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Introduction

In examinations of long time series of events, a commonly 
reported finding—across a range of physical, biological, 
and cognitive systems—is that fluctuations in system out-
put are highest at the lowest frequencies with fluctuation 
amplitude declining as frequency increases. When spectral 
power (S) is the squared fluctuation amplitude at each fre-
quency (f) [i.e., S(f)], S(f) is proportional to the inverse of 
frequency (1/f), or S(f) ∝ 1/fβ, where β specifies the degree 
of proportionality between S(f) and 1/f (e.g., see Del-
ignières et al. 2005, p. 455). If β = 1, then the scaling of 
S(f):1/f is 1:1, and system output is said to have a pink noise 
structure (e.g., see Gilden 2001, Fig. 3). As seen in the sim-
ulated pink noise time series presented in the bottom panel 
of Fig. 1, a prominent low-frequency, high-amplitude oscil-
lation is apparent and one may observe that as oscillation 
frequency increases, oscillation amplitude declines. In that 
case, the power spectrum would reveal systematic declines 
in power with increases in frequency, i.e., β =  1. In con-
trast, for the white noise time series shown in the top panel 
of Fig. 1, no regular oscillation can be seen and oscillation 
amplitude appears to be equal across all frequencies. That 
would give rise to a power spectrum where power is con-
stant across the range of spectral frequencies, i.e., β = 0. 
In the current study, the value of β will be used to assess 
changes in the structure of movement amplitude (MA) time 
series as a function of Fitts’ (1954) index of difficulty.

A recent, emerging view among some investigators 
of human movement control supports the idea that motor 
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output power spectra should shift from pink noise to white 
noise whenever task demands require a shift from open-
loop regulation (feedforward control)—based on the pro-
cessing of internally stored information—to closed-loop 
regulation (feedback control)—based on the processing of 
external information (Wing et al. 2005; Diniz et al. 2011, 
p. 895; Slifkin and Eder 2012). For example, we recently 
reported a study where participants had to generate 1,000 
consecutive cyclical aiming movements under each of a 
range of amplitude requirements under conditions of full 
visual feedback (Slifkin and Eder 2012). The resultant MA 
time series were submitted to spectral analysis and struc-
ture whitened with increases in the amplitude requirement. 
We attributed the shift in the structure of MA time series 
from pink to white noise to the extent to which closed-
loop visual feedback processes were engaged during the 
execution of movement. That inference followed from the 
knowledge that under conditions of full visual feedback 
at small-amplitude requirements, MA is largely controlled 
by open-loop processes, but as amplitude requirements 
increase, MA control becomes increasingly governed by 
closed-loop visual feedback processes that correct for any 
error in the open-loop component and guide movement to 
the target (e.g., Elliott et  al. 2001; Khan et  al. 2006). In 
addition, we were able to account for our empirical results 
with a computer simulation where each simulated move-
ment contained a primary open-loop component that con-
tributed pink noise to MA time series and, if necessary, a 
secondary closed-loop visual feedback component that con-
tributed white noise (Slifkin and Eder 2012, pp. 304–308): 
As the amplitude requirement increased in the simulation, 
maintenance of movement outcome success was dependent 
upon an increased contribution of the model’s secondary 
closed-loop component, which resulted in the same pink-
to-white noise shift as that seen in the empirical data.

Because only the amplitude requirement was varied in 
Slifkin and Eder (2012), while target width was held con-
stant, we attributed the changes in MA structure to ampli-
tude-requirement-induced variations in the engagement of 
closed-loop visual feedback processes. However, it could 
be that variations in target width or variations in the com-
bination of movement amplitude requirement and target 
width could influence MA structure too (Slifkin and Eder 
2012, see Footnote 3). In particular, in the current study, we 
test the combined influence of the amplitude requirement 
and target width on MA structure by varying the value 
of Fitts’ index of difficulty [ID =  log2(2A/W)], where the 
ID is expressed in bits of information, and where A is the 
movement amplitude requirement and W is the target width 
(Fitts 1954). The ID increases whenever A—the distance 
over which the effector needs to travel—is increased and/or  
W—the tolerance for endpoint error—is reduced. Note 
that the essence of the ID is the A-to-W ratio and not the  
absolute value of A or W alone. For example, if in one  
condition A = 100 mm and W = 25 mm but in another con-
dition A = 200 mm and W = 50 mm, then the A-to-W ratio 
(A/W = 4) and ID (ID = 3 bits) would be the same for both 
conditions, despite the between-condition doubling of the 
absolute values of A and W. We will refer to a change in the 
values of A and W while ID remains constant as a change in 
scale (e.g., Slifkin and Grilli 2006).

