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Introduction

A prominent question in human motion control is what 
coordinate system the brain uses to store and recall mem-
ories of successful actions. If such a coordinate reference 
frame is known, it would enable the ability to model and 
predict how some training situations may be better than 
others for a wide range of training applications that include 
sports coaching, flight simulation, and neurorehabilita-
tion. For example, if the brain uses joint angles as the basic 
coordinate frame for representing action, this might suggest 
that the therapist should align their body in parallel with 
the patient as they provide therapeutic guidance.

Previous studies have suggested that our brain makes 
use of an intrinsic, joint-based coordinate reference when 
extrapolating learned skills (intra-manual transfer) to an 
untrained workspace with the training arm (Lackner and 
Dizio 1994; Shadmehr and Mussa-Ivaldi 1994; Gandolfo 
et  al. 1996; Goodbody and Wolpert 1998; Shadmehr and 
Moussavi 2000). However, the results are ambiguous 
whether the observed success using an intrinsic reference 
frame is merely due to the learning or an advantage due to 
preexisting skills. An alternative evaluation is to focus on 
the pre-to-post performance changes due to learning. Here, 
we present a variant experimental technique that evalu-
ates pre-to-post changes to determine whether one or more 
coordinate reference frame benefits from training. Our 
method contrasts against previous works that only consid-
ered whether a single, particular coordinate frame better 
explained experimental results.

In contrast to the intra-manual transfer, another practical 
situation requires a strategy to transfer skills between hands 
(inter-manual transfer). Previous studies have reported that 
the inter-manual transfer employs an extrinsic coordinate 
frame (Dizio and Lackner 1995; Criscimagna-Hemminger 
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et  al. 2003; Burgess et  al. 2007). However, their methods 
only distinguished between the possibility of Cartesian 
and mirror representations without testing if there were 
others. Furthermore, it is puzzling that the intrinsic coor-
dinate frame is favored by the trained arm, while the extrin-
sic coordinate frame is favored by the untrained arm. To 
date, no study has tested extrapolation of learned skills to 
an untrained workspace with an untrained arm. Several 
outcomes may result from such a “dual” transfer condition 
where one has to extrapolate and change hands. One possi-
bility is that such transfer may result in interference of two 
representations and thus a degradation of performance. On 
the other hand, it may result in a winner-take-all phenome-
non where one coordinate system is favored. Finally, it may 
result in several coordinate systems used simultaneously, 
suggesting multiple parallel representations contributing to 
the learned control.

Furthermore, research suggests that the manner in which 
feedback is presented may lead to different coordinate rep-
resentations (Ghez et al. 2000). Absolute performance can 
be influenced differently by feedback that may be aligned 
(in first person) with the limb where cursor is projected 
directly above hand, than by a non-aligned, vertical display 
where cursor is projected on a computer screen. Increased 
movement variability and initial direction errors in aiming 
tasks have been reported when using a non-aligned display 
versus an aligned display (Bedard and Proteau 2005; Bo 
et al. 2006; Veilleux and Proteau 2011). While these stud-
ies highlight the impact of visual alignment on online con-
trol and movement planning, it is unknown how the display 
mode might influence the transfer of learned skills.

Our study focuses on evaluating generalizations of motor 
skills to an untrained workspace using both the training 
arm and non-training arm. We observed overall improve-
ments in the untrained region and in both the end-point and 
joint-based fields, suggesting multiple, simultaneous coor-
dinate representations. Furthermore, the display alignments 
(aligned vs. non-aligned) did not affect these observed per-
formance improvements in the untrained workspace. Por-
tions of this work have been presented in preliminary form 
(Parmar et al. 2011).

Materials and methods

Subjects

Thirty right-handed human subjects (20  M, 10 F) were 
recruited in this study after obtaining written informed con-
sent approved by the local ethics committee. These subjects 
had no history of neurological, shoulder, or elbow disorders 
and were within the age range of 21–40 years. We excluded 
subjects with ambidexterity.

Experimental setup

Subjects sat in front of a manipulandum robot and grasped 
the handle or the end effector (Fig. 1). We restrained their 
shoulders and supported their elbows by multi-link arm 
supports (JAECO/Rancho MultiLink Mobile Arm Support) 
so that their arm movements were planar. These multi-link 
arm supports had three degree of rotational freedom in a 
plane and had significantly low inertia compare to human 
arm.

