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Abstract Variability in motor performance decreases

with practice but is never entirely eliminated, due in part to

inherent motor noise. The present study develops a method

that quantifies how performers can shape their performance

to minimize the effects of motor noise on the result of the

movement. Adopting a statistical approach on sets of data,

the method quantifies three components of variability

(tolerance, noise, and covariation) as costs with respect to

optimal performance. T-Cost quantifies how much the

result could be improved if the location of the data were

optimal, N-Cost compares actual results to results with

optimal dispersion at the same location, and C-Cost rep-

resents how much improvement stands to be gained if the

data covaried optimally. The TNC-Cost analysis is applied

to examine the learning of a throwing task that participants

practiced for 6 or 15 days. Using a virtual set-up, 15 par-

ticipants threw a pendular projectile in a simulated

concentric force field to hit a target. Two variables, angle

and velocity at release, fully determined the projectile’s

trajectory and thereby the accuracy of the throw. The task

is redundant and the successful solutions define a nonlinear

manifold. Analysis of experimental results indicated that

all three components were present and that all three

decreased across practice. Changes in T-Cost were con-

siderable at the beginning of practice; C-Cost and N-Cost

diminished more slowly, with N-Cost remaining the high-

est. These results showed that performance variability can

be reduced by three routes: by tuning tolerance, covariation

and noise in execution. We speculate that by exploiting

T-Cost and C-Cost, participants minimize the effects of

inevitable intrinsic noise.

Keywords Motor learning � Variability � Noise �
Sensitivity � Skill acquisition

Introduction

It is widely acknowledged that improvement in skilled

performance with practice includes a decrease in variabil-

ity. However, even in expert performance, variability is

never entirely eliminated. One explanation for the ubiqui-

tous presence of variability is that the nervous system is

inherently noisy. The sensorimotor system is a complex

dynamical system with processes at many different time

scales, in which fluctuations percolate across levels and are

manifested in overt behavior as ‘‘noise’’ or rather vari-

ability. Sources of such variability have been identified in

the basal ganglia circuits, premotor cortex, and in the

recruitment properties of motor units, both in the planning

and the execution of movements (Churchland et al. 2006;

Jones et al. 2001; Ölveczky et al. 2005; van Beers et al.

2004). Given precision requirements in many everyday

tasks, much attention has been given to the problem of how

the sensorimotor system minimizes unwanted effects of its

own intrinsic noise on performance (Fitts 1954; Harris and

Wolpert 1998; Schmidt et al. 1979).

A more positive interpretation for the presence of such

‘‘noise’’ is that it affords exploration of the task and

therefore aids in finding the best solutions to achieve the
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desired result (Newell and McDonald 1992; Ölveczky et al.

2005; Riccio 1993). Simulation studies testing learning

algorithms in artificial neural networks have demonstrated

the positive effects of noise in accelerating the learning rate

and avoiding suboptimal solutions in local minima (Burton

and Mpitsos 1992; Geman et al. 1992; Metropolis et al.

1953). Another positive perspective on variability is that

even when the system is at a skilled level, a given amount

of noise affords flexibility and maneuverability (Beek and

van Santvoord 1992; Full et al. 2002; Hasan 2005). Given

these contrasting perspectives, there is a need for more

sophisticated methods for evaluating variability in skilled

behavior and differentiating between positive and negative

effects of variability on performance. The aim of this

project is to develop a novel method to quantify different

components of variability and apply it to experimental data

acquired during the acquisition of a skill that requires

precision.

Almost any motor task in the real world contains more

degrees of freedom than are strictly required, such that a

desired result can be achieved in more than one way. This

insight is generally attributed to Bernstein, who, observing

the hammering of blacksmiths, pointed out that multi-joint

movements were executed slightly differently at every

repetition, while the end points of the hammer strokes were

remarkably consistent (Bernstein 1967, 1996; see also

Lashley 1930). His observations stimulated studies dem-

onstrating covariation amongst redundant degrees of

freedom to make performance less variable over repeti-

tions. Consider a simplified example. If a task is defined

such that X and Y must sum to 5 in order to achieve perfect

performance, and both X and Y vary between 0 and 5 with

means of 2.5, then a negative linear relationship between

X and Y increases the likelihood of achieving a perfect

result. In the context of a motor task, X and Y could

represent forces exerted by different muscles or limbs

(Latash et al. 2001), or angles traveled by different joints

(Scholz et al. 2000), or angles and velocities of release of a

ball (Müller and Sternad 2004a). However, bear in mind

that the relation between X and Y may be much more

complex than the simple negative linear correlation in the

above example. Note that we use the term covariation for

any ‘‘correlated variation between two or more variables’’

(Merriam-Webster) while covariance is reserved for the

well-defined statistical concept.

