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Introduction

Humans show a remarkable capacity to learn new motor 
skills. Among the most impressive aspects of this ability 
is the flexibility with which the motor system generalizes 
learned behavior to new contexts while simultaneously 
maintaining the capacity to learn multiple tasks with dis-
tinct and sometimes conflicting requirements. Understand-
ing how the motor system accomplishes this feat has been a 
focus of many studies of skill learning during reaching (see 
Shadmehr 2004; Shadmehr et al. 2010; Wolpert et al. 2011 
for reviews).

In particular, studies of reaching suggest that humans 
learn novel dynamic tasks through the adaptation of inter-
nal representations of the dynamics of the limb and envi-
ronment that transform planned changes in limb state into 
motor commands (Lackner and Dizio 1994; Shadmehr and 
Mussa-Ivaldi 1994; Conditt et al. 1997). The computational 
elements within this internal representation have often been 
described in terms of a set of “basis functions” that cap-
ture the sensorimotor mapping between desired changes in 
limb kinematic state and required output dynamics (Mussa-
Ivaldi and Giszter 1992; Pouget and Snyder 2000; Thor-
oughman and Shadmehr 2000; Donchin et  al. 2003; Pog-
gio and Bizzi 2004; Shadmehr 2004). The computational 
properties of these basis functions are presumed ultimately 
to reflect the tuning properties of the movement-related 
neural populations by which they are implemented (Zhang 
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and Sejnowski 1999; Thoroughman and Shadmehr 2000; 
Donchin et  al. 2003; Shadmehr 2004; Hwang and Shad-
mehr 2005; Thoroughman and Taylor 2005; Sing et  al. 
2009).

To infer these properties, psychophysical experiments 
have examined how learning of a new skill acquired by 
repeated practice generalizes to different movement direc-
tions (Gandolfo et  al. 1996; Thoroughman and Shad-
mehr 2000; Castro et  al. 2011), regions of the workspace 
(Shadmehr and Mussa-Ivaldi 1994; Shadmehr and Mous-
savi 2000; Malfait et  al. 2002, 2005; Hwang et  al. 2003; 
Berniker et al. 2014), wrist configurations (Gandolfo et al. 
1996; Berniker et al. 2014) and across limbs (Criscimagna-
Hemminger et  al. 2003; Malfait and Ostry 2004). Gener-
alization patterns while using the same arm are consistent 
with a representation of novel dynamics mainly in intrin-
sic (i.e., joint or muscle-based) rather than extrinsic (i.e., 
hand-centered Cartesian) coordinates, reflecting a map-
ping between time-varying changes in joint angle and joint 
torque rather than between hand-centered spatial velocities 
and forces (Shadmehr and Mussa-Ivaldi 1994; Shadmehr 
and Moussavi 2000; Malfait et al. 2002). However, whether 
learned task dynamics are indeed represented exclusively 
in a single reference frame (i.e., intrinsic coordinates) ver-
sus in a more mixed coordinate system is still under ques-
tion (Berniker et  al. 2014). There is general consensus, 
however, that learning of task dynamics generalizes nar-
rowly across movement directions (Gandolfo et  al. 1996; 
Thoroughman and Shadmehr 2000; Castro et  al. 2011) 
but that a given local mapping between joint displacement 
and torque can nonetheless generalize over a broad range 
of workspace locations (i.e., different spatial hand posi-
tions and associated limb postures) in the horizontal plane 
(Shadmehr and Moussavi 2000; Malfait et al. 2002). This 
is consistent with a neural representation that encodes 
limb movement (i.e., directional displacement) locally but 
information about hand spatial location and associated arm 
posture more globally. Indeed, the activities of many cells 
in motor areas such as the primary motor cortex (M1) are 
strongly tuned to movement and force direction (Georgo-
poulos et al. 1982; Kalaska et al. 1989; Sergio and Kalaska 
2003), show changes in tonic activity as a function of hand 
position (Georgopoulos et al. 1984) and encode a combina-
tion of these variables broadly across hand positions in the 
horizontal plane (Caminiti et al. 1990; Sergio and Kalaska 
2003; Sergio et al. 2005).

In keeping with this capacity for broad generalization of 
adaptation, numerous studies have also provided evidence 
for overlap in the internal representations of task dynam-
ics by showing that when tasks with opposing dynamic 
requirements (e.g., opposing force-field perturbations) 
are presented either serially in separate blocks of trials 
(Brashers-Krug et al. 1996; Gandolfo et al. 1996; Krakauer 

et al. 1999; Caithness et al. 2004) or in an interleaved fash-
ion within a single trial block (Karniel and Mussa-Ivaldi 
2002; Donchin et al. 2003; Hwang et al. 2003; Addou et al. 
2011; Howard et  al. 2013), learning of one task impedes 
or interferes with learning and/or recall of the other unless 
there are sufficient cues to dissociate the two task contexts. 
Although a range of potentially relevant contextual cues 
has been examined, there is considerable evidence to sug-
gest that the most effective cues are those that can be used 
to associate unique limb states with the learning of each 
task (e.g., see Howard et  al. 2013). These include visual 
and proprioceptive cues which allow each task to be asso-
ciated with different spatial hand paths and/or joint con-
figurations and displacements. For example, adaptation to 
opposing dynamic perturbations is possible when each field 
is associated with a different spatial workspace location 
and/or limb posture (Gandolfo et  al. 1996; Hwang et  al. 
2003, 2006; Howard et al. 2013), reaching direction (Cas-
tro et al. 2011), a bimanual versus unimanual learning con-
text (Nozaki et al. 2006) or distinct bimanual learning con-
texts (Howard et al. 2010). Notably, even when the actual 
limb states associated with each task are similar, substan-
tial learning of opposing skills is also possible when spatial 
distinctions in visual information give rise to perceived dif-
ferences in those states (Hirashima and Nozaki 2012; How-
ard et al. 2013). It is presumed that the capacity to learn is 
enhanced (i.e., “interference” caused by generalization of 
conflicting adaptive changes is reduced) in these conditions 
because it is possible to associate each dynamic skill with 
a unique mapping between actual or perceived limb states 
(e.g., velocity and position) and joint torques or muscle 
force and thus with distinct neural activity patterns in the 
neurons responsible for encoding these mappings (Hwang 
and Shadmehr 2005; Nozaki et  al. 2006; Howard et  al. 
2010; Yokoi et al. 2011). However, the actual mechanisms 
by which this occurs remain poorly understood.

