although murine AD models differ in 
the temporal profile of astrocytosis and the onset of LTP 
deficits, the development of these features goes hand in 
hand (Table 1). While not conclusive, this correlation sug-
gests that astrocytosis may be a major contributor to the 
LTP deficits and associated cognitive decline.

Early impairment of microvasculature may be another 
functional outcome of altered astrocyte calcium signal-
ing in AD as astrocytic control of the microvasculature is 
altered in 3xTg, Dutch/Iowa mutants, and Tg2576 mouse 
models of AD mice at early stages of the disease, well 

Table 1  Parallel age-dependence of astrogliosis and impaired LTP in AD transgenic mice

Animal model Age (months) Astrogliosis Impaired LTP

Tg2576 2–5 Rodriguez-Vieitez et al. (2015) Jacobsen et al. (2006) and Ma et al. (2010)
5–10 Hsiao et al. (1996) and Rodriguez-Vieitez et al. (2015)
>10 Apelt and Schliebs (2001), Jacobsen et al. (2006), Rossner 

et al. (2001) and Terai et al. (2001)
Chapman et al. (1999) and Jung et al. (2011)

PDAPP 2–5 Games et al. (1995) Larson et al. (1999)
5–12 Heneka et al. (2005) Dewachter et al. (2002)
>12 Giacchino et al. (2000)

APP/PS1 2–5 Poisnel et al. (2012) and Ruan et al. (2009) Gong et al. (2004) and Trinchese et al. (2004)
5–12 Kamphuis et al. (2012) and Poisnel et al. (2012) Trinchese et al. (2004) and Volianskis et al. (2010)
>12 Jo et al. (2014) and Poisnel et al. (2012) Jo et al. (2014) and Volianskis et al. (2010)

J20 2–5 Beauquis et al. (2013) Harris et al. (2010) and Saganich et al. (2006)
5–10 Beauquis et al. (2013) and Wright et al. (2013) Dewachter et al. (2002)
>10 Moechars et al. (1999)

3xTg 2–5 Rodriguez et al. (2009) and Yeh et al. (2011)
5–12 Caruso et al. (2013), Kulijewicz-Nawrot et al. (2012), San-

cheti et al. (2014) and Yeh et al. (2011)
Oddo et al. (2003) and Sancheti et al. (2013)

>12 Kulijewicz-Nawrot et al. (2012), Oddo et al. (2003), Olabar-
ria et al. (2010) and Yeh et al. (2011)

Oddo et al. (2003) and Sancheti et al. (2013)

5xFAD 2–5 Aytan et al. (2016) and Oakley et al. (2006)
5–10 Huttenrauch et al. (2015), Oakley et al. (2006) and Wu et al. 

(2014)
Crouzin et al. (2013), Kimura et al. (2010) and 

Kimura and Ohno (2009)
>10 Jo et al. (2014)
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prior to Aβ production, and loss of synapses (Takano et al. 
2007). Moreover, astrocytes are well known to regulate 
glycogen processing, but development of AD induces pro-
gressive loss of glucose usage in the brain, contributing to 
a nutritional collapse that may have dire consequences on 
neuronal survival and synaptic plasticity (Allaman et  al. 
2010). These additional features of the AD brain add sup-
port to the concept that dysfunctional astrocytic signaling 
contributes to altered synaptic plasticity and thus cognition 
in AD.

Aberrant metaplasticity in disease condition

As discussed above, strong afferent activity can cause 
widespread-synchronous calcium elevations in astrocytes 
that drive the release of gliotransmitters to dampen LTP 
and enhance LTD throughout a neural network. The fact 
that spontaneous astrocytic and neuronal calcium waves 
are reported in AD models (Chakroborty et  al. 2012; 

Kuchibhotla et  al. 2009; Mattson and Chan 2003) is sug-
gestive of endogenous hyper-activation of brain cells due 
to the disease and thus an excessive release of gliotransmit-
ters. This raises the possibility that there may be an associ-
ated aberrant constitutive engagement of inhibitory meta-
plasticity mechanisms that underpin the impairment of LTP 
that is common to most mouse models of AD (Jones 2015).

