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Abstract Detection theory has been applied to the mea-

surement of vestibular thresholds and vestibular sensory

integration. Yet, a formal detection theory analysis of

vestibular responses has not been published. Such a de

novo analysis seems warranted because the vestibular

system has characteristics that differ from other sensory

systems, which impacts the application of detection theory.

For example, the physical stimuli evoking vestibular

responses are typically bidirectional (e.g., leftward/right-

ward); this bidirectional nature of vestibular responses

leads to another characteristic—what is sometimes called

vestibular bias—that must also be considered, since it can

impact threshold measurements, including thresholds

found using staircase procedures. This paper develops a

basic model of vestibular noise and then analyzes this

model for four standard paradigms—one-interval recogni-

tion, one-interval detection, two-interval detection, and

two-interval recognition. While any of these paradigms

might be justified for a specific application, it is concluded

that one-interval recognition paradigms have advantages

over other paradigms for many vestibular applications.

One-interval recognition is favored over one-interval

detection because it lends itself to a fixed detection

boundary, is more efficient, and is less impacted by device

vibration. One-interval recognition is generally favored

over two-interval recognition because it assesses vestibular

bias and can require substantially less time than two-

interval tasks.

Keywords Detection theory � Spatial orientation �
Vestibular � Perception � Threshold � Psychophysics

Introduction

‘‘Signal detection theory’’ has long been used to guide the

design and analysis of vestibular studies (e.g., Clark and

Stewart 1968; Doty 1969; Ormsby 1974; Benson et al.

1986, 1989; Mah et al. 1989; Carpenter-Smith et al. 1995),

but, after nearly a 20-year hiatus, there has been a recent

resurgence of interest in the application of signal detection

theory to vestibular responses (e.g., Gu et al. 2007; Sadeghi

et al. 2007; De Vrijer et al. 2008; Grabherr et al. 2008;

Zupan and Merfeld 2008; Barnett-Cowan and Harris 2009;

MacNeilage et al. 2010; Mallery et al. 2010). In part, this

resurgence has occurred because detection theory can help

address some unique technical and practical challenges

associated with vestibular psychophysics.

What is signal detection theory? In brief, detection

theory is nothing more than the application of standard

statistical hypothesis testing to the detection of a specific

event (‘‘signal’’) despite the presence of noise. Therefore,

those who understand the theoretical basis underlying

Student’s t-test will readily understand the basis of detec-

tion theory. In other words, signal detection theory is a

general statistical approach that helps make decisions about

signals with noise. It does not address questions of how one

might optimally filter a signal or how one might combine

two or more noisy signals, both of which are the purview of

estimation theory. Signal detection theory is often just

called detection theory; other names include ‘‘hypothesis

testing’’ and ‘‘decision theory’’. Detection theory has been

applied to a broad range of physiological responses, with

an immense influence on psychophysics. For example,
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even when not explicitly noted, detection theory is

implicitly invoked when thresholds are measured using

tasks that require the subject to select one of two alterna-

tive answers, and the data are fit with some sort of cumu-

lative distribution (e.g., cumulative Gaussian). In fact, it

will be shown that detection theory directly relates

thresholds to the standard deviation of the noise present.

What is ‘‘discrimination’’? And how does discrimination

relate to ‘‘detection’’ and ‘‘recognition’’? According to

Macmillan and Creelman (2005) and others (e.g.,

Treutwein 1995), discrimination is the ability to tell two

stimuli apart. There are two types of discrimination. When

one of the stimulus classes is a null stimulus, the task is

called detection; the standard hearing test where a subject

indicates whether they hear or do not hear a tone is a very

common detection task. When neither stimulus class is

null, the task is called recognition. For example, a subject

discriminating leftward from rightward motion (or leftward

from rightward orientation) is a common vestibular direc-

tion-recognition task (e.g., Benson et al. 1986, 1989;

Carpenter-Smith et al. 1995; Gu et al. 2007; De Vrijer et al.

2008; Grabherr et al. 2008; Zupan and Merfeld 2008).

Another vestibular recognition paradigm is exemplified by

Mallery et al. (2010), where subjects compared two stimuli

to determine whether the test stimulus was greater than a

non-zero reference. Consistent with historical usage,

we will refer to the general theory as detection theory.

Otherwise, we will reserve the terms detect and detection

to refer to paradigms, where one of the stimulus classes is

the null stimulus (i.e., no motion).

Detection theory uses signals provided by brain ‘‘esti-

mation’’ processes. Estimation theory, which is not the

focus of this paper, describes the application of statistical

signal processing to extract information from noisy signals

but not decision-making per se. Specifically, estimation

theory helps estimate variables in the presence of noise.

Standard approaches include minimum variance unbiased

(MVU) estimation, simple linear weighting maximum

likelihood (ML) estimation, Wiener filters, Bayesian max-

ima a posteriori (MAP) estimation, and Kalman filters. In

this paper, we will assume that a noisy signal has been

estimated using one of the above optimal techniques, by

simple filtering, or by one of a myriad of suboptimal

estimation approaches. Given such a noisy signal, detection

theory then guides the decision-making process. (For rec-

ognition, did I move to the right or left? For detection, did I

move or not move?) Obviously, how the signals are esti-

mated and sampled is critical to signal detection, but this is

a separate topic that requires separate coverage and cannot

be summarized in a few pithy paragraphs.

In a short paper like this, we cannot be comprehensive,

so some issues are left partially explored. To maintain

focus, this paper concentrates primarily on vestibular

psychophysical responses, but much of the information

relates to the use of detection theory for other behavioral

responses (e.g., VOR thresholds, etc.).

To keep the length reasonable, we assume a rudimentary

knowledge of detection theory. For those interested in

pursuing these topics to a deeper understanding, several

books and papers are recommended. The book by Mac-

millan and Creelman (2005) provides an excellent intro-

duction to the application of signal detection theory to

psychophysics, and the book by Green and Swets (1966) is

considered a classic. For those interested in a more general,

more theoretical, and more mathematical coverage, two

books provide a very good introduction to estimation (Kay

1993) and detection (Kay 1998). Those interested in Kal-

man filtering—a classic advanced estimation approach—

might consider Gelb (1974) and/or Brown and Hwang

(1992). Three reviews are also recommended—one

focused on the use of adaptive procedures for psycho-

physical studies (Leek 2001) and two that focus on fitting

psychometric functions (Wichmann and Hill 2001a, b),

where a psychometric function describes the sigmoid-like

shape (e.g., Fig. 1d) that typically occurs when the per-

centage of correct responses (or related parameter) is

plotted versus stimulus amplitude (or other physical stim-

ulus parameter).

Before proceeding, it is important to note that no general

psychophysical model of perception for any sensory

modality has ever been built exclusively on the incremental

knowledge gleaned from detection theory. Therefore, while

detection theory is powerful when applied correctly, recall

that it only evaluates the ability to tell things apart and does

not estimate their magnitude. Hence, the application of

detection theory complements—and does not replace—the

use of other standard psychophysical techniques (e.g.,

Guedry 1974) like magnitude estimation.

In this paper, we apply detection theory to vestibular

responses. Because vestibular responses have some unique

characteristics (e.g., bidirectional, vestibular ‘‘bias’’, linear,

etc.), we do not begin by using earlier psychophysical

applications of detection theory (e.g., Green and Swets

1966). Instead, while cognizant of these earlier works, we

begin de novo with basic signal detection theory (Kay

1998).

More specifically, we will present a model underlying

‘‘one-interval recognition’’ tasks and then will highlight

comparisons to ‘‘one-interval detection’’, ‘‘two-interval

detection’’, and ‘‘two-interval recognition’’. Following are

some of the specific questions that will be answered. What

are the differences between the models underlying recog-

nition and detection paradigms? What are the differences

between the models underlying one-interval versus two-

interval paradigms? For all paradigms, a 3-down/1-up

staircase would target a percent correct of 79.4%, but what
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does this mean? Since we often are interested in the

underlying noise characteristics that determine the thresh-

old, how can we relate experimental thresholds to the

standard deviation of the noise?