Hwang et  al. (2003) began to address this issue by 
exploring how changes in hand spatial position within the 
workspace act as an effective contextual cue for reducing 
interference to permit the simultaneous learning of oppos-
ing skills. They used a novel paradigm in which subjects 
were exposed to opposing curl fields in randomly inter-
leaved trials during movements that were similar in terms 
of joint displacement but made in distinct workspace loca-
tions separated by different distances. Concurrently, the 
extent of generalization of adaptation across the workspace 
was continuously monitored by examining how trial-to-
trial adaptation to each field influenced reach trajectories 
in a null field at the center of the workspace. They showed 
that it was possible to learn two opposing velocity-depend-
ent force fields when the initial hand positions associated 
with each field were separated by as little as 14–24  cm. 
This was the case despite evidence for broad generalization 
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of dynamic learning across the workspace when a single 
velocity-dependent force field is learned (Shadmehr and 
Moussavi 2000; Malfait et al. 2002).

To explain this observation and account for the ability 
of their subjects to adapt to force fields that were velocity-
dependent but changed with hand spatial position across 
the workspace, Hwang et al. (2003) proposed that the neu-
ral elements that make up the adapting sensorimotor map 
encode information about both movement velocity and 
limb position (i.e., information about velocity and position 
states potentially encoded in intrinsic joint and/or extrinsic 
spatial coordinates) in a multiplicative fashion (i.e., as a 
“gain field”; Andersen et  al. 1985, 1990). In a theoretical 
study, they then used muscle spindle-like basis functions to 
represent a neural population with such gain-field proper-
ties. They showed that the flexibility to generalize learning 
broadly under some conditions and more locally in others 
could be explained by differences in the extent to which 
neurons with weak versus strong sensitivities to changes 
in limb position across the workspace were adapted and 
contributed to the behavior learned in different contexts 
(Hwang and Shadmehr 2005). Specifically, neurons with 
weak sensitivities to arm position, exhibiting direction-
ally tuned movement activity across large portions of the 
workspace, would facilitate broad generalization when a 
single task is learned. In contrast, neurons with strong sen-
sitivities to limb position, encoding directional movement 
information only in more local regions of the workspace, 
would generalize learning more narrowly and thus facili-
tate the learning of opposing skills in different workspace 
locations. Notably, however, these studies were limited to 
different workspace locations and arm postures confined to 
the horizontal plane. If the neural populations responsible 
for learning novel dynamics reflect an encoding of informa-
tion about velocity and limb position states at least partially 
in intrinsic joint coordinates (e.g., as shown for M1 cells; 
Scott and Kalaska 1997), then a change in the spatial plane 
of the arm’s posture not only should enhance the ability to 
learn opposing dynamic skills at a similar spatial location 
but could have a strong impact on how learning generalizes 
across workspace locations. However, this was not tested.

The goal of the current study was to extend this previ-
ous work to investigate the influence of changes in limb 
orientation (i.e., a change in limb position in intrinsic 
coordinates but not in extrinsic coordinates) on learn-
ing and generalization. Although a number of studies 
have examined the capacity to learn opposing skills (i.e., 
extent of interference) and/or the extent of generaliza-
tion of adaptation across changes in limb spatial posi-
tion in the horizontal plane (Shadmehr and Mussa-Ivaldi 
1994; Shadmehr and Moussavi 2000; Malfait et al. 2002, 
2005; Hwang et  al. 2003; Howard et  al. 2013; Berniker 
et  al. 2014), only one study examined these issues for 

changes in limb configuration while maintaining identi-
cal reach trajectories in Cartesian space (Gandolfo et  al. 
1996). In particular, Gandolfo et  al. (1996) examined 
dynamic learning when subjects made reaching move-
ments along the same spatial path while they grasped the 
handle of a robotic manipulandum in two different wrist 
postures. They showed that when opposing dynamic per-
turbations were presented in each wrist posture in multi-
ple alternating 48-trial blocks, subjects gradually learned 
to compensate for both perturbations, consistent with the 
idea that learned dynamics are represented in an intrinsic 
rather than an extrinsic coordinate frame. However, in this 
study opposing fields were presented in each wrist posture 
in alternating multitrial blocks, rather than an interleaved 
task like that used by Hwang et al. (2003). As a result, the 
extent of generalization of adaptation across wrist postures 
could not be monitored on a trial-to-trial basis over the 
course of learning.

Moreover, there has been no follow-up to the Gandolfo 
et al. (1996) study that directly compared the relative effec-
tiveness on reducing interference of changes in limb pos-
ture alone (i.e., limb orientation changes in a single work-
space location) versus changes in posture resulting from a 
spatial displacement of the limb in the workspace. This is 
of particular interest given recent studies suggesting that 
dynamic learning may generalize in a mixed coordinate 
frame involving a combination of extrinsic and intrinsic 
coordinates (Berniker et al. 2014; also see Brayanov et al. 
2012 for visuomotor learning) consistent with the mixture 
of coordinate frames reported in motor areas such as M1 
(Scott and Kalaska 1997; Kakei et al. 1999; Wu and Hat-
sopoulos 2006; Kalaska 2009). Finally, because the work 
of Hwang and Shadmehr (2005) suggests that the extent to 
which learning generalizes across limb postures might not 
bear a simple relationship to the distance between reach 
trajectories in joint space but rather depends both on the 
tuning properties of the underlying neural elements and on 
the context in which learning takes place (e.g., learning a 
single dynamic task vs. multiple opposing dynamic skills), 
it is relevant to explore the relationship between generali-
zation patterns (e.g., generalization extent) and interference 
(i.e., the capacity to which opposing skills can be learned) 
over a greater range of limb configurations.

