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cerebellar subjects as a model of dysmetria, also supports 
the view that a proper APA chain may play a crucial role in 
refining movement metria.
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Introduction

It is well known that a voluntary movement induces reac-
tive forces that are discharged on various body segments. 
In movements involving large masses, these forces may 
cause a whole-body equilibrium disturbance (Bouisset and 
Zattara 1987; Bouisset and Do 2008; see also Hess 1943) 
which is counteracted by inter-limb anticipatory pos-
tural adjustments (APAs) (see also Massion 1992). More 
recently, it has been demonstrated that an accurate stabi-
lization of the segments is performed also in motor tasks 
which do not involve the whole-body equilibrium. Indeed, 
Caronni and Cavallari (2009) reported that an intra-limb 
APA chain develops in several upper-limb muscles also 
when simply flexing the index finger. In this case, the prime 
mover flexor digitorum superficialis (FDS) is clearly pre-
ceded by a major postural inhibitory activity in biceps bra-
chii (BB) and anterior deltoid (AD) and by an excitatory 
burst in triceps brachii (TB). Such intra-limb APAs would 
not only guarantee the maintenance of the arm posture but 
are also very important in controlling the trajectory and the 
final position of the moving segment, i.e., metria.

Studies regarding the neural structures generating the 
APA command are surprisingly rare. Severe APA impair-
ments in patients with Parkinson’s disease suggested a role 
of the basal ganglia in the anticipatory postural control 
(Viallet et al. 1987). Similar APA impairments were also 
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observed in patients with a lesion of the primary motor cor-
tex (M1) or of the supplementary motor area (SMA) (Vial-
let et al. 1992). With regard to pre-movement brain activity 
associated with APAs in healthy subjects, a functional MRI 
study by Schmitz et al. (2005) reported that APAs were 
associated with activation of sensorimotor areas, SMA and 
the cerebellum, while a magnetoencephalographic study 
by Ng et al. (2012) found anticipatory brain activity in 
basal ganglia, SMA and thalamus. It is apparent that the 
neural network generating APAs is still debated and, from 
the scarcely available data, it is particularly challenging to 
describe the functional role of each structure taking part in 
the anticipatory postural control.

For this reason, we thought interesting to shed further light 
on the involvement of the cerebellum in the APAs generation, 
also because it is known that the cerebellar circuitries play a 
major role in controlling the movement metria. Indeed, con-
sidering that the cerebellum controls rate, smoothness and 
coordination of the voluntary movement (Manto 2006; Mor-
ton and Bastian 2007) and that APAs and voluntary move-
ment are part of a unique motor command (Bolzoni et al. 
2012; Bruttini et al. 2014), it should be expected that cerebel-
lum, especially in its role in distributing and temporizing the 
motor command, contributes in organizing APAs and, accord-
ingly, also in refining movement metria.

Thus, we analyzed the well-known intra-limb APA chain 
that stabilizes the arm when the index finger is briskly 
flexed (Caronni and Cavallari 2009) in a group of ataxic 
subjects affected by a slowly progressive cerebellar degen-
eration, as well as in an equal number of healthy subjects. 
In fact, considering cerebellar subjects as a model of dys-
metria, a disruption of the intra-limb APA organization 
would (1) prove the cerebellum involvement in APA con-
trol and (2) support the view that a proper APA chain may 
play a crucial role in refining movement metria (as pro-
posed by Caronni and Cavallari 2009).

Methods

Thirteen adult subjects with cerebellar ataxia (ATAXIA) 
were analyzed in this study. All subjects gave written con-
sent to the procedure, after being informed about the nature 
of the experiments. The local ethical committee approved 
the procedure in accordance with the 1964 Declaration of 
Helsinki.

All ATAXIA subjects (age 48.5 years ± 13.0 SD, six 
females) suffered from a slowly progressive adult-onset 
cerebellar syndrome, without any other involvement of 
the sensory and motor systems. Seven cases were spo-
radic and four had a positive family history for autosomal 
dominant cerebellar ataxia type III (Fujioka et al. 2013) 
and two for autosomal recessive ataxia. Mean age at onset 

was 23.2 ± 12.4 years. All subjects presented gait ataxia, 
four-limb dysmetria, mild dysarthria and occasionally mild 
increase in deep tendon reflexes, without spasticity. Cog-
nition was normal. Neurophysiological evaluations showed 
normal sensory and motor conduction velocities and no 
signs of axonal neuropathy. Scale for the Assessment and 
Rating of Ataxia (SARA; Schmitz-Hübsch et al. 2006) was 
applied in all subjects. All patients were ambulatory; the 
mean total SARA score was 8.0 (range 3–20, median 6.0). 
The SARA scores measuring upper-limb dysmetria ranged 
from 0.5 to 2 in all cases.

