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for less-skilled subjects and in especially difficult discrete 
tasks, while visual feedback seems to benefit more skilled 
subjects. Additionally, haptic guidance seemed to promote 
learning in a time-critical tracking task, while visual feed-
back tended to deteriorate the performance independently 
of the task difficulty and subjects’ initial skill level. Hap-
tic guidance outperformed visual feedback, although addi-
tional studies are needed to further analyze the effect of 
other types of feedback visualization on motor learning of 
time-critical tasks.
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Introduction

During robot-aided training, subjects are assisted with 
haptic guidance from a robotic device to move their limbs 
through a correct kinematic pattern. Much of the work 
on robot-aided training has focused on movement reha-
bilitation after neurological injuries (Marchal-Crespo and 
Reinkensmeyer 2009) while there has been little effort in 
training other motor skills such as athletics (Hua-wei et al. 
2006; Morizono et al. 1997; Rauter et al. 2010). The possi-
bility of using robotic devices to support training of athletic 
motor skills is attractive, since robots can physically assist 
in achieving more advanced strategies of movement that 
may be too dangerous or frustrating for the novel trainee, 
such as learning complex gymnastics moves like walk-
ing on a narrow beam (Domingo and Ferris 2010). How-
ever, there is little evidence that haptic guidance improves 
human motor learning when compared to unassisted prac-
tice (Wulf et al. 1998; Marchal-Crespo et al. 2010b) or to 
a different form of guidance, such as auditory or visual 
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feedback (Sigrist et al. 2013). In fact, the guidance hypoth-
esis in motor learning research states that physically guid-
ing a movement will impair motor learning because it 
changes the input–output relationship of the task to be 
learned (Salmoni et al. 1984; Schmidt and Walter 1984).

Novel robot-aided training strategies have been devel-
oped based on the common clinical practice of physical 
therapists: they provide just enough guidance to allow par-
ticipants to practice the task, while fading the guidance as 
training progresses to encourage learning (Emken et  al. 
2007; Aoyagi et  al. 2007). Recent studies that employed 
this form of fading assistance in motor learning experi-
ments have contradicted the guidance hypothesis. In Mar-
chal-Crespo et al. (2010a), the authors found that training 
with fading haptic guidance from a robotic wheelchair 
trainer improved the steering ability of healthy children sig-
nificantly more than training without guidance. Similarly, 
in Marchal-Crespo et  al. (2010b), subjects who practiced 
with guidance from a robotic steering wheel learned to time 
their movements better than subjects who practiced without 
physical guidance. Haptic demonstration of optimal timing, 
rather than of movement magnitude, apparently transferred 
to the subjects trained with fading haptic guidance.

Recent studies indicate that haptic guidance seems to 
be especially useful for learning the timing components of 
discrete motor tasks. In a study of the effect of ski poles 
when learning to use a ski simulator (Wulf et  al. 1998), 
subjects learned the timing for switching force between the 
feet when slalom skiing better when poles were provided. 
Similarly, training with haptic guidance benefited learn-
ing to play a computerized pinball-like game in especially 
lower-skilled subjects (Milot et  al. 2010). Haptic guid-
ance has been shown to also benefit learning to reproduce 
the temporal, but not spatial, characteristics of a complex 
spatiotemporal curve (Feygin et al. 2002). A positive effect 
of haptic guidance was found on the time-related compo-
nents of a continuous visuomanual tracking task, such as 
an increase in speed and smoothness in tracking trajecto-
ries (Bluteau et  al. 2008), and better learning of temporal 
patterns of force (Morris et al. 2007). Thus, based on these 
previous studies, haptic guidance may be especially suit-
able for learning tasks that are sensitive to motor command 
timing, but less sensitive to motor command amplitude.

A timing cue could also be provided in other ways 
rather than haptic guidance, perhaps by displaying visual 
or auditory feedback. The main advantage of haptic guid-
ance is that it reduces the overall performance error, which 
is of great importance in tasks where errors entail safety 
issues. However, in motor tasks, in which safety is not a 
concern, training with haptic guidance may not be a good 
choice, since guidance changes the dynamics of the task 
to be learned (Salmoni et  al. 1984). Several studies have 
shown positive effects of concurrent visual feedback (i.e., 

real-time visual feedback) on learning complex motor 
tasks (Lee et al. 1990; Shea and Wulf 1999; Todorov et al. 
1997). Concurrent visual feedback has been suggested to 
be especially suitable in very early learning phases of com-
plex movements (Todorov et al. 1997), because it seems to 
decrease the cognitive load during learning (Wulf and Shea 
2002). Virtual reality simulators have a great potential to 
facilitate motor learning through concurrent visual feed-
back. In an experiment with a virtual table tennis simula-
tor (Todorov et  al. 1997), training of a specific shot with 
concurrent feedback—i.e., superposing the desired vir-
tual racket and actual racket movement—improved motor 
learning, when compared to training with real balls under 
the supervision of a real trainer. However, no previous stud-
ies have evaluated the relative benefits of haptic guidance 
and visual feedback when training a complex time-critical 
tracking task with different levels of difficulty.

Haptic guidance was found to be more beneficial for 
less-skilled participants in some previous studies (Milot 
et al. 2010; Marchal-Crespo et al. 2010b). A possible expla-
nation for this result can be found in the challenge point 
theory (Guadagnoli and Lee 2004). The challenge point 
theory states that optimal learning is achieved when the dif-
ficulty of the task is appropriate for the individual partici-
pant’s level of expertise (i.e., when the challenge point is 
reached). Thus, providing a difficult task to less-skilled par-
ticipants would result in less learning, as compared to train-
ing when the task is adjusted to be at an appropriate skill 
level. Likewise, providing an easy task to a proficient par-
ticipant would not be predicted to improve learning, since 
little new information is delivered and, therefore, new skills 
are not acquired. Reducing the task’s difficulty through 
haptic guidance may benefit less-skilled participants more 
because it makes the task appropriately challenging.