Recognizing the importance of motor equivalence,

several research groups have developed methods to

describe how functional covariation among elements

reduces the negative effects of variability on the result. For

example, Kudo and colleagues (2000) have employed a

surrogate method to assess the extent of covariation

between variables, similar to the method of Müller and

Sternad (2003). The UCM approach (Scholz et al. 2000)

employs null space analysis, in adaptation of mathematical

approaches developed for the control of multi-degree-of-

freedom systems in robotics (Craig 1986; Li0egeois 1977).

This approach examines covariance in execution, most

frequently amongst joint angles, and does not directly

relate this variability to accuracy in a task-defined variable.

Very few approaches have related execution to results

(Cusumano and Cesari 2006; Kudo et al. 2000; Martin

et al. 2001; Müller and Sternad 2003, 2004b; Stimpel

1933).

The present approach is based on a two-level

description of the task; it presents a framework for

examining the relation between variability in execution

and variability in result.1 Note that in the blacksmith

example above, the execution (the trajectories of the joint

angles and the hammer) may be considered separately

from the result (the contact location of the hammer with

respect to the target location), but the execution neces-

sarily determines the result. Similarly, in a throwing task,

the position and velocity of the arm at the moment of ball

release are the execution variables that fully determine

the trajectory of the ball and thereby the result, i.e.,

throwing accuracy or distance. The result variable can be

defined as any outcome based on the trajectory, such as

the maximum height reached by the ball, the total dis-

tance it travels, or how close it comes to a target. This

two-level description is particularly interesting when, as

in the examples offered above, the dimensions of the

execution space (defined by the number of execution

variables) are greater in number than the dimensions of

the selected result variables.

In addition to the exploitation of the null space by

covariation between the execution variables, there are

other ways that variability in the execution of a task can

benefit performance. For instance, variability will neces-

sarily arise at the beginning of a learning process when an

actor explores different strategies before finding the best

solutions (Müller and Sternad 2003, 2004a, b). Despite

the general recognition of this important stage in learning

and development, remarkably little has been done to

describe this process quantitatively. This is partly because

it has proven difficult to extract any systematicity in this

exploration process and consequently quantify it. Another

issue is the observation that biological systems may

change their movements in order to avoid placing uniform

and persistent stress on joints and muscles (Duarte and

Zatsiorsky 1999). Hence, random fluctuations or noise

1 The words ‘‘result’’ and ‘‘result variable’’ are used as a general term

to designate any measure that quantifies how satisfactorily a task was

achieved, such as error, score, difference from target, or even a

variability estimate if sets of data were evaluated for their result. In

the present study we only consider one such measure: distance to

target.
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may also have benefits to performance. Given all these

potentially functional aspects of variability, a fine-grained

decomposition of performance into potentially separate

components is an interesting and as-of-yet insufficiently

addressed problem.

The present study builds on the insights of Müller and

Sternad (2003, 2004a, b, 2008), who proposed a

decomposition method to quantify three components of

variability: tolerance, noise, and covariation (TNC). The

three components express three conceptually different

routes to how performance can be improved. While the

previous method quantified T, N, and C in terms of

relative changes across practice sessions, the new

approach takes an optimization perspective that formu-

lates the three components as costs with respect to ideal

performance. A new numerical method is developed that

assesses to what degree the result of non-optimal per-

formance could be improved if one of these components

were optimized. Details of the new method are presented

after the introduction of the specific task and the con-

cepts developed for representing task performance. A

direct comparison of the two methods is included in the

discussion.