In the current study, we examined the influence of 
changes in ID (2 and 5 bits) and changes in scale (small 
and large) within each level of ID on the structure of MA 
time series (see Fig. 2). Our first prediction is that increases 
in ID should result in a whitening of MA structure. It is 
already known that increases in A induce both increases in 
the engagement of closed-loop visual feedback processes 
(e.g., Elliott et al. 2001; Khan et al. 2006) and a whitening 
of MA structure (Slifkin and Eder 2012). In addition, as 
W declines—reducing the tolerance for endpoint error—
engagement of closed-loop visual feedback processes 
increases (e.g., Annett et al. 1958; Buchanan et al. 2004) and 
there should be an increased whitening of MA structure too. 
Thus, if increases in A and reductions in W independently 
increase engagement of closed-loop visual feedback pro-
cesses, then it follows that increases in ID should induce the 
same effect. Indeed, it is known that increases in ID result 
in increased engagement of closed-loop visual feedback pro-
cesses (e.g., Crossman and Goodeve 1963/1983; Keele 1968; 
Meyer et al. 1988): For example, the increases in movement 
time (MT) that accompany increases in ID—i.e., Fitts’ law or 
MT = a + b[log2(2A/W)]—have been attributed to increased 
engagement of closed-loop visual feedback processes in MA 
control (e.g., see Keele 1968; Carlton 1992). Thus, again, in 
the current study, we predict an increased whitening of MA 
structure with increases in ID.

SIMULATED TIME SERIES
WHITE NOISE

PINK NOISE

Fig. 1   Simulated white noise (top panel) and pink noise (bottom 
panel) time series
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A second prediction is that MA structure should be the 
same when both A and W values change but ID is con-
stant, i.e., when there is a change in scale within an ID 
level. In the current experiment, as scale increases within 
an ID level, the values of A and W double (see Fig. 2). In 
that case, Fitts’ law would predict common MTs—i.e., 
scale invariance—and it follows that there would be com-
mon engagement of closed-loop visual feedback processes. 
Therefore, there should be scale invariance for MA struc-
ture too. If both of our predictions are correct, then it would 
appear that the more parsimonious predictor of MA struc-
ture is ID, and not the absolute values of A or W alone.

Method

Participants

Sixteen healthy, young individuals, eight of whom were 
female, served as participants. The mean age of all partic-
ipants was 23.75 (SD =  3.84), and all reported that they 
were right-hand dominant, had no prior history of neuro-
logical disease or damage, and had normal or corrected-
to-normal vision. They responded to advertisements for 
healthy right-hand dominant volunteers between the ages of 
18 and 30. The advertisements were flyers posted through-
out the university. Each participant provided informed 
consent that was approved by the local institutional review 

board. Upon completion of the experiment, they received a 
$10.00 payment.

Apparatus

Movements were made on a 304.80 by 457.20 mm graphics 
tablet (Wacom Intuos2) using its cordless mouse (Wacom 
Intuos2 4D Mouse), and target displays were viewed on a 
469.90 mm flat screen LCD video monitor (Acer X183H) 
with a refresh rate of 75 H z and viewable dimensions of 
230 mm in height by 430 mm in width. The graphics tablet 
was placed on a tabletop with a height of 742.95 mm, and 
the video monitor was placed on a stand that, in turn, was 
placed on the tabletop. (Placing the video monitor on the 
stand raised the height of the video monitor by 234.95 mm 
so that the center of the video monitor was at eye level 
for the typical participant.) The tablet was placed directly 
in front of the video monitor, and when a participant was 
seated at the table, their body midline was aligned with 
the midline of the tablet and monitor. Participants were 
allowed to adjust the chair to a comfortable height and dis-
tance from the table; the approximate distance from partici-
pants’ eyes to the video monitor was 660.40 mm.

Procedure

Customized software ran the experimental contingen-
cies and presented the target displays. Each target display 
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Fig. 2   Depictions of the four target displays. Fitts’ (1954) equa-
tion for the index of difficulty (ID)—ID = log2(2A/W)—was used to 
identify the amplitude requirement (A) and target width (W) values 
that provided two target displays with an ID value of 2 bits (left half 
of figure) and two target displays that had ID values of 5 bits (right 
half of figure). Within each ID level, there were two levels of target 
display scale. For ID 2, at the small-scale level, A =  63.5  mm and 

