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Abstract Psychophysics generally relies on estimating a

subject’s ability to perform a specific task as a function of

an observed stimulus. For threshold studies, the fitted

functions are called psychometric functions. While fitting

psychometric functions to data acquired using adaptive

sampling procedures (e.g., ‘‘staircase’’ procedures), inves-

tigators have encountered a bias in the spread (‘‘slope’’ or

‘‘threshold’’) parameter that has been attributed to the serial

dependency of the adaptive data. Using simulations, we

confirm this bias for cumulative Gaussian parametric

maximum likelihood fits on data collected via adaptive

sampling procedures, and then present a bias-reduced

maximum likelihood fit that substantially reduces the bias

without reducing the precision of the spread parameter

estimate and without reducing the accuracy or precision of

the other fit parameters. As a separate topic, we explain

how to implement this bias reduction technique using

generalized linear model fits as well as other numeric

maximum likelihood techniques such as the Nelder–Mead

simplex. We then provide a comparison of the iterative

bootstrap and observed information matrix techniques for

estimating parameter fit variance from adaptive sampling

procedure data sets. The iterative bootstrap technique is

shown to be slightly more accurate; however, the observed

information technique executes in a small fraction

(0.005 %) of the time required by the iterative bootstrap

technique, which is an advantage when a real-time estimate

of parameter fit variance is required.
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Introduction

In earlier papers in this series, we presented how signal

detection theory relates to the measurement of vestibular

thresholds (Merfeld 2011) and presented an investigation

of fitting vestibular threshold data across frequencies (Lim

and Merfeld 2012). While we remain focused on vestibular

applications, this paper focuses on a more general prob-

lem—how to perform psychometric function fits that yield

less biased parameter estimates for adaptive sampling

procedure data than existing approaches (e.g., Wichmann

and Hill 2001a; Treutwein and Strasburger 1999).

In the statistical literature, bias reduction techniques

have long been described (Quenouille 1956; Cox and

Hinkley 1974; McCullagh and Nelder 1989; Firth 1993;

Kosmidis and Firth 2010). Firth (1993) divided these bias

reduction techniques into three categories. (1) Jackknife

techniques that are computationally intensive (e.g.,

Quenouille 1956), (2) a direct calculation approach that

calculates an estimated bias and directly subtracts it (e.g.,

Cox and Hinkley 1974), and (3) an approach that shifts the

score function so as to minimize the bias (Firth 1993).

Despite this long and fruitful history, to our knowledge,

psychometric functions have never before been fit using
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bias reduction techniques despite knowledge that the spread

parameter demonstrated bias when data were acquired using

adaptive test paradigms (Leek et al. 1992; Treutwein and

Strasburger 1999; Kaernbach 2001; Leek 2001).

To resolve this long-standing problem of biased

parameter estimates, this paper applies bias-reduced fits to

forced choice, binary, psychometric data collected using

adaptive sampling procedures. In the main body of the

paper, we present results after subtracting the bias at each

iteration of a reweighted least squares procedure followed

by a nonlinear transformation of the estimates. This tech-

nique removes the bias caused by adaptive sampling. We

also present results obtained by numerically optimizing the

modified scores (Online Resource 1) and obtain indistin-

guishable answers when the problem statement is identical.

While generally applicable, we avoid jackknife approaches

herein simply because we are interested in obtaining a bias-

reduced parameter estimate in near real time.

The estimates obtained from the bias-reduced algo-

rithms are statistically more accurate (i.e., less biased) and

equally precise (i.e., same variance) when compared to

existing methods given a fixed number of trials. Fewer

trials for a given level of accuracy and precision suggest

that these methods utilize available data more efficiently.

This is especially important for our vestibular application

because motion stimuli take time to present. For example,

if one wants to obtain data at a motion stimulus frequency

of 0.05 Hz, then each trial will last at least 20 s. In this

context, efficient use of available data is important to keep

test length manageable, especially for the clinical setting

where several different threshold assays (e.g., yaw rotation,

y-translation, z-translation, etc.) may be required at mul-

tiple frequencies. If tests last too long, subjects can be less

attentive, lapses can occur, and subjects can even fall

asleep.

In the first section of the results (‘‘Accuracy of param-

eter estimates’’), we confirm that for adaptive sampling

procedures, the maximum likelihood estimate (MLE) on a

psychometric function’s spread parameter (r) provided by

both generalized linear model (GLM) fits and other

numerical maximum likelihood methods are downwardly

biased (Kaernbach 2001; Leek 2001). This inaccuracy

reduces as the number of trials (n) increases, but its impact

is substantial for fewer than 200 trials. For example, when

n = 50, we measure a parameter estimate bias on the

spread parameter (r) that underestimates its value on

average by 30 % of its standard deviation. We demonstrate

how to correct for this parameter bias by eliminating the

first-order asymptotic parameter bias term that generally

diminishes with 1/n. Correcting for this parameter bias is

important as it enables the direct comparison of data sets

obtained using different sampling procedures and different

termination criteria (e.g., different numbers of trials).

Experimenters may also want to know the variance

associated with the estimated parameters for each indi-

vidual data set. In the past, observed information and

iterative bootstrap techniques have been employed to

measure the variance on parameter estimates (McKee et al.

1985; Wichmann and Hill 2001b) for data acquired using

non-adaptive sampling test paradigms. In the second sec-

tion of the results (‘‘Estimating the precision of parameter

estimates’’), we show how to apply these methods to data

collected via adaptive sampling procedures. We also

demonstrate that the observed information technique—

while slightly less accurate than the iterative bootstrap

technique—can be executed in a fraction (0.005 %) of the

time.

Methods

The psychometric function

The psychometric function assumptions and notation used

in this paper are the same as those used in earlier papers in

this series (Merfeld 2011; Lim and Merfeld 2012). Spe-

cifically, the psychometric function is assumed to be a

cumulative Gaussian distribution. Subject responses are

binary and are 0 for negative responses (e.g., I perceive I

moved to the right) and 1 for positive responses (e.g., I

perceive that I moved to the left). The linear translation of

the psychometric function along the abscissa is referred to

as the ‘‘psychometric bias’’ or ‘‘vestibular bias’’ and is

represented mathematically as l. This value corresponds to

the point of subjective equality (PSE) where the subject’s

likelihood of responding with a 0 or 1 is equal and also

serves as the decision boundary for a one-interval direction

recognition binary response task (Merfeld 2011). This

‘‘vestibular bias,’’ l, should not be confused with the

parameter bias, which describes the inaccuracy of psy-

chometric function parameter estimates. To help distin-

guish between these two terms, we refer to parameter bias

as ‘‘bias’’ and vestibular bias using l from this point

onward. The spread of the psychometric function, which

can be directly related to the function’s slope, will be

characterized by r. For vestibular applications, this

parameter corresponds to the standard deviation of the

equivalent physiological noise (Merfeld 2011), which is

often referred to as the threshold. Our estimates of l and r
will be represented by bl and br, respectively.