Methods and background

The physical stimuli measured by the vestibular system

are bidirectional. Therefore, vestibular responses are

bidirectional. This characteristic fundamentally influences

the application of detection theory to vestibular responses.

Specifically, subjects can rotate to the right or left, translate

up or down, or tilt forward or backward and sense these

different directions of motion. In contrast, photons pro-

vided to a subject during a light detection task are unidi-

rectional; perceptions of light opposite to those evoked by

photons do not exist as common experience includes

nothing ‘‘on the other side’’ of complete darkness. Simi-

larly, the standard hearing test, which is a common clinical

application of detection theory, is unidirectional.

Because large differences exist between psychophysical

functions for unidirectional and bidirectional stimuli, a

brief comparison is warranted. The log of the stimulus

amplitude is typically used for unidirectional stimuli; the

log is not typically used for bidirectional stimuli because

the log of a negative number is imaginary. The theoretical

psychophysical function for detection (Yes/No) of unidi-

rectional stimuli tasks ranges between 0% yes for very

small magnitudes and 100% yes for large magnitudes. In

comparison, because standard detection paradigms for

bidirectional stimuli require that all stimuli be either all

positive or all negative, the theoretical psychophysical

function for detection (Yes/No) of bidirectional stimuli

ranges between 50% yes for very small magnitudes and

100% yes for large magnitudes. Furthermore, both unidi-

rectional and bidirectional cumulative distribution func-

tions have two free parameters, but very different, and even

somewhat contradictory, terminologies are used. For a

direction-recognition task using bidirectional stimuli, we

refer to ‘‘bias’’ (e.g., vestibular bias) as the stimulus level

that yields the percentage correct midway between the

lower and upper bounds of the psychometric function, and

we used ‘‘threshold’’, which is linearly proportional to the

standard deviation of the noise (c.f. Table 1), to refer to the

width of the transition (e.g., the standard deviation of a

Gaussian probability density function underlying the psy-

chometric function). For unidirectional stimuli, the term

‘‘threshold’’ replaces bidirectional ‘‘bias’’, and ‘‘slope’’

replaces bidirectional ‘‘threshold.’’

Note that we are not claiming that vestibular responses

are the only sensations that are bidirectional as there are

bidirectional aspects of other modalities. We are simply

noting that vestibular responses are bidirectional and that

this fundamental characteristic impacts the application of

detection theory. Specifically, vestibular bias—often sim-

ply defined as an offset from zero—arises, at least in part,

due to the bidirectional nature of vestibular responses. For

example, unequal contributions from the left and right

labyrinths can lead to vestibular bias. A similar vestibular

bias can arise centrally from asymmetric processing of

peripheral information. The cause/source of a vestibular

bias—whether peripheral or central—is not crucial to the
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Fig. 1 a shows objective stimuli having amplitudes of 0 (the null

stimulus) and 6. b shows that a vestibular bias of -2 yields the sensed

stimuli of -2 and ?4. c A probability density function (PDF)

represents that the perceived amplitude will have some variation

(r = 2) due to noise. d A cumulative distribution function (CDF) is

calculated as the integral of the PDF. e, f show the PDF and CDF in

objective coordinates. The right column (g through l) represents the

same quantities but normalized by 2—the standard deviation from the

left column. In these normalized units, g the objective stimuli are 0

and 3, h the vestibular bias is -0.5 yielding sensed stimuli of -0.5

and 2.5, (i through l) the noise has a standard deviation of 1
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following analysis as either can yield vestibular bias.

Unfortunately, as described in more detail below, ‘‘bias’’ is

used in the detection theory literature to refer to the fact

that the detection criteria might not be the same for all

subjects, which forms a basis for ‘‘criterion bias’’. Criterion

bias will be introduced mathematically later, but, briefly

stated criterion bias simply represents the tendency for a

subject to prefer one choice over another. To help distin-

guish these two independent effects, we will generally

avoid the use of ‘‘bias’’ by itself and will instead refer

specifically to ‘‘vestibular bias’’ or ‘‘criterion bias’’.

We assume that any vestibular bias is constant (e.g.,

independent of stimulus amplitude and duration). The pres-

ence of vestibular bias means that we must distinguish the

actual (‘‘objective’’) stimuli—known to the experimenter—

from the sensed (‘‘subjective’’) stimuli—experienced by the

subject. To do so, we use an example comparing two stimuli

with specific values. Like some other examples, the values

are arbitrary. (When values are not arbitrary, we will spe-

cifically state this.) Assume objective stimulus amplitudes of

0 and 6�/s and a subjective vestibular bias (l) of -2�/s, where

the vestibular bias simply means that, in the presence of null

stimuli (zero amplitude), this subject will, on average, sub-

jectively experience stimuli equivalent to -2�/s. (For

example, the presence of a vestibular bias might manifest as a

positive VOR bias, though we do not assume that the VOR

bias and the subjective bias are necessarily one and the

same.)

The probability density functions for the objective

stimuli are shown as impulse functions (Fig. 1a), since the

objective stimuli are presumed to have much less vari-

ability (‘‘noise’’) than the subjective experience (Fig. 1c).

Specifically, it is presumed that the motion devices are well

controlled and provide nearly the same stimuli each time.

The vestibular bias is represented by a rightward shift of

the subjective axes relative to the objective axes (Fig. 1b).

Therefore, the mean subjective motions sensed are -2 and

?4�/s, respectively. But the sensed stimuli will have

physiologic noise that is assumed Gaussian, with a standard

deviation (r) of 2�/s chosen for this example. This noise

includes all physiologic sources of variability (afferent

noise, processing noise, etc.).

For all analyses included herein, the noise for small

near-threshold stimuli is assumed constant and is assumed

to sum with the signal. The distributions in Fig. 1c can be

interpreted as indicating that for a given stimulus amplitude

the subjective sensation (sensed signal) for a given trial

will be randomly selected from this probability distribu-

tion. A sensed signal near the mean is most likely, but

individual trials can yield sensed signals above or below

the mean, with the prevalence proportional to the magni-

tude of the probability density function (PDF). The equa-

tion for a Gaussian PDF can be written as:

f ðxÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2pr2
p e�

ðx�lÞ2

2r2 : ð1Þ

The cumulative distribution functions (CDFs) for these

PDFs are shown Fig. 1d. The CDFs represent the

percentage of times that the subject’s perception would

be less than the value on the abscissa (x-axis) for the given

mean stimulus. (An example follows three paragraphs

below.) The CDF is the integral of the PDF:

/ðxÞ ¼
Z

x

�1

f ðx0Þdx0 ¼
Z

x

�1

1
ffiffiffiffiffiffiffiffiffiffi

2pr2
p e�

ðx0�lÞ2

2r2 dx0: ð2Þ

This integral does not have a closed form solution, so it

is solved using standard numerical methods that often

Table 1 Threshold comparison for different paradigms

k79.4% = T79.4%/r k70.7% = T70.7%/r Theoretical threshold relationships % Correct at T1r

One-interval

recognition

0.82 0.54 T1r 84.1

icdf(‘norm’,0.794,0,1) icdf(‘norm’,0.707,0,1) 1- cdf(‘norm’,0,1,1) or

cdf(‘norm’,0,-1,1)

Two-interval

recognition

0.58 0.39 T2r ¼ T1r=
ffiffiffi

2
p

92.1

icdf(‘norm’,0.794,0,sqrt(2))/2 icdf(‘norm’,0.707,0,sqrt(2))/2 1-cdf(‘norm’,0,2,sqrt(2))

One-interval

detection

1.64 1.09 T1d = 2T1r 69.1

icdf(‘norm’,0.794,0,1)*2 icdf(‘norm’,0.707,0,1)*2 1-cdf(‘norm’,.5,1,1)

