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subtle ways to guide the learner to better performance are 
needed especially in tasks with redundancy, where error 
feedback may not be sufficient.
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Introduction

From learning to walk or play a drum set, to re-learning 
to write after a stroke, humans acquire a vast collection 
of motor skills over their lifetime. Many strive to improve 
their motor skills, while others have to relearn basic skills, 
such as coordinating a knife and fork to eat. Consequently, 
much research has been dedicated to understanding and 
facilitating motor learning and recovery. Following decades 
of research on operant conditioning or reinforcement learn-
ing in the 1940–1960s, a host of subsequent studies adopted 
a more cognitive approach to enhance skill learning, many 
under the umbrella of schema theory or generalized motor 
programs (Bilodeau 1966; Schmidt 1975; Newell 1976; 
Adams 1987; Magill and Anderson 2010; Schmidt and Lee 
2011). One consensus from these studies was that present-
ing augmented information about the outcome following 
the action, knowledge of results, enhances performance 
and learning (Salmoni et al. 1984). Numerous experiments 
aimed to identify its optimal frequency, temporal delay, and 
precision of delivery that may lead to optimal performance, 
although few generalizable results arose. This quantitative 
terminal feedback was sometimes separated from knowl-
edge of performance, defined as augmented kinematic and 
kinesthetic information about the movement itself (New-
ell and Walter 1981). However, only relatively few studies 

Abstract Feedback about error or reward is regarded 
essential for aiding learners to acquire a perceptual-motor 
skill. Yet, when a task has redundancy and the map-
ping between execution and performance outcome is 
unknown, simple error feedback does not suffice in guiding 
the learner toward the optimal solutions. The present study 
developed and tested a new means of implicitly guiding 
learners to acquire a perceptual-motor skill, rhythmically 
bouncing a ball on a racket. Due to its rhythmic nature, this 
task affords dynamically stable solutions that are robust to 
small errors and noise, a strategy that is independent from 
actively correcting error. Based on the task model imple-
mented in a virtual environment, a time-shift manipulation 
was designed to shift the range of ball–racket contacts that 
achieved  dynamically stable solutions. In two experiments, 
subjects practiced with this manipulation that guided them 
to impact the ball with more negative racket accelerations, 
the indicator for the strategy with dynamic stability. Sub-
jects who practiced under normal conditions took longer 
time to acquire this strategy, although error measures were 
identical between the control and experimental groups. 
Unlike in many other haptic guidance or adaptation stud-
ies, the experimental groups not only learned, but also 
maintained the stable solution after the manipulation was 
removed. These results are a first demonstration that more 
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were conducted to further detail its potential benefit, prob-
ably due to the lack of virtual technology.

More recently, error-based learning and feedback infor-
mation have been studied in a discrete reaching paradigm 
requiring adaptation to external force fields and visuomo-
tor rotations. Using virtual environments, several studies 
validated that presenting continuous and terminal error 
information aids in learning the new visuomotor remapping 
or the compensation of external forces (e.g., Hinder et al. 
2008; Shabbott and Sainburg 2010). Besides visual infor-
mation about the endpoint effector, additional propriocep-
tive information was examined to support and accelerate 
adaptation (Scheidt et al. 2005, 2010). More recently, the 
role of terminal reinforcement or reward scores and credit 
assignment has been highlighted (Abe et al. 2011; Wolpert 
et al. 2011; Galea et al. 2015). Characteristic to these stud-
ies is that adaptations to new conditions faded relatively 
quickly when the perturbation was removed. Regardless of 
the error information, subjects adapted to new rotations or 
force fields in as few as 10 trials; the return to initial perfor-
mance (after effect) was even shorter (Kitago et al. 2013). 
These fast performance changes highlight that reaching and 
its transformations are easy to learn and present relatively 
little challenge. The correct solution is uniquely defined 
by the desired straight-line trajectory to the target location, 
which makes error information very effective (Scheidt et al. 
2005, 2010).

In contrast, acquiring a novel skill takes consider-
ably longer time, from weeks to years, and presenting 
knowledge of results is not as straightforward and effec-
tive (Crossman 1959; Cesqui et al. 2012; Park et al. 2013; 
Park and Sternad 2015). Any athlete or coach knows that 
a single-numbered score, as given by judges for example, 
is not sufficient information to improve performance in a 
complex motor skill. After all, finding ways that shape 
behavior toward a desired goal is what makes or breaks a 
good coach. By definition, in a novel skill, the relationship 
between motor execution and task outcome is unknown, 
and the mapping is typically very complex. Not only does 
the redundancy in the neuromechanical system afford infi-
nitely many ways to produce the desired movement, the 
task itself can also be achieved in infinitely many ways and 
performance improvement may proceed in a non-mono-
tonic fashion. The manifold of solutions in the result space 
is typically nonlinear, with some solutions more favorable 
than others (Sternad et al. 2011, 2014; Berret et al. 2011; 
Campolo et al. 2013; Ganesh and Burdet 2013). Specifi-
cally, some solutions tend to be more tolerant to perturba-
tions and noise.

Previous research by Sternad and colleagues highlighted 
this redundancy in a discrete throwing task, where the set of 
zero-error solutions described a nonlinear manifold (Mül-
ler and Sternad 2004; Sternad et al. 2010). When practice 

was examined up to 16 days, invariably subjects found 
the noise-tolerant solutions first (Cohen and Sternad 2009, 
2012; Abe and Sternad 2013). In a similar vein, work on a 
rhythmic ball bouncing task highlighted that zero-error per-
formance can be achieved in a multitude of ways (Schaal 
et al. 1996; Sternad et al. 2000b; Dijkstra et al. 2004; Wei 
et al. 2007, 2008). Due to its rhythmic nature, there exists 
a subset of solutions that are dynamically stable, i.e., where 
small errors or noise automatically decrease without requir-
ing explicit corrections. These “smart” solutions attenuate 
the propagation of error and are therefore computationally 
less demanding. Several studies showed that such dynami-
cally stable solutions require practice and are the hallmark 
of expert performance (Wei et al. 2008). Error scores alone 
do not reflect this advantageous strategy and hence cannot 
be the only feedback driving performance improvement 
(Huber et al. 2015). Therefore, other implicit information is 
needed to “coach” the subject. How can subjects be guided 
to such dynamically stable solutions?