Mathematically, the following equation defines our

psychometric function (w):

wðx; l; rÞ ¼ 1

r
ffiffiffiffiffiffi

2p
p

Z

x�l
r

�1

e
�z2

2 dz ¼ U
x� l

r

� �
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where U is the cumulative standard Gaussian distribution,

and z is a ‘‘dummy’’ integration variable. Here, we also

introduce the probit model parameterization of w that will be

used to fit the psychometric function via a generalized linear

model (GLM) fit.

wðx; b1; b2Þ ¼
1
ffiffiffiffiffiffi

2p
p

Z
b1þb2x

�1

e
�z2

2 dz ¼ Uðb1 þ b2xÞ

where b ¼ b1b2½ �T are the GLM fit parameters that char-

acterize the psychometric function. Through some simple

algebra, it can be shown that l ¼ �b1=b2 and r ¼ 1=b2

(Dobson and Barnett 2008). For simplicity, we choose not

to include a lapse rate (Wichmann and Hill 2001a) or

nonlinear asymmetry (Roditi and Crane 2012).

Psychometric function fits

For all of our analyses herein, we implement maximum

likelihood estimation by fitting the psychometric function,

w, to binary data using a generalized linear model (GLM)

(Dobson and Barnett 2008; McCullagh and Nelder 1989).

We choose to work with GLM fits as they provide a uni-

fying framework for many commonly used statistical

techniques (Dobson and Barnett 2008), and such a frame-

work provides insights into problems that are not provided

by Nelder–Mead or other numerical fit algorithms. In fact,

such an insight provided by GLM fits specifically led to the

bias reduction methods reported herein. Furthermore, GLM

fits are often used to fit psychometric functions (e.g.,

Knoblauch and Maloney 2008; Lim and Merfeld 2012;

Yssaad-Fesselier and Knoblauch 2006; Zupan and Merfeld

2008), and are a natural choice for our vestibular applica-

tion where subject responses are binary (e.g., Did I move

left or right?), and the psychometric function ranges from 0

to 100 %. We use the function glmfit.m from the statistics

toolbox in MATLAB R2011b with a binomial response

distribution and the probit link to implement the GLM fits.

We have also implemented this bias reduction approach

using another numerical maximum likelihood technique

(Nelder–Mead simplex), which yielded answers identical

to the GLM approach. We show the calculations underly-

ing this method in Online Resource 1.

The following example demonstrates how a psycho-

metric function can be fit to binary response data and is

included to provide visual intuition for such fits. Consider a

subject with a psychometric function that has a vestibular

bias, l, of 0 and spread, r, of 1. We simulated an experi-

ment on this subject with 50 stimuli spaced uniformly from

-4r to ?4r (Fig. 1). The binary responses, actual psy-

chometric function and fitted psychometric function are

provided in Fig. 1. As will be discussed in detail later, this

is an example where the estimated fit underestimates the

spread (r), and thus the slope is too steep at the midpoint.

Spread parameter bias

Adaptive sampling procedures are procedures in which the

physical stimulus of each trial is determined by the

responses and stimuli of the previous trial or sequence of

trials. These procedures were originally developed to

increase the efficiency and robustness of psychophysical

measurements (for review, see Leek 2001). Initially, they

focused on measuring a single point on the psychometric

function, called the threshold, but in the past few decades,

researchers have started to estimate other psychometric

function characteristics such as the slope, lapse rate, and

asymmetry (Treutwein and Strasburger 1999; Leek 2001;

Wichmann and Hill 2001a; Roditi and Crane 2012). When

using these methods to measure the slope of the psycho-

metric function, researchers found that, for an experiment

with a small number of trials, their estimates taken near the

midpoint of the psychometric function were, on average,

too steep (Leek et al. 1992; Treutwein and Strasburger

1999). While a complete explanation of this parameter

estimation bias is complex and not precisely understood, it
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Fig. 1 Simulation of an experiment on a subject with l = 0 and

r = 1 with 50 stimuli spaced uniformly from -4r to ?4r. The black

dots show the subject’s binary response (0 or 1) to each stimulus. In

this experiment, the subject responds 0 if they perceive a negative

stimulus and 1 if they perceive a positive stimulus. The solid line is

the actual underlying psychometric function, and the broken line is

the maximum likelihood Gaussian fit to the data
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has been shown that a major component of the bias is

caused by the serial dependency of the adaptive data

(Kaernbach 2001; Klein 2001). Simply stated, adaptive

sampling procedures only allow for certain, correlated

experimental configurations (i.e., stimulus and response

vector pairings) and, for data sets with a small number of

trials, these configurations result in biased slope estimates.

The slope at the midpoint of a psychometric function

can be related to the spread parameter. For our cumulative

normal psychometric function, the slope at the midpoint is

1=
ffiffiffiffiffiffiffiffiffiffi

2pr2
p

. Thus, when adaptive data causes the slope at the

midpoint to be upwardly biased (too large), the spread

parameter, r, will be downwardly biased (too small). For

example, we find a 7.5 % downward bias on br when

estimates are obtained using maximum likelihood fits on

10,000 simulated 100 trial long, 3-Down/1-Up adaptive

staircase data sets (Fig. 2c).

In this paper, the severity of the parameter estimate bias

will be divided into three categories. This categorization is

used to provide a graphical view of simulation results when

presented as a table. A highly biased estimator (category

III) will be defined as an estimator that is biased by more

than 25 % of its standard deviation. This categorization

comes from a common rule of thumb in statistics that

defines a poor estimator as one that is biased by more than

25 % of its standard deviation (Efron and Tibshirani 1993).

An estimator with an inconsequential bias (‘‘unbiased,’’

category I) will be defined as an estimator that is biased by

less than 10 % of its standard deviation, and a moderately

biased estimator (category II) will be defined as an esti-

mator that is biased between 10 and 25 % of its standard

deviation. The estimator, br, in Fig. 2c has a downward bias

that is 7.5 % of r and a standard deviation that is 25.8 % of

r. Therefore, in this example, br is biased by 29 % of

its standard deviation and is classified as highly biased

(category III). To avoid confusion, we emphasize that in

this paper, r refers to the spread parameter of the psy-

chometric function and not the standard deviation of a

parameter estimate.

A number of solutions have been offered to remove or

reduce this bias. Hall suggested that one could calculate the

expected percent size of the bias in advance and remove it

by multiplying the biased estimate by a scale factor (1981).

