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Abstract We recently reported that visuospatial working

memory capacity predicts the rate of explicit motor

sequence learning (Bo and Seidler in J Neurophysiol

101:3116–3125, 2009). In the current study, we evaluated

relationships between visuospatial and verbal working

memory and implicit performance change in the serial

reaction time (SRT) task. Participants performed two

computerized working memory tasks adapted from change

detection working memory assessments, an implicit SRT

task, and several neuropsychological tests. We observed

significant correlations between visuospatial working

memory (VSWM) and verbal working memory (VWM)

performance. VSWM, VWM, and card rotation task were

each significantly correlated with the rate of reaction time

improvement in the SRT task. Multiple linear regression

analysis revealed that VSWM explained a significant por-

tion of the variance in rate of SRT performance change

(exponential fit to the performance curve) across individual

participants, and the addition of VWM did not significantly

improve the model. These findings suggest that VSWM

plays a role in the implicit performance improvement of

second-order conditional sequences.

Keywords Implicit sequence learning � Serial reaction

time (SRT) � Visuospatial working memory �
Verbal working memory

Introduction

Implicit sequence learning refers to the ability to combine

isolated movements into one smooth, coherent action

without conscious awareness of what was learned or the

fact that learning occurred (Reber 1993). Despite being a

subconscious process, it is thought to engage cognitive

resources. For example, disruptive transcranial magnetic

stimulation applied to the dorsolateral prefrontal cortex

(DLPFC), a structure involved in working memory (e.g.,

Jonides et al. 1993), impairs implicit sequence learning

(e.g., Pascual-Leone et al. 1996; Robertson et al. 2001).

Schwarb and Schumacher (2009) have demonstrated that

DLPFC is selectively involved in spatial response selec-

tion, which is the underlying mechanism of sequence

learning (Deroost and Soetens 2006; Hazeltine 2002;

Schumacher and Schwarb 2009; Schwarb and Schumacher

2010). While there is some evidence supporting the role of

DLPFC in implicit sequence learning, one model suggests

that DLPFC only contributes to sequence learning under

explicit conditions (Willingham 1998). Several neuroim-

aging studies including our recent work (e.g., Bapi et al.

2006; Bo et al. 2011) report no significant DLPFC acti-

vation for implicit sequence practice. A recent model

suggests that implicit sequence learning begins in the

motor and premotor cortical areas. The early stage of

implicit learning typically does not involve prefrontal areas

(Ashe et al. 2006). Thus, the current study examined the

relationship between short-term working memory (both
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visuospatial and verbal) capacity and performance change

in a single session using the implicit SRT task.

A previous study reported that verbal working memory

performance correlated with the magnitude of implicitly

learned complex sequences [i.e., under dual-task conditions

with a short response-to-stimulus interval, (Frensch and

Miner 1994)]. However, recent work has suggested that the

tasks used by Frensch and Miner (1994) to measure

working memory may overestimate capacity because they

allow for the use of chunking strategies and rehearsal

(Cowan 2001; Jonides et al. 2008). Chunking refers to the

process of forming a familiar pattern, which contains

multiple elements (Ericsson and Kintsch 1995). When

learning a new task, participants have to select individual

elements one by one. Once a task is learned, a single

representation (i.e., a motor chunk) for the task can be

stored in and retrieved from long-term memory. Behav-

iorally, an unevenly distributed temporal pattern between

each movement element (i.e., inter-response time) can be

observed after repeated practice (Shea et al. 2006; Verwey

1996, 2001). Ericsson et al. (1980) have reported a case

where a participant with average memory abilities

increased his memory span from 7 to 79 digits. This indi-

vidual learned to group chunks of digits together to form

‘‘supergroups’’, which allowed him to dramatically

increase his digit span. Thus, it is not clear whether the

correlation reported in Frensch and Miner (1994) was due

to ‘‘chunking’’ occurring both during the sequence learning

and the working memory tasks. In order to avoid contam-

ination by this common ‘‘chunking’’ process, we adapted

change detection working memory assessments (Luck and

Vogel 1997; Thomason et al. 2009), which identify the

number of items that individuals can hold and operate upon

in short-term working memory (Awh et al. 2007).