To date, only relatively few studies in motor neurosci-
ence have used the virtual environment to design interven-
tions that shape behavior in implicit ways, guiding per-
formance to achieve lasting changes in skill. One way to 
enhance the awareness of the desired motion is amplifying 
the error in the visual feedback. Patton and colleagues have 
demonstrated the benefit of this method for healthy sub-
jects and also stroke patients, although their task consisted 
of straight-line reaches, and washouts remained a critical 
issue in the adaptation paradigm (Wei et al. 2005; Patton 
et al. 2006; Reinkensmeyer and Patton 2009; Milot et al. 
2010; Sharp et al. 2011). Using a shuffleboard task, Chu 
et al. (2013) manipulated the variability of the puck releases 
and showed that behavior can be shaped: decreasing vari-
ability by filtering over past trials improved performance, 
even in severely handicapped children. For comparison, 
increasing variability induced healthy children to perform 
with more risk awareness. Note that the shuffleboard task 
was constrained to have no redundancy. Using a redundant 
line-reaching task, Manley et al. (2014) attempted to guide 
subjects to reach in directions that yielded high monetary 
reward by penalizing undesired reaching directions with 
added noise. However, the added noise did not help sub-
jects to find the most robust solutions as initially expected. 
Interestingly, not even a gradient in the noise amplitude 
guided subjects toward the desired direction, except when 
subjects were made explicitly aware that noise was added.

It is noteworthy that all of these prior studies on learning 
and adaptation were focused on discrete movements, and 
none have looked at rhythmic movements. Rhythmic move-
ments are ubiquitous, ranging from locomotion to many 
forms of tool use. Behavioral, modeling, and neuroimaging 
results have shown that rhythmic movements follow dif-
ferent principles and may constitute a different “primitive” 
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(Sternad et al. 2000a, 2013; Schaal et al. 2004; Ronsse et al. 
2009; Ikegami et al. 2010; Howard et al. 2011). Hence, it is 
likely that also the underlying mechanisms of learning are 
different. For example, explicit quantitative feedback was 
not needed to acquire and retain a bimanual rhythmic skill 
(Park et al. 2013; Park and Sternad 2015).

This research pursues to develop interventions that 
accelerate learning of a novel rhythmic task in a virtual 
environment. Going beyond simple reward signals, the 
study aims to identify those elements of performance that 
guide learners toward desired dynamically stable and noise-
tolerant solutions. The experiment capitalizes on previous 
research on the rhythmic ball bouncing task  shown to have 
redundancy with a subset of solutions displaying dynamic 
stability (Schaal et al. 1996; Sternad et al. 2000b; Dijkstra 
et al. 2004; Ronsse and Sternad 2010). In this task, the sub-
ject is instructed to rhythmically bounce a virtual ball to a 
target line using a real racket. Mathematical analysis of the 
model system indicated dynamically stable solutions, when 
the racket hit the ball in the decelerating upward swing, 
assuming sinusoidal motion. This strategy is advantageous 
because the performer need not adapt his/her racket move-
ments to every small deviation of the ball to maintain suc-
cessful performance.

Prior experiments by Sternad and colleagues have shown 
that while novices initially hit the ball with positive racket 
acceleration, they learn to exploit dynamic stability, as indi-
cated by a shift to negative racket acceleration at impact 
after approximately 30 min of practice (Sternad et al. 2001; 
Ehrlenspiel et al. 2010; Huber et al. 2015). Interestingly, 
performers were neither aware of their control of contact, 
nor of their change in strategy. Dynamic stability has been 
shown in other rhythmic tasks, the most notable of which 
is locomotion. This finding is robust across different types 
of gait, as many animals, including guinea fowl and cock-
roaches, exploit dynamic stability in locomotion (Ting 
et al. 1994; Daley et al. 2006). In fact, people who are at 
increased risk of falling, such as amputees or patients with 
sensory neuropathy, walk slower to improve dynamic sta-
bility of the upper body during level walking, even at the 
cost of increased variability (Dingwell et al. 2000; Ding-
well and Marin 2006; Beurskens et al. 2014).

The purpose of this study was to design a manipula-
tion in the ball bouncing task that guides subjects to these 
dynamically stable solutions earlier in practice. How 
can subjects be made aware of these attractor solutions? 
One approach is to physically shape the subject’s move-
ment during the task using robotic assistance. However, 
Marchal-Crespo et al. (2014) showed that such haptic 
guidance actually hampers learning in a similar rhythmic 
ball bouncing task. Another approach is to manipulate 
the task itself to guide behavior, without creating obvious 
dynamic perturbations such as force fields that subjects 

need to match. As the ball bouncing task is performed in 
a virtual environment, the physical laws that generate the 
ball movements can be modified to manipulate the attrac-
tors in the task. Morice et al. (2007) showed that shifting 
the position and velocity of the virtual racket also shifted 
the attractor solutions, but this manipulation created a new 
perceptual-motor mapping that needed to be matched. 
Hence, like in visuomotor adaptation studies, the learned 
behavior disappeared immediately after the removal of the 
manipulation.

The goal of this research was to guide subjects to bet-
ter solutions in the present task. The important evaluation 
of success is that the learned behavior should persist after 
terminating the intervention. Before the intervention is 
detailed and the specific hypotheses formulated, the task 
and the model  will be laid out.

Experimental methods and design

The task and the model

In the experimental task, the subject is instructed to rhyth-
mically bounce a virtual ball to a target line using a real 
racket. This deceptively simple task requires considerable 
perceptually guided coordination to intercept the ball at the 
right moment and with the right racket velocity to impart 
the necessary energy to the ball to hit the target line. The 
core challenge is that control of the ball is confined to the 
extremely short moments of ball–racket collisions. Fur-
ther, because impacts occur in a repeating fashion, the error 
from one impact influences the next: a higher ball ampli-
tude leads to a higher ball velocity at the next contact that 
will require a smaller racket velocity at the next contact to 
compensate. This model task exemplifies rhythmic interac-
tion with an object as is pervasive in tool use, such as ham-
mering, sawing, sweeping, and typing on keyboard.

The model for this task is a well-studied nonlin-
ear dynamical system, originally developed for a par-
ticle bouncing on a vibrating surface and then used for a 
series of human studies (Guckenheimer and Holmes 1983; 
Tufillaro et al. 1992; Schaal et al. 1996; Sternad et al. 
2001). This simple model consists of a planar surface 
moving sinusoidally in the vertical direction to repeatedly 
impact a ball (Fig. 1). The vertical position of the virtual 
ball xb between the kth and the k+1th racket–ball impact 
follows ballistic flight:

where tk is the time of the kth ball–racket impact, vb
+ is the 

velocity of the ball just after impact, and g is the accelera-
tion due to gravity (9.81 m/s2). To determine the ball veloc-
ity just after impact vb

+, an instantaneous impact is assumed 

xb(t) = xb(tk)+ v+
b
(t − tk)− g/2(t − tk)

2
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that has energy loss at the collision quantified by the coef-
ficient of restitution α:

where vb and vr are the ball and racket velocities just before 
(−) and after (+) impact. Further, the mass of the racket is 
assumed to be much larger than the mass of the ball, such 
that the racket velocity does not change during impact:

Thus, the ball velocity just after impact is determined 
by:

By assuming sinusoidal racket motion, the racket and ball 
system is a continuous dynamical system. A Poincare sec-
tion at the moment of the collision rendered a discrete map 
with two-state variables, ball velocity just after impact vb

+ 
and racket phase at impact θk.