Brain 1.5-T MRIs imaging showed mild-to-severe cerebel-
lar atrophy, mainly affecting the cerebellar vermis, in all sub-
jects. In the majority of the cases, a mild atrophy of the cer-
ebellar hemispheres was also visible. Cerebral cortex, basal 
ganglia, pons, medulla and cerebral white matter showed no 
focal lesions or pathological signal intensity changes.

Experimental procedure

The experimental arrangement has been fully described in a 
previous paper (Caronni and Cavallari 2009). ATAXIA sub-
jects sat on a chair with both arms along the body, elbow 
flexed at 90°, hand prone in axis with the forearm and the 
index finger extended. All subjects involved in the experi-
ment were tested on the dominant limb. The index finger 
was kept in contact with a proximity switch (Pepperl and 
Fuchs, CJ10-30GK-E2), so that the metacarpophalangeal 
joint angle was about 180°, all other fingers hanging. Sub-
jects were explicitly asked to keep their back supported, 
the upper-limb still and both feet on the ground through-
out the experiment. The chair was height adjustable and the 
proximity switch screwed on an articulated arm (Manfrotto 
143 MAGIC ARM® + 035 Superclamp Kit®); both were 
adapted to the different body dimensions of the subjects. 
The subject position was always visually controlled by the 
experimenter. Subjects were asked to flex their index finger 
at the metacarpophalangeal joint so as to gently tap and rest 
on a flat surface.

Each movement was self-paced and performed after an 
acoustic signal delivered every 7 s. Subjects were instructed 
to wait for the acoustic go-signal and then flex the finger 
at will, within 4 s. This procedure was adopted to exclude 
any reaction time. In each experiment, index finger flexion 
was performed 45 times. Subjects never complained about 
fatigue.

Given the well-known bradykinesia of cerebellar sub-
jects, recordings in ATAXIA subjects were matched to 
those in an equal number of healthy subjects (CTRL), 
selected within our database, who performed the brisk fin-
ger flexion with a comparable speed. Mean speed (±SE) 
was 420 ± 34°/s for CTRL and 412 ± 43°/s for ATAXIA; 
the unpaired t test with common variance estimate led to 



199Exp Brain Res (2015) 233:197–203 

1 3

t24 = 0.14, P = 0.9. Levene’s test showed no difference in 
the variances of movement speed (F1,24 = 0.53, P = 0.47).

Movement and EMG recordings

The onsets of the fingertips movement were monitored by 
the proximity switch. Flexion–extension of right metacar-
pophalangeal joint was recorded by a strain-gauge goniom-
eter (mod. F35, Biometrics Ltd®, Newport, UK), taped to the 
joint. Angular displacement was DC amplified (P122, Grass 
Technologies®, West Warwick, RI, USA), and gain was 
calibrated before each experimental sequence. Pairs of pre-
gelled surface electrodes, 24 mm apart (H124SG, Kendall 
ARBO, Tyco Healthcare, Neustadt/Donau, Germany), were 
used to record the EMG signal from the right FDS, the prime 
mover, and from some of the ipsilateral postural muscles: 
BB, TB and AD. A good selectivity of the EMG recordings 
was achieved both by careful positioning of the electrodes 
and by checking that activity from the recorded muscle, dur-
ing its phasic contraction, was not contaminated by signals 
from other sources. The EMG was amplified (IP511, Grass 
Technologies®, West Warwick, RI, USA; gain 2–10 k) and 
band-pass filtered (30–1,000 Hz, to minimize both move-
ment artefacts and high-frequency noise). Goniometric 
and EMG signals were A/D converted at 2 kHz with 12-bit 
resolution (PCI-6024E, National Instruments®, Austin, TX, 
USA), visualized online and stored for further analysis.

Data analysis

On each sequence, the 45 EMG traces of the prime mover 
and those simultaneously recorded from the postural mus-
cles were digitally rectified and integrated (time constant: 
25 ms).

The onset of FDS activity was detected by a software 
threshold set at ±2 SD of the mean reference signal level, 
calculated from 1,000 to 500 ms prior to the movement 
onset. Traces collected from each muscle were then aver-
aged in the temporal window from 1,000 ms before to 
300 ms after FDS onset. Latency of the postural activity 
was measured off-line on the averaged traces by using the 
same criteria applied to FDS and visually validated.

The latency variances of APAs and movement were 
compared between ATAXIA and CTRL groups by means 
of Levene’s test. Mean latency values were compared by 
unpaired t tests with separate variance estimates. Statistical 
significance was set at P < 0.05.