It has been suggested that there are separate working

memory resources for visuospatial and verbal information

(MacDonald and Christiansen 2002; Shah and Miyake

1996). According to this domain-specific view, one might

expect differential correlations for the two types of work-

ing memory with implicit performance of the SRT task.

Alternatively, it has been hypothesized that working

memory is a unitary domain, which might explain why

individual differences in visuospatial working memory are

often strongly correlated with individual differences in

verbal working memory (Conway and Engle 1996; Kane

et al. 2004). According to this domain-general view, one

might expect correlations for both verbal and visuospatial

working memory with implicit performance of the SRT

task. Recent work also demonstrates that visuospatial and

verbal working memory engage partially overlapping net-

works (Thomason et al. 2009), further supporting the pre-

diction that both might equally correlate with implicit SRT

task performance.

Methods

Participants

Twenty-one right-handed [determined by self-report and

the Edinburgh handedness inventory (Oldfield 1971),

mean = 0.90] adults (M = 20.09 ± 3.2 year, 11 men)

participated in this study. They gave their informed consent

and were paid for their participation. The experimental

procedures were approved by the Institutional Review

Board of the University of Michigan.

Procedure

We administered measures of short-term visuospatial

memory: Corsi block tapping test (Kessels et al. 2000) and

card rotation and cube comparison tests [Educational

Testing Service, (Thurston 1951)]; and short-term verbal

memory: forward and backward digit span tasks from

WAIS-R (Wechsler 1981) and the reading span task

(Daneman and Carpenter 1980).

Participants also performed computerized visuospatial

working memory (VSWM), verbal working memory

(VWM), and implicit SRT tasks (E-Prime version 1.0,

Psychology Software Tools, Pittsburgh, PA). The working

memory tasks were modified from Luck and Vogel (1997)

and Thomason et al. (2009). Common between the two

tasks, each trial began with a central fixation cross, fol-

lowed by a sample array for 100 ms, a 900-ms blank screen

delay, and a 2,000-ms presentation of a test array. Partic-

ipants were then prompted to indicate whether the test

array was the same (s) or different (d) from the sample

array by keypress (Fig. 1). For VSWM, the arrays con-

sisted of 2–8 (array size) colored circles (radius = 1, ran-

domly selected red, orange, yellow, green, blue, violet,

pink, white, black, and brown). For each trial, the test array

was either the same as the sample array or different with

only one of the colors changed. Therefore, this task relied

on the detection of a change in color at different locations.

In the VWM task, the arrays consisted of letters (size = 1,

randomly from Q, R, G, B, H, A, N, F, K, Z, S, and V).

Letters were uppercase in the sample arrays and lowercase

in the test arrays, forcing participants to encode the letters.

One of the letters was changed if the test array was dif-

ferent from the sample array. In these tasks, all the colored

circles or letters were arranged along an invisible concen-

tric circle around a fixation cross. The working memory

capacity was calculated using the formula: K = Size of the

array * (observed hit rate - false alarm rate) (Vogel and

Machizawa 2004). Then, the average K across all array

sizes was computed to represent the working memory

capacity for each participant.
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It could be argued that participants might not encode the

letters Z, K, S, and V in the VWM task due to the high

similarity between uppercase and lowercase forms of these

letters. In order to address this, we computed verbal

working memory capacity using the trials both with and

without inclusion of these letters. A paired-sample t-test

showed no significant difference between capacity using

the two trial types (t(20) = 0.79, P [ 0.10), and capacity

was strongly correlated across participants when computed

both ways (R = 0.99, P \ 0.01). For consistency with the

literature in which similar tasks have been used, however,

we report VWM capacity computed without the inclusion

of these potentially vague letters.

During the implicit SRT task, participants placed the

middle and index fingers of both hands on four buttons

located on a response box. Upon seeing an ‘‘X’’ in one of

four boxes on a computer screen, they were instructed to

press the corresponding button as quickly and accurately as

possible. If the correct button was pressed, the stimulus

appeared in a different box. If the wrong button was

pressed, the stimulus repeated. Participants performed two

blocks of finger pressing in response to randomly presented

stimuli (blocks 1 and 2), followed by 5 blocks of tapping in

response to sequentially presented stimuli (blocks 3–7, 8

sequence repetitions per block), and then an additional two

random blocks (blocks 8 and 9). Each block consisted of 96

trials (8 repetitions of the 12 element sequence) with a 0-s

response-to-stimulus interval [RSI, see (Destrebecqz and

Cleeremans 2001)]. Each time the sequence was repeated,

the presentation would start at a different random point

within the sequence. Participants were not informed of the

random or sequence blocks. Each participant was exposed

to one of three sequences (121423413243, 342312143241,

and 341243142132) in the study. Sequences contained no

repeating elements (12), no trills (1212), and no runs

(1234). In the random blocks, all the elements were ran-

domly generated. Changes in the median response time

(RT) across trials and blocks were used to measure per-

formance change in this task.