The task is a simplified, virtual version of the British

pub game called ‘‘Skittles,’’ previously introduced by

Müller and Sternad (2004a, b). In the pub version of the

game, a ball hangs from a pole, and one or more targets

(the skittles) are placed on the far side of the pole from the

player. The virtual version of the game emulates the three-

dimensional dynamics of the pub game by providing the

player with a top-down view of the workspace, as shown in

Fig. 1a. The player’s forearm rests on a manipulandum that

is fixed at the elbow, limiting movement to a horizontal

rotation around the elbow joint. The player attempts to

throw the ball so that it swings around the pole and hits a

single target. The player controls the timing of the ball

release by extending a finger to open a contact switch. The

task is redundant because two execution variables (angle

and velocity of the manipulandum at release) co-determine

a single result variable. The result variable, distance to

target, is defined as the minimum distance between the

trajectory and the center of the target skittle. Trial 1 in the

figure illustrates how the distance to the target is defined.

Trials 2 and 3 show how different release angles and

velocities produce different ball trajectories that both

achieve a perfect hit.

Figure 1b represents the same three throws in a space

spanned by the two execution variables, release angle and

release velocity. The result attained by each pair of exe-

cution variables is represented by the gray shades, and the

white U-shaped area represents the subset of release angles

and velocities that lead to a direct hit with errors less than

1.2 cm. The subset of perfect solutions with zero error will

be called the solution manifold.2 Note that trials 2 and 3,

whose trajectories lead to hits with near-zero error, are on

the solution manifold, while trial 1 is in a grey area, indi-

cating a larger error. Characteristics of the result space,

including the size, shape, and location of the solution

manifold, are determined by factors in the work space,

namely the location and size of the target and the center

post. For examples of other result spaces see (Hu and

Sternad 2007; Müller and Sternad 2004b, 2008).

The TNC-approach differs from other approaches to

variability in several respects. One feature central to the

analysis of performance presented here is the focus on sets

of trials rather than the time series of trials. Each set of

trials has a location, a size, and a shape in the execution

space. Second, the approach permits evaluation of toler-

ance (location), covariation, and noise (dispersion) of a set

of data, and changes in these properties give insight into

the changes due to practice. Third, a distinguishing feature

of the TNC-approach is that the sensitivity of different

regions of the solution manifold to error is explicitly taken

into account. In Fig. 1b, regions of the solution manifold

with greater sensitivity or tolerance to error are surrounded

by larger areas in light gray shades. Such regions are less

prone to error and are referred to as having higher

tolerance to error. Hence, aiming at more tolerant regions

of the execution space reduces the effect of variability in

execution on the result.

There were two goals to the study reported here. The

first was to develop the TNC-Cost analysis. The three

conceptually distinct components that are proposed as

contributors to learning are reconceived here as costs to

performance for a given data set. Tolerance, or the devia-

tion from the most tolerant region of execution/result

space, is defined as T-Cost, which is the cost to perfor-

mance of not having found that region—that is, of not

being at the best location. As will be clearer from the

detailed description below, this is a new non-local concept

not considered in other approaches. Covariation, quanti-

fying the ability of participants to exploit the redundancy

inherent to the execution/result space, is defined as C-Cost,

which is the cost to performance of not exploiting that

2 A manifold is a mathematical term from differential geometry

generally referring to a collection or set of objects (James and James

1992, 5th ed.). The set of solutions in the skittles task is a smooth

differentiable manifold whether or not the execution variables have

different units. The interested reader can find definitions at any level

of detail in relevant mathematical texts. For example, James and

James (1992), 5th ed): ‘‘A topological manifold of dimension n is a

topological space such that each point has a neighborhood which is

homeomorphic to the interior of a sphere in Euclidean space of

dimension n.’’ The term has received many qualifications, including

connected or disconnected, compact or noncompact, etc.
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redundancy—that is, a failure to use optimal covariation.

Noise reduction, or the reduction of dispersion in the

execution variables, is defined as N-Cost, which is the cost

to performance due to noise in the execution variables.

Note that N-Cost is not identical to noise in the execution

variables alone; rather, noise is evaluated by mapping its

effect into result space. Optimal noise is defined by the

associated optimal result. For all three costs, their quanti-

fication relies on the creation of virtual data sets that are

optimized in terms of one component while other features

of the data are held constant.

The second goal of this study was to examine the rela-

tive importance of and relations among different costs to

performance during skill acquisition, in both a group of

healthy participants with average throwing expertise and

three expert throwers. The inclusion of three highly skilled

participants that practiced for 15 days allowed us to scru-

tinize later stages of skill improvement.