Two-interval

detection

1.16 0.77 T2d ¼ T1d=
ffiffiffi

2
p
¼

ffiffiffi

2
p

T1r 76.0

icdf(‘norm’,0.794,0,sqrt(2)) icdf(‘norm’,0.707,0,sqrt(2)) 1-cdf(‘norm’,0,1,sqrt(2))

Table summarizes the relationship between thresholds (T) and the standard deviation of the physiologic noise (r) and also shows theoretic

calculations for each of four testing paradigms. T79.4% is the 79.4% threshold for a 3-down/1-up staircase paradigm, T70.7% is the 70.7% threshold

for a 2-down/1-up staircase paradigm, k79.4% is the different constant multiplier for each of the four 3-down/1-up testing paradigms, k70.7% is the

different constant multiplier for each of the four 2-down/1-up testing paradigms. T1r is the ‘‘one-sigma threshold’’, which is the stimulus

magnitude that equals the standard deviation of the noise (T1r = r). Example calculations assumed that vestibular bias and criterion bias were

zero; both biases need to be considered when non-zero. While explicit values are shown only for 70.7% (2-down/1-up) and 79.4% (3-down/1-up)

correct, the theoretical relationships (3rd column) generalize to other threshold criteria (e.g., 75% correct)
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involve a special function called the error function (Hildebrand

1976; Wikipedia 2010b). Figure 1e and f show the PDFs and

CDFs in objective coordinates, which is accomplished by

simply reversing the shift due to vestibular bias from objective

(Fig. 1a) to subjective coordinates (Fig. 1b).

The second column of Fig. 1 shows the same variables

but the units have been changed. Specifically, we have

normalized all values by the standard deviation of the

original distribution. This process of normalizing by the

standard deviation is sometimes called ‘‘standardizing’’ the

variable as this normalization yields one as the standard

deviation. For the rest of the paper, we will only use dis-

tributions with a standard deviation of one (implicitly

assuming standardization). For simplicity, we further

assume that this standard deviation of the noise is always

constant and does not depend upon the stimulus but this

assumption (like others) can be relaxed if required by

experimental findings. For this distribution, this normali-

zation yields objective stimuli of 0 and ?3 and subjective

stimuli means of -1 and ?2. This normalization is

equivalent to changing units and does not limit the gener-

ality of any findings.

The CDFs of Fig. 1j represent the percentage of times

that the subject’s perception would be less than the value

on the abscissa (x-axis) for the given mean stimulus. For

example, for the dashed distribution, the subjective mean is

?2, so 50% of the trials would be perceived as less than ?2

(and 50% greater than ?2), and 2.28% of the trials

involving a mean subjective stimulus of ?2 (objective

stimulus of ?3) would be perceived as being negative.

This value of 2.28% can be calculated using the

cumulative distribution function in MATLAB Statistics

Toolbox as cdf(‘norm’,0,2,1), where ‘norm’ indicates that

the distribution is normal (Gaussian), zero represents the

‘‘decision boundary’’, one is the standard deviation in

standard deviation units, and two is the mean of the sub-

jective distribution. Placing the decision boundary at zero

represents that we asked subjects to indicate whether their

perception was positive or negative. (Decision boundaries

will be discussed in more detail later.) We will show

similar MATLAB functions in the text to help directly

illustrate the calculations. These can easily be mapped to

any other program (e.g., Excel, etc.).

The Gaussian assumption is justified by the central limit

theorem of statistics (Larsen and Marx 1986; Wikipedia

2010a). More fundamentally, it is not essential that the

distributions be Gaussian, though for bidirectional vestib-

ular responses, the noise distribution will typically be

symmetric (or at least nearly symmetric). If the distribu-

tions are not Gaussian, the approach outlined here is still

valid, though calculations would need to be redone using

an appropriate distribution. (For example, all of the stan-

dard z-scores and d0 calculations—to be discussed in the

following paragraphs—assume Gaussian noise.) We will take

a few paragraphs below to introduce some standard signal

detection metrics but readers seeking details should refer

to another source, like Macmillan and Creelman (2005).

One-interval versus two-interval designs

Stimuli can be presented in different temporal order

(‘‘intervals’’) or different spatial locations, which yield an

n-alternative forced choice paradigm. Vestibular stimuli

cannot be applied in different spatial locations. Further-

more, an early study (Blackwell 1952) concluded that

forced choice procedures involving temporal intervals were

preferred over providing stimuli in alternate spatial loca-

tions. This, alongside the fact that most hearing studies

lend themselves more to sequential application of the

stimuli, helps explain that the two most common experi-

mental designs used in psychophysical detection theory

paradigms are one-interval and two-interval designs (e.g.,

Macmillan and Creelman 2005). In a one-interval design, a

single stimulus is provided, which the subject must clas-

sify. For example, for one-interval detection, motions

having different amplitudes will be provided. For each

trial, the subject must report whether they perceived

motion or not. In a one-interval recognition task, positive

or negative motion will be provided, and, for each trial, the

subject must report whether they perceived motion in the

positive or negative direction.

In a two-interval design, both alternatives are provided

on every trial in random order and the subject must report

the order of the stimuli (i.e., which came first). For

example, in a two-interval detection task, motion is pro-

vided in one interval and no motion in the other interval,

with the order randomized. The subject will be asked to

report which interval included the motion (or which

interval included the null stimulus). In a two-interval

positive/negative recognition task, motion in the positive

direction would be provided in one interval and motion in

the negative direction in the other interval; again the order

would be randomized and the subject would report the

direction of the motion in the first (or second) interval.

Adaptive versus non-adaptive methods

Various techniques are used to select the stimulation

amplitudes so that the threshold can be accurately esti-

mated with a limited number of trials. There are two

classes of experimental methods—adaptive and non-adap-

tive—that are used to define thresholds and/or apply

detection theory to psychophysical data. For the non-

adaptive approach, the subject’s responses do not affect the

stimuli presentation. In one common non-adaptive method,

sometimes called the method of constant stimuli, the
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investigator decides both the amplitude and presentation

order in advance. The data are then fit to determine a

psychometric function (e.g., Wichmann and Hill 2001a, b).

The non-adaptive approach is often less efficient than

adaptive procedures (i.e., more trials are required); this can

lead to more lapses, which are simply defined as stimulus-

independent errors (e.g., inattention, fatigue, sleep, etc.)

that can introduce significant biases into parameter esti-

mates (Wichmann and Hill 2001a)—especially when such

a lapse occurs at a large stimulus level that a subject should

almost always identify correctly.

For the adaptive approach, the stimuli provided are

determined by the subject’s responses on previous trials.

Two common adaptive methods include staircase and

maximum likelihood paradigms (Leek 2001). The basic

characteristic of staircase methods when applied to

threshold measurements is that they increase the stimulus

magnitude when the subject makes a mistake and lower the

magnitude when the subject is correct. One common

staircase procedure is called an n-down/1-up procedure.

For an n-down/1-up staircase, the stimulus level decreases

when the subject correctly discriminates the stimuli n-times

in a row and increases for each incorrect response. For such

a paradigm, the stimulus level varies above and below an

asymptote that falls at the stimulus level at which increases

and decreases in the stimulus are equally likely. At the

staircase asymptote, the probability of providing a wrong

answer before n correct answers are provided equals the

probability (P) of providing n correct answers in a row

(Pn = 0.5). As a specific example, for a 3-down/1-up (3D/

1U) paradigm, the level of the stimulus decreases when a

subject is correct three trials in a row and increases for each

mistake. Therefore, the chance of a single correct answer is

calculated as the cube root of 0.5, which is P = 0.794.

Therefore, a 3D/1U paradigm targets a subject performance

level of 79.4% correct (Leek 2001). Advantages of this

paradigm are that it is simple and doesn’t require a priori

knowledge of the response distribution. Disadvantages are

that the stimulus level depends only upon recent trials. In

other words, not all data are utilized to determine the next

stimulus level.

Maximal likelihood models provide the basis for a

second adaptive method that combines some of the

advantages of fixed-interval and staircase procedures.

