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study demonstrates that the prosthesis system can be learned 
by the subjects using feedback. The feedback is also essential 
to maintain the model, and it could be delivered intermittently. 
This approach has practical advantages, but the level to which 
this mechanism can be truly exploited in practice depends 
directly on the consistency of the prosthesis control interface.
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Closed-loop control · Internal models · Feedforward · 
Feedback

Introduction

Grasping is a complex task that involves a simultaneous and 
coordinated activation of many degrees of freedom (Mac-
Kenzie and Iberall 2010). Yet, it is performed routinely by 
human subjects as a smooth and fast movement. From the 
perspective of a high-level control, the human hand is there-
fore a reliable end-effector with a controllable and consistent 
response. Such an impressive performance with a system of 
a highly complex structure is afforded by the model-based 
feedforward control mechanisms (Johansson and Cole 1994; 
Hermsdörfer et  al. 2011), established through an extensive 
practice during development. It is hypothesized that in order 
to control predictively, able-bodied subjects acquire inter-
nal models of system dynamics (Wolpert and Miall 1996; 
Kawato and Wolpert 1998; Haruno et  al. 2001). It is also 
acknowledged that sensory feedback is likely instrumental 
for learning, utilization, maintenance, and updating of these 
models (Augurelle et al. 2003; Hermsdörfer et al. 2008).

After an amputation of the hand, the lost limb of a transra-
dial amputee can be substituted by a myoelectrically controlled 
hand prosthesis (Belter et  al. 2013) to restore the grasping 
function. However, the restoration is only partial, since direct 

Abstract  Prosthesis users usually agree that myoelectric 
prostheses should be equipped with somatosensory feedback. 
However, the exact role of feedback and potential benefits 
are still elusive. The current study investigates the nature of 
human control processes within a specific context of routine 
grasping. Although the latter includes a fast feedforward con-
trol of the grasping force, the assumption was that the feed-
back would still be useful; it would communicate the outcome 
of the grasping trial, which the subjects could use to learn an 
internal model of feedforward control. Nine able-bodied sub-
jects produced repeatedly a desired level of grasping force 
using different control configurations: feedback versus no-
feedback, virtual versus real prosthetic hand, and joystick 
versus myocontrol. The outcome measures were the median 
and dispersion of the relative force errors. The results dem-
onstrated that the feedback was successful in limiting the 
variability of the routine grasping due to uncertainties in the 
system and/or the command interface. The internal models of 
feedforward control could be employed by the subjects to con-
trol the prosthesis without the loss of performance even after 
the force feedback was removed. The models were, however, 
unstable over time, especially with myocontrol. Overall, the 
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somatosensory feedback is still unavailable in the commercial 
devices (Ning et al. 2012), except for one recent system (VIN-
CENTevolution 2, Vincent Systems GmbH, DE). The lack of 
direct feedback can be somewhat compensated by using alter-
native sources of information (e.g., visual assessment, motor 
sound), which can be effectively exploited for control (Ninu 
et al. 2014). However, a drawback is that other senses (vision, 
audition) are allocated to the prosthesis control task. The provi-
sion of somatosensory feedback could therefore facilitate intui-
tive control with less effort as well as promote the feeling of 
embodiment through sensory–motor integration.

The methods to provide direct somatosensory feedback 
are being addressed in the recent scientific literature (Ant-
folk et  al. 2013; Ninu et  al. 2014; D’Alonzo et  al. 2013; 
Saunders and Vijayakumar 2011). The general approach 
known as sensory substitution includes reading the data 
from the sensors embedded into the prosthesis and deliv-
ering this information to the residual limb using patterned 
mechanical or electrical stimulation (Kaczmarek et  al. 
1991; Szeto and Saunders 1982). In most studies (Patter-
son and Katz 1992; Cipriani et  al. 2008; Chatterjee et  al. 
2008; Patterson and Katz 1992; Jorgovanovic et al. 2014), 
the grasping force has been considered as the information 
to be fed back to the user since this variable is not directly 
assessable through vision. Although most users as well as 
researchers would agree that feedback should be provided, 
there is no general consensus about the exact role and ben-
efit of the closed-loop control, especially regarding the pos-
sible improvements in utility and effectiveness. The experi-
mental outcomes of the recent studies are inconsistent: 
some demonstrated improvement in performance (Patter-
son and Katz 1992; Jorgovanovic et al. 2014), whereas oth-
ers reported no difference with respect to the no-feedback 
condition (Cipriani et al. 2008), or an improvement limited 
to only specific subjects and/or conditions (Saunders and 
Vijayakumar 2011; Chatterjee et al. 2008).