One problem with this method is that, when the estimate is

downwardly biased, as for the spread parameter (r), the

multiplier is greater than one, which causes the variance on

the estimated spread parameter to increase. We will dem-

onstrate that, by using bias-reduced maximum likelihood

estimation (McCullagh and Nelder 1989; Firth 1993;

Kosmidis 2007; Kosmidis and Firth 2010), we can correct

for the downward bias on br without significantly increas-

ing the variance on bl or br and without decreasing the

accuracy on bl. Furthermore, standard maximum likelihood

estimation can lead to asymmetric distributions when the

number of trials is small and/or the vestibular bias (l) is

large. This characteristic also improves with biased-

reduced maximum likelihood estimation.

In contrast, when an estimate is upwardly biased, we note

that the scale factor method will require a multiplier less

than one, which will actually reduce both the bias and the

variance of the estimate. We will use this fact, in combi-

nation with bias-reduced maximum likelihood estimation,

to further improve both the accuracy and the precision of

spread estimates from very small data sets (circa 25 trials).
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Fig. 2 GLM and BRGLM bl and br distributions for a 3-Down/1-Up

staircase with n = 50 trials, l = 0 and r = 1. Panels a and c show

the histograms for bl and br using GLM fits. Panels b and d show the

histograms for bl and br using BRGLM fits. In panels a–d, the solid
black line is the actual parameter value, the solid gray line is the mean

of the parameter estimates, and the dashed gray lines indicate one

standard deviation either side of the mean. Panels e and f show the

GLM and BRGLM psychometric function fits for all 10,000 data sets

in gray, and the actual psychometric function in black
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Bias-reduced maximum likelihood estimation

In experiments with a large number of trials, the bias on br
is negligible compared to the variance. In experiments with

fewer trials, the bias becomes significant as illustrated in

the previous section. We can improve our estimation by

removing the order n-1 term of the asymptotic bias

expansion from the maximum likelihood estimate (Firth

1993). While it is not clear how this asymptotic bias is

related to the bias caused by the serial dependency of the

adaptive data, we have repeatedly found (reported in results

herein) that when using any of several adaptive test pro-

tocols, bias reduction on bb1 and bb2 followed by a nonlinear

transformation to bl and br leads to unbiased bl and br
estimates. Bias reduction directly on bl and br did not

produce unbiased estimates (see Online Resource 1), and

therefore, the nonlinear transformation, surprisingly,

appears to be a beneficial step for this application.

We utilize two methods for implementing bias-reduced

estimation. The first method is applicable to GLM routines,

and the second can be applied to constrained numeric

maximum likelihood fits like the ones described by

Wichmann and Hill (2001a) and Treutwein and Strasburger

(1999).

Bias-reduced generalized linear model

To implement the bias-reduced generalized linear model

(BRGLM) routine, we modified the MATLAB function

glmfit.m to create a new MATLAB function brglmfit.m.

MATLAB code implementing the bias-reduced GLM fit is

available upon request. In this modified function, during

each iteration of the GLM reweighted least squares algo-

rithm, the order n-1 asymptotic bias term is calculated and

subtracted from our coefficient parameter estimate, bb. The

order n-1 asymptotic bias term is calculated using the

following formula (McCullagh and Nelder 1989):

Order n�1 asymptotic bias ¼ XTWX
� ��1

XTWn

where X is the stimulus vector (with a first column of ones

if the constant b1 term is to be included in the model), and

W is the quadratic weights vector (diagonalized into a

matrix) which is inversely related to the variance of

subject’s binary responses. For non-canonical models such

as the probit link, the components of n are given by

ni ¼ �
1

2

u00i
u0i

� �

Qii

where u0i ¼ oui=omi and u00i ¼ o2ui=om2
i are the derivatives of

the GLM link function (ui),

mi ¼ bb1 þ bb2xi and Qii are the diagonal elements of

Q ¼ X XTWX
� ��1

XT. For the probit model, the link

function is the cumulative standard Gaussian distribution

½ui ¼ wi ¼ UðmiÞ ¼ Uðbb1 þ bb2xiÞ�, and therefore ni ¼
Qiimi=2 (McCullagh and Nelder 1989).

Bias reduction in numeric maximum likelihood fits

The above approach to bias reduction applies to GLM fits

only. In Online Resource 1, we show how to find bias-reduced

psychometric function parameter estimates for other numeric

methods that calculate maximum likelihood fits (e.g., Wich-

mann and Hill 2001a). When implemented, these calculations

yielded fits identical to those presented for GLM fits.

Parameter estimate variance: the iterative bootstrap

technique

The iterative bootstrap technique has been popularized in the

last decade by Wichmann and Hill in the context of estimating

confidence intervals on fitted psychometric function param-

eters. In their paper, Wichmann and Hill (2001b) describe a

bootstrap method that relies on a large number of simulated

repetitions of the original experiment. These Monte Carlo

simulations bootstrap to the original data set’s psychometric

function parameter estimates and use these estimates to re-

simulate the subject’s responses. This technique can be

applied to adaptive sampling procedures as we show herein.

However, for adaptive sampling procedures, it is crucial to re-

simulate only the subject’s response vector, Y, to the exper-

imentally observed stimulus vector, X, and not to re-simulate

the entire experiment—that is—both the stimulus vector and

the subject’s response vector. This is a meaningful distinction

only for adaptive sampling procedures as non-adaptive pro-

tocols would, by definition, never alter the stimuli. Since the

stimulus vector is fixed, we fit the simulated bootstrap data

sets using a standard (i.e., non-bias-reduced) maximum

likelihood technique because the bias derived from the serial

dependency of adaptive data is not present for non-adaptive

(fixed) data sets. Indeed, preliminary simulations confirmed

that fitting the bootstrap data with a standard maximum

likelihood technique yielded, on average, more accurate

variance estimates than when fitting the bootstrap data using

bias-reduced maximum likelihood estimation.

Furthermore, the actual variance to which our variance

estimates will be compared can be calculated by conduct-

ing an iterative bootstrap simulation evaluated at the actual

psychometric function parameters.

Parameter estimate variance: the observed information

matrix technique

As will be shown, the observed information technique

(Casella and Berger 2001) of measuring parameter estimate

Exp Brain Res (2013) 225:133–146 137
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variance is slightly less accurate on average than the

bootstrap method for experiments with a small number of

trials. However, it executes much faster making it prefer-

able when trying to get a measure of variance in real time

(e.g., after every trial). The purpose of including the

observed information technique in this paper is to provide a

quantitative comparison of its accuracy and execution time

to the iterative bootstrap technique.