When enough data have been obtained to yield an

acceptable fit, a cumulative distribution (e.g., cumulative

Gaussian) is fit to the data, and the target stimulus level is

determined from this fitted model. Additional data are

collected to improve the quality of the fit until the fit

quality is acceptable. Specifically, this process of fitting a

psychometric function and selecting a target stimulus from

the fitted model is iteratively repeated until the desired

endpoint set by the investigator (e.g., fixed # of trials,

variance of parameters below that specified, etc.) is reached

(Leek 2001) Maximal likelihood methods are a little more

difficult to implement than staircase or fixed-interval

methods. But using maximum likelihood estimation,

methods to guide stimuli selection has been shown to be

more efficient—requiring fewer trials to converge to a

predetermined confidence interval—than staircase methods

(e.g., Pentland 1980; Watson and Pelli 1983; Leek 2001).

Standard detection theory metrics

Having introduced the basic distributions underlying

detection theory, we will now summarize some standard

detection theory techniques that utilize these distributions.

We do so because this will introduce some tools that we

will use later and because an understanding of these met-

rics will guide an understanding of the main analytical

results.

One standard analysis approach—sometimes even con-

sidered a ‘‘gold standard’’—is to fit a cumulative distri-

bution function like those shown in Fig. 1f to the data. The

data set consists of many trials each of which yields one

subjective decision (e.g., left or right?). This is often done

using algorithms that yield maximum likelihood fits to the

data, like those described in detail in Wichmann and Hill

(2001a, b). Such curve fits will typically yield estimates

r̂ and l̂ that represent maximum likelihood estimates of

the noise standard deviation and bias, respectively.

Because such curve fits utilize all of the available trials

and yield a maximum likelihood fit to the data, such fits

often provide the best estimate of the underlying distribu-

tions. Such curve fits will generally asymptotically con-

verge to the actual underlying distribution function if

enough data are available. Typically, at least 100–200 trials

are required for a high-quality fit.

Given this, what is a threshold as defined by detection

theory? A threshold is the stimulus level at which a subject

is able to detect or recognize the stimulus in some appro-

priate fraction of the trials set by the investigator. For a

recognition task, this will fall some fraction above/below

the 50% level, where 50% represents pure guessing.

(This 50% level is sometimes referred to as the ‘‘point of

subjective equality’’ (PSE) in the literature. PSE is dis-

cussed in more detail below.) As one specific example, for

a 3-down/1-up paradigm, the threshold occurs when the

fit CDF equals 79.4/20.6% (e.g., left/right or positive/

negative).

A differential threshold, which is also called a just

noticeable difference (or JND), is the smallest stimulus that

can be discriminated from a reference stimulus. The JND,

when the reference is no motion, is an absolute threshold

that corresponds to the two-interval detection analyses

presented herein. By always assuming that the reference is
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null motion, our analyses (Figs. 4 through 5) focus exclu-

sively on absolute thresholds but can easily be extended to

differential thresholds by choosing an appropriate decision

boundary and by replacing the null motion distribution

with the appropriate reference motion distribution.

The above methods are viable when enough trials are

available to fit the data. In the absence of a complete data

set, thresholds or analogous information can be extracted

using other standard approaches. A few such approaches

are outlined below; such approaches can provide mean-

ingful information but seldom equal the quality of a max-

imum likelihood fit.

Slope approximation First, imagine that data are only

available or have only been acquired near the midpoint

(50% correct) with little or no data available for very large

magnitude (positive and/or negative) stimuli. One

approximation is to realize that the cumulative distribution

function is roughly linear near the midpoint (e.g., see

Fig. 1d). In fact, because CDFs (Eq. 2) are simply the

integral of PDFs (Eq. 1), the slope of the Gaussian CDF at

its midpoint (s) equals the peak value of the Gaussian PDF,

or s ¼ 1
ffiffiffiffiffiffiffi

2pr2
p : Therefore, if one measures the slope (s) near

the center, this provides an approximate estimate of r,

r̂ ¼ 1
ffiffiffiffiffiffiffi

2ps2
p :

z-transformations and d0 Other approaches involve what

is called a z-transformation. In the context of threshold

estimation, a z-transformation (not to be confused with the

z-transform of discrete time dynamic systems) converts

data, for example, correct or incorrect detection rates, into

a z-score. A z-score (x - l)/r, is simply a metric that

indicates where one falls on the cumulative distribution in

standard deviation units. More specifically, the z-score

represents distance from the distribution mean in standard

deviation units.

We’ll use the arbitrary example of Fig. 1 to elaborate,

including the introduction of a few ideas that will be more

fully defined later. The CDF for the null motion stimulus

(Fig. 1j) equals 0.841 at subjective zero (at x equals zero).

This means that 84.1% of the trials with no motion will be

perceived as negative motion due to the presence of a small

vestibular bias. In Matlab, the z-transformation can be

calculated as icdf(‘norm’,0.841,0,1), where icdf is the

inverse cumulative distribution function, 0.841 is the

fraction correct for a Gaussian distribution with mean 0

and a standard deviation of 1, which yields a z-score of

?1.00. For the ?3.0 stimulus, which corresponds to ?2 in

subjective coordinates, subjects will on average experience

negative motion 2.28% of the time [cdf(‘norm’,0,?2,1)].

This means that, when exposed to motion stimuli having

subjective amplitude of ?2, the subject should correctly

perceive positive motion 97.72% (100% minus 2.28%)

of trials. The z-transformation of 0.9772 [icdf(‘norm’,

0.9772,0,1)] is ?2; this informs us that, the mean of this

distribution is 2 standard deviations to the right of

zero. Note that the sum of the z-scores equals 3, which

equals the distance between the distribution means.

(Shortly, we will define this sum as d0, a standard detection

theory metric.)

We also calculate z-scores in the objective coordinates

(Fig. 1k and l, expanded in Fig. 2). The CDF for the null

motion equals 0.5 at objective zero (at x equals zero). This

means that 50% of the trials with no motion will be

perceived as negative motion and 50% as positive motion.

This yields a z-score of 0 (icdf(‘norm’,0.5,0,1)), since the

mean of the null motion occurs at the objective origin. The

CDF for the motion (Fig. 2b) equals 0.00135 at objective

zero [cdf(‘norm’,0,2,1)], which means that 0.135% of the

motion trials will be perceived as negative motion and

99.865% as positive motion. This yields a z-score of 3,

icdf(‘norm’,0.99865,0,1), since the mean of the motion

distribution falls at the distance of three from the objective

origin. Note that the sum of the z-scores again equals 3.

Ignoring vestibular bias when using a z-score can be

misleading. For the example of the previous paragraph, the

operator knows that the stimulus was 3 and they know that

this corresponded to positive responses 97.72% of the time,

which yields a z-score of 2. In the absence of bias, we could

use the stimulus amplitude (A) and z-score to calculate the

standard deviation. Specifically, z = A/r so r = A/z = 3/

2. This does not match the actual standard deviation, which

was 1, because the vestibular bias of -1 was neglected.

In theory, a signal detection parameter called d0

(pronounced d prime) will correct for any vestibular or

criterion bias present. For a detection task, d0 is the distance

between the means of the signal distribution and the null

motion distribution after normalizing by the standard

deviation of the noise distribution. For example, note that

the distance calculated in subjective and objective coordi-

nates above equaled 3, independent of the coordinates used.

Figure 2, which simply expands Fig. 1i and j, shows an

example calculation of d0 in subjective coordinates. We

arbitrarily place a decision boundary at ?1, which means

that this theoretical subject will decide that all trials

yielding stimuli sensed to be less than ?1 are due to the

null stimulus and all trials yielding sensed stimuli greater

than ?1 are due to motion. (It is straightforward to show

other decision boundaries do not change d0).
We first define the hit rate, which is the percentage of

trials correctly identified as motion. This is represented

graphically using solid shading (Fig. 2a) and a plus sign

(Fig. 2b). For this example, with a decision boundary at ?1

and a distribution with a mean of ?2 and standard

deviation of 1, the hit rate is 84.13% [1-cdf(‘norm’,1,2,1)].
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For this example, the false alarm rate, which is the

percentage of null motion trials incorrectly identified as

motion, is 2.275% [1-cdf(‘norm’,1,-1,1)]. The false alarm

rate is represented graphically using hatched lines (Fig. 2a)

and an x (Fig. 2b).