Racket, bat, and club sports (e.g., tennis, baseball, and 
golf) are some examples of time-critical athletics tasks. 
However, timing of an action plays a crucial role in the 
proper accomplishment of a larger range of meaningful 
tasks, such as hitting a moving object (discrete task), or try-
ing to reproduce a velocity profile (time-critical tracking 
task). To our knowledge, no studies have evaluated the rela-
tive impact of different forms of robotic training and visual 
feedback on learning this important task category in a large 
workspace. In the present study, we seek to find which 
feedback condition—haptic guidance or visual feedback—
optimizes learning of the discrete and continuous elements 
of a timing task—a forehand tennis stroke—based on the 
subjects’ initial skill level. In two different experiments, 
we evaluate which feedback condition is more adequate 
for each timing task category: (1) a time-dependent dis-
crete task (learning to initiate a tennis stroke) and (2) time-
critical tracking task (learning to follow a velocity pro-
file). We further extend the study to evaluate the effect that 
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task difficulty has on the selection of the optimal training 
condition. The hypothesis is that initially less-skilled sub-
jects will benefit more from haptic guidance in both time- 
critical category tasks, since haptic guidance seems to carry 
more information about the task to be learned, while vis-
ual feedback may carry less information, and thus benefit 
more skilled participants. Haptic guidance may be suitable 
to train more difficult tasks also in initially more skilled 
subjects.

Methods

Assistive robotic tennis trainer

The tennis trainer was developed using the r3 (reconfigur-
able rope robot) system, designed at ETH Zurich (Fig. 1) 
(von Zitzewitz et  al. 2013). The r3 system is a versatile, 
tendon-based robotic device. Tendon-based robots are actu-
ated through ropes, driven from motor-actuated winches 
located outside of the controllable workspace. The wires 
are guided from the winches over deflection units fixed on 
the robot frame into the workspace. The r3 system is espe-
cially suitable for motor learning of large workspace tasks 
with high dynamics because it can achieve high velocities 
(up to 9.3 m/s) and accelerations, and hardly disturbs visual 
cues during the experiments. The r3 system was developed 
as a haptic device integrated in a large cave with three ste-
reoscopic high-resolution screens that surround the viewer.

The r3 system was designed to be reconfigurable and 
adaptable to a whole variety of tasks, from high-load 
applications [e.g., rowing (von Zitzewitz et  al. 2009; 
Rauter et  al. 2010)] to highly dynamic movements [e.g., 

tennis (Marchal-Crespo et al. 2012)]. Different tasks can be 
implemented by modifying the number and location of the 
deflection units. The tennis trainer presented here required 
a total of six ropes. Safety is crucial since subjects stood 
inside the cave while performing the experiment. An exten-
sive software and hardware safety system was developed to 
avoid any collision between the user and the robot ropes 
(Marchal-Crespo et al. 2012). The subject interacting with 
the robot was physically restrained to a safe area with a har-
ness and quickdraws to prevent him/her from entering the 
robot workspace. Furthermore, the ropes were connected to 
the remote end of a 0.5-m-long stick and, therefore, they 
were not in direct contact with the subject (Fig. 1).

The tennis task

The motor learning task consisted in a highly dynamic 
tennis forehand stroke performed with the right arm fully 
stretched. The desired stroke trajectory of the racket tip 
was previously measured with a 3D optical tracking sys-
tem (Qualisys, Sweden). The recorded tennis stroke can 
be approximated by a circular arc of radius 1.1 m (length 
of the arm and racket) that subtends an angle of 1.92  rad 
(110°).

One of the goals of the study was to train different veloc-
ity profiles, i.e., profiles with different maximum speeds 
and different locations of the speed maximum. The veloc-
ity profile should guarantee an initial and final zero veloc-
ity, and a smooth acceleration and deceleration phases. 
Thereby, the desired velocity at each time step was mod-
eled following an asymmetric bell-shaped velocity profile 
derived from the minimum jerk equation (Flash and Hogan 
1985). The minimum jerk equation was selected because it 
describes a well-controlled smooth profile that can be eas-
ily modified (e.g., change the maximum speed or the loca-
tion of the speed maximum) by changing some parameters 
in the equation. The angular velocity profile (rad/s) was 
derived at each sample time using the arm angle (rad) as 
the hand coordinate in the minimum jerk equation. The bell 
shape was modified to allow different slopes in the accel-
eration and deceleration phases, while guaranteeing smooth 
velocity profiles.

Guidance controllers

Different control modes were developed that allowed the 
robot to enforce the position and timing of the end effec-
tor (fixed haptic guidance), allowed subjects to intend the 
task by themselves while limiting position errors (flux 
guidance), and modulated the amount of guidance as train-
ing progressed (fading haptic guidance). The design and 
performance evaluation of the training conditions were 
described in detail in (Marchal-Crespo et  al. 2012). Here, 

Fig. 1   The r3 system: the reconfigurable, tendon-based robotic 
device developed at ETH, Zurich, for the tennis application (Marchal-
Crespo et al. 2012)
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only a brief summary is given for completeness. Readers 
interested in the design and evaluation of the controllers 
are referred to (Marchal-Crespo et al. 2012) for a detailed 
description.

Fixed haptic guidance: position controller

The PD controller enforced the position and timing of the 
task. The actual end-effector position was derived from 
the rope lengths calculated from the encoder signals on 
the motor winches using forward kinematics (von Zitze-
witz et  al. 2013). A friction model was modeled for each 
drive train with a complete classical friction model (Ols-
son et al. 1998) and introduced in the control schema as a 
feed-forward term. The friction model was derived from 
the analyses of the static and dynamic friction responses, 
through empirical experimentation with each single drive 
train (Marchal-Crespo et al. 2012).

Path controller

Path controllers have been successfully employed in reha-
bilitation robotics (Duschau-Wicke et  al. 2010) and sport 
training (Rauter et  al. 2011). An artificial potential field 
based on the obstacle-avoidance approach described in 
(Khatib 1985) was designed to allow subjects to try the 
task by themselves. The potential field restricted the move-
ment to a safe area surrounding the desired trajectory by 
correcting the movement with a repulsive potential field. 
The potential field could also enforce a desired position-
dependent velocity profile by means of an attractive poten-
tial field. The region of influence of the repulsive potential 
field was delimited by a stiff tunnel and a soft tunnel that 
limited the area where the repulsive potential field had no 
influence (Marchal-Crespo et al. 2012).

Flux guidance: tunnel with assisting flux

On top of the repulsive field, a velocity flux could be added 
that enforced the direction and magnitude of the veloc-
ity at each trajectory point. The desired speed was calcu-
lated following a similar asymmetric bell-shaped profile 
as described in 2.2, but position-dependent. The assisting 
flux was tangent to the desired trajectory and dependent on 
the position of the end effector, not their time, and thus the 
subject was allowed to start the movement when desired. 
The total reactive and attractive forces were then fed into a 
closed-loop force controller.