Local linear stability analysis of this discrete map iden-
tified a fixed-point attractor, when racket acceleration at 
impact ar satisfied the inequality (Schaal et al. 1996; Dijk-
stra et al. 2004):

For α = 0.6 and g = 9.81 m/s2, as in the experiment, the 
range with dynamic stability was between 0 and −10.42 m/
s2. Simulations of the ball bouncing map illustrate that 
when the impact occurs during negative racket acceleration 
of the upward racket swing (Fig. 2a), the ball exhibits sta-
ble period-1 behavior. The map possesses other attractors 
besides the period-1 attractor, including “sticking” solu-
tions, where the ball sticks to the racket and follows the 
racket trajectory. This “sticking” behavior results when the 
ball–racket impact occurs during positive racket accelera-
tion (Fig. 2a). Further, non-local Lyapunov stability analy-
ses narrowed the range of acceleration values to approxi-
mately −2 to −5 m/s2 for the given parameters α and g 

α(v−
b
(tk)− v−

r
(tk)) = −(v+

b
(tk)− v+

r
(tk))

v−
r
(tk) = v+

r
(tk) = vr(tk)

v+
b
(tk) = (1+ α)vr(tk)− αv−

b
(tk)

−2g
(1+ α2)

(1+ α)2
< ar < 0

(Schaal et al. 1996), although these values are not hard 
boundaries.

Unlike the ball bouncing map that only describes feed-
forward dynamics, novice participants who hit with posi-
tive racket acceleration are able to compensate for the 
errors arising from such unstable performance. Based on 
the visual information about the error, they can actively 
correct for errors by adjusting their racket trajectory to 
propel the ball either higher or lower than the previous 
bounce (de Rugy et al. 2003; Wei et al. 2007; Siegler et al. 
2010). However, with practice, participants learn to hit the 
ball with negative acceleration. By exploiting this effi-
cient solution, small errors need not be corrected, reduc-
ing the necessity for computational processes (Wei et al. 
2008).

In the virtual environment, the model was rendered 
exactly, and there were no uncontrolled aspects or simplify-
ing assumptions, such as drag or spin, that would occur in a 
real experiment.

Design of the intervention

Given the known task dynamics, the question is how  can 
the system be tweaked to guide subjects to more stable 
behavior? The two complementary principles are penaliz-
ing undesirable solutions or enhancing desirable solutions. 
As shown in Fig. 2a, contact points that ensure stability 
were on the upper segment of the upward sinusoidal tra-
jectory. To be exact, the period-1 attractor arose from hit-
ting at a segment with racket acceleration between −0 and 
−10.42 m/s2 (Fig. 3a).

To encourage novices to hit with negative racket accel-
eration, the period-1 attractor was “shifted” to a segment 
of the racket trajectory with more negative acceleration 
(Fig. 3b). This manipulation of the dynamically stable 
solutions was achieved by using the racket velocity 50 ms 
prior impact, as opposed to the veridical racket velocity at 
impact, to determine the release velocity of the ball. The 
temporal shift not only made the negative racket accelera-
tion regions more stable, but also made the positive racket 
accelerations more unstable, quickly leading to sticking 
solutions. For the implementation, the racket velocity at 
impact vr was set equal to the racket velocity 50 ms before 
the time of impact tk. Hence, the ball velocity just after 
impact was determined by:

As in the original map, the ball exhibited “sticking” 
behavior if the impact occurred during the positive racket 
accelerations (Fig. 2b). However, there was an addi-
tional segment of 50 ms that produced sticking solutions, 
where subjects were “penalized.” Only the more negative 
racket accelerations continued to produce stable period-1 

v+
b
(tk) = (1+ α)vr(tk − .05)− αv−

b
(tk)

Ball

Racket

Fig. 1  Model of the racket–ball system. The vertical ball position 
between each instantaneous impact follows ballistic flight, which 
depends on three variables: ball vb

− and racket vr
− velocities just 

before impact, and racket position xr at impact
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behavior. Given prior findings that humans seek dynami-
cally stable solutions, we expected that subjects performing 
the task with this manipulation would hit with more nega-
tive racket acceleration compared to subjects performing 
the task under the normal condition.

To test whether this state-determined intervention did 
not simply add noise to the ball release, at least in the 
perception of the subject, but also contained the intended 
directional information, an additional control condition 

was included. In this condition, random noise was added to 
the racket velocity before calculating the ball trajectory. At 
each bounce, a value was drawn from a Gaussian distribu-
tion with mean zero. For better comparison with the time-
shifted condition, the standard deviations of the Gaussian 
distribution were matched with the ones obtained from the 
velocity shifts in the experimental condition: σ = 0.4 m/s.

Based on these manipulations, the present study tested 
the following three hypotheses: (1) subjects who practice 
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Fig. 2  a Simulation of the ball–racket system. Assuming sinusoidal 
racket movement, the racket trajectory has a segment with positive 
acceleration followed by negative acceleration before its peak posi-
tion during the upward swing. Ball trajectories with initial contact at 
different phases of the upward swing (from 1.51 π rads to 2.49 π rads 
at intervals of .3 rads) were simulated. When the racket impacted the 
ball during the decelerating portion of the racket’s upward motion, 
the ball–racket system was dynamically stable. The simulations with 
initial contact during negative racket accelerations led to the same 
stable ball amplitude without requiring any changes in the racket tra-
jectory. If the ball impacted the racket during the accelerating portion 
of the racket’s upward motion, the system was unstable. The simu-

lations with initial contacts during positive racket acceleration led 
to unstable behavior, where the ball finally stuck to the racket. The 
only way to achieve and maintain a stable pattern was to correct for 
errors in the ball amplitude by a change in the racket trajectory. b 
Simulation of the ball–racket system with time-shifted perturbation. 
If the ball impacted the racket during the accelerating portion of the 
racket’s upward motion, the system was unstable. When the racket 
impacted the ball during the decelerating portion of the racket’s 
upward motion, the system was unstable if the racket phase was less 
than .05 s multiplied by the angular frequency of the racket; other-
wise, the perturbed ball–racket system was dynamically stable
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with the time-shifted racket velocity learn to hit with nega-
tive racket acceleration earlier compared to those who prac-
ticed with no manipulation; (2) after removing the manip-
ulation, they have a higher degree of dynamic stability 
than those who practice under normal or noise conditions; 
and (3) the attained dynamic stability persists throughout 
extended practice. Two experiments were conducted to test 
these hypotheses. In the first experiment, the experimen-
tal group practiced with the manipulation for six blocks of 
four trials followed by one test block without the manip-
ulation. The purpose of this experiment was to assess the 
effect of the time-shifted racket velocity on learning and 
whether the performance changed upon the removal of the 
manipulation. In the second experiment, the experimen-
tal group practiced for four blocks followed by three test 
blocks without the manipulation. This experiment further 
assessed how long this enhanced performance persisted 
after removing the manipulation.