The possible aberrant engagement of metaplasticity 
mechanisms in AD models was first supported by the find-
ing that NMDAR-mediated inhibition of LTP was absent in 
APP23 mice, even before the onset of extracellular plaques 
(Balducci et al. 2010), suggesting that this mechanism was 
already active and mediating LTP inhibition basally. This 
could explain in part the therapeutic efficacy of meman-
tine in AD. Memantine is a partial NMDAR antagonist 
that can rescue the attenuated LTP induction/expression 
due to application of low concentrations of NMDA in 
CA1 (Frankiewicz and Parsons 1999; Izumi et  al. 1992; 
Zajaczkowski et  al. 1997; Zorumski and Izumi 2012). 
The fact that cognitive deficits, like the altered synaptic 

Neurotransmitters

Amyloid plaque or oligomer
Gliotransmitters - constitutive
Gliotransmitters - activity induced

Astrocyte 

Metaplas�city LTP/Neuronal homeostasis Aberrant metaplas�city LTP/Neuronal homeostasis

Reac�ve 
astrocyte        

Microglia

Neuron

Neuron

++

Healthy state AD state

Fig. 1  Astroglial regulation of plasticity in healthy vs diseased states. 
In the healthy state, activity-mediated release of gliotransmitters 
(such as d-serine, ATP, glutamate, TNF-α etc) from astrocytes regu-
lates (+) LTP and metaplasticity, balancing synaptic plasticity with 
neuronal homeostasis. In AD, astrocytes are less able to sense the 
neuronal activity and withdraw their processes from synapses due to 

the presence of extrasynaptic amyloid plaque and neuroinflammation. 
Furthermore, reactive astrocytes and microglia increase the constitu-
tive release of gliotransmitters (such as glutamate, GABA, S100β, 
IL-1β, TNF-α, etc.). This may induce aberrant metaplasticity states 
which result in impairments in LTP and neuronal homeostasis



1651Exp Brain Res (2017) 235:1645–1655 

1 3

metaplasticity, occur before the onset of plaques in the 
APP23 mice (Balducci et al. 2010) supports the important 
role played by soluble Aβ oligomers in synaptic dysfunc-
tion, and is consistent with the fact that the oligomers can 
enhance activation of the GluN2B-containing NMDARs 
that are targets of astrocytically released glutamate, thereby 
inhibiting LTP and favoring LTD (Li et al. 2011).

Targeting astrocytes may have therapeutic 
potential

Given the established role of astrocytes in regulating syn-
aptic activity and metaplasticity, aberrations in astrocyte 
signaling may contribute to the progression of impair-
ments in synaptic plasticity corresponding to cognitive 
decline in AD. In particular, it is worth paying attention 
to possible aberrant engagement of the inhibitory meta-
plasticity mechanisms in AD models. Understanding the 
mechanisms by which astrocyte regulates plasticity and 
generates metaplasticity in diseased states may suggest new 
therapeutic targets that are so urgently needed in this field. 
For example, an enhanced level of TNF-α (as produced by 
reactive astrocytes and no doubt activated microglia) not 
only causes impairments in LTP but also triggers a cas-
cade of neuronal dysfunction and neurotoxicity as well as 
contributing to altered APP processing and plaque forma-
tion. Thus, antiTNF-α therapy has gained much attention 
in treating AD symptoms. Clinically, infliximab treatment 
can improve cognitive impairment and regulate Aβ1-42/p-
tau levels in the cerebrospinal fluid (Shi et al. 2011). Other 
clinical antiTNF-α therapy such as and pentoxifylline (Sha 
and Callahan 2003) has been promising in treating severe 
cognitive decline in AD. Hence, targeting the TNF-α pro-
tein, its receptor or TNF-α converting enzyme (TACE) 
might be possible therapeutic interventions for the treat-
ment of AD, although an early clinical trial with etanercept 
was inconclusive (Butchart et  al. 2015). Thus the optimal 
agent, dose, and means of administration remain to be 
investigated further (Clark and Vissel 2016). In addition, 
considering the role played by p38 MAP kinase and NF-кB 
in TNF-α production in AD patients, inhibition of these 
molecules may be useful in treating neurodegeneration. 
Treatments against other inflammatory cytokines should 
also be considered, as well as the upregulation of the LTP 
pro-acting D-serine (Zou et al. 2016). Recent studies indi-
cate that exogenous ATP may also be a therapeutic target as 
it helps in restoring LTP and protects dendritic loss as seen 
in AD (Jung et  al. 2012). Finally, astrocytes themselves 
could be the direct target of gene therapies, as over-expres-
sion of the master autophagy/lysosome gene transcrip-
tion factor EB in astrocytes facilitated Aβ clearance and 
reduced plaque formation in a mouse model of AD (Xiao 

et al. 2015). In summary, although anti-Aβ treatments have 
received the bulk of attention as Alzheimer’s treatment, the 
direct or indirect effects of aberrant astrocyte activity may 
also offer attractive targets as treatment options for rescuing 
at least the impairment in plasticity-associated memory and 
cognition.
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