Results

In the representative CTRL subject illustrated in Fig. 1, the 
FDS muscle activation was (1) preceded by clear inhibitory 

postural adjustments in BB and AD muscles and (2) almost 
synchronous to the excitatory postural adjustment in TB; 
this APA pattern preceded index finger flexion of about 
100 ms. Instead, in the ATAXIA subject, APAs maintained 
their pattern but were clearly delayed: In AD, APA was 
almost synchronous to the prime mover, while in BB and 
TB APAs were so delayed that they even lagged the index 
finger flexion.

The behavior of individual CTRL and ATAXIA subjects 
is shown in Fig. 2. Despite comparable movement latencies, 
ATAXIA subjects overall showed a clearly delayed pattern 
of postural adjustments; indeed, APAs often lagged the FDS 
and, in some cases, occurred close to the movement onset. 
Moreover, some ATAXIA subjects lacked inhibitory APAs. 
In fact two of them did not show APAs in both BB and AD, 
two lacked APA in BB only and other two lacked it solely 
in AD. No case of APAs reversal, from inhibitory to excita-
tory or vice versa, was observed. It is also apparent from the 
same figure a higher variability in TB and BB APAs laten-
cies in the ATAXIA group. Levene’s test found significant 
ATAXIA versus CTRL differences of latency variability in 
TB and BB (F1,24 = 4.67, P = 0.04; F1,20 = 8.13, P = 0.01, 
respectively) but not in AD, nor for movement (F1,20 = 0.04, 
P = 0.84; F1,24 = 1.39, P = 0.25, respectively).

Mean latency for APAs and movement in the two groups 
are plotted in the lowermost panel of Fig. 2. Despite 
movement latency was at all similar in the two groups 
(t21.78 = 1.06, P = 0.3), excitatory APA in TB was almost 
synchronous to FDS in CTRL while it lagged FDS of 
about 27 ms in ATAXIA subjects. Inhibitory APAs in BB 
and AD, which led the FDS of about 40 ms in CTRL, were 
almost synchronous to FDS in ATAXIA subjects. In each 
muscle, APA latency in ATAXIA was significantly differ-
ent from that observed in CTRL (t17.07 = 2.26, P = 0.037; 
t10.81 = 3.53, P = 0.005 and t15.03 = 4.45, P < 0.001, for 
TB, BB and AD, respectively). No significant correla-
tion between changes in APA timing and SARA score was 
found.

Discussion

When performing a brisk index finger flexion, ATAXIA 
subjects showed a timing disruption of intra-limb APAs, 
while their pattern (excitation in TB; inhibition in BB and 
AD) was unmodified. Since APAs are known to be scaled in 
amplitude and latency according to the speed of the motor 
action (Horak et al. 1984; Shiratori and Aruin 2007), the 
speed effect was excluded by matching ATAXIA to CTRL 
subjects who displayed comparable speeds. Moreover, the 
similarity of speed variability grants that the significant dif-
ference found in the variability of APA latency stems from 
the cerebellar dysfunction.
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Altogether, these data sustain the hypothesis that the 
cerebellum is essential in tailoring the timing of APAs with 
respect to prime mover activation, and open the question 
whether the cerebellar dysmetria may stem from an errone-
ous timing of APAs.

Role of cerebellum in APA control

The cerebellum is fundamental for controlling rate, smooth-
ness and coordination of voluntary movement (Manto 
2006; Ramnani 2006; Morton and Bastian 2007) as well 
as in preparation, initiation and timing of motor acts (Ivry 
and Keele 1989; Ivry 1997; Timmann et al. 1999; Cerri 
et al. 2005; D’Angelo 2010). Cerebellar damage appears 
to disrupt different movement features, generally ascribed 
to an altered timing–scaling and amplitude–scaling of ago-
nist and antagonist activity (e.g., Brown et al. 1990; Manto 
et al. 1994; Flament and Hore 1986). Cerebellum may pre-
dictively scale recruitment of different muscles in relation 
to the mechanical demands (Bastian et al. 1996; Massaquoi 
and Hallett 1996; Topka et al. 1998), and thus, ataxia 
should be more pronounced in those movements requir-
ing coordination of many muscles (Thach et al. 1992). One 
of the typical signs observed in cerebellar patients is dys-
metria, i.e., the inability to properly reach a given target. 
Cerebellar dysmetria occurs both proximally and distally 
in upper and lower limbs and affects single-joint as well 

as multi-joint movements (Blouin et al. 2004; Ullén et al. 
2003).

