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Abstract A quantitative model of optimal transport–

aperture coordination (TAC) during reach-to-grasp move-

ments has been developed in our previous studies. The

utilization of that model for data analysis allowed, for the

first time, to examine the phase dependence of the preci-

sion demand specified by the CNS for neurocomputational

information processing during an ongoing movement. It

was shown that the CNS utilizes a two-phase strategy for

movement control. That strategy consists of reducing the

precision demand for neural computations during the initial

phase, which decreases the cost of information processing

at the expense of lower extent of control optimality. To

successfully grasp the target object, the CNS increases

precision demand during the final phase, resulting in higher

extent of control optimality. In the present study, we gen-

eralized the model of optimal TAC to a model of optimal

coordination between X and Y components of point-to-

point planar movements (XYC). We investigated whether

the CNS uses the two-phase control strategy for controlling

those movements, and how the strategy parameters depend

on the prescribed movement speed, movement amplitude

and the size of the target area. The results indeed revealed a

substantial similarity between the CNS’s regulation of

TAC and XYC. First, the variability of XYC within indi-

vidual trials was minimal, meaning that execution noise

during the movement was insignificant. Second, the inter-

trial variability of XYC was considerable during the

majority of the movement time, meaning that the precision

demand for information processing was lowered, which is

characteristic for the initial phase. That variability signifi-

cantly decreased, indicating higher extent of control opti-

mality, during the shorter final movement phase. The final

phase was the longest (shortest) under the most (least)

challenging combination of speed and accuracy require-

ments, fully consistent with the concept of the two-phase

control strategy. This paper further discussed the relation-

ship between motor variability and XYC variability.

Keywords Optimal control � Motor variability �
Coordination variability � Kinematics

Introduction

Movement optimization and two-phase coordination

strategy

In the last decade, applications of an optimality approach to

limb movement trajectory have been useful for the general

understanding of the neural control of reaching-type

movements. Despite the fact that movement control opti-

mality is a rather powerful theoretical concept, it has not

been developed yet into a comparably useful instrument for

quantitative analysis of experimental data. In an attempt to do

so, we recently utilized an optimality approach to describing

transport–aperture coordination (TAC) during reach-to-grasp

movements (Rand et al. 2008, 2010b). Specifically, we

developed a model of an optimal relationship between

experimentally observed variables of movement dynamics

without explicitly solving an optimal control problem.

The main ideas behind our novel approach are outlined

in the following. If the control system is optimal, there is
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tight coordination between independently controlled pro-

cesses that are required to finish simultaneously with each

other. Hand transport and grasping components of a reach-

to-grasp movement are two such processes. Since reach-to-

grasp is well-trained through daily activities, an optimality

approach is fully applicable to it (Hoff and Arbib 1993).

Therefore, the control dynamics must obey Bellman–

Pontryagin equations (Naslin 1969). From those equations,

a smaller set of equations describing optimal coordination

between hand transport and grasp aperture can be obtained

(see derivation in Appendix section ‘‘Derivation of exper-

imentally verifiable equations describing optimal coordi-

nation’’). Those equations hold for every moment in

movement time provided that movement control is fully

optimized. They constitute a representation (i.e., a model)

of an optimal relationship between movement variables

that are directly measured or computed from experimental

data. A universal approximator (e.g., an artificial neural

network) can be used to best fit the model to the experi-

mental data (i.e., all time frames from all trials which are

assumed to have been performed in an optimal way under a

specific condition). Once the unknown coefficients of that

model are identified through the best fitting, the model of

optimal coordination is completely defined. A very

important advantage of our novel approach is that it does

not require knowing detailed information about the con-

trolled object’s dynamics or the optimality criterion for

establishing an optimal coordination model.

Another important advantage is that the model can be

used as a tool for quantifying the extent of the deviation of

the experimentally observed relationship among movement

variables from optimality: The smaller the residual errors

of model fitting, the higher the fitting precision and the

closer the motor coordination to an optimal pattern. At the

same time, from the perspective of motor variability, that

deviation is a manifestation of the variability of coordi-

nation-specific relationship among movement variables

included in the optimal model, and hence, it can be termed

coordination variability. It should be emphasized that,

since the control of multicomponent coordination is rather

complex and some variability types significantly affect task

performance while some others do not (Darling and

Stephenson 1993; Valero-Cuevas et al. 2009), an accurate

assessment of coordination optimality requires a quantita-

tive model of optimal coordination. Consequently, such

coordination variability cannot be observed as traditionally

studied trajectory variability. The extent of coordination

variability can be quantified not only for a specific move-

ment phase across different trials, but also within one trial.

Coordination variability computed across different trials is

termed inter-trial coordination variability and that com-

puted within a trial is termed intra-trial coordination

variability.

We have applied the above optimal coordination model

approach to studying reach-to-grasp movement. The utili-

zation of that approach has been proven very useful for

analyzing the experimental data obtained in human indi-

viduals (healthy persons and individuals with Parkinson’s

disease) under various conditions (e.g., Rand et al. 2006,

2008, 2010a, b, 2012). We found that an inter-trial vari-

ability of TAC was significant during the aperture-opening

phase (from movement onset to maximum grip aperture),

but minimal during the aperture closure phase (from

maximum grip aperture to contact with the target object).

Based on those findings, we came to a conclusion that the

CNS utilizes a two-phase strategy of controlling TAC

during reach-to-grasp movements (Rand et al. 2010b).

According to the two-phase control strategy, the cost of

information processing during motor planning and move-

ment online control is saved during the initial phase of

movement at the account of reduced precision (and,

therefore, reduced cost) of neural computations. In the final

phase of movement control, that precision is significantly

increased to ensure sufficient precision at the end-point of

the movement trajectory. We also found that an intra-trial

variability of TAC was very small, indicating that the

precision of TAC is rather high. It also means that exe-

cution noise is insignificant.

Generalization of TAC model of reach-to-grasp

movements to XY coordination (XYC) of reaching

movements

We have hypothesized that such two-phase strategy is

also used for controlling other reaching-type movements

(Shimansky and Rand 2012) as long as the following

conditions are satisfied. First, reasonably high precision of

a contact with the target object at the end of transport is

required. Second, the transport component of task perfor-

mance is sufficiently long, so that saving the cost of neural

computations during the initial phase of movement control

is worthwhile. Third, the participants are well-trained on

performing the task, meaning that the performance is suf-

ficiently optimized and well coordinated.

The present study tests this hypothesis in experiments on

reaching performed in a 2-D space (X–Y horizontal plane)

by examining coordination between X and Y movement

components. Each component is described by three

movement parameters: position, velocity and acceleration

(six parameters in total). For this purpose, a model

describing an optimal relationship between the six

movement parameters is fitted to experimental data for

estimating the variability of XY coordination (XYC) and

determining how close XYC is to optimality. The X and

Y hand motion components are controlled by highly over-

lapping muscle sets. However, from the perspective of
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mechanics, they correspond to mutually independent

degrees of freedom. In accurate reach-to-point 2-D move-

ments, there is a requirement that the movement compo-

nents corresponding to X and Y coordinates finish

simultaneously. Thus, one can expect to observe tight

coordination between controlling those components.

The current study is focused on investigating whether

inter-trial variability of XYC during planar reaching

movements has features characteristic for the two-phase

control strategy, and also whether those features are similar

to the analogous features of TAC observed during reach-to-

grasp movements. This study further examines how the

end-point variability of movement trajectory influences the

inter-trial variability of XYC.

Methods

Participants

Fifteen young adults participated in this study (mean

age ± SD: 25.9 ± 2.6; 7 males and 8 females). They were all

right-handed and with no known neuromuscular deficits. All

participants provided written informed consent prior to

participation.

Apparatus and procedure

Participants sat comfortably in a chair in front of a table on

which a digitizer tablet (Wacom Intuos 4 XL) was placed.

Participants held a stylus in a manner similar to holding a pen

for hand writing and made single-stroke arm movements,

during which both the stylus’s tip and the hand were contin-

uously contacting with the digitizer’s surface. The digitizer

tablet sampled the X position and Y position of the tip of the

stylus with a frequency of 133 Hz and a spatial resolution of

0.005 mm. The digitizer was linked to a computer, which

generated an auditory signal to move and stored the data. A

program written in Matlab was used for data acquisition.