Participants

A total of 29 students (15 males and 14 females, mean age 
20.45 ± 3.31 years) from Northeastern University par-
ticipated in the experiment after signing the consent form 
approved by the Institutional Review Board of Northeast-
ern University. They received partial fulfillment of a course 
requirement in exchange for their participation. None had 
any prior experience with the virtual ball bouncing task. 
They all self-reported to be right-hand dominant and per-
formed the task with their dominant hand.

Experimental task and apparatus

The participant manipulated a real table tennis racket to 
rhythmically bounce a virtual ball to a target line in a 2D 
virtual environment (Fig. 4a). The participant stood 2 m 
in front of a rear projection screen holding a table tennis 

racket in his or her dominant hand. A light rigid rod with 
two hinge joints was attached to the racket surface, which 
could translate in the vertical direction while free to tilt 
around all three axes. The latter was included to mini-
mize friction. However, only the vertical component of the 
racket displacement moved the virtual racket. As the virtual 
ball movement was confined to the vertical dimension, the 
real racket movements did not deviate very much in other 
directions. To measure vertical racket displacement, the 
rigid rod moved a wheel, whose rotations were registered 
by an optical encoder at a sampling rate of ~500 Hz with 
a spatial resolution of 0.27 mm (Bourns Inc., Riverside, 
CA). In addition, a wireless accelerometer attached to the 
center of the racket surface measured the racket accelera-
tions directly at a sampling rate of ~250 Hz (Myon 320, 
Schwarzenberg, Switzerland). A PC (2.4-GHz Pentium 
CPU, Windows XP) controlled the experiment and gener-
ated the visual stimuli with a graphics card (Radeon 9700, 
AMD, Sunnyvale, CA). The same PC also acquired the 
data using a 16-bit A/D card (NI-USB6229BNC, National 
Instruments, Austin, TX). The delay between real and vir-
tual racket movement was measured in a separate experi-
ment and was on average 22 ± 0.5 ms. The images were 
displayed by a rear projector (DepthQ-WXGA, Lightspeed 
Design, Bellevue, WA) consisting of 1024 × 768 pixels 
with a 60 Hz refresh rate.

The vertical ball position and consequently the maxi-
mum ball height of each bounce were fully determined 
by the ball velocity, racket velocity, and racket position at 
impact. Just before the virtual ball hit the virtual racket, 
a trigger signal was sent out to a mechanical brake that 
acted on the rod. The brake was controlled by a solenoid 
and applied a brief braking force pulse to the rod to create 
the feeling of a real ball hitting the racket (Magnet-Schultz 
type R 16 × 16 DC pull, subtype S-07447). The trigger sig-
nal was sent 15 ms before the ball–racket contact to over-
come the electronic and mechanical delay of the solenoid 
and brake. The duration of the force pulse (30 ms) was con-
sistent with the average impact duration observed in a real 
ball–racket experiment (Katsumata et al. 2003).

Figure 4 shows the virtual environment displayed on 
the projection screen, which consisted of a virtual racket 
(horizontal line, 0.2 m × 0.02 m), target line (horizon-
tal line, 1.0 m × 0.02 m), and ball (circle, 0.02 m radius). 
The vertical position of the virtual racket was determined 
by the measured position of the real racket; the target line 
was positioned 1.0 m above the minimum racket position. 
At the start of each trial, the ball was positioned at the left 
edge of the screen atop the target line and proceeded to roll 
along the target line toward the center of the screen. Once it 
reached the edge of the target line, the ball dropped toward 
the racket. The participant was instructed to bounce the ball 
for the duration of the 40-s trial such that the maximum ball 
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height of each bounce was coincident with target line. The 
trajectory of the virtual ball after the ball–racket impact 
was determined using the ballistic flight and instantaneous 
impact equations described above.

Design and procedure

In both experiments, all subjects performed a total of seven 
blocks, with four trials per block, leading to a total of 28 
trials. As the duration of each trial was 40 s, with a brief 
break between blocks, the entire experiment lasted approxi-
mately 35 min.

In Experiment 1, nine subjects practiced the task with the 
manipulated racket velocity (time-shifted group), and nine 
subjects practiced with no manipulation (control group) 

(Fig. 4b). An additional group of three subjects practiced 
with a random noise term added to the racket velocity at 
impact (noise group). The noise group served as supple-
mentary control to determine that it was the time-dependent 
nature of the manipulation that presented implicit guidance 
to dynamic stability, not noise alone. Only three subjects 
were collected as it became immediately evident that they 
did not understand the result of their actions and hence did 
not change performance. As this random condition was 
extremely frustrating to subjects, we stopped after collect-
ing three subjects. After the six practice blocks, all subjects 
performed one test block of four trials with no manipula-
tion to the racket velocity. Subjects were not informed that 
the conditions changed between the practice blocks and test 
block.

Fig. 4  a Side and front view of 
the virtual experimental setup 
for ball bouncing. Participants 
were positioned in front of a 
screen and manipulated a real 
table tennis racket to rhythmi-
cally bounce a virtual ball to 
a target height in a 2D virtual 
environment. b Schematic of 
Experiment 1 design. Each 
group performed six prac-
tice blocks with respective 
manipulations to racket velocity 
at impact and one test block 
with no manipulation. Each 
block consisted of four trials, 
and each trial lasted 40 s long. 
c Schematic of Experiment 2 
design. The time-shifted group 
performed four practice blocks 
and three test blocks with no 
manipulation. The control group 
was the same as in Experiment 
1

Target Line

Virtual Ball

Projection Screen
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Optical Encoder

To Computer

Brake

Front ViewSide View
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Optical 
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To Computer
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In order to further assess how much practice with the 
manipulation was needed to establish dynamic stability and 
how long the learned behavior persisted, a second experi-
ment was conducted. In Experiment 2, nine subjects prac-
ticed with manipulated racket velocity (time-shifted group) 
for four practice blocks, followed by three test blocks 
(Fig. 4c). The same control group from the first experiment 
was used for comparison.