The manipulandum was a light weight, low friction, 
two degrees of rotational freedom robot (Fayé 1986). 
The manipulandum was designed for clinical and neu-
rorehabilitation research applications and was configured 
through impedance control for safe, stable, and compliant 
operation. Two low-inertia direct current torque motors 
(PMI Corp. model JR24M4CH, Kolmorgen Motion Tech-
nologies, Commack, NY) were mounted on the base of 
the robot and were connected independently to each joint 
using a parallelogram arrangement. Position measurements 
(400  Hz) were taken using two optical encoders (model 
25/054-NB17-TA-PPA-QARIS, Teledyne Gurley, Troy, 
NY).

Each subject experienced one of two video displays 
(Fig. 1). These displays were used to show the position of 
the handle (as a cursor) and targets. The non-aligned dis-
play was a LCD monitor and mounted directly above the 
robot, approximately centered at eye level. The aligned 
display was an opaque, rectangular white screen, mounted 
horizontally above the handle of the robot. We used ceiling 
mounted video projector to project visuals on the aligned 
display. We calibrated both the aligned and non-aligned 
displays to represent the absolute spatial workspace of the 
handle.

Experimental procedures

The reaching task was performed in one of two 
20  ×  20  cm2 workspace regions named training and 
test. Each workspace was centered 31 cm anterior to the 
chest, with the training workspace 30  cm to the right of 
the sagittal midline and the test workspace centered on the 
midline. In order to prevent inertial artifacts of the robot 
associated with changing the operating configuration, the 
workspaces were appropriately placed by moving each 
subject’s seat.

Each subject was instructed to move the handle of the 
robot to bring a cursor into a circular target. The cursor 
was 2-mm-diameter circle, which indicated the position of 
the handle, and the target was 1-cm-diameter circle. The 
reaching task included moving the cursor from the center 
of a workspace to a target and back (center-out reaching 
movements). Targets were placed 10  cm away from the 
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workspace center in the direction of 24, 114, 204, and 294 
degrees from x-axis. All subjects experienced the same ran-
dom sequence of reaching targets chosen from the set of 
four movement directions. Furthermore, the number of dif-
ferent movement directions per phase experienced was the 
same for each subject.

During certain phases of the experiment, we pro-
grammed the manipulandum to produce velocity dependent 
forces at the handle, indicated by the vector f in the follow-
ing equation:

where ẋ was the velocity vector of the subject’s hand, and B 
was a constant viscosity matrix of the viscous environment:

As the subjects made reaching movements, forces were 
applied on their hand by the robot based on Eq. (1). Note 
that this field was translation-invariant in the end-point 
coordinates (end-point field).

During other phases of the experiment (explained 
below), we programmed the manipulandum to produce 

(1)f = Bẋ,

(2)B =

[
−15.69 9.80

9.80 15.69

]
N · s/m.

force fields which depended upon the angular velocities of 
the subject’s elbow and shoulder joints:

where τ was the torque vector acting on the subject’s 
shoulder and elbow joints, q̇ was the subject’s joint angu-
lar velocity, and W was a constant viscosity matrix of the 
viscous environment in subjects’ joint coordinates. Note 
that the torque field described by Eq. (3) was translation-
invariant in the joint coordinates, unlike the end-point field. 
The torque field in Eq. (3) could be converted to equivalent 
force field:

where J(q) = ∂x/∂q is the configuration-dependent Jac-
obian which maps the configuration from q to x, and the 
superscript T suggests the transpose operation. This illus-
trates how the force field defined by Eq. (4) depends on 
each subject’s limb geometry, origin, and current location 
in the workspace. We chose W such that the force field pro-
duced by Eq. (4) was equivalent to the end-point field in 
the training workspace. For each subject, the matrix W was 
calculated as the following:

where WR and WL are the joint-viscosity matrices, and Jo,R 
and Jo,L are the Jacobians evaluated at the center of the 
training workspace for the subjects’ right and left limb, 
respectively.

The force fields produced using Eq. (4) with WR and WL 
hereafter termed the right-joint field and the left-joint field, 
respectively, which depended upon workspace location. At 
the training workspace, these force fields were identical to 
that produced by Eq. (1). However, this was not the case at 
the test workspace. Therefore, these testing fields could be 
viewed as the extrapolation of the training environment as 
illustrated in Fig. 2.