W = 31.75 mm (top left), and at the large-scale level, A = 127 mm 
and W =  63.5  mm (bottom left). For ID 5, at the small-scale level, 
A =  63.5 mm and W =  3.97 mm (top right), and at the large-scale 
level, A =  127  mm and W =  7.94  mm (bottom right). Thus, as ID 
increases within a scale level, A is constant and W shrinks. However, 
within an ID level, both A and W double from the small-scale level to 
the large-scale level
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consisted of two targets that were equidistant from the 
center of the monitor. The targets appeared as thin, white 
rectangular outlines overlaying a black background. Tar-
get height was always set at 139.70  mm. As shown in 
Fig.  2, there were four target display conditions where 
each had a unique combination of A and W values. Using 
Fitts’ (1954) equation for the index of difficulty (ID)—
ID  =  log2(2A/W)—we created two target displays that 
had an ID value of 2 bits and two target displays that had 
an ID value of 5 bits. The two target displays within each 
ID level represented two levels of scale. For ID 2, at the 
small-scale level, A =  63.5 mm and W =  31.75 mm (see 
Fig. 2, top left), and at the large-scale level, A = 127 mm 
and W =  63.5 mm (see Fig.  2, bottom left). For ID 5, at 
the small-scale level, A = 63.5 mm and W = 3.97 mm (see 
Fig. 2, top right), and at the large-scale level, A = 127 mm 
and W = 7.94 mm (see Fig. 2, bottom right). Thus, as ID 
increases within a scale level, A is constant and W shrinks. 
However, within an ID level, both A and W double from the 
small-scale level to the large-scale level.

During each condition, a single target display was pre-
sented and 999 consecutive movements were completed. 
During that time, a cursor was continuously displayed on 
the video monitor. The x-dimension control-to-display 
mapping was 1:1 such that a unit of mouse movement 
along the x-dimension of the graphics tablet translated to 
a unit of cursor movement along the x-dimension of the 
video display. The y-dimension control-to-display gain 
was 1.33:1.00 such that a unit of mouse movement along 
the y-dimension of the graphics tablet resulted in 0.75 units 
of cursor movement along the y-dimension of the video 
display. All data presented in this report came from the 
x-dimension of movement. Throughout each movement, 
data acquisition occurred every 15 or 16 ms (M ≈ 15.5 ms), 
which translates to instantaneous acquisition rates of either 
66.67 or 62.50 Hz (M ≈ 64.52 Hz), respectively. The spa-
tial resolution of each sample was 0.1 mm.

At the start of the experimental session, the experi-
menter demonstrated the movement task and concurrently 
delivered the task instructions. Participants were instructed 
that white crosshairs would serve as a cursor and its posi-
tion on the video monitor would correspond to the position 
of the mouse on the graphics tablet. At the start of each 
movement condition, a white marker, also in the form of 
crosshairs, would appear in the center of the left target. Par-
ticipants were told that the marker crosshairs identified the 
currently active target; however it was emphasized that a 
target hit would register if the cursor crosshairs “landed” 
anywhere within the active target region at the time of a 
mouse button press. In contrast, any button press occurring 
when the cursor crosshairs were outside of the target would 
be classified as a target miss and would be accompanied by 
a “beep” sounded by the computer. At the time of either a 

target hit or a miss, the marker crosshairs changed location 
to the opposite target, and participants were instructed that 
they should move to that target and produce a button press 
when the cursor was in that target region. They were told to 
continue the sequence of back and forth movements until 
the target display disappeared from the screen. That event 
signaled the end of the sequence of 999 movements. Partic-
ipants were told to be as fast and as accurate as possible in 
making their movements and that the instruction to be fast 
was of equal importance to the instruction to be accurate.

Following delivery of the instructions, participants prac-
ticed 49 movements under each target display condition. 
As during the experiment itself, the order of each partici-
pant’s four practice conditions was randomized, with the 
exception that the consecutive administration of the two  
ID 5 conditions was not allowed. (That restriction on rand-
omization was imposed to limit the buildup of fatigue that 
might accompany performance on consecutive ID 5 condi-
tions.) At the end of each experimental condition, partici-
pants were allowed to rest as long as they needed. The total 
session duration was about 1 h, and the room lights were 
extinguished while the task was performed. Thus, the only 
task-related visual information available to participants was 
what was presented on the video screen, viz., the cursor 
and target displays. In addition, participants wore sound-
attenuating earmuffs during experimental trials in order to 
minimize the potential influence of sound extraneous to the 
experiment. The volume of the computer-generated error 
“beep” was adjusted so participants could hear it through 
the ear muffs.

