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Introduction

Stroke is a leading cause of adult disability with two-thirds 
of stroke survivors experiencing lingering upper limb 
impairment (Feigin et al. 2010; Mendis 2013). Weight sup-
port (WS) can be used to augment arm movements made 
during stroke rehabilitation therapy (Prange et  al. 2006; 
Brewer et  al. 2007; Kwakkel et  al. 2008; Mehrholz et  al. 
2015) and may be applied manually, or through devices 
ranging from passive supports to sophisticated robotic sys-
tems (Loureiro et  al. 2011). The benefits of WS for upper 
limb rehabilitation have been ascribed to increasing the 
intensity or volume of therapeutic exercises (Kwakkel and 
Meskers 2014). Beyond its role in facilitating increased 
training dosage, WS can also improve movement quality. 
For example, in reaching tasks the application of WS results 
in a reduction of antagonist muscle activity in both healthy 
older adults and chronic stroke patients (Prange et al. 2009a, 
b). WS can also lessen abnormal coupling of joint torques 
between the shoulder and elbow through a reduction in anti-
gravity torques required for shoulder abduction (Dewald and 
Beer 2001; Beer et al. 2004). As a functional consequence, 
individuals who express the stereotyped flexor synergy can 
achieve greater elbow extension under gravity-compensated 
conditions, thereby increasing access to the reaching work-
space (Sukal et  al. 2007). To date, the neural mechanisms 
underlying transient changes in motor behavior with WS 
have received less attention and are not well understood.

Change in whole-body posture can also affect motor 
control of the upper limb, but its interaction with WS has 
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not been investigated. Rehabilitation exercises may be 
performed when sitting or standing; thus, an interaction 
of posture with WS on upper limb control may inform its 
clinical application. Standing postures introduce balance 
requirements that alter the way arm movements are coor-
dinated and increase the complexity of reaching and point-
ing tasks (Pozzo et  al. 2001, 2002; Berrigan et  al. 2006). 
Centrally mediated changes in the accessibility of muscles 
for activation may be assessed using transcranial magnetic 
stimulation (TMS). Compared to sitting, standing results in 
greater corticomotor excitability (CME) to the anterior del-
toid, but no change in CME to the first dorsal interosseous 
(Kantak et al. 2013). Posture-related modulation of shoul-
der, but not hand, CME likely reflects a greater mechanical 
role played by proximal muscles in shifting the center of 
mass, e.g., to maintain stability in response to a perturba-
tion. Neuromuscular activity is modulated across the limb 
with WS and may involve both excitatory and inhibitory 
mechanisms (Devanne et  al. 2002; Runnalls et  al. 2014, 
2015). Whether the neural mechanisms underpinning pos-
ture-related changes in upper limb control interact with the 
neural linkages modulated by WS is unknown.

In the present study, we sought to examine the interac-
tion of whole-body posture and WS on CME to upper limb 
muscles. TMS was used to elicit motor-evoked potentials 
(MEPs) from muscles in the shoulder, arm, forearm, and 
hand of healthy adults. We expected that tonic muscle 
activity would modulate with both WS and posture manip-
ulations. It was hypothesized that tonic activity would be 
reduced with greater WS, and greater during standing 
compared to sitting. CME was examined by analyzing 
MEP area and comparing stimulus–response (SR) curves 
fitted to group means. It was hypothesized that SR curves 
would reflect greater CME with a standing posture, evident 
by steeper slope and associated parameters. Furthermore, 

we expected the magnitude of posture-related differences 
would be greater with WS.

Methods

Participants

Thirteen neurologically healthy right-handed adults with-
out history of upper limb impairment participated in this 
study (mean age 28 years, range 20–50 years, 3 females). 
All participants gave written informed consent and were 
screened for contraindications to TMS by a neurologist. 
Study procedures were approved by the University of 
Auckland Human Participants Research Ethics Committee 
in accordance with the Declaration of Helsinki.

Design

All procedures were completed in a single-session using 
a repeated-measures design. Single-pulse TMS was used 
to elicit MEPs from muscles of the arm during 2 postures 
(sitting and standing) at 3 levels of WS (low, medium, and 
high). The order of the 6 experimental conditions was ran-
domized between participants. Within each experimental 
condition, a range of TMS intensities was randomized on 
a trial-by-trial basis. Each session lasted approximately 3 h.