We trained all subjects to make reaching movements 
in the end-point field at the training workspace and sub-
sequently evaluated their performance in either the end-
point field, right-joint field, or left-joint field at the test 
workspace. The visual feedback of the hand position and 
target was provided using either the aligned or the non-
aligned display. Hence, we define six distinct groups (3 
types of test fields  ×  2 types of displays) with five sub-
jects per group. We minimized speed variance with a slider 
graphic on the top of the screen that indicated satisfactory 
movement times within 0.4–0.6 s. To minimize the impact 

(3)τ = Wq̇,

(4)f =
(
J(q)T

)−1
Wq̇,

(5)WR = JT
o,RBJo, R and

(6)WL = JT
o,LBJo,L,

Fig. 1   Sketch of the manipulandum, visual workspaces, and experi-
mental setup. Subjects sat in front of the manipulandum robot and 
grasped the handle to perform the reaching task. The reaching targets 
were presented using either the aligned or the non-aligned display 
(Here, the aligned display is semi-transparent only for illustration 
purpose)
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of learning during perturbations, the cursor position was 
removed for some trials (no-vision trials) after movement 
onset, detected using a speed threshold of 5 cm/s.

The experiment consisted of a number of distinct phases 
in order to comprehensively test all hypotheses (Fig.  3). 
We first assessed all subjects’ baseline performance (20 
no-vision targets) after short familiarization (40 targets) 
for right limb at the training workspace and for both limbs 
at the test workspace. Then at the test workspace, we 

intermittently (20 out of 140 no-vision targets) assessed 
their both limbs’ initial performance in the presence of one 
of the three evaluation fields (depending on their group) 
for later comparison. These intermittent perturbation trials 
were distributed randomly throughout the total number of 
trials. Subjects could not anticipate the presence of pertur-
bations because (1) force was proportional to velocity and 
hence only present after movement began and (2) visual 
feedback was removed only after movement onset. In the 

Fig. 2   Velocity-dependent 
haptic force environments at the 
training and test workspaces. 
All groups were trained to 
perform the reaching task in the 
end-point field at the train-
ing workspace, and they were 
evaluated at the test workspace 
with a force environment, which 
was extrapolated using either 
the end-point, right-arm joint or 
left-arm joint coordinate system 
(Solid lines on vector fields 
represent eigenvectors)
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similar manner, the right limb’s initial performance in the 
training field (end-point field) was assessed at the train-
ing workspace. The training phase began with all groups 
practicing 170 movements in the end-point field using their 
right limb at the training workspace. Finally, the training 
limb was intermittently exposed to the null field, which 
assessed aftereffects of adaptation.

Our major objective was to assess the generalization 
of learning evidenced by the changes in performance in 
untrained region (test workspace). After a short training 
refresher at the training workspace (20 targets), we asked 
subjects to reach with their left and then right limbs (20 no-
vision targets each) at the test workspace and in the pres-
ence of the evaluation field assigned to their group.

We also compared observed reaching movements of 
human subjects with ideal simulation models that gener-
alize using a single coordinate system. Since the subject’s 
arm movements were restricted within a plane and their 
shoulders were restrained, the 2-link planar manipulator 
offered a close approximation. The dynamics were based 
on (cf. Murray et al. 1994):

where τ is the torque vector, M(q) is the inertial matrix, 
C(q, q̇) is the Coriolis matrix, and N(q, q̇) is the torques due 
to external environmental forces. In configuration space, 
the array of joint angles are expressed as q with its first and 
second time derivatives, q̇ and q̈.

The controller for this model was based on feed-forward 
and feedback schemes. The goal here was to produce joint 

(7)M(q)q̈ + C(q, q̇)q̇ + N(q, q̇) = τ

torques such that the end-effector tracks a desired trajec-
tory, qd. Given the dynamics of the system and qd, we 
wished to achieve q(t) = qd(t). We define the controller as 
following:

where M and C terms computed using qd represents the 
expectations of body’s own dynamics, and KPε, KVε̇ repre-
sents feed-back strategy based on error difference between 
qd and q. Here, qd was assumed to be equal average base-
line trajectory for a single typical subject. Also, N term in 
the controller represents expectation for the environmen-
tal forces that was based on a specific coordinate system. 
Hence, we define three ideal simulation models which use 
either the extrinsic coordinates system (Eq.  1), intrinsic 
coordinate system based on right arm (Eqs. 4, 5), or intrin-
sic coordinate system based on left arm (Eqs. 4, 6). Each 
of these three simulation models underwent the protocol 
(Fig.  3) and experienced each of the evaluation fields per 
simulation, resulting in nine different simulations. Expecta-
tion of the environmental forces (N term) was set to zero 
during the pre-training phases and assumed to be a perfect 
representation of the training force field based on each 
model’s respective coordinate system during the post-train-
ing phases.