Experimental design and data analyses

General data processing

Movement amplitude was defined as the distance along the 
movement x-axis from the location of the mouse click that 
terminated movement at the previous target to the location 
of the mouse click that terminated movement at the cur-
rent target. The time between those mouse clicks was the 
movement time (MT). The initial 99 movements of each 
time series were not analyzed, thereby excluding warm-up 
effects that may have been present during the initial portion 
of the performance time series. The remaining 900 move-
ments were submitted to data analyses.

Mean movement time

While analysis of MA structure was the main focus of the 
current report, we also present an analysis of mean MT. 
The analysis of MT can provide information about the 
extent to which closed-loop visual feedback processes were 
engaged in the control of MA. That is, under instructions 
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to maximize speed and accuracy, increases in MT beyond 
a minimum value (e.g., ≈200 ms) correlate with increased 
engagement of closed-loop visual feedback processes (e.g., 
Meyer et  al. 1988; Elliott et  al. 2001, 2010). If increases 
in movement difficulty (ID) resulted in whitening of MA 
time series, then parallel increases in MT would provide 
evidence that such whitening arose from the engagement 
of closed-loop visual feedback processes. Fitts’ law pre-
dicts, first, increases in MT with increases in ID, and, sec-
ond, common MTs across scale levels within an ID level, 
i.e., scale invariance. Thus, with common MTs across scale 
levels within an ID level, the amount of visual feedback 
processing should be the same and the same MA struc-
ture should emerge too. Mean MT was calculated for each 
participant’s movement time series under each of the four 
unique conditions. Then, a two-way ID (2) by scale (2) 
repeated-measures ANOVA was used to test the reliabil-
ity of change in the group-mean MT across ID and scale 
levels.

Spectral analyses

Prior to spectral analysis, each 900-point MA time series 
was linearly detrended (e.g., Gilden 2001). The detrend-
ing involved calculating the best-fitting linear regression 
for each time series and obtaining the time series residu-
als, i.e., the difference between each time series value 
and the value predicted by the regression equation. That 
process removed the mean and any overall linear trend in 
the time series, but, otherwise, preserved the original time 
series structure. Then, the power spectral density for each 
residual MA time series was calculated in MATLAB v.7.1 
using Welch’s averaged, modified periodogram method, 
i.e., MATLAB’s pwelch function. We chose pwelch 
parameter values that allowed each 900-point series to be 
divided into four non-overlapping segments of 225 data 
points. [In particular, the pwelch parameter values were 
(a) window = 225, (b) noverlap = 0, (c) nfft = 225, and 
(d) fs = 1.] Next, each 225-point segment was multiplied 
by a Hamming window followed by the calculation of the 
power spectral density of each segment. Finally, the four 
power spectral densities were averaged. The resultant aver-
age power spectrum from each time series was divided 
into 112 bins of equal width where the frequencies associ-
ated with the upper limits of the lowest and highest fre-
quency bins were, respectively, 0.0044 and 0.4978 cycles 
per movement (Hz), which translated to 225 and 2.0089 
movements per cycle for the upper limits of the lowest and 
highest frequency bins, respectively. Each frequency bin 
spanned a 0.0044 Hz range. The amount of power in each 
frequency bin was related to the magnitude of the MA 
oscillations within the frequency range specified by that 
frequency bin.

Our main measure of MA structure was an estimate of 
β from the power spectrum. This involved a log10 transfor-
mation of both the spectral power and frequency of each 
participant’s power spectrum. Then, linear regression—
y = bx + a—was used to describe changes in log10 power 
as a function of log10 frequency. In that case, the negative 
of b is equivalent to β in the equation for the power func-
tion S(f) =  1/fβ. In other words, if the linear regression b 
has a value of −1, then the power function β has a value 
of 1. The linear regression equation spanned the lowest 
frequency bin, which had an upper limit of 0.0044 Hz—or 
−2.356 Hz after the log10 transformation—to the frequency 
bin with an upper limit of 0.0978 Hz—or −1.0098 Hz after 
the log10 transformation (see Footnote 6 in Slifkin and Eder 
2012, for more information about selection of the −1.0098 
cutoff). A two-way ID (2) by scale (2) repeated-measures 
ANOVA was used to examine changes in the group-mean 
β as a function of ID and scale level. All results reported as 
“significant” had P values less than 0.05.