The observed information technique estimates the

parameter estimate covariance matrix by taking the inverse

of the observed information matrix—the negative Hessian

matrix of the log-likelihood function—evaluated at the

estimated parameter values. It should be noted that this

method is related to, but not the same as, the asymptotic

technique described by Foster and Bischof (1991) which

only considers the inverse of the diagonal terms in the

observed information matrix, thereby ignoring the off-

diagonal terms, as a measure of the variance. Preliminary

simulations showed that the full observed information

matrix approach is more accurate and robust when n is

small compared to this alternate asymptotic technique, and

so we proceed using the complete observed information

matrix. The observed information matrix was calculated

with respect to the (l, r) parameterization of the log-

likelihood function (see Online Resource 1).

Simulations

Accuracy of parameter estimates

To test our bias reduction, we conducted Monte Carlo

simulations. Three different adaptive sampling procedures

and one non-adaptive sampling procedure were used to

generate data sets. For our adaptive sampling procedures,

we used a 3-Down/1-Up (3D/1U) PEST (parameter esti-

mation by sequential testing) staircase, a 4-Down/1-Up

(4D/1U) PEST staircase, and a novel maximum likelihood

(MLE) procedure.

An N-Down/M-Up staircase decreases in stimulus

magnitude after N correct responses at one level and

increases in magnitude after M incorrect responses at one

level. The size of the change in stimulus magnitude is

determined using parameter estimation by sequential test-

ing (PEST) rules developed by Taylor and Creelman

(1967):

1. After each reversal, halve the step size.

2. A step in the same direction as the last uses the same

step size, with the following exception.

3. A third step in the same direction uses a doubled step

size. Each additional step in the same direction is also

doubled with the following exception.

4. If a reversal immediately follows a step doubling, then

one extra same size step is taken before doubling.

5. Minimum and maximum step sizes are specified. The

magnitudes of the minimum and maximum step sizes

were chosen to be 0.38 dB [1.25log10(2)] and 6.02 dB

[20log10(2)], respectively.

A 3-Down/1-Up PEST staircase targets a correct

response rate of 79.4 %, while a 4-Down/1-Up PEST

staircase targets a correct response rate of 84.1 % (Leek

2001).

Our novel maximum likelihood procedure begins with a

2-Down/1-Up PEST staircase until the data can be fit using

the function glmfit.m without triggering a statistical warn-

ing from MATLAB (circa 16 ± 4 trials). Then, for each

subsequent trial, the previous data are fit and the next

stimulus is chosen based on a targeted 90 % correct

response rate. A 90 % correct response rate was chosen

because it is a level where a substantial amount of infor-

mation can be obtained on both l and r; however, for the

purposes of this paper, any percent correct response rate

could have been targeted. All adaptive sampling proce-

dures started at a stimulus level of 8r.

Our non-adaptive sampling procedure uses a fixed

number of trials such that 12 % of the trials were at ±1.5r,

40 % were at ±1r, 36 % were at ±0.75r, and 12 % were

at ±0.5r. For example, when the total number of trials was

50, there were 6 trials at ±1.5r, 20 trials at ±1r, 18 trials

at ±0.75r, and 6 trials at ±0.5r, with an equal number of

positive and negative trials at each level.

The simulations were performed with n = 50, 100, and

200 trials for both l = 0 and l = 0.5r. Each procedure

was simulated to create 10,000 data sets for each setting of

n and l. In total, we have 2 (l = 0 and l = 0.5r) 9 4

(3D/1U, 4D/1U, MLE, Non-adaptive) 9 3 (n = 50, 100,

and 200) 9 10,000 = 240,000 data sets. Each data set was

fit using a GLM fit and a BRGLM fit.

Estimating the precision of parameter estimates

Both the iterative bootstrap technique and the observed

information technique were tested using a 3-Down/1-Up

PEST staircase procedure. The staircase procedure was

simulated with n = 50, 100, and 200 trials for both l = 0

and l = 0.5r; 10,000 data sets were simulated for each

setting of n and l. The parameter estimates for each sim-

ulated data set were calculated using a BRGLM fit. From

these parameter estimates, the estimated and actual vari-

ance for each data set was calculated using the approaches

described in the previous section. For the iterative boot-

strap technique, each data set was re-simulated 2000 times

to match the bootstrap technique used by Wichmann and

Hill (2001b).
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Simulation hardware and software

Simulations were implemented in MATLAB R2011b (The

Mathworks, Inc, Massachusetts) on the Harvard Orchestra

computation cluster. Simulations were run on an IBM

BladeCenter HS21 XM with a 3.16 GHz Xeon processor

and 8 GB of RAM.

Results

Accuracy of parameter estimates

We primarily report the means and standard deviations of

the bl and br parameter estimates obtained via generalized

linear model (GLM) and bias-reduced GLM (BRGLM) fits.

It is important to clearly state that in this first section of the

results, the standard deviations of the parameter estimates

represent the overall parameter estimate precision associ-

ated with the fit in combination with the testing procedure

(e.g., staircase, maximum likelihood, or non-adaptive) used

to obtain the data set.

Figure 2 compares the GLM fit and BRGLM fit

parameter estimate distributions of bl and br when n = 50

trials, l = 0, r = 1, and the 3-Down/1-Up adaptive stair-

case procedure was used to generate data sets. The GLM fit

br distribution (Fig. 2c) is highly biased (category III),

while the BRGLM fit (Fig. 2d) is unbiased (category I),

causing the GLM fit to produce more psychometric func-

tion estimates with slopes that are too steep at the midpoint

(Fig. 2e, f). We also notice that both bl distributions

(Fig. 2a, b) are unbiased (category I) and nearly identical,

and that the standard deviations of the two br distributions

are almost the same. Note that the parameter estimates in

this and subsequent figures are in ‘‘units’’ of stimulus

amplitude.

Figure 3a–d show the fitted parameter distributions with

the same simulation parameter values as above but with a

vestibular bias (l) of 0.5r instead of zero. Note that all

results shown scale with l and r. For example, simulation

results with l = 1 and r = 2 are scaled versions of sim-

ulations with l = 0.5 and r = 1. We see that both the bl
(Fig. 3a) and br (Fig. 3c) GLM estimates have asymmetric

distributions, while the BRGLM estimates (Fig. 3b, d) are

relatively symmetric and bell shaped. In this case, the

magnitude of the skewness of the distributions, a normal-

ized statistical measure of this asymmetry, is reduced by

about a factor of 2—from 0.59 to 0.27 for bl and from 0.41

to 0.22 for br—when bias reduction is used. Furthermore,

the GLM fit br distribution (Fig. 3c) is highly biased

(category III) and has a standard deviation that is 33 % the

size of r, while the BRGLM fit br distribution (Fig. 3d) is

unbiased (category I) and has a smaller standard deviation

that is 27 % of r. Additionally, both bl distributions
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Fig. 3 GLM and BRGLM

bl and br distributions for a

3-Down/1-Up staircase with

l = 0.5r and r = 1 for n = 50

trials (panels a–d) and n = 200

trials (panels e–h). Panels a, c,

e, and g show the histograms for

bl and br using GLM fits. Panels

b, d, f, and h) show the

histograms for bl and br using

BRGLM fits. The solid black
line is the actual parameter

value, the solid gray line is the

mean of the parameter

estimates, and the dashed gray
lines indicate one standard

deviation either side of the mean
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(Fig. 3a, b) are unbiased (category I) but the BRGLM bl
distribution (Fig. 3b) has a smaller standard deviation.