No guidance along a tunnel: zero‑force tunnel

The path controller was designed so that it was transpar-
ent within the tunnels when the flux was off, using a 

closed-loop force controller. In order to increase the trans-
parency of the system, six miniature load cells were added 
in line between each rope end and the racket in order to 
measure the force as close to the robot the end effector as 
possible. The maximum force required to move the end 
effector inside the tunnel was less than 12 N.

Fading haptic guidance

The fading haptic guidance controller was defined as 
a smooth transition between a position controller that 
enforces the time to start a stroke and the velocity, toward 
a path controller with assisting flux that enforces only the 
velocity. This controller was able to limit tracking errors, 
while constantly increasing the timing difficulty level (cor-
rect time to start the stroke) (Marchal-Crespo et al. 2012). 
The smooth transition was accomplished performing a 
weighted sum of the control signals from the position con-
trol output fRdesPC and from the path controller fRdesPath. The 
total control signal is calculated as follows:

The weights w1 and w2 were updated after each trial 
using a forgetting factor f as in Marchal-Crespo et  al. 
(2010a), such that at the beginning of the training session, 
the subjects performed with position control only (w1 = 1 
and w2 = 0).

Note that the updating equations (Eq. 2) do not increase 
the value of w2 at the same rate as w1 is decreased. This 
is because weak position and path controllers resulted in 
starting the movement too late, thereby the robot tried to 
overcome the position error by speeding up the movement. 
The different updating speeds guaranteed the movement to 
be performed always at the same velocity profile.

Experimental protocols

The experiment was approved by the Research Ethics 
Committee of ETH Zurich, and all participants provided 
informed consent. Twenty-four healthy, right-handed adult 
participants (seven females) consented to take part in the 
experiment. Subjects were between the age of 18–34 years 
old (mean age 28.2  ±  3.1  years). The experiment took 
place in two different days. During the first experimental 
day, subjects trained to start the stroke at the correct time (a 
discrete timing task), while during the second day subjects 
learned to follow a velocity profile (a time-critical tracking 
task). The specific protocols for each experimental day are 
described in the following subsections.

(1)fRdes = w1fRdesPC + w2fRdesPath

(2)
w1i+1(x) = fw1i

w2i+1(x) = 1 − w2

1i+1
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Experiment 1: learning a discrete timing task

Nineteen subjects participated in the first experimental 
day. A cross-over design was used to evaluate the effect of 
training with flux guidance, fading haptic guidance, and 
visual feedback on learning a discrete task. A randomized 
cross-over design was selected to avoid imbalances in the 
initial skill level between groups. The task consisted in 
rebounding a virtual ball moving toward them with the 
racket performing a forehand stroke, so that the rebound-
ing ball hits a highlighted target area on the virtual tennis 
court (Fig.  2). The initial virtual position and velocity of 
the ball were kept constant throughout the game. The speed 
of the rebounding ball just after racket impact was the same 
as the ball speed just before impact. Three different targets 
located on the left (T1), middle (T2), and right (T3) side of 
the virtual court (Fig. 2) were randomly presented. The task 
difficulty depended on the target: targets on the left and 
middle were more challenging (range of correct racket’s 
angles was 0.12  rad), while the range of correct racket’s 
angles to hit the target on the right side was 0.27 rad. Sub-
jects were instructed to hit as many targets as possible. To 
emphasize that a target was successfully hit (i.e., the ball 
landed on the indicated area), the highlighted target area 
changed the color. No other indication of movement accu-
racy was provided as terminal feedback.

Subjects trained with three different conditions:

1.	 Flux guidance: the robot was controlled with a path 
control with assisting flux. The controller enforced the 
stroke trajectory and the velocity profile, but allowed 
the subjects to start the movement whenever they con-
sidered adequate.

2.	 Fading haptic guidance: the robot started the training 
enforcing the correct timing to start the stroke, but faded 
the guidance as training progressed. The assistance was 

reduced during the first 35 hits (f = 0.92 in Eq. 2), and 
the last 5 hits were performed with flux guidance.

3.	C oncurrent visual feedback: the robot was controlled 
with a path control with assisting flux (flux guidance). 
The correct time to start the stroke was indicated by 
a change in the ball color (from yellow to red). In 
order to account for the subject reaction time, the ball 
changed the color 300  ms before the optimal time to 
start the movement.

Note that all conditions enforced the trajectory and veloc-
ity profile, as they were designed to train only the correct 
time to initiate the stroke. During training, subjects were 
instructed to follow along with the robot once the stroke was 
initiated (by themselves or the robot). However, the learning 
gains in the discrete task were tested in a more meaningful 
task: during baseline and short-term retention tests, the robot 
was controlled with a path controller with zero-force tun-
nel (no guidance along the tunnel), thereby subjects could 
freely perform the forehand tennis stroke without velocity 
restrictions. The session started with a familiarization period 
with flux guidance: subjects moved the robot and observed 
the virtual reality game. The three targets were randomly 
presented a total of 15 times (5 strokes × 3 targets). Dur-
ing baseline, the robot was controlled with a path controller 
with zero-force tunnel (no guidance). The three targets were 
randomly presented a total of 9 times (3 strokes × 3 target). 
Determination of the starting training condition was rand-
omized. A total of 6 different configurations were possible, 
depending on the order of the training conditions. Subjects 
were randomly assigned into one of the 6 different config-
urations, in such a way that there were at least 3 subjects 
assigned at each configuration. Four subjects were trained 
with the configuration that started with visual feedback fol-
lowed by flux guidance. Subjects were aware of which error 
condition they were training with. During training, subjects 

Fig. 2   The virtual game 
projected on the front screen in 
experiment 1. Three different 
targets located on the left, mid‑
dle, and right side of the virtual 
court were randomly presented 
(here, the three targets are pic-
tured for explanation purposes)



282	 Exp Brain Res (2013) 231:277–291

1 3

only played with the left (T1) and right (T3) targets, pre-
sented in random order a total of 40 times (20 hits × 2 tar-
get). After training, subjects rested for 5 min. Subjects were 
requested to play again with flux guidance in order to wash 
out possible aftereffects (5 strokes × 3 targets). The charac-
teristics of the short-time retention phase were identical to 
baseline (Fig. 3). During the retention phase, the robot was 
controlled with a path controller with zero-force tunnel (no 
guidance along the tunnel). Subjects played again with the 
three targets a total of 9 times (3 strokes × 3 target). Gen-
eralization was investigated by evaluating learning to hit the 
untrained target T2.