The manipulator shoulder locations were chosen approx-
imately to that of a typical subject with respect to the 
training and the test workspaces. The mechanical param-
eters (Shadmehr and Mussa-Ivaldi 1994) used in these 
mathematical models for a typical subject are provided in 

(8)τ = M(qd)q̈d + C(qd, q̇d)q̇d + N(qd, q̇d) + KPε + KVε̇

Fig. 3   Summary of experi-
mental procedure. Three 
groups underwent procedures 
as illustrated in this figure and 
received visual feedback using 
the aligned display. We repeated 
the same procedure for another 
three groups who received 
visual feedback using the non-
aligned display
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Table 1. The stiffness and viscosity matrices were acquired 
from the subjects’ initial exposure to the training field at the 
training workspace through least squares optimization. The 
dynamic equation was solved using ode23 in MathWorks 
MATLAB 2012a.

Data analysis

To remain consistent with the previous work (Shadmehr 
and Mussa-Ivaldi 1994), we used the originally published 
performance measure, velocity correlation, as our pri-
mary metric. This measure quantified similarity between 
the velocity profile of individual hand trajectory and the 
corresponding velocity profile of average baseline trajec-
tory (calculated per direction per workspace per subject). 
In order for subjects to show any improvement with this 
metric in a perturbing force field, they would have to learn 
appropriate compensation for timing as well as spatial 
deviation throughout movement. Trajectories were aligned 
using 5  cm/s onset speed threshold, and the correlation 
coefficient was computed using:

where ρ is the correlation coefficient comparing U and Y 
velocity vectors. Here, U = (u1, u2,…,un) and Y = (y1, y2,…,yn)  
are time series velocity vector sets. As Eq. (9) indicates, 
the correlation coefficient is a ratio between the covariance 
of time series and the product of their standard deviations. 
The value of ρ ranges between −1 and 1, which indicates 
perfectly positive and perfectly negative correlation, in this 
case between two time series of velocity vectors. A value 
of 0 implies orthogonal relationship. The covariance and 
standard deviation are defined as:

(9)ρ =
Cov(U, Y)

σ (U)σ (Y)

The ǫ operator represents the expected value of the argu-
ment and the symbol · in Eq. (11) indicates the dot product 
operation between two vectors.

In such an experiment with intermittent exposure to per-
turbations, it was possible that subjects might learn during 
the initial exposure and final evaluation phases at the test 
workspace (see Fig. 4). Researchers stated that intermittent 
experience of the force fields might be sufficient to learn 
its structure (Braun et  al. 2009). Learning effects during 
these phases may be attributed to aspects that were com-
mon to all experimental conditions and/or learning of the 
perturbations. Because we are interested in evaluating pre-
to-post improvement, one strategy for analysis might be to 
determine the difference between the last perturbed trial 
of initial exposure and the first trial of the final evaluation. 
However, because of the natural variability between pertur-
bation trials, we concluded that regression intercepts would 
provide a better approximation of the true level of perfor-
mance. We first tested for trends within the initial exposure 
and final evaluation phases (per subject). In the case when 
linear regression failed to yield a nonzero slope (t test at 
the 5 % significance level), we simply used the mean. How-
ever, when linear fit yielded nonzero slope, we fitted per-
formances to an exponential regression:

Only the perturbed trials were used for these regres-
sions. This approach removed any effect of learning that 
might have occurred within initial exposure or final evalu-
ation phases. While linear regression determined trends, 
the exponential captured the typical nonlinear shape of 
learning curve tendencies during these phases. Note that 
an exponential function not only can imitate the saturation 
effects associated with learning, but also can represent lin-
ear trends if the data has such form.

Fitting exponential curves on the intermittent ini-
tial exposure performances (velocity correlation metric) 
allowed us to conservatively approximate subjects’ per-
formance level at the test workspace just before the train-
ing (exponential curve fit value at the last trial number). 
Similarly, fitting exponential curves on the final evalua-
tion phase allowed us to conservatively approximate sub-
jects’ performance at the test workspace immediately after 
training (exponential curve fit value at the first trial num-
ber). This method permitted us to attribute any pre-to-post 
performance changes at the test workspace to the training 

(10)Cov(U, Y) = ǫ(�U − ǫ(U), Y − ǫ(Y)�),

(11)where �U, Y� = ui · yi and ǫ(�U, Y�) =
1

n

n∑

i=1

�U, Y�

(12)σ(U) =
√

ǫ(�U − ǫ(U), U − ǫ(U)�).

(13)ρ̂ = A + Be−trial/C
.