Figure 3e–h show the fitted parameter distributions with

the same simulation settings as in Fig. 3a–d except now the

number of trials has increased from 50 to 200. The GLM br
distribution (Fig. 3g) is moderately biased (category II)

while the BRGLM fit distribution (Fig. 3h) is unbiased

(category I). Furthermore, both have approximately the

same standard deviation. Both the bl distributions (Fig. 3e,

f) are also unbiased (category I) and almost identical.

Up to this point, for all the adaptive sampling procedure

simulations, the BRGLM estimates were clearly better—

both less biased and less skewed with equal variance—than

the corresponding GLM estimates. Figure 4 presents the

case where we have used a non-adaptive sampling proce-

dure with 100 trials and l = 0. Both br distributions are

asymmetric (the skewness is 0.74 for GLM and 0.75 for

BRGLM), and the BRGLM br distribution (Fig. 4d) is

moderately biased (category II), while the GLM br distri-

bution (Fig. 4c) is unbiased (category I). Both bl distribu-

tions (Fig. 4a, b) are unbiased and almost identical. Note,

however, that the peak of the GLM br distribution (Fig. 4c)

occurs at a value less than 1, while the peak of the BRGLM

br distribution (Fig. 4d) occurs nearer to 1.

Table 1 lists the means and standard deviations for all

simulations, including the illustrative examples shown in

Figs. 2, 3 and 4. The key result is that in all cases that use

an adaptive sampling procedure, the GLM br estimates are

more biased than the BRGLM estimates. We also notice

that both GLM and BRGLM bl estimates are always

unbiased. Furthermore, for adaptive sampling procedures

with a small number of trials (n = 50) and vestibular bias

(l = 0.5r), the standard deviations of BRGLM estimates

are significantly smaller than those of the GLM estimates.

Otherwise, the standard deviations of the two techniques

are more or less equivalent.

Bias correction for fewer than 50 trials

Simulations were also run for a 3D/1U staircase procedure

with n = 25 trials (Table 2). We see that when BRGLM

fits were used and l was set to 0, the bias to standard

deviation ratio on br was reduced from 61 to 19 %, the

standard deviation of br was reduced from 0.46 to 0.42, and

the standard deviation on bl was reduced from 0.51 to 0.37.

Similarly, when BRGLM fits were used and l was set to

0.5r, the bias to standard deviation ratio on br was reduced

from 80 to 34 %, the bias to standard deviation ratio on bl
was reduced from 22 to 8 %, the standard deviation of br
was reduced from 0.50 to 0.41, and the standard deviation

on bl was reduced from 0.51 to 0.38.

Since the biased-reduced br estimates in Table 2 are

positively biased, we can use a scale factor (a) to improve

both the accuracy (reduced bias) and the precision (lower

variance) of our estimates. To determine the value of a, we

utilized Monte Carlo simulations to calculate the expected

bias on the BRGLM br estimates (E br½ � � r) for different

values of r (r = 0.1–4) with l set to 0. For this range, the

expected bias scales linearly with r (E br½ � � r = 0.081r)

and is independent of the starting stimulus relative to r.

Similarly, if we let l be nonzero by setting it equal to

kr, where k is a constant, the expected bias still scales

linearly with r, but the size of the scaling increases non-

linearly with increasing values of |k| (Online Resource 2).

For the vestibular system, |l| is typically small and much

less than r (Crane 2012). For this range, the scale factor is

almost constant as a function of |k|, and consequently, we

can use the scale factor that we calculated for k = 0 as a

good approximation. However, if the range of k was larger,

we could take this nonlinearity into account to improve our

scale factor estimates (Online Resource 2). Therefore, for

|k| B 0.5, we can use abr = (1.081)-1
br = 0.925br to

remove the bias on br. In a similar manner, we calculated a
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Fig. 4 GLM and BRGLM bl
and br distributions for a non-

adaptive sampling procedure

with n = 100 trials, l = 0 and

r = 1. Panels a and c show the

histograms for bl and br using

GLM fits. Panels b and d show

the histograms for bl and br
using BRGLM fits. The solid
black line is the actual

parameter value, the solid gray
line is the mean of the

parameter estimates, and the

dashed gray lines indicate one

standard deviation either side of

the mean
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scale factor of a = (0.724)-1 = 1.382 for the GLM fit br
estimates. Table 3 shows the results of scaling the BRGLM

br estimates by a = 0.925 and the GLM br estimates by

a = 1.382 for r = 1 and l = 0, 0.2r, and 0.5r. Note that

the standard deviation for br is 40–45 % lower when the

bias-correction scaling is performed after a BRGLM fit

(0.39, 0.39, 0.38) than when bias-correction scaling is

performed after a GLM fit (0.63, 0.65, 0.69).

The key results in Table 3 are (1) the scaled GLM

estimates (abr) are less biased but have larger standard

deviations than the GLM br estimates, and (2) the scaled

BRGLM estimates (abr) are less biased and have smaller

Table 1 GLM and BRGLM bl and br means ± (standard deviations) for all simulations

# of Trials Procedure GLM: BRGLM: GLM: BRGLM: 

0

3D/1U 0.00±(0.24) 0.00±(0.23) 0.93±(0.26) 1.01±(0.27)

4D/1U 0.01±(0.30) 0.01±(0.25) 0.91±(0.26) 1.02±(0.25)

MLE 0.00±(0.24) 0.00±(0.24) 0.93±(0.24) 1.00±(0.26)

Non-adaptive 0.00±(0.22) 0.00±(0.21) 1.00±(0.27) 1.06±(0.27)

3D/1U 0.00±(0.15) 0.00±(0.15) 0.97±(0.17) 1.00±(0.18)

4D/1U 0.00±(0.17) 0.00±(0.17) 0.97±(0.16) 1.00±(0.16)

MLE 0.00±(0.17) 0.00±(0.17) 0.97±(0.15) 1.00±(0.16)