Results

Figure 3 provides examples of time series collected in the 
current study; they illustrate a change in MA structure 
across ID levels. The example time series are composed 
of the MA residuals collected from a single participant 
under the large-scale target display conditions of ID 2 (top 
panel) and ID 5 (bottom panel). At ID 2, there appear to 
be pronounced wavelike oscillations at low frequencies and 
lower-amplitude oscillations at higher frequencies. On the 
other hand, at ID 5, the prominence of low-frequency wave-
like oscillations appears to be attenuated, and oscillation 
amplitude appears more even across a broader range of fre-
quencies. The value of β based on the ID 2 MA time series 
was 0.42, while the value of β based on the ID 5 MA time 
series was −0.04. Thus, Fig. 3 demonstrates an ID-induced 
shift in structure from a value in the vicinity of pink noise, 
at ID 2, to a value essentially equivalent to white noise, at 
ID 5. While the current empirical results focus on further 
analyses of the MA power spectrum as a function of ID and 
scale, prior to that presentation, we provide an analysis of 
the group-mean MT.

Mean movement time

Figure 4 shows changes in the group-mean MT as a func-
tion of ID and scale. When averaged across scale levels, 
the group-mean MT increased from 426.67 ms at ID 2 to 
896.10  ms at ID 5. The increase in the group-mean MT 
with increases in ID was significant, F(1, 15)  =  693.27, 
P < 0.001. At ID 2, the group-mean MT under the large-
scale requirement was elevated by 34.66 ms over the MT at 
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the small-scale requirement; at ID 5, the group-mean MT 
was essentially identical at the different scale levels—the 
between-scale difference in the group-mean MT was less 
than 1 ms. Both the scale effect and the ID by scale interac-
tion were absent. Although we examined only two ID lev-
els and two levels of scale within each ID level, the current 
results do follow the predictions of Fitts’ law: MT should 
increase with ID, and MT should be constant across vari-
ations in scale within a level of ID, i.e., scale invariance 
should be observed. The linear regression equation describ-
ing changes in the group-mean MT as a function of ID was 
y = 156.477x + 113.715, r2 = 0.997, or, as restated in the 
form of Fitts’ law, MT = 113.715 + 156.477[log2(2A/W)], 
r2 = 0.997.

Given that MTs under all requirements were longer 
than typical estimates of minimum visual processing times 
(e.g., ≈200  ms), it would appear that the opportunity to 
engage visual feedback existed under all conditions (e.g., 
Keele and Posner 1968; Keele 1968; Carlton 1992), and 
the engagement of visual feedback processes increased as 
ID increased. Thus, if there was a whitening of MA time 
series structure as ID increased, then the results of the cur-
rent analysis of MT would support the notion that such 
whitening was mediated by closed-loop visual feedback 
processes.

Spectral analyses

Figure  5 shows the group-mean power spectrum at each 
ID and each scale level. For each spectrum, linear regres-
sion equations provided a nice description of changes in 
log10 power as a function of log10 frequency. At least two 
other general observations can be made: First, the over-
all level of power was reduced with increases in ID. In 
other words, the magnitude of MA variability—as would 
be reflected by a descriptive statistic like the within-sub-
ject standard deviation—was reduced with increases in 
ID. That result can be understood as it was under both 
ID 2 target displays that the larger W values permitted 
more space in which MA values could vary. Likewise, 
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within each ID level, the reduced elevations of the power 
spectrum as scale was reduced could be attributed to the 
reduction in W. Second, and more importantly, the slopes 
of the regression equations (b) are quite similar and paral-
lel across scale levels within each ID level. The value of 
b clearly shifts from negative values at ID 2 and flattens 
to near-zero values at ID 5. In particular, when averaged 
across scale levels, the b values were −0.41 and −0.03 
at ID 2 and ID 5, respectively. Thus, the distribution of 
power leaned toward pink noise at ID 2 and whitened at 
ID 5.

The group-mean β coefficients are plotted in Fig.  6. 
That pattern of results mirrors the slopes of the regression 
equations based on the group-mean power spectra shown 
in Fig. 5. As ID increased, β was reduced toward a value 
of 0. The reliability of that reduction was confirmed by a 
significant ID effect from the two-way ANOVA, F(1, 
15) =  34.97, P  <  0.001. The small-scale β was elevated 
over the large-scale β within each ID. However, those dif-
ferences were small and there was not a scale effect. In 
addition, a reliable ID by scale interaction was absent. 
Thus, it would appear that the ID is predictive of MA 
structure: There were reliable decreases in the value of β 
with increases in ID and β values were scale invariant. 
Last, linear regression showed that variations in ID were 

highly predictive of variations in the group-mean β, 
y = −0.128x + 0.664, r2 = 0.976.1

Discussion

We recently demonstrated a whitening of MA time series 
structure when A increased, but W was held constant 