Three sequence awareness tests were utilized in an effort

to be conservative about participants gaining explicit

awareness of the sequence. During the first generate task

(A)

(B)

Fig. 1 Illustration of working

memory tasks. a VSWM task.

The sample arrays consisted of

colored circles. b The sample

arrays consisted of uppercase/

lowercase letters
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(Seidler et al. 2002, 2005), participants were asked whether

they had noticed that the stimuli were sequenced. Then,

they were told that the stimuli were in fact sequential in

some of the blocks. Participants positioned their fingers on

the response box as they had in the SRT task, and were

asked to reproduce the sequence to the best of their ability

for 20 trials.

In the second test, we used the process dissociation

procedure to probe awareness (Destrebecqz and Cleere-

mans 2001). Participants completed both inclusion and

exclusion tasks. For inclusion, participants were asked to

recall any fragment of the sequence they could remember.

They were presented with a single stimulus that appeared at

a random location and were asked to generate a series of 96

trials that ‘‘resembled the original sequence’’. During

exclusion, participants were asked to make up their own

sequence that was different from the sequence in the SRT

task. They were instructed to repeatedly generate elements

for the duration of 96 trials and to avoid repeating ele-

ments, trills, and runs. During the test, participants were

not told to produce a 12-element sequence. Generally,

inclusion instructions are used to identify explicit knowl-

edge of the practiced sequence, while exclusion instruc-

tions are used to identify implicit knowledge. However,

Destrebecqz and Cleeremans (2001) have demonstrated

that both tasks should be used to evaluate the awareness of

the sequence. Normally, if an inclusion task yields a score

that is higher than chance level, learning is concluded to be

explicit. However, a different conclusion can emerge when

one also considers exclusion task performance. If partici-

pants have no control over their knowledge of the

sequence, both inclusion and exclusion scores are higher

than chance level and implicit learning should be con-

cluded (Destrebecqz and Cleeremans 2001). Thus, the

current study employed both the inclusion and exclusion

tasks to evaluate sequence awareness.

In the final recognition task, participants were presented

with 24 3-trial fragments. Half were part of the SRT

sequence, and the other half were random. Participants

were asked to respond to the stimuli as in the SRT task and

then to rate how certain they were that the fragment was

part of the sequence they had practiced (ranging from

1 = certain it was, to 6 = certain it was not) (Shanks and

Johnstone 1999).

Results

The mean working memory capacity scores were 3.31 and

2.51 for VSWM (SD ± 0.70) and VWM (SD ± 0.63),

respectively. A significant difference was found between

the two tasks (t(20) = 3.70, P \ 0.01), suggesting that the

VWM task may have been more difficult. VSWM and

VWM were significantly correlated with each other across

participants (R = 0.53, P \ 0.01).