Non-adaptive 0.00±(0.15) 0.00±(0.15) 1.00±(0.18) 1.03±(0.18)

3D/1U 0.00±(0.10) 0.00±(0.10) 0.98±(0.12) 1.00±(0.12)

4D/1U 0.00±(0.11) 0.00±(0.11) 0.99±(0.11) 1.00±(0.11)

MLE 0.00±(0.12) 0.00±(0.12) 0.99±(0.10) 1.00±(0.10)

Non-adaptive 0.00±(0.10) 0.00±(0.10) 1.00±(0.12) 1.01±(0.12)

0.5

3D/1U 0.53±(0.29) 0.49±(0.24) 0.86±(0.33) 1.02±(0.27)

4D/1U 0.59±(0.37) 0.48±(0.26) 0.80±(0.37) 1.05±(0.26)

MLE 0.49±(0.25) 0.49±(0.24) 0.91±(0.27) 0.99±(0.28)

Non-adaptive 0.52±(0.24) 0.51±(0.24) 0.99±(0.30) 1.07±(0.29)

3D/1U 0.50±(0.17) 0.49±(0.16) 0.95±(0.19) 1.00±(0.18)

4D/1U 0.52±(0.21) 0.50±(0.18) 0.94±(0.21) 1.01±(0.17)

MLE 0.50±(0.17) 0.50±(0.17) 0.97±(0.16) 1.00±(0.16)

Non-adaptive 0.51±(0.16) 0.51±(0.16) 1.00±(0.19) 1.03±(0.19)

3D/1U 0.50±(0.11) 0.50±(0.11) 0.98±(0.12) 1.00±(0.12)

4D/1U 0.50±(0.12) 0.50±(0.12) 0.98±(0.12) 1.00±(0.12)

MLE 0.50±(0.12) 0.50±(0.12) 0.99±(0.10) 1.00±(0.10)

Non-adaptive 0.50±(0.11) 0.50±(0.11) 1.00±(0.13) 1.02±(0.13)

Category I Bias (<10% of SD)   

Category II Bias (10-25% of SD)

Category III Bias (>25% of SD)

Table 2 GLM and BRGLM bl and br means ± (standard deviations) for a 3D/1U staircase procedure, n = 25 and r = 1

GLM: BRGLM: GLM: BRGLM: 
0 0.00±(0.51) 0.00±(0.37) 0.72±(0.46) 1.08±(0.42)

0.5 0.61±(0.51) 0.47±(0.38) 0.60±(0.50) 1.14±(0.41)

Category I Bias (<10% of SD) 

Category II Bias (10-25% of SD)

Category III Bias (>25% of SD)
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standard deviations than all other estimates. We also note

that a similar technique could be used to improve the non-

adaptive BRGLM br estimates in Table 1 which demon-

strate a similar overestimation to that demonstrated in

Tables 2 and 3.

We emphasize that a different a has to be calculated if

the number of trials or the adaptive sampling procedure

used is changed. Figure 5 shows the value of a for

n = 20–40 for the 3D/1U staircase.

Additional simulations to verify generality of results

We performed simulations with several different proce-

dures and assumptions to confirm the generality of our

results. Specifically, we re-simulated bias reduction for

each of the cases reported in Table 1 with (1) an initial

stimulus of 1r instead of 8r, (2) a psychometric function

and fitting procedure based on a logistic distribution

instead of a Gaussian distribution, (3) an alternate ending

criteria that terminated the staircase procedure after 5

minima (circa 52 ± 9 trials), and (4) another ending cri-

teria that terminated an adaptive sampling procedure when

the coefficient of variation (CV) on the r parameter esti-

mate reached 0.25 (circa 57 ± 10 trials). For this alternate

ending criteria, the observed information technique was

used to calculate the coefficient of variation (i.e., the ratio

of the estimated standard deviation of bri to bri, where bri

was the bias-reduced estimate of r for the ith data set).

In Table 4, we report our results for the above 4 cases

using a 3D/1U staircase procedure with an underlying

psychometric function with no vestibular bias (l) and a

physiological noise standard deviation (r) of 1. We see that

bias reduction works with each of the four changes. The

results in Table 4 are representative of all the results we

obtained for each of the different simulation scenarios

reported in Table 1.

Estimating the precision of parameter estimates

We are interested in calculating and characterizing the error

of the iterative bootstrap and observed information tech-

niques. The error was calculated for each data set by taking

the square root of the variance estimate using either the

observed information or the iterative bootstrap technique and

then subtracting that value from the square root of the actual

variance for that data set. Thus, if the error were positive, the

variance estimate was too large, and if the error were nega-

tive, the variance estimate was too small.

Figure 6a–d) compare the error of the square root of the

variance estimates of bl and br when n = 50 trials, l = 0,

r = 1, and the 3-Down/1-Up staircase adaptive procedure

was used to generate data sets. We see that, on average,

both techniques underestimate the variance on bl and br,

and note that the observed information technique (Fig. 6b,

d) is somewhat less accurate than the iterative bootstrap

(Fig. 6a, c).

Figure 6e–h) show the variance estimate error with the

same simulation settings as in Fig. 6a–d) except now the

number of trials has increased from 50 to 200 and a ves-

tibular bias of l = 0.5r has been included. In this case, the

number of trials is large and the observed information and

iterative bootstrap techniques provide similar results.

Table 5 lists the variance estimate error means and

standard deviations for all 3-Down/1-Up simulations. The

iterative bootstrap technique is generally more accurate

than the observed information technique. Furthermore, the

bootstrap method is also, in most cases, more precise. As

the number of trials increases, the discrepancy between the

accuracy of the iterative bootstrap and observed

20 25 30 35 40
0.85

0.9

0.95

1

Number of trials

α

Fig. 5 The scale factor, a, calculated with l = 0 for BRGLM br
estimates collected via a 3D/1U staircase for n = 20 to n = 40

Table 3 GLM br, GLM abr, BRGLM br and BRGLM abr means ± (standard deviations) for a 3D/1U staircase procedure and n = 25

GLM: GLM: BRGLM: BRGLM: 
0.72±(0.46) 1.00± (0.63) 1.08±(0.42) 1.00±(0.39)

0.2 0.70±(0.47) 0.97±(0.65) 1.09±(0.42) 1.01±(0.39)
0.5 0.59±(0.50) 0.82±(0.69) 1.14±(0.41) 1.05±(0.38)

Category I Bias (<10% of SD)   
Category II Bias (10-25% of SD)