Posture and arm support

Figure  1 illustrates the sitting and standing experimental 
conditions. The right arm was supported by a SaeboMAS 
arm support system (Saebo Inc., Charlotte, NC, USA). 
Force was provided and adjusted via spring tension. A cus-
tom brace provided a rigid and cushioned surface for the 

Fig. 1   Demonstration of sitting (a) and standing (b) postures
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forearm and hand. Elasticized fabric wrap was used to 
secure the forearm to the brace in a palm-down position. 
For both sitting and standing conditions, TMS was per-
formed in a standardized arm position with the shoulder 
flexed forward approximately 80° and abducted 45° in the 
horizontal plane, and the elbow flexed at 90°. Joint angles 
were initially set using a goniometer and subsequently 
maintained by aligning a laser pointer to a reference point 
on the wall. The brace prevented rotation in the vertical 
plane ensuring the forearm was parallel to the floor. In the 
sitting condition, participants sat in a chair with their feet 
on the floor and left arm resting on their lap. In the standing 
condition, participants stood with their feet shoulder width 
apart and left arm resting at their side.

Three discrete levels of WS were defined relative to 
the force required to fully compensate for the weight of 
the arm. At low support (0 %), the device carried its own 
weight, but provided no additional support to the arm. The 
force required for full support (100  %) was determined 
using a force titration procedure. While maintaining the 
standardized arm position, supportive force was incremen-
tally decreased from a superfluous setting requiring shoul-
der adduction. Full support (100 %) was defined as the last 
point before root-mean-square electromyogram amplitude 
(rmsEMG) in the anterior deltoid was observed to deflect 
away from the baseline activity that persists even with 
excessive support (Runnalls et  al. 2014, 2015). Medium 
and high support levels were then defined as 45 and 90 % 
of full support.

Electromyography

Surface electromyography (EMG) was used to record activ-
ity from eight muscles of the right arm and hand: anterior 
deltoid (AD), biceps brachii (BB), triceps brachii (TB), 
brachioradialis (BRD), extensor carpi radialis (ECR), 
flexor carpi radialis (FCR), first dorsal interosseous (FDI), 
and abductor pollicis brevis (APB). Following standard skin 
preparation, self-adhesive Ag–AgCl electrodes (Blue Sensor 
N; Ambu, Denmark) were placed approximately 2 cm apart 
in a bipolar montage over the belly of each muscle. The 
common ground electrode was placed over the acromion 
process (Red Dot; 3 M Health Care, Canada). Signals were 
amplified (AMT-8; Bortec Biomedical, Calgary, Canada) 
with 1000× gain, band-pass filtered (10–1000 Hz), sampled 
at 2  kHz (CED Power 1401 mkII; Cambridge Electronic 
Design, Cambridge, UK), and saved for subsequent offline 
analysis using CED Signal software (v6.03c).

Transcranial magnetic stimulation

Single-pulse TMS was applied over the left motor cortex 
using a MagPro X100 magnetic stimulator and MC-B70 

butterfly coil (MagVenture, Denmark). The coil was held 
tangentially to the scalp and angled approximately 45° 
away from midline. A monophasic pulse was used to 
induce a posterior-to-anterior current flow in M1. The coil 
was positioned at the optimal site for eliciting MEPs in the 
right ECR muscle. A single experimenter conducted all the 
tests. Task motor threshold (MT) for the right ECR was 
defined as the minimum stimulus intensity that elicited a 
50-µV MEP in four out of eight trials while seated with the 
arm in the standardized position at the high support level.

For each of the six experimental conditions, stimulus–
response (SR) curves were collected using a single stimula-
tion site to concurrently elicit MEPs in all muscles. Eleven 
stimulus intensities were set relative to task motor threshold 
of ECR: −10, −5, 0, +5, +10, +15, +20, +25, +30, +35, 
+40 % of maximum stimulator output (% MSO). Stimula-
tion was based on the site and threshold for ECR because it 
was somatotopically central and most consistently captured 
the stimulus–response range for the set of examined mus-
cles. For each curve, 88 stimuli were delivered in a rand-
omized order (8 stimuli for each of the 11 intensities). To 
mitigate fatigue, participants rested their arm on a table for 
approximately 15 s after every six stimuli.