As stated in the introduction, the role of cerebellum in 
APA control is instead an open question. Indeed, Mummel 
et al. (1998) reported normal APAs in patients with cerebel-
lar pathology, and also Timmann and Horak (2001) found 
that the temporal parameters of APSs were preserved in 
cerebellar subjects performing unperturbed steps. However, 
several other studies positively concluded for a cerebel-
lum role in APAs control. Indeed, patients with cerebellar 
lesions fail to show a normal anticipatory adjustment in 
grip force when lifting or moving an object (Müller and 
Dichgans 1994; Babin-Ratté et al. 1999). Moreover, David-
son and Wolpert (2005) suggested a stronger role of feed-
forward internal models versus sensory feedback in several 
aspects of human motor control. The cerebellum is one of 
the most likely site for storing forward models (Kawato 
et al. 2003, see also Bastian 2006). Finally, Asaka and 
Wang (2011) found that cerebellar ataxic patients showed 
altered feed-forward muscle synergies and multi-mode 
coordination when compared to healthy subjects, witness-
ing a disorganization of feed-forward muscular control.

Our data agree with the above conclusions, in particular 
supporting that the cerebellum plays a crucial role in setting 
the temporal distribution of APAs while not affecting the 
APA pattern. On the other hand, delayed APAs during fin-
ger flexion seem to contrast with the anticipation of APAs 

Fig. 1  Changes in intra-limb APAs latencies in cerebellar sub-
jects. Recordings from one representative subject of the healthy 
group (CTRL) are compared to recordings of a cerebellar subject 
(ATAXIA). Note that in the healthy subject the prime mover activa-
tion is preceded by inhibitory APAs in biceps brachii (BB) and ante-
rior deltoid (AD) and by an excitatory APA in triceps brachii (TB). In 
the cerebellar patient, a various degree of disruption in APAs timing 

and a delayed finger flexion are observed. In each subject, top panel 
shows the activation of the prime mover flexor digitorum superficialis 
(FDS), matched to the ensuing finger flexion (MOV); bottom panel 
illustrates the APAs in elbow and shoulder muscles. Mean reference 
signal level has been subtracted from each EMG trace. AD amplitude 
in ATAXIA has been scaled by a factor 3
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found by Diedrichsen et al. (2005) in the bimanual barman 
task. However, Diedrichsen interpreted the premature APAs 
in cerebellar subjects as a safety strategy to avoid a violent 
elbow flexion when unloading the hand; such strategy is 
clearly useless in our finger flexion task; hence, there is no 
need to anticipate APAs.

Instead, the delayed APAs described in the present study 
conform to those described by Yamaura et al. (2013), in 
transgenic spinocerebellar ataxic mice which had to reach 
and drink from a flask while standing. Different from the 
wild type, ataxic mices activated hindlimb postural muscles 
markedly later than neck prime movers, i.e., they showed 
delayed APAs.

A last remark regards the significantly larger inter-sub-
ject variability in APAs timing observed in ATAXIA versus 
CTRL subjects. This finding agrees with previous literature 
(Diener et al. 1992; Diedrichsen et al. 2005; Asaka and 
Wang 2011) and may be due to a different clinical expres-
sion of the cerebellar degeneration.

APAs and metria

It has been suggested that APAs may play a crucial role in 
controlling the finger final position during a brisk flexion. 
Indeed, indirect evidences showed that the absence of APAs 
may induce a dysmetria movement (Caronni and Cavallari 
2009). Symmetrically, when inducing dysmetria in healthy 
subjects by means of prismatic lenses, the APA pattern 
was altered, without changes in prime mover recruitment 
(Caronni et al. 2013).

Considering our recent suggestion that APAs and prime 
mover activation are part of a unique motor command 
(Bruttini et al. 2014), one should expect that APAs are pre-
sent also in dysmetria movements, most probably altered 
in timing and/or pattern. Actually, ATAXIA subjects, clini-
cally classified as dysmetria, showed a temporal disrup-
tion in the intra-limb APAs without involvement of the 
prime mover recruitment. This also agrees with the finding 
of Bastian et al. (2000), who studied cerebellar subjects 
performing elbow flexion, with or without shoulder fixa-
tion. They showed that cerebellar subjects were dysmetria 
without shoulder fixation and became ‘metric’ with it. The 

Fig. 2  Comparison of the APA chain in healthy and in cerebellar 
subjects. Latencies of finger flexion (MOV) and APA onsets in TB, 
BB and AD are plotted with respect to onset of FDS. Each single sub-
ject is represented. Dashed line marks the average movement latency 
for either group of subjects. Note that in ATAXIA APAs are delayed 
and absent in four cases (marked with an X). The lowermost panel 
shows mean latency (±SE) of the onset of finger flexion and APAs. 
Asterisks mark significant differences found by unpaired t test

▸
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impairment in active shoulder stabilization by interaction 
torques, shown by the authors, may be seen as an impair-
ment of APAs in proximal muscles.

Conclusion

The present data confirm the hypothesis that the cerebel-
lum is involved in controlling APAs timing with respect to 
the prime mover activation and also support the view that a 
proper APA chain may play a crucial role in refining move-
ment metria.
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