Experiment 2: learning a time‑critical tracking task

A total of 18 participants, 13 subjects from day 1 and 5 
new subjects, participated in the second experiment after 
at least 1  week (mean elapsed time between experiments 
11.5  ±  2.7  days). The experiment consisted in learning 
to perform the tennis forehand stroke with two differ-
ent velocity profiles (both different from the velocity pro-
file performed in experiment 1). Subjects were randomly 
assigned to one of two groups: the haptic guidance and the 
visual-feedback group.

Subjects were instructed to learn two different veloc-
ity profiles (Fig. 4): a profile with a slow maximum speed 

(vmax1 = 1.9 rad/s) located at the beginning of the stroke, and 
a profile with a higher maximum speed (vmax2 = 3.9 rad/s) 
located toward the end of the stroke (Fig. 4). The fast pro-
file was designed to be more challenging to perform than 
the slow one—i.e., the fast profile had a higher maximum 
speed value and an abrupt deceleration phase. The maxi-
mum speeds and accelerations were selected, so that sub-
jects without any previous tennis experience could still per-
form the task.

Subjects were trained with two different feedback forms:

1.	H aptic guidance: the robot was controlled with a posi-
tion control that physically enforced the robot end-
effector position and velocity. The movement of the 
racket was displayed as a virtual racket on the screen 
on the right. Subjects were instructed to always follow 
along the robot movement.

2.	C oncurrent visual feedback: the robot was controlled 
with a path controller with zero-force tunnel, thereby 
the subjects could move the racket at their selected 
speed inside a tunnel around the desired trajectory. 
Subjects were instructed to match the movement of 
a virtual racket displayed in diffuse pink on the right 
screen with the real racket displayed on the screen as a 
specular yellow racket (Fig. 5).

Fixed haptic guidance was selected, rather than fading 
haptic guidance for a fair comparison with the concur-
rent visual-feedback condition. Note that both conditions 
enforced the stroke trajectory, as they were designed to 
train only the velocity profile. No additional informa-
tion about the movement accuracy was provided to the 
subjects.

The protocol started with a warm-up period in the 
zero-force tunnel. During baseline, subjects (regardless of 
the group) observed the “teacher” virtual racket perform-
ing two times the slow profile. Then, the subjects were 
requested to try to reproduce the movement two times. The 
racket movement was displayed in real time on the screen. 
Afterward, subjects observed two times the fast movement 
and were requested to reproduce the movement another 
two times. Afterward, the slow profile was presented once 
again, and subjects performed three slow profiles. Finally, 
the fast movement was presented once more, and the sub-
jects performed three times the fast profile. In total, sub-
jects performed five strokes per velocity profile.

Fig. 3   The discrete task 
experimental protocol (day 1). 
HG haptic guidance, VG visual 
guidance, FG flux guidance
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Subjects were informed about the feedback condition 
they were training with. They were also informed about the 
velocity profile of the next stroke through a message on the 
screen (“Fast” or “Slow” signs, Fig. 5). The velocity mes-
sages remained on the screen for 2 s, and the subjects were 
informed to move as soon as the message disappeared. 
Subjects performed a total of 60 strokes during training, 
30 per velocity profile. Each training condition included 
10 catch trials (five per profile), randomly presented, for 
which the haptic or visual guidance was removed to avoid 
any slacking effect when training with the haptic condition 
[i.e., subjects rely on the haptic assistance (Reinkensmeyer 
et al. 2009)], and any possible boredom effect (i.e., perfor-
mance degrades due to lack of attention). After training, a 
5-min pause was provided. The short-retention phase con-
sisted in 10 trials without feedback (five per profile) was 
randomly presented.

Statistical analysis

For each trial in the discrete task experiment, the abso-
lute error, defined as the absolute value between the posi-
tion of the racket at ball impact and the racket position that 
rebounds the ball to the center of the desired target area, 
was measured. The racket position at ball impact, instead 
of the movement time onset, was selected as performance 
variable. Subjects were instructed to hit as many targets as 
possible, while nothing was mentioned about learning the 
correct onset time. The accuracy feedback that subjects 
received during the experiment (i.e., ball landing correctly 
in the correct highlighted court) depended only on the posi-
tion of the racket at ball impact (that was independent of 
the movement onset when the velocity was not enforced). 
Thereby, we decided to use the position of the racket at ball 
impact as the performance variable to be consistent with 
the perceived feedback.

To determine whether subjects learned, a t test between 
baseline and retention was performed. We used a linear 
mixed model to test the effect that different training con-
ditions, target difficulty, initial skill level, and order of 
training conditions had on the error reduction from base-
line to retention phases. The error created during baseline 
was used as a qualitative measure of initial skill level. The 
model was fitted with the 3 different targets, the 3 different 
training conditions, and the order of the training strategies 
as fixed factors, the initial skill level as covariate, and the 
subjects as random factor. We evaluated the main effects of 
all factors and the interaction between the training condi-
tions and the initial skill level, between the training condi-
tions and the order they were performed, between the con-
ditions and the different targets, and the 3-way interaction 
between the training conditions, the targets, and the initial 
skill level. To test the correlation between error reduc-
tion after the different training conditions and initial skill 
level, we performed a Pearson’s correlation test. In order 
to examine whether the protocol design induced carryover 
effects (i.e., the current performance of a subject may be 
affected by any kind of training condition preceding the 
current condition), we ran a repeated measures ANOVA 
to compare the mean error reduction between baseline and 
first retention, mean error reduction between the second 
and first retentions, and between the third and second reten-
tions, independently of the training conditions order.