In the current study, we addressed these issues by 
expanding the task employed in the study of Hwang 
et al. (2003) to investigate learning and generalization for 
changes in limb orientation in the same workspace loca-
tion, as well as in different workspace locations. Our goal 
was to compare the extent to which differences in limb 
posture in the same versus spatially displaced workspace 
locations facilitate learning of opposing task dynamics 
while simultaneously examining how trial-to-trial adap-
tation generalizes in these different learning contexts. We 
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predicted that changes in limb orientation would facilitate 
learning of opposing dynamics to a similar or greater extent 
than changes in spatial hand position across the workspace, 
consistent with a mainly joint-centered encoding of task 
dynamics. Furthermore, in keeping with the prior studies 
of Hwang et al. (2003) and Hwang and Shadmehr (2005), 
we predicted that the way in which adaptation generalized 
across the task space would vary considerably as a function 
of both limb orientation and workspace location, consist-
ent with an important role for three-dimensional (3D) limb 
posture in the flexible modulation of generalization pat-
terns. A preliminary version of these results has been pre-
sented in abstract form (Green et al. 2006).

Methods

Subjects

Twenty-four right-handed subjects (12 men, 12 women, 
20–42 years of age) with no known neurological disorders 
and normal or corrected-to normal vision were paid a small 
remuneration to participate in the study and signed an insti-
tutionally approved consent form. All of the subjects were 
naïve to the hypotheses under study, and none had previ-
ously experienced the particular motor tasks and force per-
turbations under investigation. The study was approved by 
the Human Research Ethics Committee of the Faculté de 
Medecine, Université de Montréal.

Experimental setup

Subjects sat in a chair and performed a reaching task with 
the right hand while holding the handle of a five-link, 
two-bar robotic manipulandum (Interactive Motion Tech-
nologies, Cambridge, MA; Fig.  1a). Current hand posi-
tion was measured using optical encoders that monitored 
manipulandum joint angles and two DC motors generated 
torques about the manipulandum joints. The position of 
the hand and the forces applied to the manipulandum by 
the hand were sampled at a rate of 400  Hz. Compensa-
tion for the inertial properties of the robot was provided by 
custom-written software. During experiments, the subject’s 
arm was wrapped in a lightly elasticized fabric bandage 
attached across the elbow to a rope and pulley system. This 
apparatus ensured that either the arm could  be comfortably 
supported in the horizontal plane at shoulder level through-
out the experiment or its orientation could be manually 
changed on a trial-by-trial basis between the horizontal 
plane position (Fig. 1a, left) and a more natural parasagittal 
orientation (Fig. 1a, right). A computer monitor placed ver-
tically in front of the subject displayed target positions as 
well as a cursor that represented the position of the robotic 

handle. Handle and target positions were displayed contin-
uously throughout each movement. Vision of the limb and 
rope/pulley attachment was prevented by an opaque barrier 
that occluded view both of the body below the neck and of 
the visual field to the subject’s right (i.e., of the rope/pulley 
system).

Experimental procedure

The task paradigm was modified from Hwang et al. (2003). 
Subjects were randomly separated into four gender-
matched groups that made reaching movements (≈10  cm 
length) toward the body from three pseudorandomly cho-
sen start positions: center, left and right. Each position 
was associated with distinct task dynamics. Different tar-
get colors associated with each position (left: red; center: 
white; right: green) provided cues that could aid the sub-
ject in distinguishing the different starting locations and 
associated task dynamics even when the distances between 
them were small (see below). During movements on the 
left, subjects experienced a clockwise (CW) curl field that 
depended on hand velocity, 

→

ẋ , (i.e., �F = B

→

ẋ ; B = [0, 15; 
−15, 0] N s/m), whereas for movements on the right, sub-
jects experienced a counterclockwise (CCW) curl field 
(B =  [0, −15; 15, 0] N  s/m). Movements at center were 
always unperturbed (null field). Subjects were encouraged 
to make each reaching movement within 500 ± 50 ms by 
computer-generated tones that indicated whether the move-
ment was either too fast, too slow or the appropriate speed. 
At the end of each movement, the subject relaxed his/her 
limb so that the robot could passively move the robot han-
dle and limb to the next starting position.

Subjects in Groups C1 and C2 encountered fields during 
movements to the left and right of center along hand paths 
that were close in Cartesian space (0.5  cm distance from 
center; Fig. 1b). C1 subjects made all movements with the 
arm in the horizontal plane at shoulder level, whereas C2 
subjects encountered the CW field at left and the null field 
at center with the arm in the horizontal plane but the CCW 
field at right with the arm in the parasagittal vertical plane. 
Thus, subjects in both groups encountered the opposing 
force fields at the same workspace locations that were close 
in Cartesian space. However, arm positions were much fur-
ther apart in intrinsic proprioceptive space for C2 subjects 
than for C1 subjects. Groups D1 and D2 encountered the 
two fields during movements that were distant in both Car-
tesian (12 cm distance to the left and right of center) and 
proprioceptive space (D1: all horizontal plane; D2: two arm 
orientations as for Group C2; Fig. 1b).

To replicate the experimental conditions of Hwang et al. 
(2003) the targets were placed such that when the arm was 
in the horizontal plane, all movements required the same 
joint angle displacements. Thus, despite differences in 
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initial limb spatial location, horizontal plane limb move-
ments were similar in terms of joint velocity. Note, how-
ever, that although the same spatial hand paths were 
encountered with the arm in the parasagittal orientation, 
because of the change in limb orientation the movements 
differed in terms of both joint velocity/displacement and 
position from those in the horizontal plane.

To familiarize the participants with the task, subjects 
practiced making reaching movements for 3 sets of 95 
“baseline” trials in the null field. This was followed by 
5 sets of 95 movements (“learning sets”) in which they 
were exposed to the different fields at left and right. In a 
final “transfer” set of 95 trials, C1 and D1 subjects that 
had performed all movements in the horizontal plane 
experienced the fields in two arm orientations, whereas 
C2 and D2 subjects that had previously made movements 
in two arm orientations now experienced both fields 
in the horizontal plane. The goal of this block was to 

evaluate the extent to which learning in one context (i.e., 
same vs. different arm orientations at left and right) gen-
eralized to the other. Note that we will refer to such gen-
eralization of learning here as “transfer” to distinguish 
it from generalization of trial-to-trial adaptive changes 
(which may or may not be associated with learning). 
Eight non-fielded (catch) trials (four each during move-
ments to the left and right of center) were presented on 
random trials within each training or transfer block to 
test for the presence of aftereffects and to evaluate the 
extent of learning. While the order of movement loca-
tions (left, center, right) within each trial set was random, 
the sequence remained fixed across subjects. At the end 
of each experiment, the subjects were questioned as to 
their impression of what happened in the task and its dif-
ficulty (e.g., was there any difference in the difficulty of 
making movements at left vs. right or in one limb orien-
tation vs. the other).