Dependent measures

Error was defined as the signed distance between the maxi-
mum ball amplitude and the target line (Fig. 5). Absolute 
error was defined as the absolute value of error. The median 
absolute error over all bounces in each 40-s trial described 
overall task performance. The interquartile range of the 
signed error served as a measure of variability in perfor-
mance. Shapiro–Wilk tests revealed that, on average, the 
distribution of error and absolute error in each block devi-
ated from the normal distribution in 14.5 and 26 out of 28 
blocks, respectively (Shapiro and Wilk 1965). Thus, the 
median and interquartile ranges of these measures were 
used.

As introduced above, racket acceleration at impact 
served as the measure of dynamic stability. The racket 
acceleration signal was measured by an accelerometer on 
top of the real racket. The signal was then resampled at a 
fixed frequency of 500 Hz and filtered by a fourth-order 
Savitzky–Golay filter with a window size of 10 ms on 
both sides (Savitzky and Golay 1964). Racket accelera-
tion at impact was defined as the racket acceleration in the 
vertical direction 6 ms prior to ball–racket impact to avoid 

capturing any artifacts due to the activation of the mechani-
cal brake. Given that impacts occurred in the upward move-
ment, this temporal interval was conservative, as it biased 
the estimated value toward positive values. Again, median 
racket acceleration at impact over all bounces in each 40-s 
trial was used as Shapiro–Wilk tests revealed that the distri-
bution of racket accelerations in each block was not normal 
in 9.7 out of 12 blocks on average.

The dependent measures of each trial were averaged 
across trials and blocks for each experimental group.

Statistical analyses

Experiment 1

To assess the effect of the time-shifted racket veloc-
ity on learning, a 2 (group: control vs. time-shifted) × 6 
(block: practice blocks 1 through 6) repeated measures 
ANOVA was conducted on each dependent measure 
(Hypothesis 1). To assess the performance changes from 
the last practice block to the test block, a 2 (group: con-
trol vs. time-shifted) × 2 (block: practice block 6 vs. test 
block) ANOVA was conducted on each dependent measure 
(Hypothesis 2). Only the time-shifted and control groups 
were considered in the statistical analyses. The noise 
group was omitted, as it had only a very limited number of 
participants.

Experiment 2

As in Experiment 1, a 2 (group: control vs. time-shifted) 
× 4 (block: practice blocks 1 through 4)  ANOVA was 
conducted on each dependent measure (Hypothesis 1). 
A 2 (group: control vs. time-shifted) × 2 (block: practice 
block 4 vs. test block 1) ANOVA was conducted on each 
dependent measure to assess the performance changes 
upon removing the time-shifted manipulation (Hypothesis 
2). An additional 2 (group: control vs. time-shifted) × 3 
(block: test blocks 1 through 3) ANOVA was conducted on 
each dependent measure to further assess the persistence of 
performance after removing the time-shifted manipulation 
(Hypothesis 3).

For all ANOVAs, group was a between-subjects factor 
and block was a within-subjects factor, and the Green-
house–Geisser correction factor was applied to the within-
subject effects (Greenhouse and Geisser 1959). The signifi-
cance level was set to α = 0.05. A test of simple effects 
was calculated when a significant interaction was present. 
In Experiment 2, one participant in the time-shifted group 
had an average median racket acceleration at impact across 
trials that was more than four standard deviations above 
the mean of the time-shifted group. This participant was 
excluded from the statistical analyses.
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Fig. 5  Exemplary time series of racket (black) and ball (gray) to 
illustrate dependent measures. Error was defined as the signed differ-
ence between the target height and the maximum ball amplitude at 
each bounce. Racket acceleration at impact was defined as the racket 
acceleration 6 ms before the ball–racket impact of each bounce
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Results

Experiment 1

Exemplary time series

Figure 6 shows exemplary trials from one subject in 
each experimental group. Each trial lasted 40 s and typi-
cally contained between 40 and 50 bounces. The trials 
shown in Fig. 6 are the first trial in practice block 1, the 
last trial in practice block 6, and the first trial in the test 
block immediately after the manipulations to racket veloc-
ity were removed. The data illustrate that despite the ini-
tially perturbed performance in the time-shifted group, 
subjects achieved consistent performance by block 6. This 
performance persisted without visible change in the test 
block. The trials of the noise group illustrate how the added 
noise could lead to sticking solutions throughout practice. 

Figure 7a–c shows the group means of the dependent vari-
ables racket acceleration, absolute error, and variability of 
error, plotted across the six practice blocks and the one test 
block for the three experimental groups.

Learning with time‑shifted manipulation

Consistent with prior results, subjects of all three groups 
initially hit with positive racket acceleration in block 1 
(time-shifted: M = 2.66 m/s2, SD = 4.87 m/s2; control: 
M = 2.40 m/s2, SD = 2.06 m/s2). In subsequent blocks, all 
subjects decreased their racket acceleration, albeit at dif-
ferent rates and to different degrees (Fig. 7a). Hypothesis 
1 stated that subjects who practice with the time-shifted 
racket velocity learn to hit with negative racket accel-
eration earlier, compared to those who practiced with no 
manipulation. The ANOVA on median racket accelera-
tion at impact revealed a significant main effect of block, 
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F(1.65, 26.42) = 28.69, p < .001, as well as group F(1, 
16) = 8.03, p = .012. These main effects were qualified by 
a significant interaction between group and block, F(1.65, 

26.42) = 3.65, p = 0.047. A test of simple effects revealed 
that the time-shifted group had significantly lower racket 
accelerations at impact compared to the control group in 
blocks 3 through 6 (ps < .015). These results indicate that 
the time-shifted manipulation guided subjects to hit with 
negative racket acceleration earlier in practice (Hypothesis 
1). While the noise group was not subjected to statistical 
testing, the median racket acceleration at impact remained 
positive over practice, indicating that the time-dependent 
nature of the manipulation was necessary for the desired 
change in behavior (Fig. 7a).

To determine whether practicing with the time-shifted 
racket velocities interfered with task performance, ANO-
VAs on error measures were conducted. The ANOVA on 
median absolute error revealed a main effect of block, 
F(1.68, 26.88) = 16.20, p < 0.001. As expected, median 
absolute error decreased with practice for both groups 
(Fig. 7b). However, neither the main effect of group, 
F(1, 16) = 1.58, p = .23, nor the Group × Block inter-
action, F(1.68, 26.88) = 1.45, p = .25, were signifi-
cant. The statistical results of the median absolute error 
were mirrored in the analysis of the interquartile range of 
error, as shown in Fig. 7c. The ANOVA on interquartile 
range of error revealed a significant main effect of block, 
F(3.92, 52.61) = 11.11, p < 0.001, but not for group, F(1, 
16) = 1.35, p = .26. The Group x Block interaction was 
also nonsignificant, F(3.92, 52.61) = .67, p = .59. In short, 
while both groups improved overall task performance over 
time, there were no significant differences between the 
time-shifted and control groups in these error measures. 
Visual inspection of Fig. 7b, c shows that the noise group 
has performed visibly worse over the course of practice 
compared to the control and time-shifted groups.