The aim of the second experiment is to study how well 
subjects learn to perform a time-critical tracking task (fol-
low a velocity profile). However, following a velocity pro-
file is a complex task that involves learning different tim-
ings features: (1) learn the speed magnitude (e.g., learn 
the maximum speed), (2) learn to follow the profile timing 
(e.g., learn the time to produce the maximum speed), and 
(3) learn to follow the profile shape. Thereby, three per-
formance variables were measured for each trial: (1) the 

Fig. 5   The virtual reality 
scenario projected on the right 
side screen during training of 
the time-critical tracking task 
(experiment 2). Screenshot of 
the visual feedback just before 
a “fast” profile. Displayed in 
diffuse pink (dark gray) is the 
“teacher” racket and in specular 
yellow (light gray) the actual 
position of the racket
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absolute difference between the maximum measured speed 
and the desired maximum speed (i.e., maximum speed 
error), (2) the difference between the measured location of 
the speed maximum and the desired speed maximum loca-
tion (i.e., speed maximum location error), and (3) the mean 
absolute error between the desired and performed veloc-
ity profile (i.e., mean absolute error). The position of the 
speed maximum was measured as the percentage of time 
required to achieve the maximum speed over the total time 
required to perform the stroke. The start (end) of a stroke 
was defined as the moment the stroke speed was above 
(below) the 10 % of the maximum speed. In order to cal-
culate the mean absolute error, the measured profile was 
re-sampled to match the length of the desired profile. To 
determine whether subjects reduced any of the performance 
variables after training, paired t tests between baseline and 
retention were performed. To determine whether participat-
ing in experiment 1 affected subjects’ ability to perform the 
tracking task, a t test between subjects that participated in 
both experiments and novel subjects was performed using 
the performance variables calculated during baseline.

We used a linear mixed model to test the effect that dif-
ferent training conditions, velocity profiles, initial skill 
level, and previous knowledge of the robot (i.e., whether 
subjects also participated in experiment 1) had on the error 
created during the different experimental phases (i.e., base-
line, training without catch trials, catch trials, and reten-
tion). We used a linear mixed model for each of the three 
performance variables. The error created during baseline 
was used as a qualitative measure of initial skill level. The 
previous knowledge of the robot factor was defined as a 
binary variable (subjects participated in both experiments 
or not). The model was fitted with the 2 different velocity 
profiles, the 2 training conditions, and previous knowledge 
of the robot as fixed factors, the initial skill level as covari-
ate, and subjects as random factor. We evaluated the main 
effects of all factors and the interaction between the training 

conditions and the initial skill level, between the training 
conditions and the previous knowledge of the robot, the 
velocity profile and training phase, training condition and 
training phase, and the 3-way interaction between the train-
ing conditions, the velocity profiles and the training phases. 
Normal distribution was checked visually using Q–Q plots. 
The significance value was set to p = 0.05. Statistical anal-
yses were performed using the SPSS and R software.

Results

Experiment 1: learning a discrete timing task

Figure 6 shows the evolution of absolute error for a repre-
sentative subject who performed the training conditions fol-
lowing the order: visual feedback + flux guidance + fading 
haptic guidance. Subjects learned the task with all strate-
gies, as observed in the significant error reduction from 
baseline to retention (t test, visual feedback: p  =  0.001; 
flux guidance: p  =  0.005; fading guidance: p  =  0.002), 
with initially less-skilled subjects (i.e., subjects that cre-
ated larger errors during baseline) exhibiting a larger error 
reduction (Fig. 7a).

A linear mixed model was employed to test the effect 
that the 3 different training conditions, the 3 different tar-
gets, the initial skill level—i.e., error created during base-
line—and the order of training conditions had on the error 
reduction from baseline to retention phases. We evaluated 
the main effects of all factors and the interaction between 
the training conditions and the initial skill level, between 
the training conditions and the order they were performed, 
between the conditions and the different targets, and the 
3-way interaction between the training conditions, the tar-
gets, and the initial skill level.

The main effect of the training condition on the error 
reduction, independently of the initial subjects’ skill level 

Fig. 6   Evolution of a repre-
sentative subject’s error during 
baseline, training, and retention 
phases during experiment 1
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and target difficulty, was significant (p = 0.041). The con-
trast revealed that training with fading haptic guidance 
reduced the errors significantly more than training with 
visual feedback (p = 0.016). Although training with visual 
feedback also reduced the errors, the reduction was not 
significantly greater than after playing with flux guidance 
(p = 0.172). We also found that the main effect of the tar-
gets was significant (p = 0.040), i.e., the amount of error 
reduction was different between targets. In particular, con-
trast revealed a significant effect on the target difficulty, 
i.e., that subjects reduced the errors significantly more 
after training the easy target (T3), compared to the diffi-
cult target (T1) (Fig. 7b, p < 0.001). Furthermore, contrast 
revealed that subjects reduced the errors significantly more 
after training the easy target (T3) compared to the untrained 
target (T2) (p  <  0.001). The main effect of the order in 
which the training conditions were presented was nonsig-
nificant, neither the interaction between training condition 
and order, suggesting that the randomization of the order of 
the training conditions successfully removed possible influ-
ences of the order on the error reduction.

We investigated the effect of the initial skill level (i.e., 
the error during baseline) on the effectiveness of the dif-
ferent training conditions and found that the interaction 
between training condition and initial skill level was sig-
nificant (p < 0.001). Specifically, we found that there was 
a significant linear relationship between initial skill level 
and the error reduction from baseline to retention after 
training with the three different conditions (Fig. 7b, Pear-
son’s correlations; visual feedback: R = 0.469, p = 0.043; 
flux guidance: R = 0.697, p < 0.001; and fading guidance: 
R = 0.832, p < 0.001). The significant difference between 

slopes suggested that training with fading haptic guidance 
benefited the initially less-skilled participants, while train-
ing with visual feedback was more beneficial for initially 
more skilled subjects (Fig. 7b).

We found that subjects showed a tendency to reduce 
the errors when playing the difficult target (T1) only after 
playing with haptic guidance (Fig. 7c, p = 0.074). We also 
found that subjects only generalized learning after playing 
with visual feedback (Fig. 7c, p = 0.021) and after fading 
haptic guidance (p = 0.044). Subjects learned how to play 
the easy target (T3) with all training conditions (visual feed-
back: p = 0.002; flux guidance: p = 0.001; fading guidance: 
p = 0.028). However, we could not find a significant inter-
action between training condition and targets (p = 0.206).

Finally, the 3-way interaction between training con-
ditions, initial skill level, and target difficulty was 
nonsignificant.

We run a repeated measures ANOVA in order to exam-
ine whether the protocol design induced carryover effects. 
We did not find significant differences between the mean 
error reductions from baseline to first retention, mean error 
reduction from first to second retention, and from second to 
third retention.