Fig. 1   Experimental setup and tasks. a Subjects made reaching 
movements between targets projected on a computer monitor in front 
of them while holding the handle of a robotic manipulandum with 
their arm either supported in the horizontal plane (left) or relaxed in 
a parasagittal orientation (right). Vision of the limb and rope/pulley 
attachment used to change limb orientation on a trial-to-trial basis 
was prevented by an opaque barrier that occluded view of the body 
below the neck and of the visual field to the subject’s right. b Sub-
jects in groups D1 and D2 were exposed to the two fields at “distant” 

spatial starting positions (d = ±12  cm from center), whereas sub-
jects in groups C1 and C2 experienced the fields at starting positions 
that were “close” in Cartesian space (d = ±0.5 from center). During 
learning sets (blocks 1–5), C1 and D1 subjects made all movements 
with the arm supported in the horizontal plane (solid traces), while 
C2 and D2 subjects made movements at left and center with the arm 
in the horizontal plane (solid curves) and movements at right with the 
arm more closely aligned with the parasagittal plane (dashed curves). 
Large circles start targets; small circles end targets
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Data analyses

All data were analyzed off-line using MATLAB (Math-
works, Inc). Hand velocity was computed numerically 
using a five-point differentiation routine written in MAT-
LAB and low-pass Butterworth filtered at 20  Hz using 
a digital filter with zero delay. Onset of movement was 
determined based on a threshold of 5 % of peak velocity. 
All movements were further inspected manually, and in 
cases where there was a clear misidentification of move-
ment onset, the interval over which onset time could be 
selected was limited until an appropriate identification 
was made. As a measure of performance error on a given 
trial, we calculated the displacement perpendicular to the 
ideal straight-line trajectory to the target at 250  ms after 
movement onset (perpendicular error, PE). Other meas-
ures, including the maximum perpendicular displacement 
and the perpendicular displacement at peak velocity, were 
also examined and yielded similar results. For direct com-
parison with the results of Hwang et  al. (2003), we used 
the error at 250  ms after movement onset to quantify the 
extent of learning within and across trial blocks by com-
puting a unitless learning index based on measured PE that 
takes into account both the extent of aftereffects observed 
in catch trials and the perturbations caused by the force 
fields (Hwang et al. 2003):

Thus, when the force fields produce large perpendicu-
lar trajectory perturbations but catch trials result in rela-
tively straight movements, the learning index is close to 
zero. In contrast, when trajectories during force-field trials 
straighten with practice, while catch trials result in trajec-
tory displacements in the opposite direction and with sim-
ilar amplitude to the perturbations initially caused by the 
field (i.e., aftereffects), the learning index is close to one. 
This would signify compensation for the field by a learned 
feedforward change in the motor commands. This learning 
index is thus based on a unitless metric of observed after-
effect, ensuring that a gradual straightening of trajectories 
during force-field trials over the course of learning that is 
not accompanied by the development of significant after-
effects (e.g., due to a strategy of arm muscle cocontrac-
tion) is not considered true feedforward learning. Learn-
ing indices were computed based on the mean change in 
PE for all fielded movements in each block and the mean 
change in PE for all catch trials in each block, as compared 
to the average PE during the last block of baseline null-
field trials (taking into account the appropriate sign differ-
ences for errors at left vs. right). Learning indices were also 
computed separately for movements at left versus right to 
evaluate any evidence of differential learning. Note also 

Learning Index =
PEcatch

PEcatch − PEfield

that although we quantified learning using the same index 
as in Hwang et al. (2003) for consistency with this previous 
study, similar results were obtained using an index based 
on the average PE during catch trials normalized relative 
to the average PE for the first five force trials in each field.

Finally, to examine how adaptive changes associated 
with errors experienced in the course of encountering the 
opposing perturbations at left and right generalized on a 
trial-to-trial basis to movements made in the null field at 
center, we identified all instances of the three-trial patterns 
center, left field, center (CpreLCpost) and center, right field, 
center (CpreRCpost) in the trial sequences across all learn-
ing blocks. We calculated the difference in perpendicular 
error at center immediately following exposure to the field 
at left/right as compared to that prior to exposure to the 
field (i.e., error Cpost–error Cpre) as a measure of the gener-
alization from left/right to center. The patterns of trial-to-
trial changes in error at center across subject groups were 
similar when calculated using either estimates of perpen-
dicular error at 250 ms post-movement onset or maximum 
perpendicular error. However, because trial-to-trial changes 
are very small, we used the maximum perpendicular error 
observed on each trial to improve the sensitivity of this 
analysis.

Statistical comparisons were based on one-way and 
repeated measures analyses of variance (ANOVA) using 
the SPSS statistics package (version 20). Unless otherwise 
indicated, pair-wise post hoc comparisons were performed 
using the Tukey (HSD) test for between-subjects factors 
and Bonferroni-corrected t tests for within-subjects factors 
with a significance level of 0.05.

Results

When subjects made reaching movements in substantially 
different starting arm postures, they showed an enhanced 
ability to simultaneously adapt to the two dynamic tasks. 
Figure 2a, b displays the average hand paths during the first 
and last training blocks for subjects that always performed 
the task with the arm supported in the horizontal plane 
(Groups D1 and C1). Movements were strongly curved in 
the direction of the force during the first fielded set for both 
groups (black solid curves) and became straighter with 
training (gray curves), but more so for D1 subjects who 
encountered the fields with a spatial separation from center 
of 12 cm than for C1 subjects who encountered the same 
fields with a spatial separation of only 0.5  cm. Further-
more, whereas Group D1 subjects (Fig.  2a) demonstrated 
significant aftereffects during catch trials, as evident from 
the curvature of their trajectories in the opposite direction 
to the imposed force field (dashed curves), this was not 
the case for Group C1 (Fig.  2b). Thus, although subjects 
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in both groups demonstrated an increased resistance to per-
turbation with repeated exposure to the fields, only Group 
D1 showed clear evidence for actual learning of an internal 
representation of the opposing fields. These observations 
were corroborated by subjective reports. Group D1 subjects 
reported that the task became “easier” and/or that the “per-
turbation” decreased in amplitude throughout the course 
of the experiment. In contrast, those in subject group C1 
typically reported no such change and indicated that con-
siderable effort was required throughout the experiment to 
“force” or “control” the robot handle. In agreement with 
the results of Hwang et al. (2003), therefore, the different 
dynamic tasks were easier to learn when they were experi-
enced in spatially separated starting locations and distinct 
limb postures.