Figure 2a shows the mean of the median RT (i.e.,

median RT for every 12 elements) for each block of the

implicit SRT task. The mean RT improvement between

blocks 1 and 2 (random trials) reflects general practice

effects. Figure 2a insert shows that the RT did not change

much within the 2nd second random block, suggesting

that participants’ performance stabilized before they were

exposed to sequence blocks. To measure the rate of per-

formance improvement in the sequence blocks, we cal-

culated 8 median RTs per block (one for every sequence

repetition) and then fit three different functions (linear,

exponential, and power) to the 40 consecutive median

RTs across blocks 3–7. The goodness-of-fit parameters on

individual data sets (Table 1) revealed that the power

function was the worst while the exponential fitting was

slightly better than the linear function. Since there were

fewer participants who had the lowest fit for the expo-

nential function, the exponential decay parameter [b in

equation a * exp(b * x)] was chosen to represent behavior

change rate. To verify that the performance change during

sequential blocks was not mainly due to general practice

effects (i.e., not sensitive to the initial decrease in

response times), we correlated the RT differences

between blocks 2–3 with the RT differences between

blocks 4–7. No significant correlation was found

(R = 0.23, P [ 0.05), suggesting that although we could

not completely rule out general practice effects, the fitting

parameters were still valid for capturing overall perfor-

mance improvement across the sequence blocks. The

median RT for block 8 (random) was significantly dif-

ferent from the median RT for block 7 (the last sequence

block), suggesting positive performance improvement

(t(20) = 5.32, P \ 0.01) during the sequence blocks. The

mean accuracy for this task ranged from 94 to 99%

among all participants across the 9 blocks. A one-way

ANOVA on accuracy revealed no effect of block

(F(8,188) = 1.43, P [ 0.10).

In the sequence generate task, we considered a partici-

pant to have explicit knowledge if he or she could correctly

produce five or more successive positions of the sequence

(Willingham et al. 1997). None of our 21 participants met

this criterion in the current study.

In the process dissociation task, we used the procedure

described in Destrebecqz and Cleeremans (2001). We first

computed the number of generated chunks of three ele-

ments that were part of the training sequence in both

inclusion and exclusion tasks. Since the generated

sequences were 96 trials, the maximum number of correct

chunks was 94 trials. To obtain inclusion and exclusion

scores for each participant, we then divided the corre-

sponding number of correct chunks by 94. Since
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participants were told not to produce repetitions, the

chance level was 0.33 (Destrebecqz and Cleeremans 2001).

Figure 2b shows average inclusion and exclusion scores.

A paired-sample t-test did not reveal significance

(t(20) = 0.84, P [ 0.10). To examine whether generation

performance reflects knowledge acquired during the SRT

task, one-tailed t tests were used to compare generation

scores with the chance level. Neither of the two scores

were significantly different from 0.33 (both P [ 0.10).

Individually, we found that twelve participants had inclu-

sion and exclusion scores lower than 0.33. Eight partici-

pants had inclusion and exclusion scores that were both

higher than 0.33. One participant showed 0.29 and 0.34 on

the inclusion and exclusion scores, respectively. It has been

claimed that implicit learning can be concluded if the mean

correct percentage is higher than 0.33 in both inclusion and

exclusion tasks because participants had no control over

their knowledge of the sequence (Destrebecqz and

Cleeremans 2001).

In the recognition task, there was no significant differ-

ence (t(20) = 1.02, P [ 0.10) in rating scores between

sequence (M = 3.09) and random (M = 3.11) elements

(Fig. 2c). Individual data showed that the rating scores

were within 2.08–3.92 and 1.95–3.92 for sequence and

random, respectively.

The rate of performance change, i.e., exponential decay,

was significantly correlated with both VSWM (R = -0.65,

P \ 0.01) and VWM (R = -0.53, P \ 0.05) capacity,

supporting that individuals with higher working memory

capacity had faster improvements (Fig. 2d, e). However,

the RT differences between blocks 8 and 7 (i.e., sequence-

specific performance advantage) were not correlated with

either working memory measure (R = 0.32, P = 0.15;

R = 0.24, P = 0.30 for VSWM and VWM). Since the

(A)

(B) (C)

(D) (E)

Fig. 2 a Mean response time

for each block. Blocks 1, 2, 8,

and 9 were random, and blocks

3–7 were sequence practice;

a insert Median response time

for every 12 trials in blocks 1

and 2; b Mean accuracy scores

on the inclusion and exclusion

tasks; c Mean rating scores on

the sequence and random

elements in the recognition task,

the bars in the figure stand for

the standard error of the mean;

d Significant correlation

between VSWM capacity and

the exponential decay

parameter; e Significant

correlation between VWM

capacity and the exponential

decay parameter
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SRT task contains visuospatial stimuli, we first ran a

stepwise regression analysis and found that VSWM

explained most of the variance in performance (i.e.,

exponential decay parameter, R2 = 0.43, P \ 0.05). Add-

ing VWM did not significantly improve the regression

model (P [ 0.05). We then ran the same stepwise regres-

sion analysis using VWM as the first predictor. Results

showed that VWM alone did not explain the variance in

SRT performance (P [ 0.10). Adding VSWM significantly

improved the model (P \ 0.01). Finally, the rate of per-

formance improvement also significantly correlated with

card rotation scores (R = 0.44, P \ 0.05), as we have

shown for rate of sensorimotor adaptation (Anguera et al.