Table 1   Simulation model mechanical parameters

Upper arm

 Mass 1.93 kg

 Inertia 0.0141 kg m2

 Length 0.33 m

 Center of mass 0.165 m

Forearm

 Mass 1.52 kg

 Inertia 0.0188 kg m2

 Length 0.34 m

 Center of mass 0.19 m

Shoulder–shoulder length 0.40 m

Stiffness (KP)
[

20.7 6.6

6.6 21.4

]
N m/rad

Viscosity (KV)
[

2.7 1.1

1.1 3.1

]
N m s/rad
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at the training workspace. Note that the values for coeffi-
cient of determination for regression averaged 0.34, with 
root-mean-square error of 0.13. These values indicate only 
moderate fit, which was not surprising due to sparsity and 
variance in the data due to the unpredictable and inter-
mittent nature of perturbations during these phases of the 
experiment.

Statistical analysis

We analyzed the initial and final absolute performances at 
the test workspace using a repeated-measure analysis of 
variance (rm-ANOVA) with factors: arm (right and left), 
evaluation field (end point, right joint and left joint), dis-
play (aligned and non-aligned), and time (pre and post). 
Post hoc pairwise comparisons were evaluated using Bon-
ferroni–Holm method.

In order to eliminate any confounding effects from dif-
fering initial conditions, we also performed a second-
ary analysis where each subject’s final evaluation perfor-
mance was normalized by initial exposure performance. 
Pre-to-post changes for the normalized performances 
were analyzed using a 3-way analysis of variance (3-way 
ANOVA) with factors: arm, evaluation fields, and display. 

Furthermore, we compared the normalized pre-to-post 
changes against zero for each evaluation field using Bon-
ferroni–Holm method.

Results

As expected, baseline trajectories approximated straight 
lines to the target with nearly symmetric and smooth veloc-
ity profiles, regardless of limb, workspace, or visual dis-
play. All groups’ baseline motions were comparable, and 
correlation coefficients for right and left limb baseline aver-
aged 0.94. Also typical of motor adaptation experiments, 
initial exposure to forces caused substantial error (Fig.  5) 
followed by corrective sub-movements that varied depend-
ing on the force field and location of each target. Figure 7a, 
c illustrates all groups’ initial performances in three differ-
ent evaluation fields at the test workspace.

Across training, we observed characteristic initial errors 
that diminished as subjects practiced. By the end of train-
ing (in the training workspace, before transfer tests), groups 
did not differ in performance (p  >  0.05). When the force 
field was intermittently removed, we observed aftereffects 
(average correlation coefficient =  0.78; t test comparison 
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approximated to mean values (big open circles). Exponential regres-
sion for the training phase had root-mean-squared error of 0.09
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against baseline performance yielded p = 1.63e−19) con-
sistent with numerous other studies (Shadmehr and Mussa-
Ivaldi 1994; Gandolfo et al. 1996; Shadmehr and Moussavi 
2000; Malfait et  al. 2002), suggesting the presence of an 
internal model that predicts the environmental dynamics.

The major findings of this study involved the “test” 
workspace, where all groups exhibited overall improve-
ment in performance over pre-training phases (rm-ANOVA; 
main effect of time; p = 3.42e−5). The levels pre-to-post 
changes in performance at the test workspace are shown in 
Fig. 6. Note, 95 % confidence interval ranges of pre-to-post 
change for the combined groups (who received the same 
evaluation fields) do not overlap zero for both arms.

There was a difference in initial exposure performances 
across different evaluation fields and display types (Fig. 7a, 
c), and so, we also inspected a normalized score by divid-
ing each subject’s final evaluation by their initial exposure 
performance. These results were similar in showing over-
all pre-to-post improvements (3-way ANOVA followed by 
Bonferroni–Holm post hoc evaluations showing normal-
ized change greater than zero; p = 2.60e−5, 2.11e−3 and 
1.11e−3 for the end-point, right-joint and left-joint fields, 
respectively). Importantly, this second analysis revealed 
group differences in change across practice and showed a 

highest improvements for the group experiencing end-point 
field (3-way ANOVA; main effect of evaluation fields; 
p  =  1.01e−2 followed by a Bonferroni–Holm compari-
sons; p = 1.45e−2).

Regardless of changes across practice, different field 
types had differing effects on performance. We saw lower 
performance in the end-point field compared to left-joint 
field in the non-aligned display condition (rm-ANOVA, 
interaction effect of evaluation fields and display followed 
by a Bonferroni–Holm comparison; p =  1.21e−4). There 
was a clearer lower performance for the end-point field 
when inspecting the right arm only (rm-ANOVA; interac-
tion effect of evaluation fields and arm; Bonferroni–Holm 
comparisons; p = 2.80e−3 and 3.69e−2, for the right-joint 
and left-joint fields, respectively). Overall as expected, the 
right (practice) arm also performed better than the left, but 
this difference was detected only in the right-joint field 
(rm-ANOVA; interaction effect of evaluation fields and 
arm; followed by Bonferroni–Holm post hoc evaluations; 
p = 1.47e−2).