To investigate whether differences in initial limb posi-
tion in extrinsic (spatial or body-centered) coordinates 
facilitate learning of multiple dynamic fields to a similar 
extent as purely joint-based (intrinsic) changes in initial 
limb state, we compared learning in subjects that always 
experienced the fields with the arm supported in the hori-
zontal plane with those of subjects who experienced the 
fields in different arm orientations. Specifically, Groups 
D2 and C2 experienced both the CW field at left and null 
field at center in the horizontal plane but encountered the 
CCW field at right with the arm more closely aligned with 
the parasagittal plane. As expected, when limb position 

differed significantly in both Cartesian and proprioceptive 
space (Group D2; Fig. 2c), subjects not only straightened 
their trajectories but, similar to D1 subjects, demonstrated 
aftereffects consistent with at least partial learning of the 
two fields. Notably, the same was also true for subjects in 
Group C2 (Fig.  2d) whose starting limb positions were 
similar in Cartesian space (as for C1 subjects) but differed 
in proprioceptive space. Thus, substantial differences in ini-
tial proprioceptive state alone were sufficient for learning 
to take place.

Also evident in Groups D2 and C2 was that their aver-
age trajectories at center were significantly deviated to the 
right compared to baseline trajectories even though the 
movements were made in the null field (Fig.  2c, d). This 
rightward bias, consistent with the direction of the after-
effects observed at left during catch trials, increased with 
repeated exposure to the fields and was significantly larger 
for Group C2 than Group D2 [F(1,284) = 13.9, p < 0.001]. 
Such deviations were not evident during central movements 
in either Group C1 or D1 subjects. These observations sug-
gest that whereas adaptation at left and right generalized 
to center to similar extents in Group C1 and D1 subjects, 
center movements in Group C2 and D2 subjects reflected 
greater generalization of adaptation to the field at left than 
the field at right.

These general observations are summarized in Fig.  3, 
in which adaptation to the fields was quantified by a 

Fig. 2   Average trajectories 
across subjects in each group. 
Mean trajectories for subjects in 
groups a D1, b C1, c D2 and d 
C2 are shown during move-
ments made either in the pres-
ence of a force field (solid) or 
during null-field “catch” trials 
(dashed) in the first (black) and 
last (gray) learning blocks. Dot-
ted black lines indicate average 
baseline trajectories

a b

c d
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learning index that takes into account the performance in 
both field and catch trials based on the perpendicular error 
at 250 ms after movement onset (see “Methods” section; 
Hwang et  al. 2003). Comparison of these indices for all 
groups across learning sets (Fig.  3a) revealed a statisti-
cally significant effect on learning index of both subject 
group and block number as well as a significant interac-
tion [F(3,20) = 8.91, p = 0.001 for group; F(4,80) = 32.9, 
p < 0.001 for block; F(12,80) = 2.30, p < 0.05 for block-
group interaction]. Post hoc analyses showed that learn-
ing indices remained close to zero for C1 subjects and 
block number had no significant effect [F(4,20) =  1.87, 
p  =  0.16], indicating that increased practice did not 
improve the performance of this subject group. In contrast, 

Groups C2, D1 and D2 all exhibited clear evidence for 
learning with indices that became statistically greater 
than those of Group C1 subjects as early as the first block 
of exposure to the fields for Group D2 [F(3,20)  =  3.6, 
p < 0.05; post hoc comparisons, p < 0.05] and as early as 
the second block for Groups C2 and D1 [F(3,20) = 3.32, 
p  <  0.05; post hoc comparisons, p  <  0.05]. Comparison 
of the learning indices across groups over the last 3 learn-
ing blocks (i.e., where a stable level of learning had been 
reached) showed that the extent of learning was similar 
for all groups exposed to the fields in different regions 
of proprioceptive space (Groups C2, D1 and D2) regard-
less of whether initial limb positions in Cartesian space 
were similar (Group C2) or different (Groups D1 and D2) 
[F(2,15) =  0.49, p =  0.62]. Note also that the extent of 
learning achieved for these groups (mean learning indices 
in learning block 5: D1 =  0.62; D2 =  0.62; C2 =  0.54) 
was consistent with that observed in the previous study of 
Hwang et al. (2003) under similar experimental conditions 
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as those for Group D1 [mean learning index in learning 
block 5 of ≈0.6 for Group 4 of Hwang et al. (2003)].

Learning achieved in distinct limb orientations did not 
transfer to or facilitate the learning of force fields encoun-
tered in a single limb orientation. In particular, after com-
pleting 5 learning blocks in the task conditions defined for 
each group, the subjects then performed a “transfer” block 
(T in Fig. 3a) in which the arm orientation with which they 
reached at the right side of the workspace was reversed. 
As a result, subjects that had encountered both fields in the 
horizontal plane (Groups C1 and D1) were now exposed 
to the fields in two arm orientations while those that prac-
ticed in two orientations now encountered both fields in 
the horizontal plane (Groups C2 and D2). This resulted in 
only a modest decrease in the performance of Groups D1 
and D2 (Fig. 3a). In contrast, in the transfer block C2 sub-
jects showed no evidence of prior learning, exhibiting per-
formance similar to that of C1 subjects (Figs. 3a, 4). The 
learning index for Group C2 dropped to close to zero in 
the transfer block such that learning was statistically indis-
tinguishable from that of Group C1 at the end of learning 
[F(1,11) = 3.87, p = 0.08]. This indicated that for Group 
C2 subjects, learning the opposing fields in two arm orien-
tations did not transfer to or appear to facilitate subsequent 
learning in a single arm orientation when the fields were 
encountered in similar workspace locations. Finally, after 
a single transfer block, C1 subjects failed to demonstrate 
a significant increase in performance when exposed to the 
opposing fields in two arm orientations [F(1,5)  =  0.25, 
p = 0.64].