2010). No other correlations were found between the tra-

ditional neuropsychological assessments and either the

working memory or SRT measures (all P [ 0.05).

It could be argued that using the median RT for each

sequence repetition might occlude the chunk patterns

developed through learning. To address this possibility, we

first carefully inspected the individual data sets and did not

find any clear and consistent chunks. We also ran an

additional analysis using the median RT for each block.

The exponential decay parameters on this data set were

used to represent behavioral change rates across the blocks.

Similar to our main findings above, significant correlations

were found between the block behavioral change rate and

VSWM (R = -0.65, P \ 0.01) as well as VWM (R =

-0.61, P \ 0.01) capacity.

Discussion

Although previous studies have suggested that implicit

sequence learning involves cognitive processes such as

working memory (Frensch and Miner 1994), there has been

a lack of evidence. Our main results revealed that VSWM,

VWM, and card rotation performance were significantly

correlated with the rate of reaction time change in the SRT

task, supporting a link between working memory and

implicit sequence performance improvements.

As in Frensch and Miner (1994), we did not find cor-

relations between span tasks and performance of the SRT

task. In contrast, we found a significant relationship

between working memory capacity measured with a

change detection task and implicit performance of the SRT

task. These results further underscore the importance of

using time-limited tasks to assess working memory

capacity without contamination by chunking strategies. In

contrast to the span tasks, the change detection assessments

of working memory measure the number of items that

individuals can hold and operate upon in working memory

(Awh et al. 2007). Consistent across several studies, it has

Table 1 The goodness-of-fit

(Adj-R-square, rmse) for the

exponential, linear, and power

functions on the individual data

set

Participant Exponential Linear Power

Adj-R2 rmse Adj-R2 rmse Adj-R2 rmse

1 0.393 18.653 0.396 18.612 0.000 23.938

2 0.246 5.087 0.245 5.086 0.343 5.282

3 0.392 7.549 0.395 7.530 0.031 9.528

4 0.306 12.066 0.203 12.115 0.281 16.148

5 0.393 16.162 0.386 16.264 0.146 19.175

6 0.219 6.575 0.092 8.581 0.215 7.489

7 0.561 10.798 0.573 10.649 0.030 16.051

8 0.923 11.129 0.930 10.564 0.846 15.722

9 0.408 29.837 0.307 29.822 0.339 35.381

10 0.343 17.393 0.364 17.118 0.385 25.255

11 0.692 22.534 0.622 22.648 0.632 22.371

12 0.555 8.123 0.545 8.216 0.595 7.752

13 0.821 5.420 0.822 5.417 0.644 7.646

14 0.768 10.014 0.756 10.253 0.651 12.281

15 0.391 10.149 0.193 11.156 0.334 14.204

16 0.671 8.993 0.675 8.932 0.423 11.904

17 0.403 13.216 0.402 13.223 0.078 17.761

18 0.792 7.053 0.777 7.401 0.275 13.350

19 0.303 18.110 0.186 18.297 0.114 19.090

20 0.417 9.114 0.405 9.210 0.479 7.709

21 0.356 10.489 0.159 13.507 0.405 17.316
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been reported that the average working memory capacity is

between 2 and 4 items for young adults (Luck and Vogel

1997; Vogel and Machizawa 2004). Thus, our results

suggest that implicit performance improvements on the

SRT task rely on the number of items that individuals can

hold and operate upon in working memory, as opposed to

the ability for chunking or rehearsal. Note that although the

SRT task is a widely used paradigm to investigate implicit

sequence learning, a primary limitation of the current work

is that we did not administer a delayed retention test to

confirm the learning outcomes. Our current findings sug-

gest, however, that even within a single session of the SRT

task, improvement rate is related to working memory

capacity.