Recalling that a z-score defines a distance from the mean

of a distribution, we can use the hit rate and false alarm rate

to define the distance between the distribution means. The

z-score for the hit rate of 0.8413 is ?1, which indicates that

the mean of the motion stimulus is one standard deviation

above the decision boundary, which is indicated on the

figure as zs. The z-score for the false alarm rate of 0.02275

is -2, which indicates that the mean for the null stimulus is

two standard deviations below the decision boundary,

which is represented by zn. d0 is simply the distance

between the two means, which is simply the difference of

zs minus zn. so d0 can be calculated as the z-score for the hit

rate (calculated as ?1 above) minus the z-score for the

false alarm rate (calculated as -2 above), which can be

written as: d0 = zs - zn = z(hit rate) - z(false alarm rate).

So for this example, d0 is again correctly estimated as 3.0.

Point of subjective equality The point of subjective

equality (PSE) is another psychophysical detection theory

metric that is commonly evaluated for studies that use the

method of constant stimuli, which, according to (Jones

1974), dates back at least to Fechner. The method of

constant stimuli is used to measure subjects’ ability to

discriminate between a standard stimulus and comparison

stimuli (analogous to the two-interval vestibular task descri-

bed earlier). In this context, the PSE is defined as the test

stimulus that is perceived to be the same as the reference, but

this definition has been generalized to other applications.

A PSE example will be presented later (Fig. 6), where we

will show that the PSE for a two-interval direction-recognition

task occurs, when the fraction positive is 50%. This occurs

when the stimulus is the same as the reference. This, of course,

is the expected theoretical result since a vestibular test

stimulus should theoretically be perceived the same as the

reference when it does not differ from the reference.

PSE is often used to compare two or more sensory

modalities. The two-interval direction-recognition analyses

presented later (Fig. 6) can easily be extended for such

cross-modality investigations. For example, the reference

distribution might be vestibular and the test stimulus visual,

or the reference might be vestibular and the test stimuli

might combine visual and vestibular motion. See Carpen-

ter-Smith et al. (1995) for an example.

Results and analyses

One-interval direction-recognition

For one-interval direction-recognition, the subject reports

whether they moved in one direction or the other (left vs.
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Fig. 2 a shows subjective PDFs

for sensed stimuli having mean

amplitudes of -2 and ?4. The

shaded area represents the hit

rate. The hatched area
represents the false alarm rate.

The thick curves in b show the

CDFs for these distributions.

The thin curves show one minus

these CDFs. The ? represents

the hit rate. The x represents the

false alarm rate
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right, up vs. down, forward vs. back, etc.). For this analysis, we

initially assume that the task is symmetric. For example, the

subject might be discriminating yaw rotation, head roll tilt, or

roll tilt of the subjective visual vertical—each of which is left/

right symmetric. Given a symmetric task, each subject would

typically set the decision boundary at subjective zero, which is

represented by the vertical line passing through the subjective

origin (Fig. 3b, c). A decision boundary simply represents the

rule that the subject will use on a given trial to make their

decision. This specific decision boundary indicates that each

subject will report positive motion on a specific individual trial

if they sense positive motion (signal plus noise) on that trial,

and they will report negative motion if they sense negative

motion on that trial.

We specifically note that setting a decision boundary at

subjective zero does not prohibit vestibular biases. For

example, this decision boundary does not indicate that

subjects will always report left tilt when they objectively

tilt to the left—only that the subjects will report left tilt

when they subjectively perceive left tilt.

We also specifically note that a criterion bias can be

present for recognition that would yield a decision

boundary at a level other than subjective zero for some

vestibular recognition tasks. For example, one can imagine

that it is easier and/or more costly to fall backwards than

forwards, which could lead to a criterion bias even for

recognition tasks, especially if falling is possible. One

could even provide rewards and punishment meant to

encourage more positive responses than negative response

for a symmetric task like left/right tilt recognition, but, for

simplicity, we assume that no such criterion biases are

present for symmetric recognition tasks. Criterion biases

are presented in more detail below when we consider one-

interval detection tasks, and we also return to this issue in

the discussion. In fact, in the context of many vestibular

discrimination tasks, criterion bias cannot be directly dis-

tinguished from vestibular bias behaviorally.

Two separate trials having objective amplitudes of ?0.5

and ?1.32 are shown (Fig. 3a). Figure 3b and c, respec-

tively, show the subjective PDF and CDF, given a bias of

-0.5. The decision boundary is located at zero in the

subjective coordinates—corresponding to ?0.5 in objec-

tive coordinates. The value of the bias is arbitrary, but the

difference (0.82) between the two trials was specifically

chosen for reasons that will become apparent.

The value for the cumulative distribution that represents

the positive stimuli having a mean 0.82 in the subjective

frame (thick dashed curve) is 0.206. This means that for

subjective stimuli of ?0.82, the subject will sense that the

stimulus is negative on 20.6% of the trials. This, of course,

implies that the subject will correctly sense that the stim-

ulus is positive on 79.4% of the trials (thin dashed curve).

Also, the value for the cumulative distribution that repre-

sents the null stimulus in subjective coordinates is 0.5 at

the decision boundary. This indicates that the subject will

determine the motion direction was negative on 50% of the

trials when the average subjective sensation is zero.

These two data points are plotted in Fig. 3d, where we

are now plotting average expected subject performance for

many different stimulus levels. We can go through the

above process for many different levels of sensed stimuli,

each time finding the percent of trials reported as positive

for a given stimulus. This would yield the curve shown in

Fig. 3d. We have to change our perspective to interpret this

figure. In Fig. 3c, the stimuli were fixed, and we were

determining the cumulative probability density of sub-

jective experience. In Fig. 3d, we vary the stimulus level

and plot average subject performance for different sub-

jective stimuli [cdf(‘norm’,stimulus,0,1)].

e

d

c

b

a

Fig. 3 One-interval recognition a Two separate trials having objec-

tive amplitudes of ?0.5 and ?1.32 are shown. b and c Thick curves

show the subjective PDF b and CDF c given a bias of -0.5 and

standard deviation of one. Thin curves show one minus the CDF. The

vertical line at the origin indicates the assumed decision boundary.

d and e show the expected subject performance for many different

stimulus levels in subjective and objective coordinates, respectively
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Furthermore, remember that, because of vestibular bias,

the objective stimuli are shifted by 0.5 relative to the

subjective stimuli. The plot of subject performance versus

objective stimuli is shown in Fig. 3e [cdf(‘norm’,stimulus,-

bias,1)]. Note that the experimenter would determine that

the subject got 50% correct at 0.5, which would inform the

operator that the subject’s vestibular bias was -0.5.

Why did we choose the stimulus levels shown in Fig. 3?

The motion of 0.5 was chosen because, given a subjective

vestibular bias of -0.5, it leads to a subjective distribution

having zero mean. In other words, the negative motion

counteracted the subjective vestibular bias leading to a

subjective perceptual state of no motion. The objective

stimulus of 1.32 yielded a subjective distribution with a

mean of 0.82. This subjective distribution is the same as

would be experienced with zero vestibular bias and 0.82

stimulus amplitude. As shown, the subject should, on

average, correctly determine that this stimulus is positive

79.4% of the time. This number might seem familiar

because we earlier showed that the percent correct targeted

by a 3-down/1-up staircase is 79.4%. Therefore, we chose

the subjective distribution to have a mean of 0.82 to show

that, in the absence of a significant vestibular bias, the

79.4% threshold for a 3-down/1-up staircase occurs for a

subjective stimulus level of 0.82r. As we will show, this

relationship holds only for one-interval recognition. Dif-

ferent values will be found for the other paradigms.