To investigate whether this simply reflected insuffi-
cient practice under the new task conditions, 5 subjects 
in Group C1 and 4 subjects in Group C2 performed two 
additional transfer blocks (T2 and T3 in Fig. 3a). Notably, 
learning in C1 subjects increased dramatically, attaining 
performance levels similar to those of C2 subjects during 
learning blocks. However, there was no evidence for an 
improvement in the performance of C2 subjects; learning 
the opposing fields in two arm orientations had no appar-
ent facilitatory effect on subsequent performance in a sin-
gle arm orientation. The C2 subjects now showed the same 
poor performance originally demonstrated by C1 subjects 
during the learning blocks.

These results are consistent with generalization across 
similar limb postures giving rise to persistent interference 
(e.g., Group C1) and show that exposure to each field in 
a different region of proprioceptive space provides a suffi-
cient context for simultaneous learning of multiple dynamic 
tasks. Although the goal in examining null-field trials at 
center was to use them as a probe to explore generaliza-
tion of adaptation across limb orientations and workspace 
locations, it is also possible that they could interfere with 
learning in a posture-dependent way. If true, then because 

C2 subjects were exposed to both the CW field at left and 
the null field at center in similar limb postures, but to the 
CCW field at right in a significantly different arm orienta-
tion one might expect the execution of null-field trials at 
center to “interfere” to a greater extent with learning of the 
CW field at left than the CCW field at right. Consequently, 
one might predict better learning at right than at left. An 
examination of the learning indices at right and left sepa-
rately for Group C2 revealed that this was indeed the case 
[F(1,58)  =  12.9, p  =  0.001]. However, learning indices 
at right were also higher for the other subject groups with 
the difference reaching significance for all groups with the 
exception of Group D1 [F(1,58) = 18.1, p < 0.001 for C1; 
F(1,58) = 16.9, p < 0.001 for D2; F(1,58) = 0.22, p = 0.64 
for D1], suggesting that differences in the extent of learn-
ing at right versus left likely reflected additional factors 
other than simply interference with the null field at center 
(e.g., biomechanical considerations). Importantly, while 
learning indices were on average somewhat lower at left 
than at right, the general conclusions drawn on the basis of 
comparisons across groups using the combined left–right 
index also held for learning at left and right considered 
separately.

A more detailed examination of how perpendicular error 
varied on a trial-to-trial basis provided clear evidence for 
differences in generalization across trajectories depend-
ing on their similarity in joint coordinates. Figure 5 illus-
trates the mean perpendicular error measured at 250  ms 
after movement onset in each trial averaged across subjects 
in each group and plotted as a sequential-trial time series. 
Gradual decreases in mean error magnitude at left and 
right accompanied by an increase in catch-trial aftereffects 
(circles) were observed for subjects in Groups D1, D2 and 
C2 but not for Group C1 in keeping with the fact that sub-
jects in the C1 group were unable to learn the two force 
fields simultaneously when presented in interleaved trials. 
Also evident in Group C2 (Fig. 5d) is that at the start of the 
transfer block, when C2 subjects now began to experience 
both fields with the arm in the horizontal plane, there was 
an abrupt increase in error at right to an amplitude simi-
lar to that observed for the initial trials in the first learn-
ing block. Thus, the learning acquired in the parasagittal 
posture did not appear to generalize to the horizontal plane 
arm orientation. This abrupt increase in error at right was 
accompanied by a somewhat more gradual increase at left 
and an elimination of aftereffects. This suggests that the 
learning previously acquired at left was also lost during the 
transfer block as a result of the “interference” now caused 
by generalization of adaptation to the CCW field at right to 
the similar posture at which the CW field was experienced 
at left. Conversely, errors for Group C1 tended to decrease 
during the transfer block as the subjects began to learn the 
opposing tasks in the two distinct arm orientations.
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Of particular interest was the impact of learning on 
the null-field trials at center. As in the earlier study of 
Hwang et  al. (2003), when reaching in similar work-
space locations (i.e., Groups C1 and C2), the trial-to-
trial changes in error observed at center appeared greater 
during learning compared to baseline blocks, presum-
ably reflecting generalization of trial-to-trial adaptation 
to the force fields to center movements. However, an 
even more striking observation was the clear deviation 
in the mean error at center for the subject groups that 
experienced the field in two arm orientations. Notice that 
despite trial-to-trial variability in the perpendicular error 
at center, on average this error remained close to zero 
for Group C1 (Fig. 5b) but hovered around 0.5 cm to the 
right across the learning blocks for Group C2 (Fig. 5d) 
reflecting greater generalization of adaptation to the field 
at left than the field at right to center movements (also 
see Fig.  2b, d). A similar observation could be made 
to a lesser degree when comparing Groups D1 and D2 
(Figs. 2a, c and 5a, c).

Mean errors at center exhibited by each subject group 
across all trials during learning blocks and the transfer 
block are summarized in Fig. 6a. It can be seen that during 
the five initial learning blocks, Groups D2 and C2 exhibited 
significantly more positive (rightward) errors than those of 
Groups C1 and D1 [F(3,568) =  194.7, p  <  0.001]. How-
ever, this rightward bias at center decreased substantially 
during the transfer block, consistent with a similar extent 
of generalization of adaptation to both the right and left 
fields when all movements were now made with the arm 
supported in the horizontal plane.

Finally, to explore in more detail how the bias in mean 
error at center arose we examined generalization at the 
level of individual trials by examining the influence of an 
intervening field trial on changes in error at center (see 
“Methods” section). Average trial-to-trial changes associ-
ated with exposure to either the left or right field are sum-
marized for each subject group in Fig.  6b. As expected, 
average deviations at center were toward the right after 
exposure to the leftward (CW) field and toward the left 

a b

c d

Fig. 5   Movement errors. Perpendicular error at 250 ms after movement onset averaged across subjects in groups a D1, b C1, c D2 and d C2 and 
plotted as a function of trial number. Circles indicate the error on catch trials. Error bars (gray lines) indicate standard deviation