Data analysis

Individual EMG traces were inspected for the presence 
of an appropriate stimulus artifact and absence of phasic 
muscle activity. Trials that did not meet these criteria were 
discarded from further analysis. Measures were taken from 
individual raw EMG traces. The main dependent measure, 
MEP area, was calculated over a 20-ms window determined 
manually for each muscle for each participant. To account 
for systematic differences in MEP size between partici-
pants, raw MEP area values were normalized between 0 
and 1 across conditions within each muscle. As a covariate, 
background muscle activity was measured as the rmsEMG 
amplitude over a 50-ms window preceding the stimulus.

Statistical analysis

Analyses of background muscle activity and MEP area 
were performed using R 3.1.2 (R Core Team 2014) with 
the nlme: linear and nonlinear mixed effects models (Pin-
heiro et  al. 2015) and predictmeans: Calculate predicted 
means for linear models packages (Luo et al. 2014). Out-
lying data points were identified by analyzing background 
muscle activity on a within-subject basis. Observations 
of rmsEMG more than 1.5× the interquartile range either 
above the third quartile or below the first quartile, along 
with their associated MEP values, were excluded from fur-
ther analysis. Data were log-transformed to better satisfy 
the assumption of normally distributed residuals.
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To assess the interaction of weight support and pos-
ture on background muscle activity across the upper limb, 
separate linear mixed effects analyses were performed for 
each muscle. In each case, background muscle activity 
was modeled as a function of support level and posture 
as factors, with random intercepts for subject. The sequen-
tial sum of squares was used for Wald tests of model terms 
(Pinheiro and Bates 2000). As a measure of effect size, log 
response ratios were calculated for differences between 
marginal means (Hedges et  al. 1999). For support level, 
the response ratio was expressed as the natural logarithm 
of high support relative to low with negative values indi-
cating less muscle activity with high support. For posture, 
the response ratio was expressed as the natural logarithm 
of standing relative to sitting; negative values indicate less 
muscle activity when standing.

For MEP area, separate linear mixed effects models 
were constructed for each muscle. In each case, mep area 
was modeled as a function of stimulus intensity, support 
level, and posture as factors. background muscle activity 
was included as a continuous covariate term. The error term 
included random slopes for background muscle activity 
and random intercepts for subject. Each model was subse-
quently used to infer predicted means and standard errors 
for mep area at the median value of the background muscle 
activity distribution (Welham et al. 2004). This procedure 
permitted comparisons of MEP area between experimen-
tal conditions by accounting for underlying differences in 
background muscle activity.

Stimulus–response curves were fitted to group-level 
data for each muscle using nonlinear regression in Prism 
7 (GraphPad, San Diego, CA, USA). For each experimen-
tal condition, a three-parameter Boltzmann function was 
fitted to both observed and predicted mean MEP areas 
(Devanne et al. 1997). To improve the rate at which non-
linear regression converged on a fit, the upper plateau 
was constrained to its theoretical range of normalized 
MEP area between 0 and 1. Similarly, the half-maximal 
stimulus intensity (S50) was constrained to be between 
0 and 40 % MSO above task motor threshold. The slope 
was unconstrained. Omnibus extra sum-of-squares F 
tests were used to assess whether individual regression 
curves for each condition fit the data significantly better 
than a single curve for the muscle across conditions. To 
examine whether the posture manipulation shifted the SR 
curve within each support level, log response ratios were 
calculated as the natural logarithm of the standing value 
divided by the sitting value for the S50 and slope param-
eters that defined each curve. For each muscle, the best-
fit parameters were analyzed separately using one-way 
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ANOVA. Planned tests were then conducted on the differ-
ence between postures within each support level. Multiple 
comparisons were corrected by controlling the false dis-
covery rate (Q = 0.05) with a two-stage step-up method 
(Benjamini et al. 2006).