1  In addition to using β from the power spectrum, we also undertook 
an analysis of α from detrended fluctuation analysis (DFA) (see Peng 
et al. 1995). If α = 1, then the time series has a pink-noise structure, 
and if α  =  0.5, then the time series has a white noise structure. If 
the pattern of results for α matched the pattern of results for β, then 
that would validate the current analysis based on β alone. To that end, 
we calculated α values for the same data used to calculate β and we 
also submitted that data to a two-way ID (2) by scale (2) repeated-
measures ANOVA. The results revealed a significant ID effect 
with a reduction in α from ID 2 (M =  0.71, SEM =  0.03) to ID 5 
(M = 0.56, SEM = 0.02), F(1, 15) = 34.18, P < 0.001. Both the scale 
effect, F(1, 15) = 0.102, P = 0.75, and the ID by scale interaction, 
F(1, 15) = 0.96, P = 0.34, were absent. Thus, as seen in the analysis 
of β, for α there was only an ID effect reflecting a whitening of MA 
time series as ID increased. In addition, variations in the group-mean 
β values were highly predictive of variations in the group-mean α val-
ues, y = 0.398x + 0.546, r2 = 0.945. The correspondence between α 
and β has been observed in prior studies of MA time series structure 
(Miyazaki et al. 2004, see Table 1; Slifkin and Eder 2012, see Foot-
note 7).
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(Slifkin and Eder 2012). Those changes were attributed to 
increases in A, but it could be that the combined influence 
of A and W serves as a more powerful predictor of MA 
structure. Therefore, in the current experiment, we exam-
ined the combined influence of A and W—in the form of 
the ID—on changes in MA structure. In addition to varying 
ID, we varied target display scale, where the small-scale 
target displays had A and W values that were half the A and 
W values of the large-scale target displays. It was predicted 
that MA structure should whiten with increases in ID, but 
MA structure should remain constant across scale levels 
within each ID level. Because of the large changes in both 
A and W across scale levels within each ID level, a finding 
of scale invariance for MA structure would highlight the 
value of the combined influence of A and W in predicting 
MA structure, and not their independent and absolute val-
ues. Indeed, we found, first, that as ID increased, MA struc-
ture whitened, but, second, changes in scale at each ID 
level resulted in constancy of MA structure, i.e., scale 
invariance.2 Thus, ID not only predicts variation in MT 
(Fig.  4)—as in Fitts’ law—but also predicts variations in 
MA structure (Fig.  6). Again, according to the current 
results, it is the combined influence of A and W—in the 
form of the A-to-W ratio or the ID—that has greater power 
in predicting MA structure, as opposed to A or W consid-
ered alone. The remainder of the Discussion will be a 
review of the information processes that might be involved 
in the ID-induced changes in MA structure we observed.

What motor control information processes would give 
rise to the whitening of MA structure with increases in 
ID? It is already known that increases in A induce both 
increases in the engagement of closed-loop visual feed-
back processes (e.g., Elliott et al. 2001; Khan et al. 2006) 
and a whitening of MA structure (Slifkin and Eder 2012). 
In addition, as W declines—reducing the tolerance for end-
point error—engagement of closed-loop visual feedback 
processes increases (e.g., Annett et  al. 1958; Buchanan 
et  al. 2004). Thus, if increases in A and reductions in W 
independently increased engagement of closed-loop vis-
ual feedback processes, then it follows that increases in 

2  In a recent study by Wijnants et al. (2012), participants performed 
in a cyclical aiming task and—although it was not the primary 
goal of the study—the authors examined the influence of ID [3 bits 
(A = 80 mm, W = 20 mm), 6.9 bits (A = 240 mm, W = 4 mm)] on 
MA time series structure (Wijnants et al. 2012, Table 1, p. 11). Their 
“fractal dimension” measure of MA structure—which is related to β 
from the power spectrum and α from detrended fluctuation analysis—
showed a slight, non-significant tendency toward increased MA time 
series whitening with increases in ID. In contrast, in the current study, 
there was significant MA time series whitening with increases in ID. 
The between-study difference in results might have been influenced 
by a number of differences between the Wijnants et al. (2012) study 
and the current study. A review of those differences is beyond the 
scope of the current report.