There was also difference between aligned over non-
aligned displays. We found lower performance with the 
non-aligned display, but only for the end-point field versus 
left-joint field (rm-ANOVA; interaction effect of evalua-
tion fields and display; Bonferroni–Holm comparisons; 
p = 1.21e−4).

We formulated three ideal models to provide a theoreti-
cal framework for understanding how these generalizations 
might have occurred. These models reached in straight 
lines toward the targets during the baseline phases, showed 
comparable initial errors when initially exposed to the force 
environments, and exhibited aftereffects in the training 
workspace after simulated learning had taken place. Impor-
tantly, each of the three idealized models used a differing 
coordinate representation to extrapolate (generalize) the 
learning to the test workspace. Each model approximately 
predicted initial exposure performance in the force fields 
(Fig.  7a, c), where each ideal model’s result was identi-
cal. However, during final evaluation in the test workspace, 
ideal model performances spanned the range of subjects’ 
performance (Fig. 7b, d). Note that performance in the final 
evaluation was at best when the model’s coordinate repre-
sentation matched that of the evaluation field.

It should be noted that the ideal model based on a sin-
gle coordinate system alone does not accurately predict the 
observed performance changes. If our subjects extrapolated 
their learned skills solely using an intrinsic (joint) coor-
dinate system for the training arm, as suggested by oth-
ers (Lackner and Dizio 1994; Shadmehr and Mussa-Ivaldi 
1994; Gandolfo et al. 1996; Goodbody and Wolpert 1998; 
Shadmehr and Moussavi 2000), one would find results 
similar to that of the ideal model which extrapolates using 
right-arm joint coordinate system. However, this model 
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predicted negative pre-to-post changes in the end-point 
and left-joint fields in contrast to observed changes for the 
human subjects. Furthermore, if our subjects extrapolated 
their learned skills solely using an extrinsic (Cartesian) 
coordinate system for the non-training arm (Dizio and 
Lackner 1995; Criscimagna-Hemminger et  al. 2003; Bur-
gess et al. 2007), one would find results similar to that of 
the ideal model which extrapolates using end-point coor-
dinate system. However, this model also predicted negative 
pre-to-post changes in the right-joint and left-joint fields in 
contrast to observed changes for human subjects.

Discussion

This study investigated, based on the pre-to-post perfor-
mance changes, how well either limb might extrapolate 
skills to unpracticed parts of the workspace. A skill transfer 
paradigm with both intra-manual and inter-manual tests of 
generalization provided evidence to reveal the presence of 
multiple, simultaneous representations. As shown by the 
pre-to-post changes, performance improved for both end-
point and joint-based fields in the untrained workspace.

Simulation results suggest that if subjects were learning a 
single coordinate representation, their movements would be 
incompatible with any evaluation fields used in our experi-
ment. However, it stands to reason that if subjects are learn-
ing some form of a mixture of coordinate representations, 
there could be better overlap with the characteristics of the 
component environments, leading to success in skill transfer 
in all conditions, as we observed. Moreover, the performance 
changes observed for our subjects were within the range pre-
dicted for the performance change by all three ideal models, 
implying that there might be mixture of coordinate systems.

Our results are consistent with the hypothesis that mul-
tiple, simultaneous internal representations are used by 
the nervous system for sensorimotor control. These repre-
sentations include extrinsic and intrinsic reference frames 
that are evident in the performance improvements in the 
untrained region for both intra- and inter-manual trans-
fer evaluations. Such performance improvements were 
observed for all three evaluation conditions, each repre-
senting extrapolation with a candidate coordinate system. 
If subjects, for example, had developed the internal model 
only based on the intrinsic space, we would not have 
observed all of the performance improvements seen.
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Such representations may each exist in distinct parts of 
the nervous system. Recently, Wiestler et  al. (2014) pur-
ported that representations may exist not only in world-
centered coordinates, but also in body-centered coordi-
nates represented in the dorsal premotor cortex (PMd). Our 
results are also in line with recent work by Brayanov et al. 