Method

Participants

A total of 12 right-handed participants (2 female, 10 male)

were tested, after having given informed consent to par-

ticipate in the experiment. All were members of the

Pennsylvania State University community. They ranged in

age from 21 to 48 years. The five undergraduate students

received course credit for their participation. The eight

graduate students, one faculty and one staff member were

not compensated for their time. Three participants (referred

to hereafter as the ‘‘expert’’ participants) had more than

average expertise: One was an avid cricket player, one was

a member of the university’s Ultimate Frisbee team, and

was an all-around exceptional athlete. The protocol was

approved by the Institutional Review Board of the Penn-

sylvania State University.

Task and apparatus

Emulating the real game of skittles, in the virtual experi-

mental task the participant attempted to throw a ball such

that it swung around a center pole to hit a single target

located at the far side. The participant stood approximately

60 cm from a projection screen (width: 2.50 m, height:

1.80 m) as seen in Fig. 2. A computer-generated display of a

top-down view of the work space was projected onto the

vertical screen (as illustrated in Fig. 1a). The post in the

center of the work space was represented by a circle of

16 cm diameter, whose center was located 1.73 m above the

floor. A circular target of 3 cm diameter was presented, with

its center 20 cm to the right and 50 cm above the center of

the post. The virtual arm was represented as a solid bar of

12 cm length, fixed at one end. The fixed end (rotation point)

of the virtual arm was centered 50 cm below the center of the

post, and a circle of 3 cm diameter representing the ball was

attached to the free end of the virtual arm.

Standing in front of the screen, the participant rested his

or her forearm on the manipulandum that was fixed to a

vertical support, which was adjusted to a comfortable

height for each participant. The horizontal manipulandum

pivoted around an axle centered directly underneath the

elbow joint. The metal support was padded with foam and

Fig. 1 Work space and execution space for three hypothetical

throws. a Three exemplary throws in work space as participants see

in the experiment. The view is a top-down view onto the pendular

skittles task. b The release variables of the same three throws

represented in execution space. The grey shades indicate the level of

success for different combinations of release angle and velocity.

White denotes the set of release angles and velocities that lead to a

direct hit, the solution manifold. A perfect hit is defined as the center

of the ball passing within 1.2 cm of the center of the target
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the elbow was fixed with a Velcro strap. Rotations of the

arm were measured by a 3-turn potentiometer with a

sampling rate of 700 Hz (the maximum allowed by the

online computations for the display). At the free end of the

metal arm, a tennis ball was attached with a pressure-

sensitive switch glued to its surface. The switch was

located on the ball such that the index finger covered the

switch in a natural grasp configuration. The participant

grasped the ball with his or her right hand, closed the

switch with the index finger, and then extended the arm in a

horizontal circular motion. Releasing the switch contact

triggered the release of the virtual ball, which traversed a

trajectory initialized by the angle and velocity of the par-

ticipant’s arm at the moment of release. Both the

movements of the arm and the simulated trajectory of the

ball were displayed on the screen in real time. The ball’s

trajectory, as determined by the simulated physics of the

task, described an elliptic path around the pole. This tra-

jectory was not immediately intuitive to participants, and

they had to learn the mapping between the real arm

movements and the ball’s trajectories in the projected work

space. Hence, the task was novel even for the participants

with extensive throwing experience.

Instructions and procedure

Participants stood with their right shoulders facing the

display. The experimenter instructed participants to throw

the ball in a clockwise direction toward the screen as if

performing a Frisbee backhand, and showed them

approximately where to release the ball. Although the

throwing action could be performed in several other ways,

participants were not permitted to explore other strategies.

After each throw, an enlarged image of a part of the tra-

jectory and the target was shown to provide feedback to the

participant about the accuracy of the throw. No quantitative

feedback was given. However, if the trajectory passed

within 1.2 cm of the center of the target, the target color

changed from yellow to red. Participants were encouraged

to achieve as many of those ‘‘direct’’ hits as possible.

Participants performed 180 throws per day. After each

60 throws, participants were given a short break. Each

participant performed experimental sessions on 6 days,

separated by 1 or 2 days on average. Three expert partic-

ipants volunteered to practice for 15 days, which allowed

us to examine changes in the structure of variability during

the fine-tuning phase of performance.