These conflicting results point out to the necessity to 
understand the feedback from a more fundamental perspec-
tive, i.e., by regarding it as a component of a human control 
system integrating multiple other processes (e.g., learn-
ing, prediction, and feedforward control). Recent studies 
demonstrated that prosthesis users, similar to able-bodied 
subjects, might employ internal models for feedforward 
control of prostheses with no somatosensory feedback 
(Lum et al. 2014; Metzger et al. 2010; Weeks et al. 2000). 
However, there is only a single study (Saunders and Vijaya-
kumar 2011) addressing the role of feedforward and feed-
back processes when using a closed-loop prosthesis. When 
the prosthesis was controlled consistently and predictably, 
using a switch to close the hand at a constant speed and 
increase the force at a constant rate, the subjects success-
fully accomplished the grasping task even in the condition 
of full feedback deprivation. The addition of vibrotactile 

force feedback improved the performance only when ran-
dom time delays with respect to the onset of movement and 
onset of the force ramp were implemented.

The aim of the present study was to explore the nature of 
control processes when operating a myoelectric prosthesis. 
A prosthetic hand can be used for different tasks, from care-
ful manipulation of a delicate object to a routine grasping of 
daily-life items, and the focus of the present study was on 
the latter. Ideally, a prosthesis user should be able to grasp 
an object fast and smoothly, in a consistent and straight-
forward manner by generating a feedforward command to 
close the hand and directly produce the desired force.

In the present study, the routine grasping task was inves-
tigated using several control configurations: feedback ver-
sus no-feedback control, ideal versus real controlled sys-
tem, and reliable versus noisy command interface. The aim 
was twofold. The first objective was to assess how consist-
ently the subjects could reproduce the same level of force 
when performing a sequence of routine grasping trials in 
different control conditions. The consistency of grasping is 
regarded as an important measure of the prosthesis control-
lability, which can directly affect the utility as well as the 
feeling of embodiment. If the prosthesis responds consist-
ently to the user intentions, as the normal hand would, this 
might lead to better control (fast feedforward) and facilitate 
the integration of the prosthesis into the body scheme of 
the user. The second objective was to evaluate the specific 
contribution of the force feedback in facilitating the grasp-
ing consistency as well as in promoting the acquisition and 
maintenance of the internal models, when performing a 
sequence of routine grasping trials. The role of feedback in 
this context is not straightforward, since the routine grasp-
ing is executed using feedforward control. Therefore, the 
force feedback is not utilized for online modulation during 
the progression of the grasp. However, it provides the user 
with the resulting grasping force, and this information can 
be used to update the feedforward command delivered to 
the hand in the next grasping trial. Considered over many 
trials, this could allow the user to learn a stable internal 
model of the prosthesis behavior, i.e., a direct mapping 
between the desired output and the necessary command 
input [i.e., an inverse model (Wolpert and Kawato 1998)], 
eventually rendering the continuous feedback truly redun-
dant. The latter could, however, hold only in certain condi-
tions (e.g., reliable control interface).

Methods

Closed‑loop control system

The tests were performed using a flexible framework 
for the assessment of the human manual control (Dosen 
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et  al. 2014). The configuration of the closed-loop system 
is given in Fig. 1a. One of the two command interfaces, a 
contactless single-axis joystick (CH products, USA) and a 
single-channel bipolar surface EMG (INTEMG, OTBioel-
ettronica, IT), was used to proportionally control one of the 
two systems, i.e., a simulated model of a prosthesis and a 
state-of-the-art real prosthetic hand (Michelangelo Hand, 
Otto Bock Healthcare Gmbh, AT), denoted hereafter as the 
virtual hand (VH) and real hand (RH). To ensure the same 
conditions across different control configurations, the user 
was looking into an animated graphical representation of a 
simple prosthetic gripper grasping a cylindrical object. The 
aperture of the gripper reflected the aperture of the simu-
lated or real prosthesis, depending on which controlled sys-
tem was currently active. A stationary red line indicated the 

target force level, while the height of the dark blue bar cor-
responded to the momentary grasping force measured by 
the embedded prosthesis sensor (Fig.  1b). Position sensor 
measured the hand aperture and accommodated 100 dis-
crete levels from the fully open (~11  cm aperture) to the 
fully closed hand, and the force sensor placed between the 
index finger and the thumb assessed the grasping force with 
the resolution of 90 levels from the minimum to the maxi-
mum force (~100  N). The control loop was implemented 
in MATLAB Simulink 2013 using the Real-time Windows 
Target toolbox (MathWorks, US) and executed at the sam-
pling frequency of 100 Hz.