Removing time‑shifted manipulation

To determine whether performance changed upon the 
removal of the time-shifted manipulation, the depend-
ent measures in practice block 6 and the test block were 
compared (Fig. 7a–c). The ANOVA on median racket 
acceleration at impact revealed a significant main effect 
of group, F(1, 16) = 18.44, p = .001, but not for block, 
F(1, 16) = 1.17, p = .30. The analysis also revealed a 
significant interaction between group and block, F(1, 
16) = 7.91, p = 0.013. A test of simple effects revealed 
that the time-shifted group significantly increased racket 
acceleration at impact from practice block 6 (M = –4.61 m/
s2, SD = 1.10 m/s2) to the test block (M = –3.73 m/s2, 
SD = 1.13 m/s2), p = .014, whereas the control group did 
not, p = .24. While the significant increase in racket accel-
eration in the timed-shifted group was inconsistent with 
Hypothesis 2, it should be kept in mind that, while statisti-
cally different, the acceleration values did not differ much 

Significant difference between Time-shifted and Control groups (p < 0.05)

Control Time-shifted Noise

Test
BlockPractice Blocks

M
ed

ia
n

 R
ac

ke
t 

A
cc

el
er

at
io

n
 

at
 Im

p
ac

t 
(m

/s
2
)

5

4

3

2

1

0

-1

-2

-3

-4

-5

Test
BlockPractice Blocks

M
ed

ia
n

 A
b

so
lu

te
 E

rr
o

r 
(c

m
)

55

50

45

40

35

30

25

20

15

10

5

Test
BlockPractice Blocks

In
te

rq
u

ar
ti

le
 R

an
g

e 
o

f 
E

rr
o

r 
(c

m
)

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

55

50

45

40

35

30

25

20

15

10

60

A

B

C

*
*

* *
*

Fig. 7  Dependent measures of Experiment 1 over blocks. The meas-
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in their physical meaning. As stated above, a wide range 
of negative values ensures dynamic stability and an “opti-
mal region” as determined by Lyapunov stability analy-
sis spans −2 to −5 m/s2 (Schaal et al. 1996). While the 
time-shifted group hit with racket acceleration values in 
this optimal range during the test block (M = −3.73 m/s2, 
SD = 1.13 m/s2), the control group did not (M = −1.20 m/
s2, SD = 2.06 m/s2).

The ANOVA on median absolute error did not reveal any 
significant main effects (block: F(1,16) = 1.39, p = .26; 
group: F(1,16) = .013, p = .91), nor a significant interac-
tion, F(1,16) = 2.09, p = .17. Similarly, the ANOVA on 
the interquartile range of error did not reveal any signifi-
cant main effects (block: F(1,16) = .53, p = .48; group: 
F(1, 16) = .007, p = .94), nor a significant interaction, F(1, 
16) = 1.52, p = .24. Thus, removing the manipulation did 
not interfere with task performance.

Experiment 2

Figure 8a–c shows the group means of dependent measures 
plotted across the four practice blocks and the three test 
blocks. The control group was the same group from Experi-
ment 1.

Learning with time‑shifted manipulation

Just as in Experiment 1, the time-shifted group ini-
tially hit with positive racket acceleration in block 
1 (M = 2.20 m/s2, SD = 3.81 m/s2). The ANOVA 
on median racket acceleration at impact in the four 
practice blocks revealed a significant main effect of 
block, F(1.92, 28.76) = 16.07, p < .001 (Fig. 8a). The 
main effect of group did not reach significance, F(1, 
15) = 3.63, p = .076. These effects were qualified by a 
significant interaction between group and block, F(1.92, 
28.76) = 3.44, p = .047. A test of simple effects revealed 
that the time-shifted group had significantly lower racket 
acceleration at impact compared to the control group in 
blocks 2 and 4 (ps < .015). This result indicates that even 
after just four practice blocks, the time-shifted manipula-
tion guided subjects to hit with negative racket accelera-
tion (Hypothesis 1).

The ANOVA on median absolute error revealed a 
main effect of block, F(1.91, 28.62) = 18.05, p < .001 
(Fig. 8b). However, neither the main effect of group, F(1, 
15) = 2.54, p = .13, nor the Group x Block interaction, 
F(1.91, 28.62) = 1.63, p = .21, were significant. The 
ANOVA on interquartile range of error similarly revealed 
a significant main effect of block, F(2.46, 36.91) = 3.04, 
p = .050, but not for group, F(1, 15) = .32, p = .58 
(Fig. 8c). The Group × Block interaction was also not sig-
nificant, F(2.46, 36.91) = 1.17, p = .33. As in Experiment 

1, there were no significant differences between the time-
shifted and control groups in these error measures over the 
practice blocks.
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Removing time‑shifted manipulation

To determine whether performance changed upon the 
removal of the time-shifted manipulation, the dependent 
measures in practice block 4 and the test block 1 were 
compared (Fig. 8a–c). The ANOVA on median racket 
acceleration at impact revealed a significant main effect 
of group, F(1, 15) = 7.94, p = .013. Pairwise compari-
sons revealed that the time-shifted group hit with sig-
nificantly lower racket acceleration than the control 
group in both practice block 4 and test block 1 (ps < .04) 
(Hypothesis 2). The main effect of block was marginally 
significant, F(1, 15) = 4.47, p = .052, and the interac-
tion between group and block was not significant, F(1, 
15) = .001, p = .98.

The ANOVA on median absolute error revealed a sig-
nificant main effect for block F(1, 15) = 4.60, p = .049, 
but not for group, F(1, 15) = 1.43, p = .25. The interac-
tion was also not significant F(1, 15) = .33, p = .57. Sim-
ilarly, the ANOVA on interquartile range of error revealed 
a significant main effect for block, F(1, 15) = 5.93 
p = .028, but not for group, F(1, 15) = .36, p = .56. 
The interaction was also not significant, F(1, 15) = .64, 
p = .44. Consistent with Experiment 1, these results indi-
cate that removing the manipulation did not interfere with 
task performance.