Data analysis and dependent measures

The ball trajectories were simulated online based on the

measured angle and derived velocity at the moment of

release. To reduce contamination from measurement noise

in the picking of release angle we first fitted the last ten

samples of the angular position before the moment of release

with a straight line. (Given that we limited the fits to samples

before the release moment, cubic splines did not improve the

fit.) This linear regression was used to pick angle and

velocity at the release moment. To evaluate the result, the

minimum distance between the trajectory and the center of

the target was calculated. The elliptic trajectories of the ball

were generated by a two-dimensional model in which the

ball was attached by two orthogonal massless springs to the

origin of the coordinate system at the center post. Due to

restoring forces proportional to the distance between the ball

and the center post, the ball was accelerated towards the

center post (x = 0; y = 0).3 At time t, the equations for the

position of the ball in x- and y-directions were:

xðtÞ ¼ Ax sin xt þ uxð Þe�t
s

yðtÞ ¼ Ay sin xt þ uy

� �
e�

t
s

Projector

Potentiometer

Grip&

Switch

Screen

PC

Fig. 2 Experimental setup

3 The model with the two orthogonal springs is equivalent to one

with a single spring rotating around a center pivot. However, both

models are approximations as they do not include vertical elevation as

is present in the real skittles task.
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The amplitudes Ax and Ay and the phases ux and uy of

the sinusoidal motions of the two springs were calculated

from the ball’s x–y position and velocity at release, which

were converted into angle and velocity with respect to the

center post. The motions were lightly damped to

approximate realistic behavior, with the parameter s
describing the relaxation time for the decaying trajectory

(for more detail see Müller and Sternad 2004a, b).

The execution space with the solution manifold was

calculated numerically in a forward manner using the

spring model of the task. For each point in execution space,

defined by angle and velocity at release, the ball trajectory

was computed for two-thirds of one traversal (the elliptic

trajectory returned to its release position with slight devi-

ation due to damping). For each point on the trajectory the

distance to the target was evaluated. The point with

the minimum distance to the target center was chosen as

the result value. The result values were mapped onto gray

shades and displayed as shown in Fig. 1b. The solution

manifold is defined as the subset of solutions with zero

error. For better visualization, Fig. 1b shows those solu-

tions in white that include errors up to 1.2 cm.

Analysis of T-, N-, and C-Costs

To extract the three components for a set of data, 60

consecutive trials, each described by two execution vari-

ables (release angle and release velocity) and one result

variable (distance to target or error), were analyzed as a set.

Trials with a performance error more than three standard

deviations different from the mean of that set were

removed. There were, on average, 1.5 of these per set of 60

trials. For each set of 60 trials the mean result determined

from all 60 trials was calculated. For the calculation of

each component, the data were transformed in a specific

way to create another set with optimal results in terms of

one component while other features of the data set

remained unchanged. The mean result for this optimized

data set was calculated. The algebraic difference between

the mean result from the actual data set and the mean result

from the optimized data set expressed the cost of the spe-

cific component. Figure 3 shows actual and optimized data

sets for one subject from three different phases of practice.

Each row shows results from a different day of practice.

Each column shows data optimized in terms of a different

component.

T-Cost expresses the cost to performance of a given data

set not being centered in the best region of execution space.

To estimate T-Cost for a data set, an optimized data set was

generated in which the mean of the release angles and the

mean of the release velocities were shifted to the location

in execution space that yielded the best overall result.

Importantly, the dispersion along each axis was preserved.

This procedure is equivalent to optimizing the location

without changing the noise and covariation of the data set.

In the numerical procedure, the data was shifted on a grid

of 600 9 600 possible center points for the data set. The

boundary of this grid was determined by the limits of the

task. The angles tested as centers were limited to those

between 0 and -180�. This range was determined by the

instructions given to the participants and the range of

motion of the elbow joint. The velocities tested as centers

were those between 200 and 800�/s. This range was

determined by the solution manifold (there were no good

solutions at lower release velocities) and by the velocities

attainable in this task. The optimization procedure moved

the whole data set through the grid and evaluated its mean

result at each location. For data points that extended

beyond the grid, the values were calculated on the extended

execution space. The location that yielded the best overall

performance result was compared with the result of the

actual data set. The algebraic difference between the actual

result and the result at the optimized center defined T-Cost.

The panels in the leftmost column show the actual and

optimized data sets used to calculate T-Cost for one subject

at three phases of learning. The numbers in the top of each

panel show the exact value for the example data sets. The

three panels show how at three stages of practice T-Cost

becomes increasingly smaller.