ID should induce the same effect. Indeed, there is good 
evidence—through analyses of trajectory submovements 
and manipulation of visual feedback—that increases in ID 
induce increased engagement of closed-loop visual feed-
back processes (e.g., Crossman and Goodeve 1963/1983; 
Keele 1968; Keele and Posner 1968; Meyer et  al. 1988). 
In addition, the increases in MT that accompany increases 
in ID—i.e., Fitts’ law: MT  =  a  +  b[log2(2A/W)]—have 
been attributed to increased engagement of closed-loop 
visual feedback processes in MA control (e.g., see Keele 
and Posner 1968; Keele 1968; Carlton 1992). That follows 
because the processing and use of feedback in the control 
of movement takes time; thus, with more feedback being 
processed, MT should lengthen. In the current experi-
ment, we found that variations in MT followed Fitts’ law 
(Fig. 4): MT increased with ID and MT remained constant 
across scale levels. In particular, MTs more than doubled 
from an across-scale-level average of about 425 ms at ID 2  
to about 900  ms at ID 5: MTs lengthened to values sev-
eral times longer than typical estimates of minimum visual 
processing times (e.g., ≈200 ms; Keele and Posner 1968; 
Carlton 1992). Thus, the results of the current analysis of 
MT support the notion that the ID-induced whitening of 
MA structure was mediated by closed-loop visual feedback 
processes operating during movement execution.

There was a very close correspondence between changes 
in MT and changes in β in the current results. First, β is 
predicted by ID just as MT was predicted by ID (cf. Figs. 4, 
6): Thus, just as Fitts’ law is MT = a + b[log2(2A/W)], the 
current results suggest that β =  a +  b[log2(2A/W)]. Sec-
ond, MT values are highly predictive of β values, and vice 
versa. The very strong relationship between MT and β is 
illustrated by a regression equation that predicts the group-
mean βs (Fig.  6) based on the group-mean MTs (Fig.  4), 
y = −0.0008x + 0.7561, r2 = 0.981. Given that MT and β 
are similarly predicted by ID, and β and MT are strongly 
associated, one may ask how MT and β are similar or dif-
ferent in terms of the information processes they reflect: 
As previously discussed, variations in MT are thought to 
reflect variation in the engagement of closed-loop visual 
feedback processes that act within a movement (e.g., Keele 
and Posner 1968; Carlton 1992), whereas β reflects the 
relations between or among MA values in long sequences 
of action. As more time is used in the closed-loop control of 
movement and MT increases, MA values become decorre-
lated and β values are reduced. That occurs because online 
visual feedback is tailored to the error correction needs of 
individual movements, and such within-movement adjust-
ment breaks up the underlying pink noise structure contrib-
uted by the initial open-loop component of movement. In 
other words, the whitening of MA structure is a product of 
the superimposition of closed-loop processes upon preex-
isting open-loop processes.
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The view that the expression of long-range dependencies 
contributed by initial open-loop processes is degraded by 
the superimposition of closed-loop processes receives sup-
port from investigators who calculated β for time series 
based on either the amplitude at (Miyazaki et al. 2001) or 
the time to (Valdez and Amazeen 2008, 2009) various kine-
matic markers within movements made under full visual 
feedback and under high-ID conditions.3 First, in a discrete 
aiming task performed under instructions for movement 
speed and accuracy, Miyazaki et  al. (2001) showed long-
range dependencies for the amplitude at peak acceleration 
and the amplitude at peak velocity—both occurring early in 
the movement—but those dependencies were absent for 
MA—occurring at movement termination. Second, in dis-
crete aiming tasks performed at comfortable speeds, Valdez 
and Amazeen (2008, 2009) showed that long-range depend-
encies were highest for the time to peak velocity and were 
reduced for MT—the time to the movement termination. To 
the extent that the processes regulating temporal variation 
of movement are the same as those regulating spatial varia-
tion of movement, the results from both sets of investiga-
tors (Miyazaki et  al. 2001; Valdez and Amazeen 2008, 
2009) are consonant with the current view that it is the 
superimposition of closed-loop feedback processes upon 
initial, open-loop processes that causes a whitening of MA 
structure. While Miyazaki et al. (2001, p. 176) entertained 
the possibility that an error correction process might be 
responsible for the dissipation of long-range dependencies 
at movement end, Valdez and Amazeen (2008, 2009) pro-
posed that the heightened long-range dependencies at peak 
velocity were the result of the coordination or intermin-
gling of “planning” (open-loop processes) and “control” 
(closed-loop processes). However, it is our view that long-
range dependencies—which are a reflection of open-loop 
processes—can only be degraded, and not boosted, by the 
addition of closed-loop processes; closed-loop processes 
only whiten motor output and attenuate its long-range 
dependencies (see “Introduction” section; Slifkin and Eder 
2012, pp. 304–308).