All participants performed twelve types of single-stroke

arm movements in the horizontal plane from the starting

area (a circle 1 cm in diameter) to the target area (also a

circle). The size of the staring area was the same

throughout the experiment. The starting position and the

target were aligned along the participants’ midline and

displayed throughout a trial. The movement amplitude,

target size and movement speed were varied across twelve

conditions. There were two different reaching distances:

15 cm (short-distance condition) and 30 cm (long-distance

condition). Two different target sizes were used: a circu-

lar area of 2.1 cm in diameter (large-target condition)

and 0.7 cm in diameter (small-target condition). There

were three movement speed conditions [low (i.e., low),

comfortable (i.e., normal), and as high as possible (i.e.,

maximum)]. Two target distances and two target sizes were

combined with the three movement speeds to produce

twelve possible conditions, which were randomized based

on a random number generator.

Participants were instructed to move the stylus (i.e.,

sliding the tip of the stylus on the digitizer’s surface) from

the starting position to the target location at a required

speed. At the start of each trial, the participants positioned

the tip of the stylus in the starting position, and the examiner

said ‘‘ready.’’ After a random delay (between 1 and 2 s), an

auditory go-signal was delivered. In response to the go-signal,

the participants initiated the movement. For each condition,

participants made a few practice trials and subsequently per-

formed a block of twelve trials under each condition; data

analysis was based on the last ten trials.

The movement path was recorded and displayed on the

computer monitor, which allowed the examiner to deter-

mine whether the trial was executed properly. Trials were

rejected if the participant either missed the target or

exhibited obvious hesitation before entering the target area.

When participants overshot the target, a loud beep sound

was produced to notify them of this error. These rejected

trials were redone at the end of each condition. The average

number of rejected trials across participants was 0.7 (low-

speed), 0.7 (normal-speed) and 0.4 (maximum-speed) trials

for the (large-target, short-distance) combination of con-

ditions, and 1.0 (low-speed), 1.2 (normal-speed), and 1.3

(maximum-speed) trials for the (large-target, long-dis-

tance) combination. The comparable numbers were 0.8, 0.8

and 2.9 trials for the small-target and short-distance

conditions, and 1.7, 0.5 and 2.9 trials for the small-target,

long-distance conditions. Data from 120 trials (10 trials 9

12 conditions) for each participant were analyzed.

Data analysis

Reaching-to-point movement was assessed based on the

X and Y coordinates of the stylus tip on the digitizer (called

hand position in the rest of the text). Hand velocity and

acceleration were calculated as the first and second deriv-

ative of hand position, respectively. The derivatives were

calculated based on the sliding window technique, where

the data points within the window (the window width was 7

points) were approximated with a quadratic polynomial.

The polynomial was then used for calculating analytic

derivative at the window’s center (or other points, when at

the beginning or end of the data array representing the

curve). Thus, calculating derivatives using this method also

provided data filtering.

Movements were performed mostly along the X coordi-

nate. Calculations of the onset and the offset of the

reaching movements were performed by an automated
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movement parsing algorithm (Teasdale et al. 1993, algo-

rithm B). These points in time were first automatically

detected using computer software. Subsequently, the

results of this automatic procedure were inspected and

corrected manually as needed. To obtain general charac-

teristics of reaching movements, movement time was cal-

culated for each trial. Average hand velocity was also

computed for each trial across the entire movement period

as a ratio between the vector distance travelled by the hand

and the corresponding movement time. For each of these

parameters, the mean value across the ten trials was cal-

culated for each of the experimental conditions for each

participant. Statistical comparison of these parameters

between experimental conditions was performed by using a

2 (target size: large, small) 9 2 (reaching distance: short,

long) 9 3 (movement speed: low, normal, maximum)

ANOVA with repeated measures. When appropriate, post

hoc analysis was carried out using the t test with Bonfer-

roni adjustments.

To investigate the factors influencing the end-point

variability as well as the relationship between inter-trial

variability of XYC and general variability of reaching

movements, the variability of hand position was measured

both at the beginning and the end of the movement. For this

purpose, the standard deviation of hand starting and final

positions across trials was measured separately for the

X and Y coordinates for each condition for each participant.

In addition, the variability of movement direction was

calculated at 3 cm from the initial position of the hand.1

For this purpose, the initial movement direction was

characterized by the angle between the x axis and the

straight line segment connecting the starting hand position

and the hand position along the movement trajectory

immediately past 3 cm distance from the starting position.

The standard deviation of that angle across trials was

determined separately for each participant under each

condition. All of these standard deviation values were

subjected to the same 2 9 2 9 3 ANOVA described above

for statistical comparisons.

Furthermore, to determine whether the end-point vari-

ability depended on the variability of the X and Y compo-

nents of the initial position and the initial direction angle, a

linear regression analysis was performed separately for the

X and Y components of the end-point. For this analysis,

each of these parameters was used as the dependent vari-

able, and the X and Y components of the initial position and

the initial direction angle were used as the independent

variables. The correlation coefficients were statistically

compared between experimental conditions according to

the method described in (Papoulis 1990).

Utilization of the mathematical model of XY coordination

For analyses of XYC, the following six parameters were

measured for each sampling point throughout the move-

ment: (1) X position (x), (2) X velocity (vx), (3) X acceler-

ation (ax), (4) Y position (y), (5) Y velocity (vy) and (6)

Y acceleration (ay). Those six parameters were selected

because they completely describe the two-dimensional

dynamics of hand transport to the target.2 Movements were

performed mostly along the X coordinate.

To estimate XYC variability, all movements were nor-

malized for each condition separately based on their

respective average durations across all trials and all par-

ticipants. The movement parameters (x, y, vx, vy, ax, ay)

were then resampled with the original rate (133 Hz) so that

the number of data points was the same in each trial for

each participant under the same condition.

Optimal XYC in terms of the six parameters of hand

transport was expressed in the form of the following linear

equation (Model 1).

kxxþ kyyþ kvxvx þ kvyvy þ kaxax þ kayay ¼ 0; ð1Þ

where kx, ky, kvx, kvy, kax and kay are constant weight coeffi-

cients, and x, y, vx, vy, ax and ay are centralized (by subtracting

the mean) movement parameters. A formal mathematical

derivation of a general form of this equation is provided in

Appendix section ‘‘Derivation of experimentally verifiable

equations describing optimal coordination’’.

1 Initial movement direction is often measured at a certain time after

the movement onset, such as 100 ms (Bernier et al. 2005; Hinder

et al. 2010) and 200 ms (Heuer and Hegele 2008), or at a certain

kinematic landmark, such as peak velocity (Hinder et al. 2010; Wang

and Sainburg 2005). The average distance of hand position at 180 ms

into movements from the movement onset was 3.3 mm for the small-

target, short-distance, slow-speed condition and 56.0 mm for the

large-target, short-distance, maximum-speed condition. This wide

range of the distance from the movement onset across different

conditions prevented us from using a certain time from the movement

onset or peak velocity for this measurement. It is because the initial

direction measurement is unstable at a very short distance from the

starting position (i.e., 3.3 mm) and because the angle of initial

movement direction significantly varies depending on the distance

from the starting position that is used for the measurement. Therefore,

we employed a fix distance (3 cm), which was close to the average

distance across the conditions at 180 ms into the movement.

2 To someone who is used to thinking about motor control in terms of

kinematic parameters as continuous sequences of values within a

specific time interval, it might seem that, since, for instance,

acceleration as a function of time can be computed as a time

derivative of velocity, it must be sufficient to include only one such

parameter in equations. In the case of the equation describing XY

coordination, however, instantaneous values of such parameters are

involved, and therefore, a different logic applies. Knowledge of hand

velocity at a certain time point t in general does not allow one to

calculate hand acceleration and vice versa. For this reason, these

kinematic variables are viewed in theoretical mechanics as state

coordinates independent of each other.
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The above simple linear approximation of optimal XYC

has been selected because a linear approximation of the

optimal transport–aperture coordination model was found

to fit experimental data reasonably well (Rand et al. 2008,

2010b). The gist of the functional meaning of this model of

an optimal relationship between the movement parameters

can be explained as follows. It is well known that an

optimal trajectory of point-to-point reaching movements is

virtually a straight line (e.g., Viviani and Flash 1995;

Shimansky et al. 2004). A general equation for a straight

line (passing through the coordinates center) in 2-D is

kxxþ kyy ¼ 0; ð2Þ

which is a simplified version of Eq. 1. A more complex

equation (i.e., Eq. 1) is needed to take into account the

movement velocity and acceleration.