Persistence

In Experiment 2, the time-shifted group performed three 
test blocks under normal task conditions after removing 
the perturbation. The ANOVA on median racket accelera-
tion at impact in the three test blocks revealed a significant 
main effect of group, F(1, 15) = 7.71, p < .014, as shown 
in Fig. 8a (Hypothesis 3). Pairwise comparisons revealed 
that the time-shifted group hit with significantly lower 
racket acceleration than the control group in test blocks 
1 and 2 (ps < .035). Neither the main effect for block, 
F(1.29, 19.39) = 1.16, p = .31, nor the interaction between 
group and block were significant, F(1.29, 19.39) = 3.68, 
p = .061. As previously reported, by the end of the experi-
ment, the control group hit with racket acceleration values 
that were still outside the optimal region of dynamic stabil-
ity. Like in Experiment 1 and consistent with Hypothesis 3, 
the time-shifted group learned and maintained hitting with 
racket acceleration at impact in this region until the end of 
the experiment (M = −2.61 m/s2, SD = 1.55 m/s2 in test 
block 3).

The ANOVAs on median absolute error and interquar-
tile range of error did not reveal significant main effects or 
interactions for block and group, Fs < 1, ps > .50.

Discussion

This study examined how the manipulations of a task in a 
virtual environment can implicitly guide subjects toward 
a desired behavior that also persisted after the removal of 
the guidance. Using the rhythmic perceptual-motor skill of 
bouncing a ball, this experiment introduced a task-based 
intervention to subtly shape performance. Our approach 
capitalized on virtual environments, which have become a 
prominent tool in motor neuroscience and rehabilitation to 
deliver feedback that goes beyond delivering quantitative 
information after completion of performance (Holden and 
Todorov 2002; Huber et al. 2010; Lange et al. 2012). The 
results supported our three hypotheses: subjects could be 
guided to learn the dynamically stable solution faster than 
controls (Hypothesis 1). Immediately after the manipula-
tion was removed, they maintained their performance under 
normal conditions (Hypothesis 2). This enhanced perfor-
mance persisted over extended practice (Hypothesis 3).

Unlike most previous studies on learning and adaptation, 
we chose a rhythmic task, complementing the numerous 
learning and adaptation studies on discrete reaching move-
ments. Based on previous theorizing and experimental sup-
port, it can be expected that learning rhythmic movements 
has different characteristics and may obey different princi-
ples (Hogan and Sternad 2007, 2013). This study focused 
on dynamic stability, a characteristic inherent to rhythmic 
movements, ranging from ball bouncing to locomotion. 
Previous theoretical and experimental research on the ball 
bouncing task showed that dynamic stability afforded a 
solution that obviated error correction and was less sensi-
tive to noise. Skilled experts robustly converged to these 
solutions, characterized by negative racket accelerations, as 
shown in several different experimental setups and instruc-
tional conditions (Schaal et al. 1996; Katsumata et al. 2003; 
Wei et al. 2007, 2008; Huber et al. 2015). Importantly, sub-
jects are not aware of how their strategy changes with prac-
tice. Hence, explicit information about the desired strategy 
or the central variable is probably less effective or even 
unnecessary, although this remains to be tested.

This study developed a subtle intervention that could 
steer subjects to the dynamically stable behavior. Unlike in 
many motor adaptation studies using force fields or visuo-
motor rotations, where the after effects are very short-lived 
when the manipulation was removed, the learned behav-
ior in this study persisted. In Experiment 1, the test block 
showed that racket accelerations stayed negative, although 
there was a significant, yet small, increase from −5.32 
to −4.40 m/s2. However, this increase should not be over 
interpreted, as both values remained within the range of sta-
bility between −2 and −5 m/s2 (Schaal et al. 1996). In fact, 
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prior studies showed that experienced subjects converged 
to hitting with a racket acceleration value of approximately 
−3 m/s2 (Wei et al. 2008). Hence, this increase may be 
interpreted in line with this previous observation. Experi-
ment 2 further tested the persistence by including three test 
blocks that showed again that the impacts maintained the 
signature of dynamic stability. It should be pointed out that 
three blocks with 12 trials of approximately 60 bounces 
each amounted to ~720 single bounces and presents a rel-
atively long test phase. By the end of the experiment, the 
two time-shifted groups learned to use solutions with sta-
bility, whereas the control group only learned solutions 
outside of this desired range. While the results of these 
two experiments demonstrate that this efficient behavior 
persisted after removing the manipulation, further investi-
gation is needed to determine whether it is retained in the 
longer term and when there are breaks between the practice 
and the test blocks.

Going beyond error to measure task performance

It should be highlighted that over the course of practice, 
there was no significant difference in the error measures 
between the control group and the time-shifted group. 
Hence, analysis of error alone would not have differenti-
ated between the two groups, as these performance changes 
differed from the paradigmatic error-based learning (Die-
drichsen et al. 2010). As introduced above, bouncing a 
ball rhythmically has redundancy, and low error can be 
achieved with different strategies. While the dynamically 
stable strategy is advantageous as it is more noise-tolerant, 
it is not necessary for task achievement. Previous work 
highlighted how novices and experts employed different 
degrees of error correction versus exploitation on these 
passive error compensation mechanisms (Wei et al. 2007, 
2008). It should also be pointed out that hitting with more 
negative racket acceleration was not an immediate response 
to the manipulation. Rather, it took several blocks of prac-
tice until the time-shifted group reached significantly lower 
negative racket accelerations at impact.

The observation that the errors did not differ between 
the experimental and the control group raised the ques-
tion: what signaled and guided subjects to the dynami-
cally stable behavior? We previously argued that the stable 
solutions are computationally less demanding because, in 
principle, they do not require active monitoring of the ball 
trajectory to correct errors. In contrast, under unstable con-
ditions, continuous corrections of perceived errors in the 
ball amplitude of the previous bounce are required. Such 
continuous monitoring requires perceptual and control 
processes, which subjects might sense as computational 
effort and seek to gradually minimize. Such arguments are 

consistent with studies that have shown support for effort 
minimization (e.g., Emken et al. 2007).

Another type of effort that may play a role in optimizing 
performance is mechanical energy. The maximum ampli-
tude of the ball is determined by racket velocity at contact, 
together with the pre-impact ball velocity and the absolute 
height of the impact. Considering one bounce in isola-
tion, it may be argued that subjects should hit the ball at 
peak velocity of the racket trajectory to impart maximum 
energy to the ball for a given racket amplitude. Subjects 
may then decrease the racket amplitude, while still impact-
ing the ball at sufficiently high peak velocities. This was 
actually proposed in previous work on juggling robots, but 
has never been observed in our human experiments (Bühler 
et al. 1990, 1994). Nevertheless, to examine whether racket 
amplitude decreased with practice, facilitated by the time-
shifted condition, racket amplitudes were analyzed. Con-
sistent with prior findings, the racket amplitudes neither 
increased nor decreased throughout practice. This permit-
ted the conclusion that mechanical efficiency did not play 
a role.