Results

Data from all 13 participants were included in the analysis. 
Of the 88 stimuli delivered to each participant per condi-
tion, an average of 79 traces (range 64–86) were retained 
in the final analysis. Trials containing outlying values of 
background muscle activity were discarded. Example EMG 
traces are presented in Fig. 2. 

Effects of weight support and posture on background 
muscle activity

Group means for background muscle activity are presented 
in Fig.  3. There were significant main effects of both the 
support level and posture factors, as well as a concomitant 
interaction between support level and posture in all muscles 
(Table 1). As expected, the magnitude of the support-level 
effect was greatest for proximal muscles AD, BB, and TB. 
The direction of the effect was uniform across muscles, 
with less background muscle activity at high support. For 
the effect of posture on background muscle activity, the 
magnitude and direction of the response were not consist-
ent across all muscles.

Effects of weight support and posture on stimulus–
response curves

The left column of Fig. 4 presents SR curves fitted to group 
means of observed MEP area. Significant effects of the 
experimental manipulations on background muscle activ-
ity warranted further analysis of MEP data using values 
derived from the statistical models. Mean MEP area and 
standard error were predicted for each combination of sup-
port level, posture, and stimulus intensity. The procedure 
accounted for covarying background muscle activity. SR 
curves fitted to the predicted means are presented in the 
right column of Fig. 4. For all muscles, extra sum-of-squares 
F tests indicated that SR curves for each condition fit the 
data significantly better than a single regression curve (AD: 
F(15,46) = 30.72, p < 0.0001; BB: F(15,46) = 207.6, p < 0.0001; 
TB: F(15,43) =  108.0, p  <  0.0001; BRD: F(15,48) =  18.04, 
p  <  0.0001; ECR: F(15,48)  =  14.46, p  <  0.0001; FCR: 
F(15,45) = 4.64, p < 0.0001; FDI: F(15,47) = 9.02, p < 0.0001; 
APB: F(15,42) = 2.95, p = 0.0029).
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Shifts in SR curves were examined by testing for differ-
ences in the in the S50 and slope parameters that defined 
each curve. Omnibus results of the one-way ANOVAs for 
curve parameters are presented in Table 2 and represented 
by asterisks next to muscle labels in Figs. 5 and 6. Response 
ratios for posture-related change in the S50 and slope 
parameters are presented as bars in Figs.  5 and 6, respec-
tively. For S50, the average magnitude of change across 
muscles was greatest at high support (5.8 % MSO) followed 
by low (3.9 % MSO) and medium support (2.0 % MSO). 
Similarly for slope, the average magnitude of change was 
also greatest at high support (0.022  % MSO−1) followed 
by low (0.014  % MSO−1) and medium support (0.006  % 
MSO−1). Specific tests for posture-related differences in the 
S50 and slope parameters within support levels are repre-
sented by asterisks next to individual bars in Figs. 5 and 6.

Discussion

In this study, we examined the interaction of change in 
whole-body posture and systematic variation of arm weight 
support (WS) on corticomotor excitability (CME) to upper 
limb muscles. In support of our hypothesis, there was an 

interaction of whole-body posture and WS on CME for all 
muscles examined. In line with previous findings, tonic 
activity of muscles across the upper limb was less when 
WS was high, compared to when WS was medium or 
absent (low). Tonic muscle activity was also affected by 
posture. However, the hypothesis that activity would be 
greater when standing was found for only a subset of mus-
cles (AD, BB, APB). As expected, CME modulated with 
WS and posture manipulation. Consistent with our hypoth-
esis, analyses of CME measures indicated a trend for 
smaller half-maximal stimulus intensity (S50) and larger 
slope parameters to accompany standing for BB and TB. In 
contrast, muscles in the shoulder, forearm, and hand exhib-
ited the opposite pattern reflecting lower CME when stand-
ing. We also expected that the magnitude of posture-related 
differences would be largest with greatest levels of WS, but 
support for this hypothesis was equivocal. While the S50 
and slope parameters both exhibited the largest average dif-
ference at high support, the smallest magnitude difference 
occurred with medium rather than low support. Apart from 
the direct effect of WS on AD activity, the observed modu-
lation of tonic activity and CME across upper limb muscles 
occurred independent of any differences in explicit task 
requirements.