Evaluation of model fitting error

To estimate how close experimentally observed XYC was

to optimality, Model 1 (Eq. 1) was fitted to different data

subsets that corresponded to different movement phases.

The procedure of model application to a specific data

subset resulted in an estimate of the magnitude [root mean

square (RMS)] of the residual errors of model fitting. In the

case of XYC during reaching movement, there is no unique

variable that can serve as a target (i.e., dependent variable)

for linear regression. At the same time, for estimating the

model’s precision, it is necessary to determine how close a

linear combination of those six parameters (with weights

that are not all equal to zero) is to zero. Mathematically,

this problem can be reduced to determining the least

eigenvalue of the covariance matrix of those parameters:

The closer it is to zero, the higher the precision of the linear

model (e.g., Shimansky 2000). Then, the vector of (opti-

mal) weight coefficients in Eq. 1 is simply the eigenvector

corresponding to the least eigenvalue. That vector was used

to obtain the model’s fitting error for any specific vector of

movement parameters (x, y, vx, vy, ax, ay).
3 More detailed

explanations are provided in Appendix section ‘‘Estimation

of fitting errors for the XY optimal coordination model’’.

Based on the above considerations, the fitting error for

the linear implementation of the XYC model was calcu-

lated as follows. First, the covariance matrix for the six

movement parameters was calculated for the data subset to

which the model was to be fit. Second, the eigenvalues of

that matrix were determined (by using a standard proce-

dure) and the fitting error was calculated as a square root of

the smallest eigenvalue divided by the mean eigenvalue

(across all the eigenvalues). The mean eigenvalue here

represents the mean variance across the movement

parameters.4 By taking the square root, the estimate of the

fitting error magnitude was made compatible with the usual

root mean square (RMS) measure of mismatch errors. Note

that the obtained error estimate is dimensionless. Its upper

bound is equal to 1, which corresponds to the absence of

any correlation among the movement parameters. To make

the error magnitude estimate insensitive to the differences

between the variances of position, velocity and accelera-

tion (e.g., due to the choice of units), the respective scaling

coefficients were selected so that those variances (across

the data set) were approximately the same. See more

detailed explanations in Appendix section ‘‘Estimation of

fitting errors for the XY optimal coordination model’’.

Most of the data analysis in this study consists of

applying Model 1 to different subsets of the entire data set

within each condition, which includes the values of the

above six movement parameters from all sampled time

points and all trials within each participant. Whenever it is

said below that Model 1 is applied to a specific data set,

this means the above procedure unless explicitly stated

otherwise. The usage of different data sets depending on

analytical purposes is illustrated in Fig. 1. The RMS error

of model fitting (i.e., residual error magnitude based on the

least, sixth eigenvalue) was calculated for each data set.

Utilization of Monte-Carlo approach for achieving

consistency of coordination variability measurement

In the next sections, the analysis of the variability of XYC

within different movement phases is described. To deter-

mine the variability of XYC within a specific phase of the

movement, the optimal coordination model (Model 1) was

fitted to the data within a certain time window. The

window width (i.e., duration) was specified as specific

percentage of the total movement time (rather than specific

time duration) to have the window correspond to a spe-

cific phase of the movement invariant with respect to

3 It is important to acknowledge that the correlation matrix should

not be, in general, used for this purpose. This is so because the

variance of one or more movement parameters in general can be very

small. For example, in the case of XY reaching movement, the stylus

tip trajectory can be arranged along the x axis with negligible

variation along the Y axis. In this example, the XYC model kyy -

y0 = 0, where ky = 1 and y0 is the average Y coordinate, accurately

describes the movement, since the variation of y around y0 is very

small. On the first sight, it may seem incorrect to state that an optimal

XYC is observed in this example. However, simply by rotating the

XY coordinate system 45 degrees (clockwise or counterclockwise),

one can obtain a trajectory where any displacement along the x axis is

almost exactly equal (in its absolute value) to the corresponding

displacement along the Y axis, thus showing a near-perfect XYC. The

method of determining the XYC model’s precision obviously should

not depend on the choice of the XY coordinate system.

4 To see that, note that the total variance is equal to the sum of the

diagonal elements (i.e., trace) of the covariance matrix, and the sum

of the eigenvalues is equal to the above sum.
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movement time duration that varied considerably across

different conditions. Thus, the number of data frames in

such time windows also considerably varied between dif-

ferent experimental conditions. Even though all move-

ments were initially normalized for each condition

separately as described earlier (section ‘‘Utilization of the

mathematical model of XY coordination’’), the number of

data frames in such time windows still varied across con-

ditions. However, it is important to have the same number

of data points for model fitting across all conditions so that

an increase in the magnitude of fitting error cannot be

attributed to an increased number of data points, thereby

enabling meaningful comparisons of coordination vari-

ability between different conditions. To meet this require-

ment, the following method, based on a Monte-Carlo

approach, was used. For any time window, a specific

number of data frames (the same across all conditions)

were randomly selected from the total number of data

frames in the window. That number (called below ‘‘the size

of Monte-Carlo subset’’) was selected so that it was not

larger than the minimal total number of data frames in the

time window across all conditions. That selection was

performed sixteen times (to decrease the variance of the

data processing result), and each time, Model 1 was fitted

to that data subset and the fitting error magnitude (the RMS

value) was calculated. The average RMS value across the

obtained 16 individual RMS values was used as a measure

of XYC variability.

Analysis of XYC variability within the entire movement

phase for an individual trial

To determine the precision of XYC approximation within

the entire movement phase of an individual trial, Model 1

was applied to a data set including all data points for the

given trial (Fig. 1a). The residual error magnitude was

calculated for that data set as the RMS value of the residual

errors and taken as a measure of intra-trial XYC variability.

In fitting Model 1 to the data, the above-described

Monte-Carlo method (section ‘‘Utilization of Monte-Carlo

approach for achieving consistency of coordination vari-

ability measurement’’) was utilized in the following steps:

Step 1) based on the minimal mean movement time across

all 12 conditions [i.e., 489 ms (65 frames) for the large

target at short-distance condition under the maximum

speed], the size of Monte-Carlo subset within each trial was

determined as 65; Step 2) when fitting Model 1 to data, 65

data points were randomly selected from all data points of

each trial, and the RMS value of residual errors was cal-

culated as the fitting error magnitude; and Step 3) Step 2

was repeated 16 times, and the average RMS value across

16 RMS values was calculated and used as a measure of

intra-trial variability of XYC for that trial.

Assessment of the movement phase dependence on XYC

inter-trial variability

To further assess how the precision of XYC across trials

within each participant changed during the course of

reaching movement, the following data analysis procedure

was performed (Fig. 1b). First, mean movement time

across all trials and all participants was calculated for each

condition. Subsequently, time window width Tw for model

fitting was set as 20 % of that mean movement time.

Specifying the time window width as specific percentage of

the total movement time (rather than specific time duration)

was made to have the window correspond to a specific

phase of the movement invariant with respect to movement

time duration, which varied considerably across different

conditions. Second, Model 1 was applied to the set of data

points across all trials of each participant within a time

window comprising the first Tw sampling points. Third, the

residual error magnitude was calculated within the time

window as the RMS value of the residual error (i.e., square

root of smallest eigenvalue divided by mean eigenvalue)

and used as the measure of XYC inter-trial variability.