We have previously shown that VSWM predicts the

rate of learning during explicit motor sequence learning

(Bo and Seidler 2009). It has been argued that implicit

and explicit sequence learning rely on partially distinct

neural processes. For example, Willingham (1998) has

proposed that a ventral cortical system is engaged for

explicit learning, in which task goals are transferred from

the prefrontal cortex to the posterior temporal lobe. The

dorsal cortical learning system, including the parietal and

premotor areas, operates in the implicit mode. Similarly,

Keele et al. (2003) suggest that the dorsal system con-

tributes to implicit sequence learning while the ventral

system can operate under either an implicit or explicit

learning mode. However, Ashe et al. (2006) have pro-

posed that overlapping neural networks contribute to both

implicit and explicit processes. When the intention to

learn a sequence is explicit, the processes originate in the

prefrontal cortex and then later in learning the premotor

and motor cortical regions are engaged. In contrast, when

sequences are acquired implicitly, learning begins in the

motor cortical areas and then propagates to premotor

regions and eventually the prefrontal cortex. Recently,

Galea et al. (2010) reported a TMS study where disrup-

tion of DLPFC degraded the consolidation of a sequence

within the declarative system and thus facilitated con-

solidation within the procedural learning system. The

authors argued that reduced involvement of the declara-

tive system allowed additional recruitment of resources

for procedural consolidation. Thus, the current results,

together with our previous findings (Bo and Seidler 2009)

as well as others (Galea et al. 2010), support the idea of

overlapping processes between explicit and implicit

learning and indicate that VSWM may be involved in

both forms of sequence learning.

One might argue that the sequence generation task may

not be a true test for explicit awareness since it allows the

implicit motor system to ‘‘cue’’ explicit memory. In the

recognition test for awareness, one might question that the

statistical properties of the random elements were different

from the trained sequence. As a consequence, performance

differences for random and systematic sequences might not

reflect explicit awareness. Because we could not rule out

these possibilities, three sequence awareness tests were

utilized in an effort to be conservative about participants

gaining explicit awareness of the sequence. In addition, all

the participants performed two random blocks at the

beginning of the task. Although this potentially introduces

order effects, we think that it was important to familiarize

participants with the task and minimize general practice

effects before performing the sequence blocks.

One limitation of the current study is the use of random

trials in block 8 to evaluate sequence-specific performance

improvements. It has been argued that learning should be

measured by comparing RT differences between trained-

sequence and untrained-sequence trials (i.e., ‘‘transfer

effects’’, Cohen et al. 1990; Keele et al. 1995; Willingham

et al. 1989). Reed and Johnson (1994) demonstrated that

comparing a trained and an uncontrolled sequence could

produce substantial transfer effects that might overinflate

the learning effects. A different second-order conditional

sequence, instead of random trials, should be used to test

final learning. Thus, it is possible that our use of random

trials overinflated the size of the transfer effect (difference

between blocks 7 and 8) in the current experiment, which

might explain the nonsignificant correlation between the

transfer effect and working memory scores.

The correlation that we observed between VSWM and

VWM does not support the domain-specific view in the

literature. It could be argued that such a correlation might

be due to the similar spatial layout on the computer screen

between the two tasks. Although we could not rule out this

possibility, the significant difference between VSWM and

VWM suggested that participants performed differently in

the two tasks and the VWM task might have been harder

for participants.

Finally, since both VSWM and VWM were related to

performance of the SRT task, we determined the relative

contribution of each to performance improvements. It has

been reported that disrupting left DLPFC impairs implicit

sequence learning (Pascual-Leone et al. 1996; Robertson

et al. 2001). Further, it has been demonstrated that right

DLPFC is specifically involved in spatial response selec-

tion (Schwarb and Schumacher 2009). Multiple linear

regression analysis revealed that VSWM explained a sig-

nificant portion of the variance in rate of performance

change, and the addition of VWM did not significantly

improve the model. These findings demonstrate that

VSWM plays a role in the implicit performance improve-

ment of second-order conditional sequences and that

VSWM and VWM may engage partially overlapping net-

works. In addition, it is not surprising that there was also a

significant correlation between rate of performance change
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and card rotation scores. Both the card rotation task and our

VSWM task involve visuospatial processing. In the card

rotation task, participants have to mentally rotate the figure

to make comparisons, relying on working memory. The

significant correlation between SRT performance change

and the card rotation task further supports the importance

of VSWM for implicit performance changes in the SRT

task.
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