Experiment 2: learning a time‑critical tracking task

The t tests revealed that subjects who participated in the 
first experiment did not show significant differences in any 
performance variable during baseline compared to sub-
jects without previous knowledge of the robotic device. 
The previous knowledge of the robot did not affect how 
subjects reduced any errors, i.e., the main effect of having 
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Fig. 7   Experiment 1. a  Mean absolute error during baseline and 
retention tests. b effect of initial skill level (i.e., baseline error) on the 
error reduction after training with the different training conditions for 
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difficult target T1, the untrained target T2, and the trained easy target 
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bars show ± 1 SD. Bars with asterisks show a significant reduction 
between baseline and retention. Significant differences are identified 
with an asterisk (p < 0.05)
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participated also in experiment 1 was nonsignificant. The 
interaction of the previous knowledge of robot and the 
training condition was also nonsignificant.

Subjects in the visual and haptic groups did not show 
significant differences during baseline. Figure 8 shows the 
evolution of the location speed maxima error for represent-
ative subjects who trained with visual feedback (left) and 
haptic guidance (right).

Linear mixed models were used to test the effect that the 
2 training conditions, the 2 velocity profiles, the initial skill 
level—i.e., error created during baseline—and the previous 
knowledge of the robot (i.e., whether subjects also partici-
pated in experiment 1) had on the 3 performance variables 
created during the different experimental phases (i.e., base-
line, training without catch trials, catch trials, and reten-
tion). We added the errors created during training and catch 
trials into the model to have a better understanding of the 
subjects’ performance during training with the different 
feedback conditions. We used a linear mixed model for each 
of the three performance variables. We evaluated the main 
effects of all factors and the interaction between the train-
ing conditions and the initial skill level, between the train-
ing conditions and the previous knowledge of the robot, the 
velocity profile and training phase, training condition and 
training phase, and the 3-way interaction between the train-
ing conditions, the velocity profiles, and the training phases.

There was a significant main effect of the training condi-
tion (mean absolute error: p = 0.002; maximum speed error: 
p = 0.011; speed maximum location error: p = 0.030). We 
also found a significant main effect of the velocity profile 
on the maximum speed error (p  <  0.001) and the speed 

maximum location error (p < 0.001). The contrast revealed 
that the maximum speed error in the slow profile was signif-
icantly smaller than in the fast profile. However, the speed 
maximum location error during the slow profile was signifi-
cantly bigger than in the fast profile (p < 0.001).

We found a significant main effect of the training phase 
(i.e., baseline, training, catch trials, and retention) in all 
performance variables (mean absolute error: p  <  0.001; 
maximum speed error: p = 0.020 with Greenhouse–Geis-
ser correction; speed maximum location error: p < 0.001). 
Contrast revealed that all errors were reduced during train-
ing when compared to baseline (p < 0.001). However, we 
could not find a significant difference between the errors 
created during baseline and retention, i.e., subjects, inde-
pendently of the profile performed and the training condi-
tion, did not significantly improve after training.

We investigated the effect of the initial skill level (i.e., 
the error during baseline) on the effectiveness of the differ-
ent training conditions and found that the interaction was 
nonsignificant in all the performance variables.

There was a significant interaction effect between the 
velocity profile and the training phase in the speed maxi-
mum location error (p < 0.001). Contrast revealed that sub-
jects reduced the speed maximum location error from base-
line to retention in the fast profile significantly more than 
in the slow profile (Fig. 10a, p = 0.007). In fact, subjects 
significantly reduced the speed maximum location error 
(p = 0.031), while subjects tended to degrade the error in 
the slow profile (p = 0.057).

We found a significant interaction effect between the 
training condition and the training phase in all performance 
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variables (p  <  0.001). Contrast revealed that, contrary to 
the visual-feedback group, subjects who trained with hap-
tic guidance reduced all the baseline errors during training 
(p  <  0.001). Contrast also revealed that the haptic group 
tended to reduce the speed maximum location error from 
baseline to retention, while the visual group degraded the 
error (Fig, 10b, p = 0.076). The same tendency was found 
in the maximum speed error (Fig.  10c, p  =  0.174) and 
mean absolute error (Fig. 10d, p = 0.150). The contrast of 
the interaction between the training condition and the train-
ing phase also revealed that subjects who trained with visual 
feedback performed better during the catch trials than during 
retention, while the haptic guidance group reduced the errors 
during retention (Fig. 10b–d: speed maximum location error 
p = 0.012; maximum speed error: p = 0.003; mean absolute 
error: p = 0.005). In fact, the haptic group reduced signifi-
cantly the maximum velocity error (Fig. 9b, p = 0.008), the 
mean absolute error (Fig. 9c, p = 0.014), and the speed max-
imum location error (Fig. 9a, p = 0.038) from catch trials to 
retention. On the contrary, the visual-feedback group tended 
to increase the maximum speed error (Fig. 9b, p =  0.065) 
and the mean absolute error (Fig. 9c, p = 0.072). No signifi-
cant differences were found between the performance errors 
created during baseline in the visual and haptic groups.

Finally, we did not find any relevant significant 3-way 
interaction between the training conditions, velocity pro-
files, and training phase.

Discussion

This study investigated the form of guidance that optimizes 
learning of a tennis stroke. In particular, in two different 

experiments, we studied the effect that haptic guidance and 
visual feedback had on learning the discrete time-critical 
task of starting the tennis stroke in the correct time, and on 
learning the time-critical tracking motor task of following 
a predefined velocity profile while performing the tennis 
stroke. In the following subsections, we discuss in detail 
the results for each movement category.

The feedback condition that maximizes learning of the 
discrete task depends on subjects’ initial skill level

Fading haptic guidance was found to enhance motor learn-
ing of the discrete time-dependent motor task, when com-
pared to visual feedback. However, we found that the 
training condition—flux guidance, fading haptic guidance, 
and visual feedback—that maximizes learning of the dis-
crete time-dependent motor task depended on subjects’ 
initial skill level. Training with haptic guidance seems to 
benefit more the initially less-skilled subjects, while more 
advanced subjects seem to benefit more from visual feed-
back. Subjects reduced the errors significantly more when 
playing the easy target, apparently because non-haptically 
restricted training conditions did not promote learning of 
the more difficult targets.