Both command interfaces provided a single continuous 
signal normalized to the interval [0, 1], proportionally con-
trolling the velocity of closing and increase in grasping force. 
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Fig. 1   Closed-loop system (a) and experimental setup (b). A simu-
lated model of a prosthesis (virtual hand) and a real prosthesis 
(Michelangelo hand) were controlled proportionally using joystick and 
myocontrol. The subject was seated at the desk in front of a monitor 
showing the visual feedback of the system operation. The feedback 
(right panel) integrated a 3D graphical representation of a simple 

gripper grasping a cylindrical object and bars for the target (red) and 
currently generated grasping force (dark blue). A stationary light blue 
line represented the base (zero force) of the dark blue bar. An electro-
myography amplifier and a joystick were connected via USB and data 
acquisition card to the host PC, respectively. Prosthetic hand and the 
target for grasping were placed behind the subject (color figure online)
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The release and opening of the hand were automatically trig-
gered when the command signal returned from a positive 
value back to zero. The hand opened completely, and the 
fully open hand was the starting position in each grasping 
trial. The joystick (JOY) was operated using the index finger 
and calibrated from the center position (0) to the maximum 
left inclination (1). Two standard Ag/AgCl electrodes (Neu-
roline 720, Ambu, US) were placed over the wrist and finger 
flexor muscles. Myocontrol was calibrated so that approxi-
mately 80 % of the maximum voluntary contraction resulted 
in the maximum command signal (1). The control and sys-
tem parameters for the virtual hand model and real prosthe-
sis were constant throughout the experimental session.

The virtual hand model emulated the response of the real 
hand. The model was realized as a state machine switching 
between an integrator for the velocity control of aperture, 
before contact, and a gain for the proportional control of 
force, after contact. The model implemented non-backdriv-
able behavior, as the real prosthesis. The purpose of the vir-
tual hand was to investigate the routine grasping with an 
ideal controlled system (i.e., time invariant, deterministic, 
and no time delays).

Experimental setup and protocol

The amplifier sampled the EMG at 1 kHz and computed root 
mean square (RMS) internally, over 250-ms data segments 
with 80 % of overlap, sending every 50 ms a new RMS value 
to the host PC through a USB connection. The control loop 
at the PC operated five times faster to oversample the RMS 
data, ensuring the responsiveness to the signal changes. The 
time delay for data transfer from the amplifier to the host PC 
was approximately 10 ms. The joystick provided an analog 
voltage signal digitized by a data acquisition card at the rate 
of the control loop (@100 Hz). The host PC was a standard 
desktop computer running the closed-loop system and com-
municating with the prosthesis via a Bluetooth. The prosthesis 
controller (AxonMaster) sampled the sensor data at 100 Hz 
and sent them to the host. The time delay for data transfer 
over Bluetooth was approximately 50 ms. This was the time 
delay between the joystick command and the prosthesis reac-
tion. In the case of myocontrol, the total time included the 
data transfer from the amplifier to the host PC and then to the 
prosthesis, resulting in approximately 60 ms. Importantly, the 
delays in the control loop were unlikely to affect the perfor-
mance in the current experiment, since the control within the 
trial was feedforward (no online modulation).

The tests were performed on nine able-bodied volunteers 
(25 ± 4 years) who signed an informed consent for the experi-
mental protocol that was approved by the local ethics commit-
tee. The subjects were seated comfortably in a chair in front of 
a desk, and they used their dominant hand to control the pros-
thesis. The prosthesis was placed on a separate table behind 

the subject (Fig. 1b). The hand was fixed using a clamp and 
positioned so that it grasped the target object (wooden piece) 
when it was closed. The subjects wore noise-cancelation head-
phones and was thereby fully detached from the prosthetic 
hand, removing all potential sources of indirect feedback.