(2012) using visual rotation adaptation, which suggested 
that representation of learning is based on a combination of 
local representations in intrinsic and extrinsic coordinates. 
Furthermore, Berniker et  al. (2014) suggested that intra-
manual generalization patterns were better accounted by 
a mixture of representations, or by non-parametric models 
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that assumed local learning with graded, decaying gener-
alization. The current work reaches similar conclusions, 
but focuses on evidence from pre-to-post changes, with 
interpretation from optimized dynamic simulations of the 
human arm. The natural structure of each sensory system 
may lend itself to the use of different coordinate represen-
tations. Krakauer et al. (1999) showed that hand kinematics 
is learned from visual errors in extrinsic coordinates, while 
dynamics are learned from proprioceptive errors in intrin-
sic coordinates. The eyes do not directly encode events in 
extrinsic coordinates, but their influence on sensorimo-
tor control is more likely to be influenced by extrinsically 
represented system than any other. Thus, separate sensory 
modalities might be employed in constructing different 
internal models that are based on their respective coordi-
nate systems.

This notion that vision is more extrinsic can also explain 
how display alignment affects performance. Because sub-
jects simultaneously observed visual error (as a cursor) 
while they trained, one might expect that the aligned vis-
ual feedback condition would enable better performance, 
which was observed. More importantly, one might also 
expect that subjects’ performance in the intrinsic fields 
would not be as influenced by the type of visual feedback, 
which was also observed. This selective influence on per-
formance may be the most compelling indication of how 
the relative strength of different coordinate representations 
might be altered by experimental conditions.

Other modeling and experimental studies support the 
concept of multiple simultaneous representations. Wolp-
ert and Kawato (1998) proposed a possible mechanism 
for multiple paired forward and inverse models explain-
ing partial generalization. It was postulated based on 
the assumption that a single neuron cannot learn to cope 
with all different types of dynamics and kinematics of the 
environment and objects. Based on this modular structure 
hypothesis, different modules can learn a task at the same 
time and build different internal models while training, 
and depending on feedback cues, they can be called upon 
independently or simultaneously during generalization. 
For example, researchers show that the CNS may encode 
simpler dynamics in extrinsic coordinates and more com-
plex dynamics in intrinsic coordinates (Ahmed et al. 2008). 
Furthermore, a model employing two coordinate represen-
tations has been proposed, where a weighted sum of refer-
ence frames can be shaped by the context of the environ-
ment (Berniker and Kording 2008). These internal models 
can also have interference or combinatory effect during 
adaptation (Ghahramani and Wolpert 1997; Shadmehr and 
Brashers-Krug 1997; Blakemore et  al. 1998; Wolpert and 
Kawato 1998; Flanagan et  al. 1999; Haruno et  al. 1999; 
Shadmehr and Holcomb 1999). We suspect that separate 
networks encode the inverse dynamics of the environment, 

based on both extrinsic versus intrinsic coordinates. While 
this study investigated three possible coordinate systems, 
there maybe no end to the possible coordinate representa-
tions used, and perhaps learned through experience, in the 
nervous system.

Findings on coordinate representations for inter-manual 
transfer have not been consistent. The literature suggests 
that inter-manual transfer prefers mirror-symmetrical coor-
dinates for a typewriting task (Hicks et al. 1982), but this 
was not consistent with an inverted mirror printing task 
(Hicks 1974) which seem to utilize extrinsic coordinates. 
Furthermore, many studies have reported inter-manual 
transfer of dynamics in extrinsic coordinates (Dizio and 
Lackner 1995; Criscimagna-Hemminger et  al. 2003; Bur-
gess et  al. 2007). These methods determined a winner 
without allowing for the possibility for multiple representa-
tions. Our application of a workspace generalization test, 
combined with inter-manual transfer and pre-to-post evalu-
ations, provided an opportunity for the interpretation of 
multiple coordinates and may explain the varying results of 
previous studies.

This study was not exhaustive in that it only performed 
tests of dominant to non-dominant transfer. Others have 
shown that dominant to non-dominant transfer has an 
advantage in some cases (Parlow and Kinsbourne 1990; 
Gordon et al. 1994; Thut et al. 1996; Teixeira 2000), while 
not in others (Hicks 1974; Taylor and Heilman 1980; Par-
low and Kinsbourne 1990). One explanation is that the 
dominant hemisphere controls both arms (Sainburg 2002) 
and hence is more involved than its opposite hemisphere 
(Geschwind 1975; Taylor and Heilman 1980; Kawashima 
et  al. 1993, 1994; Dassonville et  al. 1997; Viviani et  al. 
1998). It remains to be seen whether transfer would be the 
same in a non-dominant to dominant test.

As found by many other studies, movement performance 
seems to be affected by visual orientation. Video aiming 
tasks using a non-aligned display versus an aligned display 
have been reported to affect the performance: movement 
planning (Bo et al. 2006) and online control (Graham and 
MacKenzie 1996; Proteau and Isabelle 2002; Robin et  al. 
2005; Veilleux and Proteau 2010). Previous studies have 
reported increase in variability and error for non-aligned 
display (Bedard and Proteau 2005; Bo et  al. 2006; Veil-
leux and Proteau 2011). Our results suggest that the display 
orientations do not seem to affect inter- and intra-manual 
transfer of haptic skills.