A rationale for the better learning after training with 
fading haptic guidance can be found in the challenge point 
theory (Guadagnoli and Lee 2004). The challenge point 
theory states that optimal learning is achieved when the dif-
ficulty of the task is appropriate for the subjects’ level of 
expertise. Thus, for initially less-skilled subjects, learning 
the discrete task without haptic guidance was too challeng-
ing and resulted in worse learning, as compared to training 
with haptic guidance. Likewise, providing haptic guidance 

A B C

Fig. 9   Experiment 2: a  mean speed maximum location error dur-
ing the different training phases—baseline, training, catch trials, and 
retention—when training with visual feedback or haptic guidance. b 
Mean maximum speed error during the different training phases. c 

Mean absolute speed error during the different training phases. Error 
bars show ±  1 SD. Significantly different training phases pairs are 
identified with an asterisk (p < 0.05)
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to initially more skilled subjects did not promote learning, 
and for some especially skilled subjects resulted in worse 
performance. Fading haptic guidance did not encourage 
any effort or attention from the more skilled subjects, and 
thus, new skills were not acquired. These results are in line 
with previous studies, which found that haptic guidance 
was more beneficial to learn time-related discrete tasks in 
initially less-skilled subjects than unassisted practice (Mar-
chal-Crespo et  al. 2010b) and error amplification (Milot 
et al. 2010).

Previous studies on the effect of haptic guidance on 
learning a discrete time-critical task were missing an 
important point: a timing cue could also be provided as 
visual or auditory feedback (Milot et  al. 2010; Marchal-
Crespo et al. 2010b). In this paper, concurrent visual feed-
back was also evaluated as a training condition and results 
were compared to training with haptic guidance and flux 
guidance. In general, although training with visual feed-
back reduced the errors in greater extent than training with 
flux guidance, the difference between the two conditions 

was nonsignificant. The finding that concurrent visual feed-
back does not improve learning more than unguided train-
ing (i.e., flux guidance) contradicts the studies that found 
positive effects on learning complex motor tasks (Lee et al. 
1990; Shea and Wulf 1999; Todorov et  al. 1997). A pos-
sible rationale for the visual feedback learning limitation 
is that the discrete timing task was in fact a simple motor 
task, independently of its level of difficulty. As defined 
in (Wulf and Shea 2002), a motor task can be listed as a 
simple task if they have only one degree of freedom, can 
be mastered in a single practice session, and appear to be 
artificial. Although performing the stroke requires more 
than one degree of freedom, the movement initialization 
itself is a binary task (move or not move) and, thus, it could 
be defined as a simple task. Thereby, the results from our 
experiment are in line with studies that did not find any 
advantage from concurrent visual feedback when learning 
a simple task (Proteau 2005; Schmidt and Wrisberg 2008). 
Perhaps because the subjects learned to rely on the specific 
visual-spatial control condition required to play with visual 

Fig. 10   Experiment 2: a speed 
maximum location error 
reduction from baseline to 
retention in the slow veloc-
ity profile (vmax1 = 1.9 rad/s) 
and fast velocity profile 
(vmax1 = 3.9 rad/s) after training 
with visual feedback and haptic 
guidance. b Speed maximum 
location error reduction from 
baseline to retention and from 
catch trials to retention after 
training with visual feedback 
and haptic guidance. c Maxi-
mum speed error reduction from 
baseline to retention and from 
catch trials to retention after 
training with visual feedback 
and haptic guidance. d Mean 
absolute error reduction from 
baseline to retention and from 
catch trials to retention after 
training with visual feedback 
and haptic guidance. Error bars 
show ± 1 SD. Bars with aster‑
isk show a significant reduction. 
Significantly different training 
condition pairs are identified 
with an asterisk (p < 0.05)
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feedback and failed to learn, the motor coordinates required 
to perform the unguided movement.

We did find a significant difference between training 
with haptic guidance and visual feedback: fading haptic 
guidance resulted in better learning than visual feedback. 
A significant interaction between the training conditions 
and initial skill level suggests that initially more skilled 
subjects benefit from visual feedback more than from 
haptic guidance, while fading haptic guidance resulted in 
better learning in less-skilled subjects. However, caution 
is needed when concluding that visual guidance seems to 
be especially suitable for initially more skilled subjects. 
From Fig.  7b, we note that the error reduction in espe-
cially advanced subjects (e.g., subjects with baseline errors 
smaller than 0.17  rad) trained with visual feedback was 
rather small. The lack of greater improvement may be due 
to a ceiling effect. The range of correct racket’s angles at 
collision time was 0.12 rad for targets on the left and mid-
dle, and 0.27 rad for the target on the right, thereby subjects 
could create small errors, but still be right on the target, 
failing to try to further reduce those errors. As a reference, 
the initially more skilled subject had a hitting success rate 
during baseline of 56 %.

Why did training with haptic guidance resulted in better 
learning than training with visual feedback? Visual feed-
back has the advantage of decreasing the cognitive load 
during training of especially complex tasks (Wulf and Shea 
2002). We chose the ball color change as a visual cue in 
order to avoid subjects to focus their attention on an exter-
nal visual cue. However, this type of visual feedback may 
have not been the most adequate to reduce the cognitive 
load during training, compared to training with haptic guid-
ance. The design of the visual feedback has a great impact 
on the effectiveness of the visual feedback in motor learn-
ing (Sigrist et al. 2013). Thus, we cannot categorically con-
clude that visual feedback does not enhance motor learn-
ing. Other forms of visual cues should be systematically 
evaluated to determine whether concurrent visual feedback 
does not improve learning of discrete time-critical tasks.

Subjects reduced the errors significantly more in the 
easy target compared to the difficult target, probably 
because subjects only reduced (almost significantly) the 
errors in the difficult target after training with fading hap-
tic guidance, while training with any condition resulted in 
learning the easy target. A possible rationale for this result 
can again be found in the challenge point theory (Guadag-
noli and Lee 2004). Hitting the difficult target was initially 
too challenging. The inclusion of fading haptic guidance 
may have reduced the task difficulty to a more appropriate 
level, resulting in better motor learning.