Fourth, the average RMS value and its SE across all par-

ticipants were calculated. Fifth, the second, third and fourth

steps were repeated while the time window was moved

forward one sampling interval at a time until the end of the

window reached the end of the movement (i.e., the last Tw

sampling points).
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Fig. 1 Schematic diagrams of data sets used for model fitting to

examine XY coordination (XYC) variability. For each condition, the

XYC model was applied to a data set comprising data points within

each trial separately (a) and across trials within each participant

separately (b). Data sets are depicted by thick-lined boxes. For data

sets plotted in a, a time window width (Tw) was set as equal to the

average movement time. For data sets plotted in b, Tw was set as 20 %

of the average movement time, and a sliding window technique for

model fitting was used to examine the phase dependence of XYC

variability. The time window was moved forward one data point at a

time, and model fitting was performed at each step (on the data set

within the window). See text for more details
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For model fitting, the above-described Monte-Carlo

method (section ‘‘Utilization of Monte-Carlo approach

for achieving consistency of coordination variability

measurement’’) was utilized according to the following

procedure: Step 1) based on the minimal mean movement

time across all 12 conditions [i.e., 489 ms (65 frames)], the

size of Monte-Carlo subset across all trials within each

participant and each condition was determined as 130 for

the time window (Tw) of 20 % of the mean movement time

[it was because 20 % of 65 frames yielded 13 frames per

trial, which was multiplied by 10 (since there were 10 trials

per condition per participant)]; Step 2) when fitting Model

1 to data, 130 data points were randomly selected from all

data points of the entire time window, and the RMS value

of residual errors was calculated as the fitting error mag-

nitude; and Step 3) Step 2 was repeated 16 times, and the

average RMS value across the obtained 16 individual RMS

values was calculated and used as the measure of XYC

variability for the entire time window.

Estimation of the extent of correlation between

the end-point error components and XYC model fitting

errors

To determine the extent to which the inter-trial variability

of XYC reflected the inter-trial variability of the end-point

position, the following analyses were performed: Step 1)

the X and Y components of the end-point position error

were calculated for each trial as a vector distance from the

hand’s final position to the center of the target for each

X and Y coordinate (which are labeled here as Dx and Dy,

respectively); Step 2) correlation between the model’s fit-

ting error [i.e., residual error magnitude (RMS) obtained

for each data point of a data set, which is labeled here as e]

and the end-point position error components (Dx and Dy)

was calculated across all data points of a data set to which the

model fitting was applied; and Step 3) a generalized correla-

tion estimate (which is labeled here as rxy) between the end-

point error as a pair (Dx, Dy) and the model fitting error e was

calculated as the square root from the R-square value corre-

sponding to linear regression between e as a dependent vari-

able and Dx and Dy as independent variables. The part of

model fitting error not related to the end-point error was

estimated as eadj = (1 - rxy)e. This procedure was applied to

adjust the profiles of XYC inter-trial variability obtained as

described above in section ‘‘Assessment of the movement

phase dependence of XYC inter-trial variability’’.

Results

First, we present basic characteristics of movement kine-

matic and then the results of XYC analysis.

Kinematic characteristics

As expected, the participants significantly decreased

movement time from the low-speed condition to the max-

imum-speed condition (F(2,28) = 239.5, P \ 0.001,

Fig. 2a, b). This change was accompanied by the

increase in average movement velocity (F(2,28) = 105.9,

P \ 0.001, Fig. 2c, d). The movement time was signifi-

cantly longer for the longer distance conditions [F(1,14) =

163.4, P \ 0.001] and for the smaller target conditions

[F(1,14) = 11.7, P \ 0.01]. The average velocity was

higher for the longer distance conditions [F(1,14) = 56.8,

P \ 0.001] and the larger target conditions [F(1,14) =

54.9, P \ 0.001]. As can be seen in Fig. 2, distance by

speed interaction was significant for the movement time

[F(2,28) = 31.8, P\ 0.001] and average velocity [F(2,28) =

36.0, P\ 0.001]. The target size by speed interaction was

also significant [F(2,28) = 18.2, P \0.001].

0

1

2

3

4

0

10

20

30

40

50

M
ov

em
en

t T
im

e 
(s

)
A

ve
ra

ge
 V

el
oc

ity
 (

cm
/s

)
Small TargetLarge Target

L N M
0

10

20

30

40

50

0

1

2

3

4 Short
Long

L N M

L N M L N M

Speed Condition

(a) (b)

(c) (d)

Fig. 2 Effect of speed conditions on the average movement time

(a, b) and average velocity of reaching movement (c, d) across all

participants. The large-target condition (a, c) and the small-target

condition (b, d) are plotted separately. Filled circles refer to the short-

distance condition (15 cm), and open circles refer to the long-distance

condition (30 cm). L, N and M refer to low-, normal- and maximum-
speed conditions, respectively. The error bars indicate the standard

errors

Exp Brain Res (2013) 225:55–73 61

123



Variability at the beginning and the end of movement

To examine how accurately the hand (i.e., the tip of the

stylus) was placed on the starting position or landed on the

target, the inter-trial variability of the hand’s position

(X and Y coordinates separately) was measured both at the

initial and the final points of movement (Fig. 3a–d). In

general, the initial position (a, c) was less variable than the

final position (b, d) in terms of both X and Y components.

The inter-trial variability of both the initial and the final

hand positions significantly increased with an increase in

the prescribed movement speed [initial X position:

F(2,28) = 9.2, P \ 0.01; final X position: F(2,28) = 44.5,

P \ 0.001; final Y position: F(2,28) = 60.8, P \ 0.001]. A

post hoc analysis showed that the inter-trial variability of

all those parameters was significantly greater under the

maximum-speed condition than under either the low- or the

normal-speed condition [P \ 0.05].

The observed increase in the end-point variability under

faster speed coincides with the principle of speed–accuracy

trade-off. In contrast, the significant increase in initial-

point variability of the X coordinate under faster speed is

remarkable (Fig. 3a). This is unexpected because the hand

was placed at the starting position prior to the ‘‘go’’-signal,

and therefore, the hand placement was not stressed by the

timing demand imposed by the speed condition.

As anticipated, the large target resulted in significantly

greater inter-trial variability of the final position com-

pared to the small target for both X [F(1,14) = 64.5, P \
0.001] and Y [F(1,14) = 121.6, P \ 0.001] components.
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This increase in the end-point variability was accentuated

under the faster speed conditions, leading to a significant

target size by movement–speed interaction [final

X position: F(2,28) = 14.7, P \ 0.001, Fig. 3b; final

Y position: F(2,28) = 25.2, P \ 0.001, Fig. 3d]. Further-

more, a reaching distance effect was significant only for the

Y component of the end-point variability [F(1,14) = 6.9,

P \ 0.01]. The results of the inter-trial variability of the

initial direction of hand motion are shown in Fig. 3e. This

parameter was significantly increased with an increase in

the reaching distance [F(1,14) = 6.9, P \ 0.01] and the

movement speed [F(2,28) = 5.5, P \ 0.01].

Factors contributing to end-point variability—correlation

between the initial point and final point

To determine the extent to which the initial deviation from

the starting area’s center is propagated through the entire

movement, the dependence of the X and Y coordinates of

the movement end-point (i.e., final hand position) on the

X and Y coordinates of the hand’s initial position and the

initial direction angle was examined by using a linear

regression analysis (see details in ‘‘Methods’’). The results

are summarized in Table 1. The R-square value was sig-

nificant for both X and Y coordinates of the final hand

position when the regression analysis was performed sep-

arately for each speed condition (Table 1-I), for each target

size (II) and for each reaching distance (III). The only

exception was the final X position under the small-target

condition (Table 1-II).

The significant correlation observed between the initial

and the final hand positions indicates that the initial devi-

ation from the starting area’s center was propagated to a

significant extent through the entire movement. That cor-

relation was significantly stronger when the target was

larger [the X coordinate: P \ 0.001, Table 1-II] and when

the reaching distance was shorter [both X and Y coordi-

nates: P \ 0.01, Table 1-III]. The more the initial devia-

tion from the center of the starting area correlates with

the end-point deviation from the center of the target area,

the less correction is made during the movement. Thus, the

above results indicate that the initial deviation in X direc-

tion was propagated to the hand’s final position to a larger

extent when the movements were either shorter or made to

the larger target area. The initial deviation in Y direction

was propagated to the movement’s end-point to a signifi-

cantly larger extent in shorter distance movements.

XYC variability within an individual trial

One of the most important characteristics of transport–

aperture coordination (TAC) during reach-to-grasp move-

ments is relatively small variability of TAC within an

individual trial, which indicates that the precision of TAC

is rather high and execution noise is quite small (Rand et al.