One-interval detection

For one-interval detection, the subject’s task is to deter-

mine whether motion is present or not (e.g., yes or no). For

simplicity, we will first proceed assuming that the vestib-

ular bias equals zero. Therefore, the comparison is always

made to no motion, which is represented by the solid

stimulus (Fig. 4a) and solid subjective distribution

(Fig. 4b). The actual motion (Fig. 4a, dashed line) will

always be in the positive direction, and the subject knows

this. (Analysis yields identical results for all negative

motion.) Since the mean value at threshold for a 3-down/1-

up paradigm targets 79.4% correct, we will show below

that, in the absence of any bias (vestibular or criteria bias),

this is achieved for a stimulus level of 1.64r. Therefore,

with r equal 1 for this example, the mean sensed stimulus

level is set to 1.64 (Fig. 4b).

Before proceeding, we must briefly discuss criterion

bias, which influences all detection processes and is not

unique to vestibular detection. Unlike the symmetric rec-

ognition example immediately above, reporting no motion

and reporting motion are inherently asymmetric.

hd

gc

fb

ea
Fig. 4 One-interval detection

a Two separate trials having

objective amplitudes of 0 and

?1.64 are shown. b and c show

the subjective PDF and CDF,

respectively, given a bias of

zero. The line at the origin

indicates the assumed decision

boundary. d shows the

theoretical percentage correct

expected at each stimulus level.

With the mean stimulus equal to

1.64, a subject will correctly

detect motion 79.4% of the

time, which we define as

threshold. This is shown on

Fig. 3d with a ?. e, f, g, h The

right column shows the exact

same distributions as the left

column but with a vestibular

bias of ?2.0
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Specifically, a given subject may be more concerned about

making an error by missing a motion that was present than

about making an error by detecting motion when no motion

was present. This is referred to as bias in the detection

literature and is an issue that must be taken seriously

whenever one performs one-interval detection.

In order to compare the different test paradigms, we

must set a decision boundary. In the absence of vestibular

and criterion bias, the decision boundary should be located

where the two PDFs equal one another. For this example,

where the standard deviations are assumed equal, the point

of equality is 0.82. Below this point, the null motion is

more probable (more likely); above this point, motion is

more likely than no motion. At 0.82, the values for the two

cumulative distributions (Fig. 4c) are 79.4 and 20.6%. This

means that for stimuli with an amplitude of 1.64, null

motion (solid) will be correctly identified 79.4% of the

time, and positive motion will be incorrectly identified

20.6% of the time, which, in turn, means that the subject

will correctly determine that there was motion 79.4% of the

time. In summary, with the mean stimulus equal to 1.64, a

subject will correctly detect motion 79.4% of the time,

which we define as threshold. This is shown as a? on

Fig. 4d. Therefore, if one defines a threshold using a 3-

down/1-up one-interval detection paradigm in the absence

of vestibular bias, the standard deviation would be calcu-

lated by dividing the threshold (T) by 1.64 (r = T/1.64).

We can repeat the above process for many different levels

of sensed stimuli—each time finding the percent correct for

a given stimulus—yielding the curve shown in Fig. 4d.

Note that the optimal decision boundary is determined

by the magnitude of the stimulus. If the stimulus were

twice as big, the optimal decision boundary would move to

the right. So the optimal decision boundary varies with

stimulus magnitude, presumably based on the subject’s

recent experience. This characteristic makes one-interval

detection somewhat less reliable than one-interval recog-

nition, since recognition tasks typically deliver a non-

varying decision boundary.

What if there is a vestibular bias? Figure 4e–h show the

same distributions as Fig. 4a–d but with a large positive

vestibular bias. Note that even for null stimulus (solid), the

subject almost always senses positive motion even when no

motion is present. Where should the subject set the deci-

sion boundary? For a system designed by engineers without

any criterion bias, the decision boundary should be located

where the two probability density functions equal one

another, but this would mean that—during the null motion

condition—no motion would be reported almost 50% of

the time that positive motion was sensed. While this

solution will work for an engineered system, it seems

possible that substantial training will be required to train a

subject to report no motion when they clearly sense

positive motion. While this was, admittedly, an extreme

example—with the bias chosen to be twice the standard

deviation of the noise to emphasize the point, smaller

biases have the same qualitative effect. Additional theo-

retical analysis of the vestibular detection paradigm is

warranted but this negative characteristic makes one-

interval detection less appealing than both two-interval

detection and one-interval direction-recognition unless a

specific justification for pursuing one-interval detection is

identified.

Furthermore, the vestibular bias and criterion bias dis-

cussed earlier will each contribute to subjective decisions

during a one-interval detection task. There are no simple

analyses that will separate vestibular bias from criterion

bias, though one could assay vestibular bias using a dif-

ferent test paradigm. Finally, it is also worth briefly noting

here that the discussion will also point out that vibration

cues can have a substantial influence on one-interval

motion detection paradigms, which is just one more factor

weighing against the use of one-interval detection.

Two-interval detection

Two-interval detection addresses some concerns associated

with one-interval detection, so we discuss this paradigm

next. As mentioned earlier, in a two-interval detection

paradigm, motion is provided in one interval and no motion

in a second interval with the order randomized. The sub-

ject’s task is to identify whether the motion occurs in the

first or second interval. The motion trials for a given test

session will always be positive (or always negative), and

the subject knows this.

There are different approaches to analyzing two-interval

detection tasks. We begin with one positive objective

stimulus and one null stimulus (Fig. 5a). The order that

these stimuli are provided is important but is not repre-

sented in the figure. This paradigm was specifically

designed to eliminate criterion bias, since there is no

a priori reason that subjects should prefer the first interval

over the second (or vice versa), and experimental results

confirm that this approach often successfully eliminates

criterion bias. Furthermore, as shown below, the effect of

vestibular bias is eliminated by the two-interval detection

task.

Since the mean value at threshold for a 3-down/1-up

paradigm targets 79.4% correct, we will show below that

this is achieved for a stimulus level of 1.16r. Therefore,

with r equal 1 for this example, the mean positive stimulus

level is chosen to equal 1.16 (Fig. 5a). As before, choice of

this amplitude is illustrative, but any arbitrary value could

have been chosen. The subjective PDFs for these two

stimuli—given a bias of -0.5—are shown in Fig. 5b. One

way that the subject can compare these data is to subtract
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their sensation of the second trial from their sensation of

the first trial. (Note that it is not necessary to assume that

the subjects are actually performing such a subtraction. In

fact, the same result that we derive below is derived by

Macmillan and Creelman (2005) using 2-dimensional

probability distributions without explicitly performing

subtraction.)

The probability distributions following such subtraction

are represented by the shorter, broader distributions

(Fig. 5c), where the dashed curve represents the distribu-

tion when the positive motion occurs first (dashed minus

solid from Fig. 5b), while the solid curve represents the

distribution when the null motion occurs first (solid minus

dashed from Fig. 5b). Note that vestibular bias—which is

assumed the same for both intervals—is eliminated via the

subtraction process. Therefore, the magnitude of the mean

value of the distributions (peak of the distributions) is the

stimulus level 1.16, for this example, and there is no longer

a difference between subjective and objective coordinates

following subtraction, which is represented by labeling the

x-axis as subjective/objective. The variances of the two

distributions add, so the standard deviations now equal
ffiffiffi

2
p

,

which is seen as the broader distributions.

As discussed earlier, there is no a priori reason to prefer

the first or second interval, so the decision boundary belongs

at zero as shown by the vertical lines in Fig. 5c and d. Using

simple logic, if the difference between the two trials is

positive, it is reasonable to decide that the motion in the first

interval was greater than the second, so the first must have

been the motion trial. If the difference is negative, it is rea-

sonable to decide that the second interval was greater than

the first, so the second must have been the motion trial.