Each subject was tested in four experimental conditions 
(EMG/JOY ×   VH/RH) in a randomized order to avoid the 
potential interactions due to systematic arrangement and 
minimize the effect of indirect factors (e.g., mental or muscle 
fatigue). The task for the subjects was to close the hand and 
generate a predefined level of grasping force equal to 60 % 
of the prosthesis maximum (~100  N). The subjects were 
instructed to grasp in a feedforward and predictive manner: 
set the command signal to close the hand at a certain speed 
so that, after the hand contacted the object, the grasping force 
jumped directly to the target force level. Therefore, there 
was no online modulation of the closing speed and grasping 
force. The maximum force reached during a grasping trial 
was adopted as the trial outcome. When controlling the vir-
tual hand, the subjects performed three blocks of 50 grasping 
trials each, and the grasping force feedback was provided in 
all the trials. These blocks served to determine the benchmark 
closed-loop control performance (i.e., explicit force feedback 
and ideal system). With the real hand, the first and second 
block comprised 80 and 60 trials, respectively, where the last 
30 trials were performed without the grasping force feedback 
(i.e., force bars removed from the scene). The latter resem-
bled a common real-life scenario in which the user grasps an 
object while looking into the hand. In the third block with the 
real hand, comprising 60 trials, the gripper was also hidden 
from the view during the second half of the block (30 trials), 
and the grasping was therefore performed completely blindly. 
The blocks with the real hand assessed both the closed-loop 
control performance when controlling the physical system 
and the retention of the feedforward models when the direct 
force feedback was removed. Therefore, the blocks with the 
real hand comprised more trials (with and without feedback) 
compared to the blocks with the virtual hand (with feedback 
only). A short 2-min break was inserted between the blocks 
and 5-min between the conditions. In the blocks with myo-
control, the subjects produced brief contractions (1–3  s) at 
about 50 % of MVC and they did not report muscle fatigue. 
The experimental session lasted approximately 2  h. Before 
starting the blocks in each condition, the subject received a 
short training in hand control (~ten grasps).

Data analysis

For each grasping trial, the absolute deviation of the gen-
erated grasping force from the target force level was com-
puted. The relative error was then calculated as a percent 
of the target force level. The data were not normally dis-
tributed (Kolmogorov–Smirnov test). To assess the quality 
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of force control, a median and interquartile range (IQR) of 
relative errors were calculated as the measures of grasping 
accuracy and consistency (precision), respectively. For the 
virtual hand, the data from all three blocks of trials were 
pooled together (VH group). For the real prosthesis, each 
block was separated into trials with feedback (groups RH 
1, 2, and 3) and without feedback (groups RH 1 and 2 no 
force, RH 3 no force/hand). Significant differences in medi-
ans between the groups were tested using Kruskal–Wallis 
test, while the post hoc pairwise comparison was performed 
using Wilcoxon rank sum test with Bonferroni correction. 
To evaluate the significant differences in dispersions, Bart-
lett multi-sample test and two-sample F test for equal vari-
ances with Bonferroni correction for multiple comparisons 
were applied. The threshold for the statistical significance 
was set at p < 0.05 for both medians and dispersions. Fur-
thermore, the results of all subjects were pooled and organ-
ized in the groups of five consecutive trials, with four trials 
of overlap (i.e., sliding-window segments). The number of 
trials within the sliding window was selected heuristically 
as a trade-off between the variance and resolution. Five was 
the smallest number still revealing a consistent trend across 
the block. This analysis was performed separately over the 
trials with and without force feedback. The baseline perfor-
mance, last 30 trials with feedback, was then compared to 
the pooled sliding-window results (baseline vs. each win-
dow). Using this analysis, it could be determined not only 
whether the removal of feedback influenced the average 
performance per group of trials, but also in which point 
across trials the change in performance became signifi-
cant. Therefore, the blocks/conditions could be compared 
with respect to the stability of the acquired inverse mod-
els across trials. The data analysis and statistical tests were 
performed in MATLAB 2013b.