2010b). To determine whether XYC also has this charac-

teristic, the XYC model was applied to data sets each of

which comprised the entire movement phase for one trial

(Fig. 1a, see section ‘‘Analysis of XYC variability within

the entire movement phase for an individual trial’’). The

average magnitude of model fitting errors across all trials

and all participants revealed that intra-trial variability of

XYC depended on experimental conditions (Fig. 4). That

variability decreased as the movement speed was

increased. Accordingly, a 2 (target size: large, small) 9 2

(movement distance: short, long) 9 3 (movement speed:

low, normal, maximum) 9 15 (participants) ANOVA

revealed a significant movement speed effect [F(2,1620) =

2389.0, P \ 0.001]. The variability was also significantly

greater for the small target compared to the large target

[F(1,1620) = 53.5, P \ 0.001]. The intra-trial variability

was significantly greater for the long-distance movement

compared to the short-distance movement [F(1,1620) =

2847.4, P \ 0.001].

Furthermore, as can be seen in Fig. 4, the slope of

increase in the intra-trial variability from the maximum to

the low-speed condition was steeper for the far-distance

condition than for the near-distance condition. Accordingly,

Table 1 Dependence of the strength of correlation between the

movement’s onset and offset on prescribed speed, target size and

reaching distance

N Final X position Final Y position

R-square Correlation

coefficient

R-square Correlation

coefficient

(I) Speed condition

Low 600 0.042** 0.205 0.119** 0.345

Normal 600 0.039** 0.198 0.106** 0.325

Maximum 600 0.016* 0.126 0.075** 0.273

(II) Target size

Large 900 0.101** 0.318� 0.075** 0.273

Small 900 0.005 0.073 0.106** 0.326

(III) Reaching distance

Short 900 0.074** 0.272� 0.216** 0.465�

Long 900 0.022** 0.148 0.044** 0.21

The results have been obtained by performing linear regression

analysis separately for the X and Y coordinates of the trajectory’s end-

point (i.e., final position), in each case using the X and Y coordinates

of the initial position of the stylus and the initial movement direction

angle as the independent variables

Significance of R-square value: * P \ 0.05; ** P \ 0.001

Significance of correlation coefficient difference between the target

size-related conditions: � (P \ 0.001)

Significance of correlation coefficient difference between the reach-

ing distance-related conditions: � (P \ 0.01)
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there was a significant two-way interaction of movement

speed by movement distance [F(2,1620) = 268.0, P \
0.001]. The effect of movement speed on the magnitude of

the intra-trial variability of XYC was very similar to that

found for intra-trial variability of TAC during reach-to-

grasp movements (Rand et al. 2010b). Moreover, it is

important to note that the magnitude of XYC intra-trial

variability was very small compared to that of XYC vari-

ability across trials (see below, section ‘‘XYC variability

across trials,’’ Fig. 5). This feature of XYC variability was

also typical for TAC variability.

XYC variability across trials

The phase dependence of TAC variability across trials

during reach-to-grasp movements has a specific pattern:

That variability is relatively large during the initial phase,

and it rapidly decreases toward the end of the movement

(Rand et al. 2008). To examine whether a similar pattern of

XYC inter-trial variability dependence on the phase of the

reaching movement can be also observed, Model 1 was

applied to data sets related to each participant separately by

using a sliding window technique with a window width of

20 % of average movement time (Fig. 1b, see section

‘‘Assessment of the movement phase dependence of XYC

inter-trial variability’’). An average data fitting error across

participants and its SE are plotted for each of all windows

throughout the movement (Fig. 5, thin lines). The thin solid

lines in Fig. 5 depict the phasic changes of the variability

(i.e., RMS values calculated based on the least, sixth

eigenvalue) for all conditions. In general, under each

condition, the XYC inter-trial variability was the smallest

at the beginning of the movement, and it gradually

increased toward the middle of the movement (Fig. 5).

This feature contrasted with that observed for TAC during

reach-to-grasp movements, where the initial inter-trial

variability was considerably larger relative to its peak

(Rand et al. 2008).

The peak of the variability was greater under the faster

speed conditions. The inter-trial variability of XYC gen-

erally decreased toward the end of the movement for most

conditions, indicating that optimality of the XYC among

the six movement parameters (x, y, vx, vy, ax, ay) increased

as the hand approached the target. The observed decrease

in the inter-trial variability was more pronounced under the

small-target conditions (Fig. 5g–l) than under the large-

target conditions (Fig. 5a–f). Furthermore, when short-

distance movements were made to the large target, the

inter-trial variability of XYC did not decrease toward the

end of the movement at all (Fig. 5a–c). These results

indicate that XYC optimality increases (and the variability

of XYC decreases) toward the end of the movement to a

greater extent when higher terminal accuracy is required.

Inter-trial variability of XYC excluding end-point

variability

Assessment of the precision of information processing

based on measuring the inter-trial variability of coordina-

tion hinges on an assumption that the controlled object’s

state at the trajectory’s end-point (i.e., at the contact with

the target object) does not vary significantly between dif-

ferent trials. This assumption is justified in the case of

reach-to-grasp movements because relatively high preci-

sion of contact with the target object is required for

successful performance of the motor task. During point-

to-point reaching movements investigated in the present

study, however, for successful performance, it is sufficient

that the trajectory’s end-point be anywhere within the tar-

get area. In other words, the participant has no reason to

reduce the end-point’s variability as long as the end-point

is within the target area. Consequently, the precision of

information processing can be very high during the final

phase of movement control, but, due to the inter-trial var-

iation of the end-point, the inter-trial variability of XYC

(measured as the precision of the XYC model fitting to a
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data set comprising a number of trials) still can be signif-

icantly large.

To determine the extent to which the inter-trial vari-

ability of XYC reflected the inter-trial variability of the

end-point position, correlation between the model fitting

error e (obtained for each data point of a data set) and the

X and Y components of the end-point position error

obtained for each trial (Dx and Dy, respectively) was cal-

culated across all data points of a data set to which model

fitting was applied (see section ‘‘Estimation of the extent of

correlation between the end-point error components and

XYC model fitting errors’’ for details). To illustrate the

phase dependence of that correlation, the correlation was

calculated separately for each position of the sliding win-

dow that was used to fit the model of XYC (the window

width was 20 % of average movement time). The average

absolute value of correlation coefficient across participants

is plotted in Fig. 6 for the X and Y components separately.

For all conditions, correlation between the Y component’s

end-point error (Dy) and model fitting error e (dotted lines)

gradually increased, usually reaching above 0.8 by the end

of the movement. Thus, the inter-trial variability of XYC

strongly reflected the inter-trial variability of the end-point

Y position toward the end of the movement. In contrast,

correlation between the X component’s end-point error

(Dx) and model fitting error e (thin lines) usually fluctuated

around its initial level throughout the movement.

In addition, an estimate rxy of generalized correlation

between the end-point error as a pair (Dx, Dy) and the XYC

model fitting error e was calculated as the square root from
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Fig. 5 Temporal modulation of

XYC inter-trial variability

during the entire movement

phase. The results are shown for

different experimental

conditions related to slow (a, d,

g, j), normal (b, e, h, k) and

maximum (c, f, i, l) speed of

reaching, as well as to short-

(a–c, g–i) and long-distance

(d–f, j–l) reaching amplitude.

The large-target conditions

(a–f) and the small-target

conditions (g–l) are plotted

separately. For each condition,

the optimal XYC model was

applied separately to different

sets of data points related to

each participant by using a

sliding window technique with a

window width of 20 % of the

average movement time. The

average residual error

magnitude across all

participants and the standard

error were calculated and

plotted for each position of the

sliding time window. The

residual error magnitude and the

corresponding standard error are

shown with thin solid lines and

dotted lines, respectively. The

thin solid lines refer to the XYC

inter-trial, intra-subject

variability that included the

influence of the end-point

position errors. Thick solid lines
refer to the same variability that

excluded that influence
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the R-square value of linear regression where Dx and

Dy are independent variables and e is a dependent variable.

The generalized correlation estimate gradually increased,

reaching above 0.9 by the end of the movement (Fig. 6,

thick lines). These results show that the inter-trial vari-

ability of XYC strongly reflects the inter-trial variability of

the end-point position. The fact that the residual error of

XYC model fitting correlated significantly with the end-

point position indicates that the magnitude of XYC model

fitting across trials reflects end-point variability rather than

the precision of information processing during the final

phase.

To estimate the part of the inter-trial variability of XYC

that did not reflect the end-point position variability, the

XYC model’s adjusted fitting error was calculated as

eadj = (1 - rxy)e (Fig. 5, thick lines). Conceptually, model

fitting error eadj describes what the inter-trial variability of

XYC would look like if the participants were hitting the

center of the target area precisely for all trials. As can be

seen in Fig. 5 (thick lines), the adjusted inter-trial vari-

ability of XYC decreased gradually toward the movement

end for all conditions.