Table 1   Omnibus analyses 
for linear mixed models of 
background muscle activity

Negative response ratios represent smaller values at high support relative to low, and when standing relative 
to sitting

Muscle Model term numDF denDF F-values p values Response ratio

AD Support level 2 6343 5438.59 <0.0001 −1.489

Posture 1 6343 163.86 <0.0001 0.004

Support level × posture 2 6343 229.70 <0.0001

BB Support level 2 6150 3526.31 <0.0001 −0.962

Posture 1 6150 256.03 <0.0001 0.137

Support level × posture 2 6150 64.33 <0.0001

TB Support level 2 6249 3087.72 <0.0001 −0.872

Posture 1 6249 692.82 <0.0001 −0.277

Support level × posture 2 6249 21.12 <0.0001

BRD Support level 2 6211 2516.46 <0.0001 −0.341

Posture 1 6211 124.38 <0.0001 −0.041

Support level × posture 2 6211 16.62 <0.0001

ECR Support level 2 6192 3568.81 <0.0001 −0.781

Posture 1 6192 66.70 <0.0001 −0.047

Support level × posture 2 6192 35.01 <0.0001

FCR Support level 2 6110 914.94 <0.0001 −0.163

Posture 1 6110 18.79 <0.0001 −0.008

Support level × posture 2 6110 20.94 <0.0001

FDI Support level 2 5847 66.72 <0.0001 −0.096

Posture 1 5847 17.07 <0.0001 −0.030

Support level × posture 2 5847 3.89 0.0205

APB Support level 2 6037 81.44 <0.0001 −0.318

Posture 1 6037 30.31 <0.0001 0.104

Support level × posture 2 6037 5.67 0.0035
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Interactions of weight support and posture on tonic 
muscle activity and CME

The change in tonic muscle activity in response to changes 
in WS provides evidence for a common neural drive to 

muscles of the upper limb. Tonic muscle activity dimin-
ished with greater WS as indicated by values of back-
ground EMG (Table  1; Fig.  3). The largest magnitude of 
EMG activity and the greatest difference between high 
and low WS were exhibited by AD. This finding reflects 

Sit 0%
Sit 45%
Sit 90%

Stand 0%
Stand 45%
Stand 90%

N
or

m
al

iz
ed

 M
E

P
 A

re
a

Relative Stimulus Intensity (% MSO)

A B

C D

E F

G H

I J

K L

M N

O P

A
P

B

0

0.2

0.4

F
D

I

0

0.2

0.4

F
C

R

0

0.2

0.4

E
C

R

0

0.2

0.4

0.6

B
R

D

0

0.2

0.4

0.6

T
B

0

0.2

0.4

0.6

0.8

B
B

0

0.2

0.4

0.6

A
D

0

0.2

0.4

0.6

0.8

Observed MEP

–20 0 20 40 60

Predicted MEP

–20 0 20 40 60

Fig. 4   SR curves shift in response to changes in support level and 
posture. On the left, SR curves are fitted to group means of observed 
MEP area. On the right, SR curves are fitted to means predicted using 

the linear mixed effects model for the median level of background 
muscle activity (color figure online)



104	 Exp Brain Res (2017) 235:97–107

1 3

the role of AD as the principal muscle generating antigrav-
ity torque and confirms the efficacy of the WS manipula-
tion. The finding is consistent with the results reported by 
previous studies employing multiple levels of WS (Coscia 

et al. 2014; Runnalls et al. 2014, 2015). Changes in WS did 
not alter the task requirements for forearm and hand mus-
cles because the forearm was fully supported and secured 
to the brace. Task requirements did not vary for BB and 
TB because they were not oriented to act against gravity. 
Observed differences in tonic activity were involuntary and 
remote to the primary action of WS at the shoulder. This 
tendency for WS to influence tonic muscle activity is indic-
ative of a common neural drive across the upper limb.