The cumulative distributions for the probability density

function difference are also shown (Fig. 5d). The dashed

curve represents when the motion interval was first. At

zero, the value of this CDF is 20.6%. This means that the

subject should on average incorrectly determine that the

2nd interval included the motion 20.6% of the time, which

means that they would be correct 79.4% of the time. The

solid curve represents when the null motion interval was

first. At zero, the value of this CDF is 79.4%. This means

that the subject should on average correctly determine that

the 2nd interval included the motion 79.4% of the time. In

summary, with the mean stimulus equal to 1.16, a subject

will correctly detect motion 79.4% of the time, which is

defined as a 3-down/1-up threshold. Therefore, if one runs

a 3-down/1-up paradigm in the absence of vestibular bias

and finds a threshold (T), the standard deviation would be

calculated by dividing the threshold (T) by 1.16 (r = T/

1.16). This point is indicated using a? on Fig. 5e. As

above, we can go through the above process for many

different levels of sensed stimuli, each time finding the

percent correct for a given stimulus. This would yield the

curve shown in Fig. 5e.

Two-interval direction-recognition

The analysis of the two-interval recognition task is similar

to the two-interval detection analysis. For this task, the

subject experiences both positive and negative stimuli—

e

d

c

b

a

Fig. 5 Two-interval detection a The null stimulus and an objective

stimulus having an amplitude of 1.16 are shown. b The subjective

PDFs are shown with a vestibular bias of -0.5. c shows the

probability distributions after subtracting the PDF experienced second

from that experienced first. The dashed curve represents the

distribution when the positive motion occurs first, while the solid
curve represents the distribution when the null motion occurs first.

Since vestibular bias is eliminated via subtraction, the magnitude of

the mean value of the distributions (peak of the distributions) is 1.16.

The variances of the two distributions add, so the standard deviations

now equal
ffiffiffi

2
p

. d shows the CDFs associated with the above PDFs.

e shows the theoretical percentage correct at each stimulus level. The

? represents 79.4% correct for a stimulus of 1.16
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one immediately after the other. Therefore, we begin with

two stimuli that have the same magnitude but opposite

signs (Fig. 6a). With a bias of -0.5, this yields the two

distributions shown in Fig. 6b. Since the mean value at

threshold for a 3-down/1-up paradigm targets 79.4% cor-

rect, we will show below that this is achieved for a stimulus

level of 0.58r. Therefore, with r equal 1 for this example,

the mean sensed stimulus magnitude is set to equal 0.58 for

illustrative purposes. As above, by subtracting the second

sensation from the first sensation and vice versa, we find

two broader distributions (Fig. 6c). Just as for the two-

interval detection, the effect of vestibular bias is subtracted

out. The mean difference is twice the magnitude of the

mean stimuli, but the variances of the two distributions

add, so the standard deviation increases to equal
ffiffiffi

2
p

. For

the same reasons as for the two-interval detection task, we

place the decision boundary at zero.

The CDFs are also shown (Fig. 6d). The dashed curves

represent when the motion interval was first. At zero, the

value of this CDF is 20.6%. This means that the subject

should on average incorrectly determine that the 2nd

interval included the motion 20.6% of the time, which

means that they would be correct 79.4% of the time. The

solid curves represent when the null motion interval was

first. At zero, the value of this CDF is 79.4%. This means

that the subject should on average correctly determine that

the 2nd interval included the motion 79.4% of the time.

This is shown as the ? on Fig. 6e.

As above, we can go through the above process for

many different levels of sensed stimuli, each time finding

the percent correct for a given stimulus level. This would

yield the curve shown in Fig. 6e. In summary, with the

mean stimulus equal to 0.58, a subject will correctly dis-

criminate motion 79.4% of the time, which we define as

threshold. Therefore, if one runs a 3-down/1-up paradigm

and finds a threshold (T), the standard deviation would be

calculated by dividing the threshold (T) by 0.58 r = T/

0.58.

Comparison across different tasks

Table 1 summarizes theoretical threshold predictions for

the different conditions as derived in the previous sections

(Figs. 3 through 6). Note that the values for the one-

interval detection task assume no vestibular bias and that

the decision boundary is set to the stimulus level where the

probability density functions equal one another. This is

done to allow a comparison to the other tasks, but these

assumptions would need to be validated for each given

study. The table shows that detection thresholds are

expected theoretically to be two times recognition thresh-

olds and that two-interval thresholds are proportional to

one-interval thresholds divided by the
ffiffiffi

2
p

. It is worth

noting that deviations from such theoretical predictions

have sometimes been observed. Nonetheless, given the

underlying assumptions, such deviations do not provide

reason to reject detection theory without thoughtful delib-

erations. See Wickelgren (1968) and MacMillan and

Creelman (2005) for detailed discussions of this point.

e

d

c

b

a

Fig. 6 Two-interval recognition a Objective stimuli having ampli-

tudes of -0.58 and ?0.58 are shown. b The subjective PDFs are

shown with a vestibular bias of -0.5. c shows the probability

distributions after subtracting the PDF experienced second from that

experienced first. The dashed curve represents the distribution when

the positive motion occurs, while the solid curve represents the

distribution when the null motion occurs first. The magnitude of the

mean value of the distributions is 1.16. The variances of the two

distributions add, so the standard deviations now equal
ffiffiffi

2
p

. d shows

the CDFs associated with the above PDFs. e shows the theoretical

percentage correct at each stimulus level. The ? represents 79.4%

correct for the -0.58/?0.58 stimulus pair
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We also utilize the exact same approach outlined above

to yield equivalent threshold results for a 2-down/1-up

paradigm, which targets a 70.7% threshold. Findings are

shown in Table 1.

While not derived above, another way to compare these

methods is to set the stimulus magnitude (s) equal to the

standard deviation of the noise (r). If one follows the exact

approach outlined above but with the normalized stimulus

equal to one, this yields the following theoretically pre-

dicted percent correct: 84.1% for a one-interval recognition

task, 69.1% for one-interval detection, 76.0% for two-

interval detection, and 92.1% for two-interval recognition.

See Table 1 for details regarding these calculations.

Discussion

Both detection and recognition are standard discrimination

procedures (Macmillan and Creelman 2005) based on the

statistical signal processing approach provided by detection

theory (Kay 1998). The same is true for one-interval and

two-interval tasks. There is no fundamental difference in

the theory underlying these approaches. To further com-

pare/contrast these procedures, we begin by discussing

several observations/facts.

Impacts of criterion bias

Criterion bias potentially impacts all detection tasks and

could affect some recognition tasks. One reason for the

difference in impact is that detection is inherently asym-

metric—‘‘yes I am moving’’ is not symmetric to ‘‘no, I am

not moving.’’ In comparison, many recognition tasks are

symmetric. For example, leftward tilts are symmetric with

rightward tilts and rightward yaw rotations are symmetric

with leftward yaw rotations. When such response symme-

tries are present, as they often are for recognition tasks,

undesirable criterion bias effects are much less likely as it

is improbable that trained subjects will report leftward tilt

when they, in fact, perceive rightward tilt, and vice versa.

The same cannot be said for yes/no detection tasks, where

subjects can be more afraid to miss a motion than to report

motion when none was present or vice versa.

Two-interval reduces criterion bias

Because there is often no inherent reason that a subject

should prefer interval 1 to interval 2 in a two-interval task,

two-interval tasks often help reduce the influence of cri-

terion bias (Macmillan and Creelman 2005). However,

such two-interval detection paradigms deserve to be

experimentally validated for vestibular tasks. In fact, ves-

tibular dynamics could complicate use of a two-interval

paradigm, especially when there is little delay between the

two intervals, since the stimuli in interval 1 could have

lingering dynamic influences on what is sensed in interval

2. Furthermore, it is worth noting that timing/order effects

have been reported in non-vestibular domains (Macmillan

and Creelman 2005) and may be present for vestibular

tasks as well.

Impacts of vestibular bias

The influence of vestibular bias on a detection task was

demonstrated graphically (Fig. 4e–h). It was shown that for

a large vestibular bias, an optimal detector should report no

motion even when a large motion was sensed. While this

may be simple to implement for a system designed by

engineers, it seems possible that it may not be straight-

forward to train a human to report no motion when motion

is clearly and unambiguously perceived.