Time‑shifted manipulation is different from adding 
random noise

The random noise condition was added to test whether it 
was indeed the subtle velocity manipulation that had the 
desired effect on performance, and it was not only per-
ceived as noise. As all measures show, performance in the 
noise condition was significantly the worst. In fact, sub-
jects in this group very quickly showed frustration, because 
none of their attempts reliably resulted in the desired per-
formance. Hence, only three subjects were collected as the 
prolonged task performance with random outcome was 
thoroughly irritating to subjects. One other rationale behind 
adding extrinsic noise was that it may aid in exploration 
and the discovery of more advantageous solutions. How-
ever, this rationale proved not effective in the current exper-
iment. One reason may have been that the added noise was 
relatively large. After the experiment, subjects in the noise 
group reported a sense of helplessness, as they felt that they 
had no control over their own performance. Manley et al. 
(2014) similarly reported in a redundant line-reaching task 
that neither adding nor amplifying noise led subjects to 
discover the optimal solution, unless they were explicitly 
aware of the task-relevant variable.

Designing interventions for persistent behavior

In these experiments, persistence occurred because sub-
jects most likely did not perceive any change in the task 
or the environment when the manipulation was removed. 
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One reason why subjects did not notice the removal of 
the manipulation is that the manipulation did not cause a 
change in the visuomotor mapping. A previous experiment 
by Morice et al. (2007) on the same rhythmic task did not 
achieve persistent behavior. They shifted the racket posi-
tion and velocity in phase to examine how subjects learn 
new attractor solutions. This created a mismatch between 
proprioceptive and visual feedback that had to be learned. 
Hence, similar to visuomotor adaptation studies, the 
acquired behavior disappeared very fast after the display 
returned to normal conditions. To avoid such fast return to 
baseline behavior, the present study only manipulated the 
racket velocity used for ball release, which did not alter the 
visual display of the racket.

A second reason why the removal of the perturbation 
did not affect behavior is that the changed behavior also 
resulted in successful performance of the task under nor-
mal conditions. Initially, subjects experienced difficulties 
when they performed with their typical novice strategy, 
mostly sticking solutions (Fig. 5). However they quickly 
learned to hit the ball later in the decelerating racket tra-
jectory, which led to the desired decrease in the error and 
its variability. By the time the manipulation was removed, 
subjects had found solutions that led to dynamic stability 
both in the manipulated and unmanipulated versions of the 
task. Hence, removing the manipulation did not increase 
error and variability, and subjects did not perceive a reason 
to alter their behavior.

Implications for motor rehabilitation

While rhythmic ball bouncing is an experimental toy 
task, it has many similarities to walking. Most centrally, 
the contact fully determines the flight phase. A recent 
series of studies by Reisman and colleagues on walking in 
post-stroke patients has demonstrated the utility for such 
implicit interventions on gait asymmetries (Reisman et al. 
2007, 2009, 2013). Using a split-belt treadmill, patients 
walked on two parallel belts, and their asymmetries in step 
length were exaggerated by moving the belt for the paretic 
leg at a slower pace than for the non-paretic leg. Increasing 
the asymmetries drove the nervous system to adjust step 
length, and patients achieved better symmetry between the 
two step lengths. Furthermore, this improvement was trans-
ferred to overground walking. Reisman et al. (2009) attrib-
uted this to the fact that the improved symmetry in step 
length may have been beneficial in terms of energy cost, 
balance, or efficiency. In contrast, when control subjects 
completed the same split-belt training, the training induced 
asymmetries that did not transfer to overground walking. 
These results highlight that interventions for motor rehabil-
itation and motor learning must guide subjects toward the 
correct behavior in unaugmented task conditions.

Robot-assisted therapy is another example of an inter-
vention that guides patients toward the correct behavior. 
Unlike therapy for the upper limbs, however, the robotic 
interventions for improving locomotion have fallen short 
so far. The most prominent robotic intervention for loco-
motion is to passively move the limbs through a predefined 
kinematic pattern. However, recent studies have shown that 
this type of training did not improve gait (Hornby et al. 
2008; Hidler et al. 2009). Marchal-Crespo et al. (2014) 
similarly showed that in the rhythmic ball bouncing, such 
robotic guidance of the racket trajectory actually hampered 
learning. This guidance contrasts with the time-shifted 
manipulation, where the stable solution was not imposed 
on the subjects. The subjects were still actively engaged 
in the learning process, which has proved to be critical for 
motor recovery (Lynch et al. 2005).

Furthermore, the manipulation provided minimal inter-
vention as it only affected the critical instant, when the 
ball impacted the racket, as opposed to the entire racket 
trajectory. Prior studies on ball bouncing have also dem-
onstrated the importance of ball–racket impact in behav-
ior. For instance, in contrast to haptic guidance through-
out the entire racket trajectory, haptic feedback at the 
ball–racket impact does improve performance and learning 
(Sternad et al. 2001; Ankarali et al. 2014). An intervention 
that focuses on physical contacts has also been a promis-
ing direction for robotic assistance in locomotor recov-
ery. Ahn and Hogan (2012) demonstrated that periodic 
torque pulses to the ankle during gait can increase and 
decrease walking cadence. Similar to the ball bouncing 
task, exploiting dynamic stability may govern locomotion 
patterns, as suggested by research using passive-dynamic 
machines (McGeer 1990; Collins et al. 2005;  Garcia et al. 
2007).

Conclusions and outlook

With the time-shifted manipulation, the learned behav-
ior persisted because removing the manipulation did not 
change the visuomotor mapping and did not decrease task 
performance. These design principles should be considered 
when developing interventions for motor rehabilitation, 
where persistence and ultimately retention of the learned 
behaviors is critical. While this study could only make a 
case in point, it highlights that feedback to the learner can 
and should take on more than error information about the 
outcome. In learning real-world skills, we are typically 
guided by parents, teachers, and coaches, and their guid-
ance rarely comes in the form of an error score, or an 
explicit statement what the optimal solution is. Laymen 
and even coaches all too frequently do not have the vocab-
ulary, let alone the quantitative measures to provide exact 
description of the target skill or their deviations. Instead, 
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they provide instruction for how it should feel or look to the 
performer. In contrast, current research and virtual reality-
based rehabilitation practices emphasize error- and reward-
based learning, which is effective in many experimentally 
controlled tasks (Winstein and Schmidt 1990; Holden and 
Todorov 2002; Huber et al. 2010; Abe et al. 2011; Galea 
et al. 2015). However, activities of daily living are almost 
invariably redundant tasks that require additional and sub-
tler guidance to help the learner or patient identify the 
mapping between execution and task outcome. It would be 
desirable to further develop the principles of such implicit 
guidance that go beyond the error-based approach and 
develop manipulations that can be applied for rehabilitation 
through virtual environments.
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