2971Exp Brain Res (2015) 233:2961–2975	

1 3

after exposure to the rightward (CCW) field, consistent 
with trial-to-trial adaptation to the previously experienced 
perturbation and with generalization of that adaptation to 
center. For Group C1 subjects, these oppositely directed 
error changes were close in amplitude for the two fields, 
in keeping with a similar extent of generalization to center 
of the adaptation to each field when experienced in simi-
lar postures. In contrast, while average error changes after 
exposure to the field at left were not significantly different 
for Groups C1 and C2 [F(3,229) =  3.87, p  <  0.01; post 
hoc comparison, p  =  0.72], those associated with expo-
sure to the field at right were smaller for Group C2 as 
compared to C1 [F(3,247) =  4.87, p  <  0.01; Fisher LSD 
post hoc comparison, p < 0.05], consistent with less gener-
alization of right field adaptation to center when the right 
field was encountered in a distinct arm posture. Similarly, 
for Group D1 subjects, who encountered both right and 

left fields in distinct postures from the null field at center, 
average error changes due to both fields were smaller than 
those for Group C1, although the difference only reached 
significance for the right field [F(3,247) = 4.87, p < 0.01; 
post hoc comparison, p  <  0.05]. Notably, and somewhat 
surprisingly, however, error changes due to both right 
and left fields were significantly larger for Group D2 than 
those for Group D1 [F(3,229) = 3.87, p < 0.01; post hoc 
comparison, p < 0.05 for left; F(3,247) = 4.87, p < 0.01; 
post hoc comparison, p < 0.05 for right] and in fact statisti-
cally indistinguishable from those in Group C1 (post hoc 
comparisons, p > 0.05). This was true despite the fact that 
reach trajectories for Groups D1 and D2 were executed in 
the same posture at left, suggesting that the way adaptation 
generalized in the two groups was strongly influenced by 
the different arm orientations in which learning took place 
at right.

Discussion

In this study, we compared the effectiveness of changes in 
limb posture in similar versus different workspace loca-
tions in facilitating the simultaneous learning of opposing 
dynamic perturbations and evaluated how generalization 
changes as a function of these factors. We showed that 
when opposing curl-field perturbations were presented in 
an interleaved fashion during movements in similar work-
space locations and arm orientations (Group C1), subjects 
failed to learn the opposing dynamic tasks despite the pres-
ence of color cues that could potentially aid in distinguish-
ing the different task dynamics (Hwang et al. 2003; How-
ard et al. 2013). In contrast, significant learning took place 
whenever the opposing tasks were encountered in spatially 
separated workspace locations and/or different limb orien-
tations such that each could be associated with distinct pro-
prioceptive states (Groups C2, D1, D2). An examination of 
how trial-to-trial adaptation generalized showed that gener-
alization tended to be greater across similar limb postures. 
Importantly, however, the extent of generalization of a 
learned task also depended on task context. When opposing 
fields were encountered in spatially separated locations, the 
extent of generalization of adaptation to one field depended 
on the limb orientation in which the other field was encoun-
tered. Below we discuss these findings in the context of 
previous studies and their implications for the role of limb 
posture in facilitating multiskill learning.

Role of proprioceptive state in facilitating simultaneous 
learning of opposing skills

The results of the current study are consistent with those 
of previous studies, showing that changes in workspace 
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location provide a sufficient context for simultaneous learn-
ing of opposing dynamic tasks (Hwang et al. 2003, 2006; 
Howard et  al. 2013). They are also compatible with the 
results of Gandolfo et al. (1996), who showed that changes 
in distal wrist posture were sufficient to reduce interference 
during learning of opposing force fields encountered when 
reaching along the same spatial hand path. Notably, how-
ever, the change in arm orientation in the current study was 
more substantial, significantly altering the joint displace-
ments associated with reaching in each field particularly at 
the shoulder and to a lesser extent at the elbow. Thus, as 
predicted, our findings confirm and provide additional sup-
port for the notion that the neural elements that make up 
the sensorimotor map which is adapted encode movement 
parameters in a coordinate frame that is closely linked to 
intrinsic joint or muscle-centered coordinates.

The current study also extends previous work by directly 
comparing the extent to which changes in limb posture 
in a single workspace location versus those accompanied 
by a spatial displacement of the limb (i.e., movements in 
distinct workspace locations) impact on reducing interfer-
ence. Under the simple assumption that learned dynamics 
reflect the acquisition of a novel mapping between joint 
displacement and torque (e.g., Shadmehr and Mussa-Ivaldi 
1994), one might have expected greater interference and 
less learning for subjects in Group D1 than those in Groups 
C2 and D2. This is because D1 subjects made reaching 
movements that were similar in terms of joint displace-
ment (despite being spatially separated), whereas C2 and 
D2 subjects reached in two dramatically different arm ori-
entations such that the movements associated with each 
field were distinct in terms of both initial joint position and 
displacement. Notably, however, we found that this was not 
the case. On average, subjects learned to a similar extent 
regardless of whether they encountered the two fields in 
spatially separated workspace locations (Groups D1 and 
D2) or in two limb orientations in similar spatial locations 
(Group C2) and regardless of whether the movements dif-
fered only in terms of initial joint position (Group D1) or 
in terms of both joint position and displacement (Groups 
C2 and D2). These observations have at least two important 
implications.

First, the finding that a separation of reach trajectories 
in Cartesian space did not appear to reduce interference 
more than changes in limb orientation alone suggests that 
learning in these experiments was mediated by neural ele-
ments encoding information about limb state mainly in an 
intrinsic reference frame. Second, as previously pointed 
out by Hwang et al. (2003), the fact that D1 subjects were 
able to learn opposing fields despite their association with 
movements that were similar in terms of joint displace-
ment (i.e., they differed only in terms of initial position) 
suggests that the tuning properties of the neural elements 

underlying adaptation reflect more than a simple mapping 
between joint displacement and torque but rather a nonlin-
ear combination of movement parameters (e.g., velocity 
and position encoded as a gain field). Our current results 
provide further support for this suggestion by showing that 
C2 and D2 subjects did not show better learning than D1 
subjects despite trajectories that were distinct in terms of 
joint displacement.

Influence of limb state on the flexible generalization 
of adaptation

A particularly important aspect of the current investiga-
tion is that the task structure we employed allowed us to 
directly monitor how trial-to-trial adaptation generalized to 
the null field at center. In keeping with the previous obser-
vations of Hwang et  al. (2003) when movements were 
made in the horizontal plane, smaller trial-to-trial changes 
in error at center were observed when adaptation took place 
in spatially distant locations (Group D1, Figs. 5a, 6b) than 
when both fields were encountered close to center (Group 
C1; Figs.  5b, 6b). This is consistent with reduced trial-
to-trial generalization across substantially different limb 
positions. In the current study, we extended these obser-
vations by showing that a difference in limb orientation in 
the same workspace location also reduced generalization 
of adaptation to center. Specifically, when both fields were 
encountered close to center but with the arm oriented in 
the horizontal plane at left and in the parasagittal plane at 
right (Group C2), errors at center quickly became biased to 
the right. This is consistent with greater generalization to 
center of adaptation to the CW field at left than of the adap-
tation to the CCW field at right.