Dissociation between muscles for the response to sit-
ting versus standing suggests the influence of whole-body 
posture on tonic activity of upper limb muscles is medi-
ated by distinct mechanisms in addition to common neu-
ral drive. As evidenced by response ratios (Table  1), AD 
was the most sensitive muscle to WS, but the least sensi-
tive to posture. The relatively small response of tonic 
muscle activity to change in posture may reflect a strong 
independent voluntary descending drive to maintain shoul-
der abduction. In more distal muscles that receive mostly 
involuntary input, larger relative responses may indicate 
that the signals conveying postural information interact 
with neural linking mechanisms responsible for distribut-
ing common drive. The factors determining whether a mus-
cle will express greater tonic activity in sitting or standing 
are not clear from the present results. A reciprocal relation 

Table 2   One-way ANOVAs for SR curve parameters

Muscle Parameter numDF denDF F-values p values

AD S50 5 46 0.59 0.7052

Slope 5 46 1.89 0.1153

BB S50 5 46 24.43 <0.0001

Slope 5 46 3.85 0.0054

TB S50 5 43 0.25 0.9387

Slope 5 43 0.07 0.9965

BRD S50 5 48 15.68 <0.0001

Slope 5 48 3.40 0.0105

ECR S50 5 48 21.10 <0.0001

Slope 5 48 3.40 0.0104

FCR S50 5 45 6.87 <0.0001

Slope 5 45 1.42 0.2362

FDI S50 5 47 6.01 0.0002

Slope 5 47 2.29 0.0606

APB S50 5 42 0.97 0.4459

Slope 5 42 0.74 0.5958
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between agonist and antagonist is supported for BB and 
TB. It is possible that mechanical restriction from the WS 
brace contributed to the absence of similar reciprocity in 
the forearm. Future studies may be warranted to investi-
gate the impact of WS on peripheral nerve conduction. 
A non-global influence on tonic activity across the upper 
limb refutes the hypothesis that standing would result in a 
general increase of muscle activity and suggests postural 
information can modulate neural drive on a muscle-specific 
basis.

Posture exerted an influence on upper limb CME over 
and above those changes evident in tonic muscle activity 
alone. This was borne out in statistical analyses of MEP 
area which accounted for differences in background EMG. 
A similar postural manipulation without WS was previ-
ously reported to elicit increased CME to the proximal AD, 
but not the distal FDI (Kantak et  al. 2013). The present 
findings indicate that whole-body posture can affect CME 
to the arm, forearm, and hand, as evidenced by SR curve 
parameters (Table 2; Figs. 5, 6). The discrepancy between 
the earlier reports and present findings could be attributed 
to the arm postures examined. Kantak et al. tested the arm 
in a resting state hanging at the side, whereas the present 
study examined a task-relevant arm posture that elicited 
involuntary tonic activity. The additional neural elements 
engaged by the reaching-related arm posture could provide 
a substrate for interaction with whole-body postural infor-
mation. Consistent with previous findings, an up-regulation 
of CME with less WS (Fig. 4) appears to subserve both vol-
untary activity in AD and involuntary activity in more distal 
upper limb muscles. Whole-body posture also influences 
CME; however, the factors determining whether changing 
posture has a facilitatory or inhibitory effect for a specific 
muscle are not clear.

Postural demands and mechanisms for integrated 
upper limb control

Integrated control of neuromuscular activity may facilitate 
the coordination of voluntary actions like forward reach-
ing and involuntary actions for postural stabilization. In the 
present study, changes in tonic activity and CME provide 
evidence for integrated control along the proximal–distal 
axis. Unlike previous reports of distal responses to shoul-
der activation (Devanne et  al. 2002; Runnalls et  al. 2014, 
2015) and shoulder position (Dominici et al. 2005; Ginann-
eschi et al. 2005, 2006), the present findings do not exhibit 
a clear anatomical or task-related pattern. Differential mod-
ulation of CME to upper limb muscles could reflect non-
universal membership within specific neural linkages or 
synergies, or it may be an expression of multiple synergies 
with complex or competing interactions. Further studies are 
warranted to distinguish between these possibilities.