Results

Figure 2 depicts a sequence of the generated command sig-
nals and resulting grasping forces when the subject operated 
the real prosthesis using the joystick and myocontrol. The 
joystick is a reliable control interface, and the subject was 
able to produce a consistent sequence of commands both in 
timing and in amplitude (Fig. 2a). At the beginning of each 
grasping trial, the subject rapidly increased the control signal 
and then maintained the command at a  constant level, i.e., 
no steering or corrections, indicating thereby feedforward 
control. The prosthesis responded by closing and contacting 
the object, producing an abrupt increase in the grasping force 
from zero to the plateau level (trial maximum/outcome). 
Note that the generated grasping force corresponded closely 
to the value of the command signal at the moment of con-
tact, due to the proportional force control implemented in 
the prosthesis. After visually assessing the force, the subject 
pushed the joystick back to the neutral (center) position, trig-
gering the automatic hand opening (force decrease).

The same sequence of events can be recognized in myo-
control (Fig. 2b). However, with EMG, the subject was far 
less consistent in generating the control signals. The con-
secutive commands were variable (rippled waveforms), 
especially regarding the maximum amplitude. Since the 
commands were noisy, it was difficult for the subjects to 
achieve a consistent control at the point of contact and 
thereby consistent grasping forces. The signals of similar 
magnitudes could produce very different force levels (see 
Fig. 2b, arrow annotations).

Representative traces of the generated forces across tri-
als in different conditions are shown in Fig.  3. The first 
grasping trials often resulted in extreme force values, far 
off from the target level, but only a few additional attempts 

Fig. 2   A representative 
sequence of command signals 
(black continuous line), 
resulting grasping forces (red 
continuous line), and the target 
force (red dashed line) recorded 
in one subject while control-
ling a real hand (RH) using a 
joystick (JOY) and b myocon-
trol (EMG). The red dots denote 
the maximum force during a 
grasping trial, which was also 
adopted as the trial outcome 
(generated grasping force). All 
the signals are normalized (see 
text for details) (color figure 
online)
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were enough for adjusting the user command, bringing 
and then maintaining the generated force into the vicin-
ity of the target. Both precision and accuracy of the force 
control depended on the command interface and controlled 
system. The performance with the joystick and virtual hand 
was almost perfect (Fig. 3a) and far better compared to the 
other configurations. When the force feedback was omit-
ted in the final 30 trials with the real prosthesis, the per-
formance worsened. The grasping forces diverged from the 
target level in a gradual manner (Fig. 3c, d).

Summary results for the relative errors for all subjects 
across the conditions and blocks are shown in Fig.  4 and 
reported in the text as median/IQR. The lowest error median 
and dispersion (4/4  %) were registered when the subjects 
controlled the virtual hand using the joystick (Fig. 4a) and 
force feedback. When the model was replaced by a real 
prosthesis, the median errors remained similar (i.e., 5, 6, 
and 5  % in the blocks 1, 2, and 3, respectively), but the 
error variability increased to 8, 8, and 7 % in the blocks 1, 
2, and 3, respectively. Across the blocks, there were no sta-
tistically significant differences in the control performance. 
Without the force feedback, both median error and disper-
sion increased to 10/15 % in block 1 and 11/15 % in block 
2, with no significant differences between the blocks. When 
the grasping was completely blind (block 3, no force/hand), 
the performance deteriorated further (18/21 %).

With myocontrol (Fig. 4b), the performance was substan-
tially worse compared to that achieved using the joystick. 

Controlling an ideal system (virtual hand) with force feedback 
using myocontrol resulted in a similar performance as when 
controlling a real system (prosthetic hand) using the joystick 
but with no force feedback, i.e., there were no statistically sig-
nificant differences between EMG/VH in Fig. 4b versus JOY/
RH 1 no force and JOY/RH 2 no force in Fig. 4a. Therefore, a 
consistent interface could compensate for the addition of the 
mechanical factors (transition from virtual to real system) as 
well as the lack of explicit force feedback. Furthermore, with 
myocontrol, contrary to what was observed for the joystick, 
there was no difference in the closed-loop control perfor-
mance when controlling ideal versus real system. Again, the 
median error and dispersion were similar across the blocks. 
Removing the force feedback substantially increased the error 
median and dispersion to 22/26 % and 17/26 % in block 1 
and 2, respectively, but unlike with the joystick, removing the 
hand visualization did not further decrease the performance 
(e.g., no statistical differences between RH 2 no force and RH 
3 no force/hand). The performance of the myocontrol with no 
force feedback was similar to that of the joystick control dur-
ing blind grasping.