We confirmed this interpretation by explicitly examin-
ing how perpendicular error at center was influenced on a 
trial-by-trial basis by an intervening force-field trial at left 
or right (Fig. 6b). As expected, error changes at center due 
to an intervening field trial at left versus right were oppo-
sitely directed and of similar amplitude for Group C1, but 
those due to the right field were significantly reduced in 
Group C2 as compared to C1. Similarly, error changes due 
to both right and left fields for Group D1 were smaller than 
those for Groups C1 and C2 although differences between 
Groups D1 and C2 did not reach significance. Thus, the 
pattern of generalization to center observed across Groups 
C1, D1 and C2 bore a close and inverse relationship to the 
extent to which subjects were able to learn.

Most interesting, however, was the finding that the 
extent of generalization to center was not fixed but rather 
was strongly influenced by the state of the limb when 
encountering the opposing field. In particular, despite 
the fact that reach trajectories at left for Groups D1 and 
D2 were executed in identical postures and workspace 
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locations, and despite comparable levels of learning for the 
two groups (Fig. 3a), error changes at center for Group D2 
were significantly larger than those for Group D1 (Fig. 6b). 
Thus, the extent to which adaptation to the left field gener-
alized across the workspace was strongly influenced by the 
change in limb orientation at right. Furthermore, despite 
the fact that movements at right and center were similar 
in terms of joint displacement for Group D1 but differed 
in terms of both joint displacement and position for Group 
D2, generalization of trial-to-trial adaptation from right to 
center was significantly larger for Group D2 than Group 
D1 and comparable to that for Group C1.

While these observations at first appear surprising and 
conflict with the notion that there is a simple relationship 
between distance in joint space and the extent to which 
learning generalizes, they can nonetheless be interpreted 
in a manner consistent with the theoretical framework pro-
posed by Hwang and Shadmehr (2005). Specifically, they 
proposed that the basis functions or neural elements that 
make up the adapting sensorimotor map encode informa-
tion about both joint velocity (movement) and position as 
a gain field (i.e., multiplicatively) and that these elements 
exhibit a range of sensitivities to changes in limb position. 
Those elements with low sensitivities to changes in limb 
position encode joint velocity broadly across the workspace 
(“wide bases”), while those with high sensitivities to posi-
tion changes encode joint velocity across position space 
only locally (“narrow bases”). Thus, the capacity to gen-
eralize learning broadly after learning a single field (e.g., 
up to 80  cm away; Shadmehr and Moussavi 2000) could 
be explained by the adaptation of “wide bases.” In con-
trast, when learning opposing dynamic fields with spatial 
separations as small as 14–24 cm, learning would be medi-
ated mainly by “narrow bases” resulting in only very local 
generalization.

These same principles could explain our current exper-
imental observations. Because D1 subjects encountered 
opposing fields while making movements that were simi-
lar in terms of joint displacement, the basis elements (or 
neural populations) contributing to each skill should have 
possessed similar tuning for joint velocity. To avoid per-
sistent interference, their contributions to each task had 
to be partitioned according to limb position. Thus, learn-
ing of each field is likely to have been mediated mainly 
by “narrow bases” that generalized a learned mapping 
between joint velocity and torque only very locally 
across limb positions. In contrast, D2 subjects encoun-
tered each field while making movements that differed 
in terms of both joint position and displacement. Con-
sequently, unlike the case of D1 subjects, the basis ele-
ments contributing to each skill were already at least par-
tially distinct in terms of their tunings for joint velocity. 
Because their contributions to learning each skill did not 

have to be partitioned solely on the basis of limb posi-
tion, there would have been freedom to also learn using 
“wide bases” that generalized that learning more broadly 
across limb postures to center. Notably, while we specu-
late that distinctions in the way that D1 and D2 subjects 
partitioned the neural elements associated with reaching 
in each context arose largely over the course of the learn-
ing blocks, recent work suggests the possibility that this 
process could in fact have begun earlier as subjects per-
fected their reaching movements in distinct limb postures 
during the baseline blocks (Verstynen and Sabes 2011). 
At present, however, this is only one potential explana-
tion for our observations. To help confirm this interpreta-
tion, future work should compare generalization of learn-
ing of a single dynamic perturbation across both limb 
orientations and workspace locations to generalization 
patterns when multiple skills are learned with the limb 
in different configurations and starting locations. Further-
more, experiments involving movements made fully in 
3D (i.e., movements not confined to the horizontal plane) 
will be required to truly dissociate the effects of differ-
ences in 3D limb posture versus joint displacement in 
modulating generalization patterns to permit the simulta-
neous learning of multiple skills.

Collectively, these results suggest that the capacity to 
assume distinct limb postures in 3D when performing 
different tasks plays an important role in the simultane-
ous learning of conflicting skills by helping to associate 
each task with a distinct neural “basis set.” This is com-
patible with the fact that humans make active use of a 
broad range of possible 3D limb postures when executing 
arm movements (Soechting et al. 1995; Trumbower et al. 
2009). Furthermore, brain regions such as M1 that have 
been implicated in learning of novel dynamics (Gandolfo 
et al. 2000; Li et al. 2001; Arce et al. 2010a, b; Cherian 
et  al. 2013) show modulation in directional activity as a 
function of both hand position in the workspace and limb 
orientation (Caminiti et al. 1990; Scott and Kalaska 1997; 
Sergio and Kalaska 2003). Indeed, a potential advantage 
of the complex mixture of signals and reference frames 
found in M1 (Scott and Kalaska 1997; Kakei et al. 1999; 
Wu and Hatsopoulos 2006; Kalaska 2009) may be that it 
permits the flexible modulation of generalization patterns 
as appropriate to ensure the best compromise between 
broad generalization and the simultaneous learning of 
multiple distinct skills. Investigating the neural basis for 
such flexible generalization will be an important next 
step.
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