While not a direct result of this analysis, it is also

important to point out that vestibular biases can impact

thresholds estimated using staircase procedures. For

example, imagine that a subject has a large bias—like that

shown in Fig. 4e–h—and is performing a direction-recog-

nition task. This subject will almost always perceive

positive motion—except for very large negative stimuli.

Thus, this subject will almost exclusively make mistakes

when stimuli are negative, as even tiny positive stimuli will

almost always be sensed as positive due to the positive

bias. Thus, staircase procedures only provide accurate

threshold estimates when biases are small relative to

inherent variability. Therefore, staircase procedures should

only be used when testing demonstrates that the magnitude

of each individual subject’s bias is well below that sub-

ject’s physiologic noise level (r) or well below the mea-

surement variability. Or, alternatively, data from subjects

with evidence of a substantive vestibular bias must be

discarded. In fact, note that two subjects excluded from an

earlier study (Grabherr et al. 2008) had demonstrated and/

or had a substantial risk for such a vestibular bias.

Vibration

Vibration cues have been shown to provide an indication

that one is moving (e.g., Seidman 2008). Since some

amount of vibration is unavoidable for controlled motion

stimuli, such vibrations can influence experiments mea-

suring vestibular thresholds. For example, air bearings

reduce bearing vibrations immensely, but motor drive

systems still introduce other vibrations.

Vibration can be sensed by the specific vestibular

modality being tested and/or by a number of other parallel

sensory modalities (e.g., touch) that potentially also include

the vestibular modalities not being tested (e.g., inter-aural
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translation modality when testing yaw rotation modality).

Vibrations affect the vestibular modality being tested by

adding noise to the inherent physiologic noise. If this

vibrational noise is much less than the inherent physiologic

noise of the modality being testing, then such direct effects

of vibration are negligible. The validity of such an

assumption can be evaluated experimentally.

For the remainder of this section, we consider the

influence of vibrational cues to parallel sensory modalities.

For detection paradigms, the difference between vibration

during motion and vibration during the null condition

provides a motion cue. For recognition paradigms, the

difference between vibrations for motion in the two

directions provides a motion cue. More specifically, to the

extent that a motion device has the same vibration char-

acteristics for motion in each direction, this cannot provide

a directional cue for direction-recognition—even if the

vibration is large. This means that for detection tasks

subjects can use the entire vibration cue available, while

for direction-recognition tasks, subjects can only use the

difference between vibrations in one direction versus the

other direction. Practically speaking, well-designed

motion devices provide symmetric stimuli and have

relatively symmetric vibration characteristics. Therefore,

while one cannot rule out the influence of vibration on

recognition tasks, vibration is a substantially bigger issue

for detection tasks than for recognition tasks. This is no

less true for two-interval tasks than for one-interval

tasks.

The contributions of vibration cues to vestibular detec-

tion paradigms are impossible to avoid but vibrations can

be measured and analyzed by the experimenter. But even

when this is done well, it still leaves the problem that it is

difficult to prove a negative—i.e., it is difficult to prove

that some subtle difference in the noise is not being sensed

and used to help with signal detection. As just one realistic

example, a vibration component at a single frequency

could provide a readily detectable cue to help subjects

detect motion even if all other frequency components of the

vibration were the same.

Time required for one- and two-interval trials

An advantage of one-interval tasks over two-interval tasks

is that they always take less time. The difference may not

be large when trials are short since overhead tasks (e.g.,

subject decision time, subject positioning, delays between

trials, etc.) take up nearly as much time as the actual

motion stimuli for short trials. For example, for single-

cycle sinusoidal stimuli having a frequency of 1 Hz, the

time required for one- and two-interval tasks may be about

the same. However, for single-cycle sinusoids at 0.1 Hz

and lower, testing time will roughly double (and may

increase even more if a substantial delay between intervals

is required due to neural filtering dynamics). Beyond

simply increasing the time to acquire the same number of

trials, doubling testing time also increases the likelihood of

fatigue, which is a confounding factor that can increase the

subject lapse rate.

Which paradigm to choose?

There is no simple general answer to this fundamental

question. Each specific question(s) and/or hypothesis being

investigated must be evaluated while considering the

aforementioned results and facts. Nonetheless, some gen-

eral guidelines can be distilled. First, in general, vibration

noise has less of an influence on recognition paradigms

than detection paradigms. In fact, in preliminary studies

(unpublished) on a Moog 6DOF motion platform, we

measured two-interval detection thresholds that were more

than two orders of magnitude lower than two-interval

recognition thresholds. While others have found smaller

differences (Mallery et al. 2010), we are relatively confi-

dent that our detection paradigm was assessing a vibration

threshold and not a vestibular threshold per se. Second, all

else equal, detection paradigms require more trials because

null motion trials, which are not required for recognition

tasks, must be provided for detection tasks. Third, detection

paradigms do not lend themselves to simple decision

boundaries because the optimal decision boundary changes

with stimulus amplitude (which of course is unknown to

the subject).

Two-interval tasks cannot be used to characterize ves-

tibular bias directly. Furthermore, practical considerations

(e.g., less time, simpler subjective decision process) lead us

to prefer one-interval recognition tasks over two-interval

recognition tasks, especially as there are no fundamental

advantages of two-interval recognition over one-interval

recognition. The above considerations lead us to conclude

that a one-interval direction-recognition task will often be a

very good choice. Of course, two-interval tasks are

essential for tasks having reference stimuli.

Two other procedures can be considered to help improve

detection procedures. First, a two-interval task can be used

to help minimize the contributions of vibration cues. For

example, one could ask subjects to detect whether the first

or second interval contained the larger stimuli (Mallery

et al. 2010). While such a design could yield a substantial

improvement, larger vibrations might accompany a larger

motion, which could provide a subjective cue. Second, one

can also add artificial high-frequency vibration noise, but

then the characteristics of the artificial noise become

another design choice that could affect the results. Such

artificial vibrations are not bad—but also are not a panacea

and deserve cautious consideration, especially as
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thresholds are often used to provide a window to assay

physiologic noise.

Finally, an earlier study (Jakel and Wichmann 2006)

demonstrated that using more alternatives reduces the

expected response variance for a detection task. Using the

same approach, Fig. 7a shows Gaussian psychometric

cumulative distribution functions (p) versus stimulus, and

Fig. 7b shows expected variance, Np(1 - p), for 2-, 4- and

8-alternative detection tasks, where N is the number of trials.

For details, see (Jakel and Wichmann 2006). Note that the 4-

and 8-alternative detections have substantially less expected

variability than the 2-alternative task across a broad range of

negative stimulus values. While a 1000-alternative psycho-

physical task is not feasible, we also show the expected

variance for such a task. For comparison, we also show the

cumulative distribution function (Fig. 7c) and expected

variance (Fig. 7d) for a direction-recognition task.

For a direction-recognition task, neither the CDF

(Fig. 7c) nor expected variance (Fig. 7d) change for an

m-alternative task. Therefore, m-alternative direction-

recognition tasks do not provide greater efficiency than

2-alterative direction-recognition tasks and hence our focus

on 2-alternative tasks.

Finally note that as m gets large, the expected variance

for m-alternative detection tasks (Fig. 7b) gets smaller and

approaches that of a direction-recognition task (Fig. 7d).

Therefore, the direction-recognition task has less variability

than an m-alternative detection task unless m approaches ?
(or at least becomes very large). This aligns with the anal-

yses presented earlier herein that independently concluded

that vestibular direction-recognition tasks are, in general,

preferable to vestibular detection tasks. Furthermore, while

there are disadvantages associated with the bidirectional

nature of vestibular response (e.g., vestibular bias), this

analysis shows that such disadvantages are accompanied by

advantages like smaller estimated variance. Such differ-

ences—both advantages and disadvantages—emphasize

that analyses applied to unidirectional tasks do not apply to

bidirectional tasks. Further analyses and simulations of

recognition tasks are warranted.
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