Figure  5 shows the across-trial evolution of the rela-
tive errors from all the subjects grouped in the 5-trial slid-
ing-window data segments (see data analysis). When the 
joystick was used as the control interface, the performance 
remained at the level of the benchmark even after removing 
the force feedback (Fig. 5a, b), but only for a limited num-
ber of “no-feedback” trials. In the second block, the drop 
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Fig. 3   Representative force traces (blue dots) generated by one sub-
ject across trials controlling the virtual hand (VH) using a joystick 
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stick (JOY) and d myocontrol (EMG). The red dashed line is the tar-

get force level. The vertical black line denotes that the subsequent 
trials were performed with the force feedback removed (color figure 
online)
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in performance with respect to the baseline occurred later 
(Fig.  5b). Both median and dispersion tended to increase 
gradually from the moment the feedback was removed, and 
again, the drift seemed to be slower in the second block. Sta-
tistically significant decrease in performance was first reg-
istered in the fourth data segment in block 1 (median) and 
the eighth segment in block 2 (dispersion). With the myo-
control, on the other hand, the decrease in performance was 
almost immediate (Fig. 5d, e). There was an abrupt increase 
in dispersion in the very first segment of the block 1. The 
transition to no-feedback tended to be more gradual in the 
block 2, but the statistically significant differences in disper-
sion were registered already in the second segment. When 
the virtual hand was hidden from the view (i.e., blind grasp-
ing in the block 3), the performance decreased immediately 
irrespective of the control interface (Fig.  5c, f), i.e., in the 
first and second segment for the joystick and myocontrol, 

respectively. Typically, after the removal of feedback, the 
median and dispersion first gradually increased across the 
few initial segments and later on assumed different trends 
depending on the condition: continued to increase (Fig. 5b, 
d), reached a plateau (Fig. 5a, c), or fluctuated (Fig. 5e).

Discussion

Sources of variability

It is well known that the EMG signals are inherently noisy, 
leading to the variability at the prosthesis control input. In 
addition, the prosthesis itself is a nonideal physical system, 
exhibiting complex mechanical phenomena (Engeberg and 
Meek 2008), resulting in the variability in the prosthesis out-
put. The impact of mechanical effects can be substantial, as 
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Fig. 4   Boxplots of the relative errors in the generated grasping forces 
when controlling real prosthetic hand (RH) and virtual hand (VH) 
using a joystick (JOY) and b myocontrol (EMG). The error of 100 % 
corresponds to the target force level of 0.6 (60  % of the  prosthesis 
maximum force). The number N in RH N, N =  1, 2, 3 denotes the 
block of trials, and “no force”/“no force/hand” refers to blocks with-
out the force and force/hand feedback, respectively. The horizontal 
lines denote median, the boxes represent the interquartile range, and 

the whiskers are minimum and maximum relative force errors. The 
numbers denote statistically significant differences in median (circle) 
and dispersion (triangle) between the respective groups. The symbol 
triangle without the number means that the dispersion in the given 
condition was significantly different from all the others. The excla-
mation before the number denotes that the differences between the 
groups were not statistically significant
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illustrated for force tracking in (Dosen et al. 2014). The aim 
of the present study was to quantify the influence of these 
two sources of variability in the case of routine grasping task. 
Controlling the virtual hand, a system with an ideal response, 
using the joystick as a precise and reproducible command 
interface, was used to establish the benchmark performance. 
Substituting the ideal system with the real prosthesis increased 
the variability (3–4 %) and did not change the accuracy (simi-
lar median error). Therefore, the prosthesis responded reliably 
when the subject was able to generate a consistent sequence 
of feedforward commands. A slight increase in variability 
was due to the nonideal properties of the real system [back-
lash, friction effects (Engeberg and Meek 2008)] and thereby 
increased uncertainty and more challenging control. When the 
subjects switched to myocontrol, however, the performance 
deteriorated substantially; both the error median and variabil-
ity increased almost twofold compared to the joystick con-
trolling the real system and even threefold with respect to the 
joystick operating the virtual hand. The main reason for this 
increase was the inconsistency inherent to the command inter-
face. The generated feedforward command waveforms were 
noisy and variable, and this effect completely dominated the 
influence of the physical system properties, i.e., with myocon-
trol, contrary to the joystick, there was no difference in perfor-
mance when operating an ideal system versus a real prosthesis. 