When the part of the inter-trial variability of XYC

determined by the end-point position variability was

removed, the reduction in the XYC inter-trial variability in

the final phase was clear, indicating an increased precision

of XYC. These profiles are very similar to those found in

inter-trial variability of TAC during reach-to-grasp move-

ments (Rand et al. 2008). Inter-trial, inter-subject vari-

ability of XYC (Fig. 5, thick lines) reveals only a very
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Fig. 6 Correlation between the

XYC model’s fitting error and
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end-point position error. For

each condition, a correlation

coefficient of each of X (thin
sold lines) and Y (dotted lines)

components and a generalized

correlation estimate that

combined the influence of XY

component errors (thick solid
lines) were calculated (see

details in ‘‘Methods’’) for

different sets of data points

separately. Each data set

comprised all data points within

a specific time window (which

was equal to the 20 % of the

mean movement time) across all

trials performed by each

participant. The time window

was moved through the

movement phase one data

sampling point at a time. The

absolute value of the average

correlation coefficient across all

participants for the X (thin solid
line) and Y (dotted line)

components and the average

generalized correlation estimate

(thick solid line) is plotted for

each position of the sliding time
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short low-variability period at the very end of the move-

ment. This feature was clearer under the maximum-speed

conditions, especially for reaches to the small target

(Fig. 5i, l), than under other conditions.

Discussion

The main goal of this study is to investigate motor

coordination during point-to-point, reaching movements

performed on a horizontal plane and find out whether their

control strategy conforms to the general concept of two-

phase control strategy evolved from the application of an

optimal coordination model to reach-to-grasp movements

(Rand et al. 2008, 2010b). According to the two-phase

control strategy concept, the cost of information processing

during motor planning and movement online control is

saved during the initial phase at the expense of reduced

precision of neural computations. This results in relatively

large inter-trial variability of XYC in the initial phase. In

the final phase of movement control, the control precision

is significantly increased to ensure sufficient precision of

target acquisition at the end of the movement trajectory.

This results in minimal inter-trial variability of XYC dur-

ing the final phase. Has the analysis of the experimental

data obtained in the present study provided sufficient

amount of evidence for the above control strategy

properties?

Dependence of XYC variability on movement phase

and experimental conditions

The fact that the intra-trial variability of XYC is very small

(Fig. 4) proves that the model of XY optimal coordination

fits the experimental data with high precision. It also

strongly indicates that execution noise is minimal. Fur-

thermore, if execution noise were significant, one would

expect to observe larger magnitude of that noise and,

therefore, greater intra-trial variability under higher

movement speed. In fact, however, the extent of intra-trial

variability significantly decreases with an increase in the

prescribed movement speed (Fig. 4). Thus, the experi-

mental results directly and strongly contradict the above

expectations, thereby proving that execution noise was

insignificant under the conditions of the described experi-

ments.

Assessment of the variability of motor coordination

across trials (inter-trial variability of XYC) provides

information about the extent of movement control opti-

mality. In general, assuming high accuracy of target

acquisition (i.e., small variability of hand trajectory’s end-

point), the higher is the optimality of movement control,

the lower the inter-trial variability of motor coordination in

the final phase must be observed. The requirements for

end-point precision in the motor task tested in the present

study are determined by the size of the target area. As a

result, the observed end-point variability is significant and

its magnitude significantly depends on movement condi-

tions (Fig. 3b, d). The fact that the mismatch error of the

model of optimal XYC significantly correlates across trials

with the end-point position (Fig. 6) reveals that the inter-

trial variability of XYC has a large component due to the

variability of the end-point position.5 After that component

is removed, the phase dependence profile of XYC inter-

trial variability looks a lot like that in the case of reach-to-

grasp movements. Namely, it showed large variability

during the initial phase and rapid decrease toward the end

of the movement to a level of intra-trial model fitting errors

(Fig. 5, thick lines). Thus, this finding supports our

hypothesis that the two-phase strategy is also utilized by

the CNS for controlling planar point-to-point movements.

The current study revealed that the final phase of

movement control of planar reaching, which is character-

ized by the very low level of the inter-trial variability of

XYC (close to the level of coordination intra-trial vari-

ability), is quite short. The strongest (i.e., most pronounced

in terms of its time duration and extent to which the inter-

trial variability of XYC is decreased) final phase is

observed under maximum speed (especially long-distance,

small-target condition, Fig. 5c, f, i, l). In contrast, the final

phase is the least pronounced under the low-speed condi-

tions (especially short-distance, large-target condition

Fig. 5a, d, g, j). Thus, the strength of the final phase varied

considerably across experimental conditions.

Factors contributing to end-point variability

The dependence of the end-point variability on the pre-

scribed movement speed shows a classical picture of

speed–accuracy trade-off (Fig. 3b, d). It is remarkable,

however, that not only the variability of the end-point, but

also that of the initial position’s X component significantly

increased with movement speed increase (Fig. 3a) despite

the fact that stylus positioning was performed before the

‘‘go’’-signal, meaning that the participant had sufficient

time for that positioning. It cannot be excluded that the

position variability increase was due to a change in bio-

mechanical factors, such as the way of holding the stylus or

arm initial position, made in response to higher prescribed

speed. At the same time, this phenomenon finds a natural

explanation in the framework of the two-phase strategy

5 This component does not reflect any significant nonoptimality of

movement control if it is determined by the variability of the end-

point within the boundaries of the target area. This is so because as

long as the end-point is within the target area, its deviation from the

area’s center does not increase the cost of a target acquisition error.
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concept. Namely, the accuracy of the initial placement of

stylus is lowered because the control of its initial posi-

tioning is performed under the same setting regarding

speed–accuracy balance as the rest of the task performance

elements. Since that balance is shifted to lower accuracy

under maximum prescribed speed condition (according to

the speed–accuracy trade-off principle), the initial place-

ment is also performed with higher variability. This

inference is in complete agreement with the assumption

that the CNS implements a special controller that regulates

the precision of neural computations required for move-

ment control, and relaxes that precision whenever possible

(see Shimansky and Rand 2012 for more details). This

contention is also supported by a most recent study indi-

cating that optimality of sensory information processing is

reduced when precision requirements are reduced (Ho et al.

2012).

The requirements for end-point precision in the motor

task tested in the present study are determined mostly by

the size of the target area. Under the small-target condition,

due to higher end-point precision requirements, the amount

of movement correction is expected to be significantly greater

than under the large-target condition. Consequently, the

strength of correlation between the movement onset param-

eters and the final position of the hand must be significantly

reduced under the small-target condition. This prediction is

fully supported by the experimental results (Table 1-II).

The data analysis results provide information for

determining the sources of the inter-trial variability of the

end-point position. It has been previously suggested that

execution noise is the main source of such variability (van

Beers et al. 2004). Intuitively, greater execution noise is

expected to be observed during more vigorous movements

(i.e., performed with higher speed). Therefore, an

assumption that execution noise is the main source of end-

point position variability is consistent with the fact that the

higher is the movement speed, the greater the variability of

the X and Y coordinates of the end-point is observed

(Fig. 3b, d). From a different perspective, however, if the

impact of execution noise were significant, significantly

less correlation between initial position and movement

direction and the end-point position would be expected

under faster movements. However, in a clear contradiction

with this expectation, the results of the data analysis show

that prescribed movement speed did not significantly affect

correlation between the initial position, initial movement

direction and the end-point position. This contradiction

strongly indicates that execution noise was not a significant

factor determining the end-point’s variability. Furthermore,

if execution noise were significant, it would cause signifi-

cant intra-trial variability of XYC, especially under higher

movement speed, where the end-point errors are larger.

The fact that the intra-trial coordination variability is the

lowest when the speed is the highest (Fig. 4) directly and

very strongly contradicts that assumption. Thus, execution

noise is not a significant factor contributing to the end-

point variability observed in the present study.

Why then greater end-point variability is observed under

higher prescribed movement speed? The significant

amount of correlation observed between the initial and the

final positions of the stylus (Table 1) indicates that the

initial deviation from the starting area’s center is propa-

gated to a significant extent through the entire movement.