Category III Bias (>25% of SD)
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Table 4 Simulation results for a 3D/1U staircase procedure with no

vestibular bias (l) and a physiological noise standard deviation (r) of 1

for four alternative assumptions: (1) an initial stimulus of 1r instead of 8

r, (2) a psychometric function and fitting procedure based on a logistic

distribution instead of a Gaussian distribution, (3) an alternate ending

criteria that terminated the staircase procedure after 5 minima, and (4)

another ending criteria that terminated the adaptive sampling procedure

when the CV (see text) on the r parameter estimate reached 0.25

GLM: BRGLM: GLM: BRGLM: 
1) Initial stimulus at 1

( 50)
0.00±(0.21) 0.00±(0.21) 0.94±(0.24) 1.00±(0.25)

2) Logistic distribution
( 50)

0.00±(0.23) 0.00±(0.22) 0.93±(0.27) 1.02±(0.29)

3) End criteria: 5th minima
( 52±9)

0.00±(0.25) 0.00±(0.23) 0.93±(0.26) 1.01±(0.27)

4) End criteria: CV
( 57±10)

0.00±(0.19) 0.00±(0.19) 0.94±(0.23) 0.99±(0.23)

Category I Bias (<10% of SD) 

Category II Bias (10-25% of SD)

Category III Bias (>25% of SD)
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Fig. 6 Iterative bootstrap and

observed information variance

estimate error on bli and bri (the

estimates for the ith data set) for

a 3-Down/1-Up staircase 0.5

and 1 for n = 50 trials (panels

a–d) and n = 200 trials (panels

e–h). Panels a, c, e, and g show

the histograms for the error on

the variance estimates of bli and
bri using the iterative bootstrap

technique. Panels b, d, f, and h
show the histograms for the

error on the variance estimates

of bli and bri using the observed

information technique. The

solid black line shows 0 %

error, the solid gray line is the

mean error, and the dashed gray
lines indicate one standard

deviation either side of the mean

error

Table 5 Iterative bootstrap and observed information variance estimate error (% of actual value) means ± (standard deviations) for all 3-Down/

1-Up simulations

l # of trials Bootstrap: bli Observed: bli Bootstrap: bri Observed: bri

l = 0 n = 50 -4.6 ± (16.9) -10.6 ± (17.0) -0.2 ± (29.2) -3.0 ± (30.3)

n = 100 -1.0 ± (13.2) -3.2 ± (12.9) 0.9 ± (27.4) -0.8 ± (26.8)

n = 200 -0.4 ± (9.5) -1.4 ± (9.2) 0.4 ± (20.0) -0.8 ± (19.7)

l = 0.5r n = 50 -5.7 ± (20.0) -8.6 ± (20.1) -2.2 ± (24.9) -1.8 ± (29.6)

n = 100 -3.1 ± (14.5) -5.5 ± (14.0) -0.1 ± (20.8) -4.1 ± (21.0)

n = 200 -1.1 ± (10.6) -2.3 ± (10.4) 0.5 ± (16.9) -1.1 ± (16.6)
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information techniques decreases and by n = 200, they

yield nearly the same answer.

Table 6 shows the single data set iterative bootstrap and

observed information approach execution time means and

standard deviations for all 3-Down/1-Up simulations. We

see that the observed information technique executes on the

order of 0.0005 s, while the iterative bootstrap technique

(with 2,000 iterations) executes on the order of 10 s. The

bootstrap takes longest for n = 50 as the GLM fit requires

more time for small n.

Discussion

Accuracy of parameter estimates

This paper focused on fitting data obtained using adaptive

sampling procedures. Our simulations confirm that, for

adaptive one-interval forced-choice paradigms, maximum

likelihood estimates on the psychometric function’s spread

parameter, r, are downwardly biased (Lim and Merfeld

2012; Kaernbach 2001; Leek 2001) for 200 trials or less.

Using bias-reduced maximum likelihood estimation, we

were able to substantially correct for this bias. These cor-

rections worked on all of the adaptive sampling procedures

that we tested without increasing the variance on bl and br
or decreasing the accuracy of bl. In the case of a small

number of trials (n = 50) and the presence of a vestibular

bias (l = 0.5r), bias-reduced maximum likelihood esti-

mation not only corrected the bias, but also reduced the

variance and skewness of the estimators. Furthermore, bias

reduction substantially improved br estimates for a staircase

procedure with very small n (i.e., 25 trials), and these bias-

reduced estimates were further improved by utilizing a pre-

determined scale factor.

Despite our focus on adaptive sampling procedures, we

also showed that maximum likelihood estimates on data

collected from non-adaptive sampling procedures had a

mode (i.e., distribution peak) that underestimated the actual

value of r—like the fits of adaptive sampling procedures

described in detail herein. However, the distributions had a

positive skew that counteracted this underestimation to

yield nearly unbiased mean estimates of r. Using bias-

reduced maximum likelihood estimation on these data sets

yielded distribution modes that demonstrated less under-

estimation, but the positive skewness remained—leading to

a mean that slightly overestimated the mean. Such skewed

distributions make unbiased fits more complicated for non-

adaptive sampling procedures and are beyond the scope of

this paper.

One aspect that remains unexplained is the fact that

while bias-reduced maximum likelihood estimation

removes the order n-1 asymptotic bias term from the

maximum likelihood estimate, it is not clear how this is

directly related to the bias that arises from the serial

dependency of the adaptive sampling procedure (Kaern-

bach 2001; Klein 2001). This serial dependency exists

because adaptive data are not collected independently, as

the responses from previous trials determine the location of

subsequent trials. On the other hand, non-adaptive sam-

pling procedures are independent as the levels to be tested

were chosen by the experimenter in advance. For adaptive

data, these multiple trial dependencies and their effects are

complex and cause the bias we see in the r estimates

(Kaernbach 2001). Our observations could simply be

coincidental. However, the consistency of our numerical

findings makes it seem much more likely that some rela-

tionship links these two biases through the (b1, b2)

parameterization of the psychometric function and the

nonlinear transformation to the (l, r) domain. Whatever

the reason may be, we have demonstrated that our bias-

reduced maximum likelihood technique worked well with

all adaptive sampling procedures tested.

We emphasize that the bias reduction techniques did not

uniformly work this well. When data were acquired using

non-adaptive procedures, the mode for the estimate of r
shifted to be less biased, but the average r parameter

estimate yielded an overestimate (Table 1). The behavior

difference for the parameter mean and parameter mode was

due to a skewed distribution that was present both with and

without bias correction for non-adaptive stimuli (but not

adaptive stimuli). The overestimation for the average bias

corrected estimate of r was not surprising because the

average estimate of r was unbiased when estimated using a

standard GLM fit. Parameter estimation for data acquired

using non-adaptive procedures is not the focus of this

paper; this topic deserves further investigation in a separate

study.