The prosthesis can be therefore regarded as a system with a 
reliable response. The full capabilities of this system are not 
exploited, however, due to the inconsistency of the myocontrol 
interface. Improving the latter by using new technical (Enge-
berg et al. 2008) or signal processing solutions (Sanger 2007) 
is thus an important future goal.

The role of feedback

The second aim of this study was to investigate the role of 
feedback in the context of routine grasping. Although the 
execution of a single routine grasping trial was a feedfor-
ward process, the assumption was that the subject could use 
the feedback to iteratively refine the feedforward command 
(Kawato et al. 1987; Kawato and Gomi 1992). Ideally, after 
the model was learned, the subject would be able to control 
the system without the force feedback or even without seeing 
the hand. And indeed, when the joystick was used to oper-
ate the prosthesis, few initial trials with feedback were needed 
for the force to converge, after which the performance was 
consistent. The performance temporarily remained at the 
benchmark level even after the force feedback was removed 
and the hand was still visible (block 2). Importantly, the hand 
closing velocity is proportional to the grasping force after 
contact, and therefore, the velocity can be used as an indirect 
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Fig. 5   Boxplots of the relative force errors for all subjects (5-trial 
sliding-window data segments) when controlling the real prosthetic 
hand (RH) using joystick (JOY) and myocontrol (EMG). The hori-
zontal lines denote the median, the boxes represent the interquartile 
range, and the whiskers are minimum and maximum errors. The stars 
and circles denote that the median and/or dispersion, respectively, of 

the given 5-trial segment was statistically significantly different from 
the baseline performance (control with force feedback). Vertical line 
denotes that the subsequent trials were performed without the force 
feedback (block 1 and 2) or without the force and hand feedback 
(block 3)
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feedback for the control of grasping force (Ninu et al. 2014). 
The subjects could maintain the desired force by maintaining 
the same velocity of closing. The velocity could be used to 
retune the feedforward command instead of the explicit force 
information. Therefore, this condition can still be regarded as 
a closed-loop scenario, although with a nonideal feedback. 
However, this strategy was only short-term effective. Once 
the explicit feedback of force was removed, the feedforward 
command and thereby the generated grasping force started 
drifting from the desired level, eventually resulting in the sta-
tistically significant difference with respect to the baseline. 
With myocontrol, the internal models were even less stable 
without regular explicit force feedback updates. The control 
performance dropped almost immediately after the force 
feedback was removed. Because the myoelectric signals are 
noisy, the information about the prosthesis velocity was not 
enough to maintain the consistency of the feedforward com-
mand across trials. Finally, completely blind grasping was 
characterized by unstable internal models, and this was irre-
spective of the control interface. Therefore, relying on the 
memory of the learned feedforward command and the sense 
of effort was not enough to maintain the inverse model. The 
results thus demonstrated that the feedback could be used to 
acquire the feedforward model of grasping and that it was also 
essential for maintaining the model across trials, especially 
when using myocontrol. The force feedback allowed the sub-
jects to learn the feedforward command (inverse model) so 
that they could drive the prosthesis within the ballpark of the 
target force. With the reliable control interface (joystick), the 
learned model could be maintained at the same level of accu-
racy for a certain number of trials even when the direct force 
information was substituted with an indirect feedback source 
(hand closing velocity). Finally, even though with myocontrol 
and/or full feedback deprivation the performance deteriorated 
already in the first few trials, the time course of performance 
degradation (e.g., drift with saturation) still implies that the 
preceding phase of feedback-facilitated learning had an effect 
that was visible until the end of the block. The learning could 
become more stable with the longer training or by acquiring 
the models at the lower target force levels, since the variabil-
ity of the EMG depends on the contraction level.

It was reported in the recent study (Saunders and Vijaya-
kumar 2011) that the feedback was redundant for the con-
trol of prosthesis grasping when the conditions were ideal 
(e.g., consistent control interface). This is in line with the 
results for the joystick control in the current study dem-
onstrating the successful retention of the models in the 
absence of feedback. However, the current study also 
pointed out that this process has a time dimension and that 
the model will inevitably deteriorate if not updated again, 
even in the ideal conditions. The conclusion of another, 
very recent study (Lum et  al. 2014) was that the users of 
open-loop prostheses employ internal models for grasping, 

but that the accuracy of these models is poor. This is in 
accordance with what was observed here for the myoelec-
tric control.