A sensory discrepancy might explain why performance 
was sometimes worse when using the non-aligned dis-
play. We argue that when hand position is presented visu-
ally on a non-aligned display, the CNS has to transform the 
locations presented on a vertical plane to a movement (in 
our case horizontal) plane, and the additional processing 
required for this transformation might affect performance. 
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If proprioceptive and visual signals are not aligned, this may 
lead to increased uncertainty regarding the initial position 
of hand (Graham and MacKenzie 1996; Proteau and Isa-
belle 2002; Robin et al. 2005; Veilleux and Proteau 2010). 
In primates, bimodal neurons in the posterior parietal cortex 
receive proprioceptive and visual signals to accurately deter-
mine the position of the hand (Graziano et  al. 2000). It is 
possible that activity in this area plays a role in coping with 
the disparity between sensory signals. One might predict 
that lesions in this area may dramatically influence the abil-
ity to coordinate actions when they involve transformations.

Although our method of probing the structure of inter-
nal model is similar to Shadmehr and Mussa-Ivaldi (1994), 
this study introduced new protocol, analysis, and conclu-
sions. Their conclusions were based only on the final evalu-
ation for intra-manual transfer (with non-aligned display), 
which suggested that the nervous system prefers intrinsic 
(joint) coordinates since the subjects’ absolute perfor-
mance after training was better in the right-joint (intrinsic) 
field than in the end-point (extrinsic) field. However, per-
formance in the presence of force fields based in different 
coordinate systems may simply differ overall. One striking 
finding from our experiment was that the subjects’ initial 
(before training) performance with non-aligned display in 
the right-joint and left-joint fields was significantly bet-
ter than in the end-point field (Fig. 7a) even though force 
magnitude experienced were almost similar. This suggests 
that the joint fields were advantageous for subjects before 
the training had begun that could be reflective of dynamics 
or other aspects that were unrelated to learning. Our pre-
to-post evaluations allowed for an understanding of actual 
improvement due to training that support learning in sev-
eral frames of reference.

Experimental approaches are not always optimal and 
without confounding effects. One limitation may have been 
that our choice of performance metric did not fully cap-
ture all aspects of learning. We also performed the analy-
sis using other metrics of performance (such as maximum 
perpendicular deviation and average error) but found more 
equivocal results. This was no surprise, however, because 
such measures lack sign that indicate direction of error, nor 
did they indicate error in extent. This is mainly due to the 
type of force field used in this study. These metrics failed 
to capture subjects’ performance when movements were 
closely aligned with eigenvectors of the evaluation fields. 
On the other hand, the correlation metric in the velocity 
domain effectively captured any variation in timing and lat-
eral deviation from the average baseline velocity profiles.

Another limitation may have been that (unwanted) learn-
ing might have taken place during the evaluation phases of 
the experiment that were designated for testing. To mini-
mize this confound, our exponential fits on the intermittent 
initial exposure and final evaluation phases allowed us to 

remove any learning effects. We also tested for fast change 
in performance between trial 1 and 2 and found that this 
was not significantly different from zero (p > 0.5).

One final speculation was on the actual ratio of the mix-
ture of coordinate systems involved. We performed a “best 
fit” optimization on all intra-manual trajectories of all sub-
jects, minimizing error between model and subject data. 
We found fairly consistent ratio of 0.31 ± 0.13 Cartesian, 
0.62 ± 0.10 right-joint, and 0.18 ± 0.08 left-joint coordi-
nate systems (mean  ±  95  % confidence interval). These 
rough estimates indicated a bias toward right-joint coordi-
nate systems, which may explain experiments that favored 
right joint (Shadmehr and Mussa-Ivaldi 1994). It remains 
to be seen in studies that put this ratio to the test for pre-
dicting transfer of learning.

This study provides evidence to support multiple coor-
dinate systems when transferring learned skills to unprac-
ticed environments. It remains to be seen whether these 
different representations are performed by different parts of 
the brain, but if so, lesions in specific areas might reveal the 
biasing of one representation in training over another. This 
impacts not only how we interpret the results from other 
motor control investigations, but may also guide the devel-
opment of robotic neurorehabilitation. It may also suggest 
that machine-learning algorithms used to model patients 
(or any subject that is training) should embody a combi-
nation of multiple coordinate representations, which may 
inform more optimal training algorithms.
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