Interestingly, training with flux guidance limited gen-
eralization—i.e., subjects did not generalize the learn-
ing gains to untrained actions. Subjects generalized to 

the untrained targets only after training with visual feed-
back and fading haptic guidance. The flux guidance con-
dition seems to be specially limiting for novice subjects, 
as seen in a larger error after training with flux guidance, 
when compared to haptic guidance and visual feedback. 
This result contradicts a recent study that found that haptic 
guidance limited generalization in a discrete timing-based 
task (Marchal-Crespo and Reinkensmeyer 2008). In this 
previous experiment, we speculated that the limited gen-
eralization arose because subjects who received guidance 
experienced a narrower range of training examples. A pos-
sible rationale to this discrepancy is that, at least for ini-
tially less-skilled subjects, the tennis task was more chal-
lenging than the simpler pinball task (Marchal-Crespo and 
Reinkensmeyer 2008), and training with flux guidance did 
not result in a “rich and varied experience” (Marchal-Cre-
spo and Reinkensmeyer 2008) that would improve learn-
ing of the untrained target. Thus, results contradicted our 
hypothesis: training without visual or haptic guidance was 
detrimental for especially less-skilled subjects.

Haptic guidance reduced performance errors after training 
the time‑critical tracking task

In the second experiment, we found that learning to fol-
low a desired velocity profile while performing a tennis 
forehand stroke was particularly challenging. Probably 
due to the reduced subject number and the high variabil-
ity, the changes in the performance variables from baseline 
to retention were nonsignificant in both training groups. 
Although there was a tendency of better performance after 
training with the haptic guidance, as demonstrated by a 
greater reduction in error related to the maximum velocity, 
the location of the speed maximum, and overall mean abso-
lute error from baseline to retention, the error reduction 
was non-significant. Furthermore, the visual group showed 
performance degradation during retention. Haptic guidance 
only enhanced learning of the speed maximum location, at 
least in the fast profile.

The lack of learning in the haptic group contradicts 
recent experiments on learning to perform 2D curves (Blu-
teau et al. 2008; Morris et al. 2007). A possible explanation 
to the poor learning in the current experiment may be the 
chosen task: the forehand stroke task required a large work-
space and relatively large accelerations (and decelerations) 
to be performed, compared to the small task workspace and 
slow movements required in previous experiments. Based 
on the task complexity, a larger training time may have pro-
duced significant learning, at least in subjects trained with 
haptic guidance.

The haptic guidance worked as expected, reducing the 
errors when applied during training. Interestingly, subjects 
who trained with haptic guidance performed significantly 
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better during retention than during the catch trials, 
while subjects in the visual-feedback group significantly 
increased the errors during retention. No significant dif-
ferences were found between the performance errors cre-
ated during baseline and during the catch trials in the visual 
and haptic groups, thereby suggesting that haptic guidance 
was better than visual guidance to retain the learning gains 
acquired during training.

We hypothesized a better learning in the haptic guid-
ance group, based on previous studies that found that haptic 
guidance benefited learning to reproduce the temporal char-
acteristics of a complex spatiotemporal curve (Feygin et al. 
2002; Bluteau et al. 2008; Morris et al. 2007). We expected 
better learning especially on the fast movement (i.e., more 
difficult profile), because haptic guidance carries more 
information about the task to be learned (i.e., the kinematic 
structure of the movement), while visual feedback carries 
less information and, thus, was hypothesized to enhance 
learning of the slow (easy) profile. However, contrary to 
expectations, learning the location of the speed maximum 
seemed to be especially challenging in the slow profile, 
probably because the position maximum location was 
located close to the movement start. Indeed, results showed 
a significant greater location speed maximum error reduc-
tion from baseline to retention in the fast profile, compared 
to the slow profile. Although, in general, we found that the 
error reduction was greater after training with haptic guid-
ance, we did not find a significant interaction between the 
training conditions and the speed profiles. Additionally, we 
did not find a significant interaction between the training 
condition and the initial skill level. Thereby, no conclusion 
can be drawn about the training condition that maximizes 
learning of the time-critical tracking task based on initial 
skill level and task difficulty.

The performance degradation of the visual-feedback 
group in both velocity profiles was unexpected. Several 
studies have shown positive effects of concurrent visual 
feedback on learning complex motor tasks (Lee et al. 1990; 
Shea and Wulf 1999; Todorov et  al. 1997). It is believed 
that concurrent feedback can decrease the cognitive load 
during learning (Wulf and Shea 2002), and thus, visual 
feedback (provided through virtual reality simulators) has 
been suggested to be especially suitable to teach complex 
movements (Todorov et al. 1997). However, in our specific 
tracking task, visual feedback did not seem to reduce the 
cognitive load during training, as suggested by the relative 
large errors created during training. A possible explana-
tion is that the type of visualization was not adequate for 
this special time-critical task. In fact, in trials where the 
visual feedback was provided, subjects seemed to be more 
concentrated on starting at the correct time, focusing spe-
cifically on correcting the movement when they started the 
stroke too late. Thus, similarly to the discrete task, caution 

must be taken when concluding that concurrent visual feed-
back does not enhance learning of continuous time-depend-
ent tasks.

Conclusion

This study evaluated the effect of haptic guidance and visual 
feedback on learning the discrete and continuous elements 
of a tennis forehand stroke. We found that fading haptic 
guidance enhanced motor learning of the discrete time-
dependent motor task, when compared to visual feedback. 
Furthermore, the training condition that maximizes learn-
ing depends on subjects’ initial skill level. Haptic guidance 
seems to be especially suitable for less-skilled subjects and 
for especially difficult discrete tasks, while visual feedback 
seems to benefit more skilled subjects. Additionally, haptic 
guidance also seems to promote learning in a time-critical 
tracking task, while visual feedback tends to deteriorate the 
performance, independently of the task difficulty and sub-
jects’ initial skill level. These results show that a refinement 
of the simplistic claim that haptic guidance benefits learn-
ing of timing tasks is needed. This refinement must describe 
with greater detail for which timing task category (discrete 
or continuous) and task difficulty haptic guidance are ben-
eficial, based on the specific subject’s initial skill level. In 
conclusion, although haptic guidance changes the dynamics 
of the task to be learned, this property does not seem to ham-
per learning of some specially difficult time-critical tasks in 
initially less-skilled subjects. Haptic guidance seems to out-
perform other forms of guidance, such as concurrent visual 
feedback, although additional studies are needed to further 
analyze the effect of other types of feedback visualization 
on motor learning of time-critical tasks. An important direc-
tion for future research is to examine long-term retention 
and generalization more closely following the training tech-
niques as they have been used in this study.
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