For example, the fact that such correlation is significantly

stronger under shorter movement amplitude (Table 1-III)

confirms an intuitive expectation that less correction is

performed during shorter amplitude movements. From the

fact that the intra-trial variability of XYC is lower for

higher movement speed, it is evident that the higher is the

prescribed movement speed, the less the initial deviation

from the straight line that connects the initial hand position

and the target center is corrected during the movement.

Therefore, any directional deviation at the movement onset

must result in greater deviation at the end-point. These

interpretations are supported by a previous observation that

movement deviations occurred in early phase of rapid

aiming movements were propagated through the entire

movement and magnified as the movement progressed

(Bédard and Proteau 2004; Khan et al. 2006). Thus, there

are two factors significantly contributing to the observed

increase in end-point variability with an increase in the

prescribed movement speed. First, the higher the move-

ment speed is, the greater is the variability of the initial

movement direction (Fig. 3e). Second, under higher

movement speed, less correction of the initial directional

error is made, which results in the gradual accumulation of

that error through the movement.

Relationship between motor variability and XYC

variability

A decline of motor variability (i.e., the variability of the

movement trajectory) during the later phase of goal-

directed movements has been observed previously in terms

of arm transport during the reach-to-grasp movement

(Bertram et al. 2005; Haggard and Wing 1997) and arm

reaching during reach-to-point movement (Khan and

Franks 2003; Khan et al. 2003; Tinjust and Proteau 2009).

It was shown that such reduction in the inter-trial vari-

ability of reaching trajectory was due to visual feedback-

based online movement corrections (Khan and Franks

2003; Khan et al. 2003).

In the current study, the extent of the variability of XYC

was estimated as the magnitude of the error of fitting the

model of optimal coordination to a given data set. The

variability of XYC (and motor coordination in general) is a
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specific component of motor variability. Namely, it

measures motor variability in the direction critical for

movement control optimality (Shimansky and Rand 2012).

In the case of reach-to-grasp movements, for example, it

has been shown that, although the variability of kinematic

parameters is significant in the final, aperture closure

phase, the variability of coordination between hand trans-

port and finger aperture is very close to zero during that

phase (Rand et al. 2008). Thus, the decrease in the vari-

ability of XYC observed toward the movement’s end

reflects increased optimality of movement control in the

final phase, rather than a general decrease in motor vari-

ability. Note that a general increase or decrease in motor

variability does not necessarily mean that the variability of

motor coordination is also increased or decreased. To

determine whether coordination variability has decreased,

which would indicate an increase in the extent of move-

ment control optimality, a special data analysis based on

the model of optimal coordination is required, as performed

in the current study.

The results of inter-trial variability analysis for XYC

and end-point position of the movement trajectory provide

insights into understanding the CNS’s movement control

strategy. The increase in correlation between the fitting

error of the XYC model and the end-point position’s

deviation from the target area’s center (Fig. 6) indicates

that the amount of movement correction decreases as the

target area is approached. That decrease is consistent with

the central idea of the two-phase strategy concept that the

CNS increases the precision of information processing at

the transition from the initial phase to the final phase of

movement control. Thus, the end-point deviation from the

target center is not a result of some noise acting during the

ongoing movement. It is already determined to a significant

extent by the initial position of the stylus and the initial

direction of its movement. To minimize the end-point error

cost, higher precision of information processing during the

final phase is used, as always. However, that cost is zero as

long as the end-point is inside the target area. Hence, there

is no need for the CNS to decrease the variability of the

end-point within the target area. For the same reason, there

is no need to decrease the related part of the inter-trial

variability of XYC. When that part is removed from the

variability of XYC during the final phase, XYC variability

during that phase is minimal, just as expected according to

the two-phase strategy concept.

Theoretical implications

Optimality approach

An optimality approach has been traditionally applied to

the movement trajectory (e.g., Viviani and Flash 1995).

This application is based on an implicit assumption that,

since a given motor task is well optimized through exten-

sive training, the movement trajectory is also optimized to

the same extent. The current model of optimal XYC is

formulated in terms of movement kinematic variables

expressed based on X and Y spatial coordinates, assuming

that movement control is optimal. Apart from that

assumption, analyzing how exactly movements are planned

is beyond the scope of this study. For example, there are

many existing theories of how reaching movements are

planned, such as vector-coding (e.g., Vindras and Viviani

1998), minimization process (Yang and Feldman 2010) and

force control (Kawato 1999, Wolpert and Ghahramani

2000). We believe that our model in general is compatible

with any existing control concept as long as it assumes

optimization of movement control according to a certain

criterion.

Movement control optimization and variability

If the movement trajectory is ideally well optimized, there

is no room for its variability. Consequently, in the liter-

ature on arm movement control, motor variability is

usually regarded as an inherent noise that is a negative

factor, and the control system has to decrease it for

improving the performance of motor tasks (Faisal et al.

2008; Harris and Wolpert 1998; Khan et al. 2006; Newell

and Corcos 1993; Todorov and Jordan 2002). An optimal

feedback control concept has been proposed, according to

which the optimality criterion should include the cost of

errors in task performance caused by motor variability

(Todorov and Jordan 2002). To minimize that cost, the

CNS decreases motor variability in the directions critical

for the quality of task performance. The optimal feedback

theory, however, does not explain how the CNS manages

to suppress the inherent noise, although some of the

CNS’s mechanisms possibly employed for noise reduction

have been suggested recently (Bays and Wolpert 2007).

By utilizing a quantitative model of optimal XYC for

experimental data analysis, it has been demonstrated in

this study that execution noise is insignificant (section

‘‘XYC variability within an individual trial’’) and, there-

fore, cannot be responsible for the observed inter-trial

variability of reaching movements. The two-phase strat-

egy concept provides the following alternative explana-

tion for that variability. First, the state of the controlled

object (primarily the reaching extremity) at the movement

onset significantly varies from trial to trial. Second, since

the CNS lowers the demand for information processing

precision during the initial phase of movement control, a

significant error in the movement control system’s esti-

mate of the controlled object’s state is likely. That error is

the main reason for the motor variability. A detailed
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theoretical analysis and discussion of this mechanism can

be found in (Shimansky and Rand 2012).

Two-component control of aiming movement

versus two-phase control strategy

In the history of movement control research, the existence

of two distinct movement components one of which is

‘‘ballistic’’ and the other is ‘‘corrective’’ was noticed in

aiming movements a long time ago (Woodworth 1899).

The two-component movement control model has been

attracting a lot of interest ever since (Elliott et al. 2001;

Khan et al. 2006). There is a striking similarity between the

idea of two-phase strategy of coordination among move-

ment parameters and the concept of two components of

reaching movements. However, these two concepts were

developed independently from different theoretical view-

points, and a different methodology was employed for

identifying the two components (Fradet et al. 2008; Khan

et al. 1998; Meyer et al. 1988; Tinjust and Proteau 2009).

Thus, it is important to determine how well the ballistic and

the corrective components described in two-component

concept match the initial and the final phase from our

concept of the two-phase control strategy, respectively.

Our planned companion paper (Part II) will address this

issue.

Conclusions

Overall, the features of the movement control strategy

revealed by the data analysis in this study are very similar

to those found in our earlier studies on reach-to-grasp

movements. In addition, it has been found that separation

between the initial and the final phases of the reaching

movement is best defined under conditions where both

high movement speed and high end-point precision are

required. Conversely, under relaxed requirements for

movement speed and end-point precision, the final phase

may not be completely present. These findings are in a

perfect agreement with a hypothesis (which is central to

the two-phase control strategy concept) that the CNS

actively regulates the demand for the precision of infor-

mation processing to optimize the cost of motor task

performance.

The current study took the first distinct step toward the

generalization of the two-phase control strategy concept

from reach-to-grasp movements to planar point-to-point

reaching movements. The current study is focused on

movements performed in the same direction in each trial.

Further generalization to wider ranges of experimental

conditions is an important direction for future studies.

Appendix

Derivation of experimentally verifiable equations

describing optimal coordination

The total cost of task performance Q can be presented as a

sum of the following components.

Q ¼ QM þ QT þ QE; ð3Þ

where QM is the cost of movement execution (mostly the

cost of active force generation by muscles), QT is the cost

of movement time duration, and QE is the cost of errors in

making a contact with the target object. More precisely,

QM ¼
ZT

0

ðqM½SðtÞ;UðtÞ�Þdt; ð4Þ

QT ¼
ZT

0

ðqT ½SðtÞ�Þdt: ð5Þ

and QE is a function of the controlled object’s state S(T) at

the movement’s end-point. Here, qM is the rate of spending

metabolic energy on muscle contraction for generating

limb moving forces. It depends on the state S(t) of the limb

as a controlled object and the vector of control actions U(t).