As mentioned in the Introduction, the results in the litera-
ture investigating the benefits of the closed-loop control in 
improving the utility of myoelectric prostheses are incon-
sistent. One reason for this inconsistency is that many motor 
activities in the daily life of able-bodied subjects (Wolpert 
and Kawato 1998) as well as amputees (Ninu et  al. 2014) 
can be performed by relying mainly on the feedforward con-
trol. In this case, even when provided, the feedback might 
not be exploited by the prosthesis user to modulate the online 
execution of the movement. This context was investigated in 
the present study using the routine grasping task. The propo-
sition is that the feedback can be considered as an instrument 
for learning through repeated practice, with the most visible 
effect in the initial phase of practicing, i.e., before the user 
of the prosthesis becomes well trained. However, the qual-
ity and stability of this learning depends directly on the reli-
ability of the feedforward control interface. This view on 
the function of feedback in prosthetics parallels the insights 
about the role of feedback in human motor control (Kawato 
and Wolpert 1998; Haruno et al. 2001; Davidson and Wolp-
ert 2005). Considering this viewpoint, an economical feed-
back protocol can be hypothesized, in which the amount of 
feedback is reduced gradually during the training by deliver-
ing the feedback intermittently, frequently enough to refresh 
and maintain what has been learned.

Future work

For the practical application, the force information could 
be provided using electrotactile or vibrotactile stimulation. 
A simple method would be to implement a spatial coding 
using an array of stimulators, where the activity of each 
stimulator denotes a certain level of force (tactile force bar). 
The stimulation could be delivered intermittently, as indi-
cated above. This would have several practical advantages: 
avoiding interference between stimulation and recording, 
power saving, less intrusive feedback, decreasing habitua-
tion, etc. However, the feasibility and details of the inter-
mittent feedback protocol have yet to be investigated. The 
training could start with visual feedback and then continue 
in daily life using electrotactile interface. In the latter case, 
the provision of feedback could be even under user con-
trol. When the user feels confident in the prosthesis use, he/
she can decide to switch the feedback off, resulting in less 
intrusive system operation. The future studies need also to 
consider more comprehensive scenarios, including a range 
of target forces and longer training.

In the present study, the conditions were randomized in 
order to investigate them individually. However, arrang-
ing the conditions in a particular order could facilitate the 
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acquisition and maintenance of the internal models, forming 
the basis for the training protocol. For example, the subjects 
could start with the virtual hand, building up the appropriate 
EMG command, and then switch to the real hand to fine-tune 
the EMG, accommodating the physical effects due to the real 
prosthesis. In addition, to characterize the effect of training, 
the initial performance of the routine grasping without direct 
force feedback (hand visible) as well as without any external 
feedback (blind grasping) should be assessed and compared 
to the performance achieved in the same conditions after the 
training. The performance would likely depend on the pre-
vious experience in myocontrol. Experienced subjects might 
be able to generate less variable myoelectric signals. This 
could lead to a more consistent force control with feedback 
and more stable feedforward models in the absence of feed-
back. However, the inherent variability of the EMG signals 
might still be an important limiting factor, regardless of the 
subject experience, especially at high contraction levels, as 
demonstrated in (Ninu et al. 2014).

Finally, future research should also consider that there 
might be other sources of feedback, which the prosthesis 
users could exploit, as pointed out in Introduction. It is 
known from motor control studies that humans can inte-
grate sensory information from multiple sources based 
on their relative uncertainty using Bayesian fusion (Körd-
ing and Wolpert 2004). In principle, the visual force feed-
back used in the present study can be regarded as the final 
output of this integration process. In a practical situation, 
this information might be contributed using electrotactile 
feedback but also by any other available cue (e.g., motor 
sound). The latter might be as reliable as the former or 
even more accurate, especially in the case of an experi-
enced user (who has learned to “listen” to his/her prosthe-
sis). For learning and maintaining the feedforward models, 
it is important that the feedback information be provided, 
whereas it is less relevant how exactly this information has 
been obtained. Therefore, in order to determine the utility 
of the direct somatosensory feedback, the nature and qual-
ity of the alternative sources and the specifics of the afore-
mentioned sensor fusion mechanisms have to be revealed.
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