Though we show that it is possible to obtain unbiased

estimates for adaptive sampling procedures, one might

reasonably ask: Why is bias reduction necessary? As one

answer, bias reduction allows the direct comparison of data

sets having different numbers of trials. Recall that bias

decreases as the number of trials increases. Thus, for an

Table 6 Iterative bootstrap and observed information matrix average

execution times in seconds for all 3-Down/1-Up simulations

l # of trials Bootstrap (seconds) Observed (seconds)

l = 0 n = 50 12.9 3.2 9 10-4

n = 100 12.2 3.6 9 10-4

n = 200 12.3 5.3 9 10-4

l = 0.5r n = 50 14.8 3.5 9 10-4

n = 100 13.8 3.9 9 10-4

n = 200 13.8 5.4 9 10-4
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adaptive staircase procedure, one cannot directly compare

data for different subjects unless the number of trials is the

same. Bias reduction also allows us to compare data

obtained using different staircase procedures—for exam-

ple, comparing data obtained using 3D/1U and 4D/1U

staircases. Finally, bias reduction allows us to compare

thresholds obtained using staircase procedures to those

obtained via any other procedure (e.g., non-adaptive

methods). For example, in the clinic, bias reduction pro-

vides an unbiased estimate that can be compared to an

unbiased normative data set obtained using slightly dif-

ferent methodology.

To illustrate these points, imagine that a normative

data set (with l = 0) was obtained using an MLE pro-

cedure with n = 200, while a patient’s data set (also

with l = 0) was obtained using a staircase procedure

with n = 50. If the patient had a normal threshold, and

GLM fits were used to fit both the patient and the

normative data, then the patient’s threshold would be, on

average, 6 % lower than the normative average

(Table 1). On the other hand, if BRGLM fits were used

to fit both the patient and the normative data, then the

patient’s threshold would only be, on average, 1 %

higher than the normative average (Table 1). The same

holds true for scientific literature as unbiased threshold

estimates allow the direct comparison of data obtained

using different methodologies.

Estimating the precision of parameter estimates

Our comparison of the iterative bootstrap and the observed

information techniques for estimating parameter variance

showed that the iterative bootstrap technique was more

accurate. However, the results were surprisingly similar

even for a small number of trials, and as the number of

trials increased to 200, the variance estimates of the two

techniques almost became identical. Thus, for real-time

variance estimations (e.g., after every trial), the observed

information approach, which executes about 20,000 times

faster than the iterative bootstrap technique, can be used to

save time and still provide accurate parameter variance

estimates.

When applying the bootstrap technique to adaptive

sampling procedures, variance estimates were obtained by

using the bias-reduced parameter estimates from the ori-

ginal data set to re-simulate the subject’s response vector,

Y, to the experimentally observed stimulus vector, X. Since

the stimulus vector was fixed when running the bootstrap

simulations, the simulated bootstrap data sets were fit using

a standard (i.e., non-bias-reduced) maximum likelihood

technique because the bias derived from the serial depen-

dency of adaptive data is not present for non-adaptive

(fixed) data sets.

Percent correct detection

In this paper, we chose to define the vertical axis of our

psychometric function as the probability that the subject’s

response is positive—with a fit ranging between 0 and 1—

rather than the probability that the subject’s response is

correct—with a fit ranging between 0.5 and 1. Preliminary

3D/1U adaptive staircase simulations not included herein

showed that analyzing the percent correct (ranging between

50 and 100 %) during our direction recognition task yiel-

ded a 57 % greater standard deviation in the threshold

estimate than when analyzing the data using a fit between 0

and 100 %. This was true even when optimal conditions

were established for the percent correct detection analysis

(e.g., no vestibular bias), and the fit model exactly matched

the subject model. While we have not explored this in

detail, we think that the primary explanation of the rela-

tively poor performance of percent correct detection model

fits is that the expected response variance p (1-p) is high in

the neighborhood of the 50 % plateau. This plateau needs

to be established for a good fit of a model that varies

between 50 and 100 % and is an issue that was previously

discussed by Merfeld (2011) and Jakel and Wichmann

(2006).

Furthermore, we need to make a number of questionable

assumptions to apply percent correct analysis. First, this

analysis requires an assumption of zero vestibular bias.

Second, the standard lognormal analysis assumes that

either the underlying neural noise is asymmetric (i.e.,

lognormal) or that the signal underlying the response scales

in a log normal manner for very small stimuli near

threshold. None of these assumptions seem reasonable nor

consistent with experimental data. Therefore, while not a

focus of this study, we did not find any reason to encourage

us to further investigate percent correct fits of data acquired

during a recognition task.

Relation to earlier methods

In this short section, we briefly describe our understanding

of how our bias reduction method relates to others

described in earlier statistics literature. We first learned of

bias correction from the second edition of ‘‘Generalized

Linear Models’’ (McCullagh and Nelder, 1989). We used

the equations in this book to calculate the bias vector and

iteratively subtract it from the parameter estimates in

MATLAB’s glmfit m-file. This method yielded most of the

bias-reduced results (e.g., Table 1) presented herein. Later,

we learned of the modified score approach (Firth, 1993),

which we decided to implement to evaluate relative per-

formance. As expected, for the identical problem defini-

tion, these yielded identical results as shown in Online

Resource 1.
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The methods we developed seem similar to some found

in the general statistical literature, so we briefly summarize

some relevant literature here. Bias correction, in the con-

text of GLM fits, is analyzed by McCullagh and Nelder

(1989) and Cordeiro and McCullagh (1991). More recently,

Kosmidis and Firth (2009) applied an iterative scheme to

generalized linear model fits via an adjustment of the

‘‘working observations,’’ and, shortly thereafter, Kosmidis

and Firth (2010) described a general iterative method that

calculates and subtracts bias from the score function.

We note two aspects that make this contribution unique.

First, with one exception discussed earlier (Hall 1981), we

are unaware of any earlier work that has specifically

applied these or any other bias-correction techniques to the

problem of estimating parameter bias when fitting psy-

chometric functions, which is a focus of this paper. Second,

a major component of the bias that we are trying to reduce

has long been known (Leek et al. 1992; Treutwein and

Strasburger 1999; Kaernbach 2001; Leek 2001) and is

ascribed in part to the serial dependency of adaptive data

(Kaernbach 2001; Klein 2001). To our knowledge, none of

the pre-existing literature investigates parameter bias

reduction for this parameter bias component that is present

in data acquired using adaptive methods (e.g., staircase

procedures). In fact, our finding that bias reduction on the

(b1, b2) parameterization yields better results for estimating

ðbl; brÞ from adaptive data having serial dependency than a

(l, r) parameterization was a surprise.
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