The cost of time duration QT is determined by the behav-

ioral context in which the motor task is performed. It can

vary from being very high (e.g., in dangerous situations

requiring fast motor actions) to being negligible compared

to other cost components. In general, the rate qT of time

duration cost significantly depends on the controlled

object’s state. In relatively simple cases, it can be consid-

ered constant throughout the movement, so that QT =

qT �T. The movement duration T in most cases should be

considered an unprescribed and thus requiring optimization

parameter (for a more detailed discussion see Shimansky

2000; Shimansky et al. 2004). The cost of end-point errors

QE is fully determined by the motor task and the strategy of

its performance. In real situations, it can be extremely high

(e.g., during rock climbing).

Thus, the optimal control problem has a standard setup

(e.g., Davis 2002) with the optimality criterion

QðUÞ ¼
ZT

0

ðqM ½SðtÞ;UðtÞ� þ qt½SðtÞ�Þdt þ QE½SðTÞ� ð6Þ

and control object’s dynamics

dS

dt
ðtÞ ¼ F½SðtÞ;UðtÞ�; ð7Þ

which means that its solution can be described as the

following equation system
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U ¼ H S; ST ; Tð Þ; ð8Þ

where U is an m-dimensional vector of control actions

(each of which corresponds to a specific controlled free-

dom degree), S is an n-dimensional (m B n) vector fully

describing the state of the controlled object at a specific

point in time, ST is an n-dimensional destination state

vector, and T is time duration of movement between S and

ST. Note that the equation system 8 holds for each time

point of the movement. It is assumed here that movement

time duration is not prescribed, and therefore, T is a result

of movement control optimization. Therefore, T is essen-

tially the (optimal) amount of time remained to movement

finish. Very importantly, since all m control processes are

assumed to finish concurrently, T is the same for each

process (i.e., for each one of the m equations).

By solving the above equation system with respect to T

and excluding T from it, one obtains a reduced system of

(m - 1) equations,

G S; ST ;Uð Þ ¼ 0; ð9Þ

where G is an (m - 1)-dimensional vector function.

From a geometrical perspective, these (m - 1) equations

describe an (n ? m - 1)-dimensional hypersurface in the

(n ? m)-dimensional space, which is a composition of the

controlled object’s state space and the space of control actions.

This combined space is a state space of the entire movement

control system in which the experimenter observes it.

If ST is the same in every trial (i.e., is a vector of con-

stant parameters) performed under a specific condition, the

above equation system (Eq. 9) can be simplified:

G S;Uð Þ ¼ 0: ð10Þ

The equation system 10 constitutes a model of optimal

coordination. From the perspective of data analysis, the

left-hand parts of these equations are functions with

unknown parameters that are to be found by best fitting

the model to the experimental data. Note that an alternative

approach to model fitting consists in the following

procedure. First, the unknown coefficients in the

functions included in Eqs. 6 and 7 have to be identified.

Second, the optimal control problem should be solved.

Third, an optimal coordination model should be obtained as

described above, resulting in an equation system 10 with

coefficients calculated using those identified for Eqs. 6 and

7. This alternative route of model development is arguably

much more computationally complicated. Conversely, the

‘‘short-cut’’ approach, namely best fitting a model in the

form of equation system 10, which produces the same

result, is much easier computationally. Its other important

advantage is that no assumptions regarding the exact

formula for the optimality criterion (a highly debatable

matter) are required.

According to the general derivation procedure presented

above, to derive a mathematical model of XY coordination,

control actions for regulating hand motion components

corresponding to X and Y coordinates can be presented as

related hand transport acceleration components. Optimal

coordination between two control processes is described by

a system of a single equation. In the case of XY coordi-

nation, such a system describing optimal XYC can be

obtained from Eq. 10 by defining the state vector as

S = [x, y, vx, vy] and the vector of control actions as

U = [ax, ay]:

f x; y; vx; vy; ax; ay

� �
¼ 0; ð11Þ

where ax, and ay are acceleration components, and vx, and

vy are velocity components.

Estimation of fitting errors for the XY optimal

coordination model

The simplest implementation of the model of optimal XYC

is linear:

kxxþ kyyþ kvxvx þ kvyvy þ kaxax þ kayay þ k0 ¼ 0; ð12Þ

where kx, ky, kvx, kvy, kax, kay and k0 are constant coefficients

that are not simultaneously equal to zero. Note that an

equation kxx ? kyy ? 1 = 0 describing a straight line is a

particular case of Eq. 12, which means that, if the move-

ment trajectory is a straight line segment, it satisfies the

conditions for optimal XYC. Since the Eq. 12 is appre-

ciably more general, it can be satisfied even if the move-

ment trajectory is not straight.

The last coefficient k0 in Eq. 12 can be excluded by

scaling the movement parameters so that their respective

mean values (across the data set) are all zero. Then, the

model becomes a bit simpler:

kxxþ kyyþ kvxvx þ kvyvy þ kaxax þ kayay ¼ 0: ð13Þ

This general equation actually stands for an equation

system where each individual equation includes movement

parameters corresponding to a specific point in time from a

specific trial performed by a specific participant. All such

points comprise a data set to which the model is fitted. In

each case of model fitting described in this study, the

number of equations in the above equation system is

several times greater than the number of (unknown)

coefficients, meaning that the equation system is

considerably overdetermined. In general, in such cases,

there is no set of coefficients that can make all the

equations satisfied exactly. Therefore, the parameter

identification problem is usually solved according to the

principle of maximum likelihood, which, assuming quasi-

normality of the probability distribution for the movement

parameters across the data set, leads to a requirement that
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the sum of mismatch error squares across the equations be

minimal (least squares criterion):

XN

i¼1

ðkxxþ kyyþ kvxvxþ kvyvyþ kaxax þ kayayþ k0Þ2!min

ð14Þ

The linear equation describing the model of optimal

XYC has a trivial solution where all coefficients are equal

to zero. That solution is unwanted because it does not

impose any constraints on the relationship between the

movement parameters. To exclude that solution, it is

necessary to require that not all those coefficients be equal

to zero at the same time. That requirement is usually

expressed as an additional equation

k2
x þ k2

y þ k2
vx þ k2

vy þ k2
ax þ k2

ay ¼ 1: ð15Þ

The mathematical problem described by the equation

system 14 and 15 is well known from the theory of

principal component analysis (e.g., Jolliffe 2002). There

are exactly N = 6 minima of the objective function

(defined by the expression Eq. 14), which are given by

the eigenvalues of the covariance matrix of the movement

parameters. The corresponding solutions with respect to the

model’s coefficients are the eigenvectors of that matrix.

Thus, the eigenvector corresponding to the least eigenvalue

(i.e., to the global minimum of the objective function) is

the result of model best fitting. The resulting values of the

model’s coefficients can be used to obtain the model’s

fitting error for any specific vector of the six movement

parameters (x, y, vx, vy, ax, ay), that is, for any specific data

set element.

Based on the above considerations, the fitting error for

the linear implementation of the XYC model was calcu-

lated according to the following procedure.

1. The covariance matrix for the six movement param-

eters was calculated for the data subset to which the

model was to be fit.

2. The eigenvalues of that matrix were determined (by

using a standard procedure). Note that the sum of the

eigenvalues is equal to the sum of the diagonal

elements of the covariance matrix, that is, to the sum

of the movement parameter variances.

3. The fitting error magnitude was calculated as a square

root of the smallest eigenvalue divided by the mean

eigenvalue (across all the eigenvalues). This division

was performed to make the fitting error estimate

independent of the extent of movement parameter

variance (i.e., the extent of their variability). That

independence is important for comparing the fitting

error magnitude (used as an estimate of XYC

variability) between different movement phases,

different conditions, etc. By taking the square root,

the fitting error estimate was made compatible with the

usual root mean square (RMS) measure of mismatch

error magnitude.

Note that the obtained estimate of fitting error magni-

tude is dimensionless. Its upper bound is equal to 1, which

corresponds to the absence of any correlation among the

movement parameters.
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