Other recent studies using targeted aiming tasks have 
proposed that the spatial structure of motor output time 
series whitens as a result of closed-loop feedback processes 
(van Beers 2009; van Beers et al. 2013). However, in those 
studies, the opportunity to process visual feedback during 

3  In Miyazaki et al. (2001) the ID level was 4.3 bits (see Footnote 8, 
Slifkin and Eder 2012). In Valdez and Amazeen (2008), participants 
had to move a handheld cylinder over different levels of A (400, 500, 
600, 700  mm) and although the target W value was not reported it 
presumably had the same diameter as that of the cylinder, which was 
45 mm (Valdez and Amazeen 2008, p. 305). In that case—according 
to the equation ID =  log2(2A/W)—the IDs would have ranged from 
4.15 to 4.96 bits. In Valdez and Amazeen (2009), participants per-
formed under conditions of either 3.90 or 4.90 bits.

movement execution was precluded and participants could 
only view movement outcome relative to the target at 
movement termination (terminal feedback). Thus, within-
movement corrections would be minimized and adjustment 
in movement plans would occur following movement ter-
mination with a feedforward implementation of the updated 
plans occurring upon subsequent movement initiation. In 
addition, such between-movement processing of terminal 
feedback might have been encouraged by the use of a dis-
crete-trials movement paradigm in those studies (van Beers 
2009; van Beers et  al. 2013). In such tasks, a delay is 
imposed between the end of one movement and the start of 
the next and that “space” might allow for more complete 
processing of the terminal feedback. In contrast, in the cur-
rent study, participants had the opportunity to process vis-
ual feedback within each movement and there was less 
opportunity to process feedback at the end of movement: 
Participants were instructed to be as fast and accurate as 
possible while performing a cyclical aiming task, and there 
were no experimenter-imposed time intervals between 
movements. In such cases, closed-loop visual feedback 
processes should operate within movements instead of 
between movements (e.g., see Slifkin and Eder 2012, Foot-
note 9). In sum, although the degree of within- or between-
movement feedback processing may be task dependent, 
both types of feedback processing appear to result in a 
whitening of the spatial structure of motor output time 
series.4

In conclusion, the results of the current study indicate 
that it is the combination of A and W together—in the form 
of the ID—that serves as an improved predictor of MA 
structure, as opposed to A or W alone. In fact, ID appears 
to predict β values with the same accuracy as MT, i.e., 
variations of β can be derived from Fitts’ law. We hypoth-
esize that what underlies the ID-induced variations in MA 
structure is the extent to which open-loop versus closed-
loop information processes are engaged. The lengthening 
of MT reflects an increased engagement of closed-loop 

4  In another recent study, using a task that incorporates features of 
tetherball and skittles (bowling), participants were required to throw 
and release a virtual ball so that it moved around a pole toward a tar-
get located about 180° from the throwing position (Abe and Sternad 
2013). Participants performed extended discrete-trials sequences of 
the task and on each trial a measure of spatial error was recorded. 
The results appear to reflect an increased whitening of spatial struc-
ture that could be related to increased engagement of visual feedback. 
However, it is difficult to say whether the feedback was used within 
or between movements: Participants could see movement of the ball 
throughout each trial, but could only use visual feedback for online, 
within-movement control during the initial throwing phase; on the 
other hand, any feedback gained between ball release and trial ter-
mination could only be used for between-movement adjustments of a 
subsequent throw.
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processes that are superimposed upon the underlying, pre-
existing open-loop processes: Open-loop processes are 
expressed as long-range correlations in MA time series, but 
those correlations are degraded by the implementation of 
closed-loop error correction processes that act within and 
toward the end of movement. That view is consonant with 
an emerging, general view that when system output is pri-
marily under internal control, pink noise is the product, but 
when systems rely on the processing of external informa-
tion for their regulation, white noise is the product (Wing 
et  al. 2005; Diniz et  al. 2011, p. 895; Slifkin and Eder 
2012). Last, among approaches that attempt to account for 
1/fβ processes, the current approach represents a domain-
dependent, mechanistic approach (e.g., for a brief review, 
see Slifkin and Eder 2012, p. 309): In the current study, we 
explained the 1/fβ structure of MA time series—unfolding 
over a long time scale—in terms of the degree of engage-
ment of closed-loop visual feedback—a local, specific 
motor control mechanism acting over a short time scale. In 
contrast, those taking a nomothetic approach explain 1/fβ 
phenomena in terms of domain-independent, generic pro-
cesses (e.g., self-organized criticality, cascade dynamics) 
that can be applied to a wide range of systems; such mod-
els do not require the identification of specific information-
processing mechanisms. While the relative value of the 
mechanistic and nomothetic approaches has been debated, 
another view is that both approaches are valuable and com-
plementary (e.g., Diniz et al. 2011).
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