Modulation of CME with whole-body posture could 
reflect the priming of a response that satisfies potential 
mechanical demands imposed by the specific task. Stand-
ing postures have greater stability requirements than sitting 
and require larger displacements of the arm for compen-
satory reactions to perturbations (Allum et al. 2002; Roos 
et al. 2008). Standing also increases the complexity of arm 
dynamics for goal-directed movements like reaching (Ber-
rigan et  al. 2006). One or more posture-sensitive upper 
limb synergies may act to prepare the arm for its altered 
biomechanical role. For example, standing may necessitate 
a general increase of CME to muscles that have a signifi-
cant influence on the center of mass. Putative posture-sen-
sitive neural linkages may interact with those that respond 
to descending drive to the shoulder and are thus sensitive 
to WS.

It is worth considering the neural mechanisms that may 
mediate the proximal–distal neural linkages and shape 
motor output. In primary motor cortex, anatomical colo-
cation of muscle representations may facilitate functional 
interaction. Multiple non-contiguous representations over-
lap with those of other muscles in animals (Donoghue et al. 
1992; Schneider et  al. 2001; Rathelot and Strick 2006) 
and humans (Sanes et al. 1995; Devanne et al. 2006). Fur-
thermore, representations of distal forelimb muscles are 
systematically surrounded by those of proximal muscles 
(Park et  al. 2001). Functionally, intracortical disinhibition 
has been implicated as a mechanism contributing to mod-
ulation of CME with shoulder activation and whole-body 
posture (Devanne et al. 2002; Kantak et al. 2013). Passive 
shoulder position influences distal CME through intracorti-
cal facilitation (Ginanneschi et  al. 2005, 2006). Subcorti-
cal and spinal mechanisms may also play a role. Anatomi-
cally, divergence of descending corticomotor pathways can 
provide correlated input to multiple motor neuron pools 
(McKiernan et  al. 1998). Propriospinal neurons link mul-
tiple spinal segments and can modulate descending drive 
to the forearm (Pauvert et  al. 1998; Pierrot-Deseilligny 
2002). Additionally, spinal interneuron circuits are a sub-
strate for stable muscle synergies (Bizzi and Cheung 2013). 
Functionally, differences in limb position can impact motor 
neuron excitability through multiple proprioceptive inputs 
(Mogk et  al. 2014; Nuzzo et  al. 2016). Intrinsic electri-
cal properties of spinal motor neurons vary with Ia affer-
ent input (Hyngstrom et al. 2007) and shape motor output 
through nonlinear integration of descending synaptic and 
neuromodulatory inputs (Binder et al. 1993; Heckman et al. 
2008). For example, the intrinsic excitability of human tri-
ceps brachii motor neurons is greater than that of biceps 
brachii, potentially indicating an enhanced role of persis-
tent inward currents for postural or anatomical antigrav-
ity muscles (Wilson et  al. 2015). In summary, there are 
many neural elements and mechanisms that may act to link 
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neuromuscular activity to control movement and posture 
of the upper limb. It is likely that multiple mechanisms are 
sensitive to posture and WS, thus contributing to the com-
plex pattern of CME modulation observed in this study.

Potential limitations

A limitation of the present study is the absence of a 
dynamic movement task. Although participants were 
required to accurately maintain their static posture, there 
was no dynamic component to challenge stability or intro-
duce a goal-directed movement intention. It is unclear 
whether additional dynamic constraints would have biased 
CME in a more consistent pattern. The present study was 
conducted with healthy adults who may easily adapt reach-
ing behavior across levels of WS (Coscia et  al. 2014). 
Future studies may be warranted to investigate the inter-
action of posture and WS in the elderly and in those with 
motor impairment such as after stroke. It is possible a 
sensorimotor system with reduced capacity would be less 
adaptable at a neural level to posture and WS manipulation.

Conclusions

A novel combination of WS and posture manipulations led 
to changes in tonic muscle activity across the upper limb 
and some modulation of CME to muscles in the arm, fore-
arm, and hand. Tonic activity and CME are not uniformly 
greater in standing compared to sitting. Whole-body pos-
ture may increase or decrease CME depending on the mus-
cle and level of WS. The results support a model of inte-
grated upper limb control and suggest posture-sensitive 
neural linkages may be distinct from those responsible for 
modulation with WS. These findings may have relevance 
for upper limb rehabilitation, e.g., after stroke. With fur-
ther characterization, the combination of WS and posture 
manipulation may create avenues to uniquely balance CME 
for optimal engagement in rehabilitation exercises.
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