N-Cost. To estimate the cost to performance of a given

data set that does not have optimal noise in execution

variables, a virtual data set was created where variability

was reduced to achieve the best possible mean result; the

pairings of the angles and velocities were unchanged and

the mean of angle and velocity was also unchanged. A first

expectation would be that the mean of the data set, a single

point, has minimal noise and is therefore optimal. How-

ever, note that each data set is evaluated in terms of its

result, the minimum distance to the target. Hence, the mean

of a data set may not be at the point with the optimal result.

We therefore adopted the following procedure to assess

optimal noise: First, the mean angle and velocity were

determined. Then, the data set was ‘‘shrunk’’ in 100 steps

to collapse onto the mean. For the shrinking procedure, first

the radial distance of each point to the mean was deter-

mined. Second, this radial distance was divided into 100

steps, each bringing every data point 1% closer to the mean

angle and mean velocity until all 60 points collapsed at the

mean. At each step the overall mean result was evaluated.

The step that led to the best overall performance was

selected as the set with optimal noise. Note that this

method allows for the possibility that the mean may not be

located on the best possible point in execution space with

the best result. Hence, some noise may be of benefit to the

result. The algebraic difference between the mean result of

the optimal data set and the mean result of the actual data

74 Exp Brain Res (2009) 193:69–83
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set defined N-Cost. The three panels in the middle column

show the actual and optimized data sets created to calculate

N-Cost for one subject at three phases of learning. The

numbers in the top of each panel show the exact values for

each of the example data sets and illustrate how N-Cost

decreases with advanced skill level.

C-Cost expresses the cost to performance of a given data

set not fully exploiting redundancy in the execution space.

To estimate C-Cost for a data set, an optimized data set was

generated in which the means and distributions of the

angles and velocities were maintained, while the individual

pairs were recombined to achieve the best possible per-

formance. This idealized data set was found with a greedy

hill climbing algorithm using a pairwise matching proce-

dure (Russell and Norvig 2002). To implement this, first

the pairs of angles, ai, and velocities, vi, were rank ordered

from best to worst according to the error result, ri, with

i = 1, 2, 3… 60. Next, the angle from the worst performing

pair a60 was paired with v59, and a59 was paired with v60,

i.e., v60 and v59 were swapped; the mean result of r59 and

r60 was determined. If the mean result improved over the

original r59 and r60, the swap was accepted. As a next step

v60 was swapped with v58 and the resulting mean error of

r58 and r60 was evaluated. If the mean result improved, the

swap was accepted. This procedure continued until a60 was

paired with v1, i.e., v60 was swapped with v1. After this

sequence of 59 comparisons, the same procedure was

repeated with a59. Hence, the batch consisted of

59 9 59 = 3,481 comparisons. The number of profitable

swaps was recorded for each batch. Then, this entire batch

of procedures was repeated on the improved set until the

number of swaps converged to zero (no further swaps could

profitably be made).

The algebraic difference between the mean result of the

actual data set and the mean result of the optimally

recombined set defined C-Cost. Note that this method can

find optimal covariation between execution variables even

in situations in which the solution manifold is nonlinear, as

in this task. Hence it is different from the statistical

covariance calculation, which is essentially linear.

Cost = 0.8 cm

Cost = 4.6 cm

C-Cost

Cost = 0.5 cm

-160 -120 -80 -40 0
200

300

400

500

600

700

800

-160 -120 -80 -40 0
200

300

400

500

600

700

800

-160 -120 -80 -40 0
200

300

400

500

600

700

800

Cost = 2.2 cm

T-Cost N-Cost

Cost = 4.5 cm

Cost = 0.3 cm

-160 -120 -80 -40
200

300

400

500

600

700

800

-160 -120 -80 -40 0
200

300

400

500

600

700

800

-160 -120 -80 -40
200

300

400

500

600

700

800

Cost = 1.5 cm

Early

Intermediate

Advanced

Release Angle (deg)

R
el

ea
se

 V
al

o
ci

ty
 (

d
eg

/s
)

Cost = 0.0 cm

Real
Ideal

0

0-160 -120 -80 -40 0
200

300

400

500

600

700

800

-160 -120 -80 -40 0
200

300

400

500

600

700

800

-160 -120 -80 -40 0
200

300

400

500

600

700

800

Cost = 2.3 cm

Fig. 3 Exemplary data sets and the corresponding virtual data sets

used for the analysis of T-Cost, N-Cost, and C-Cost. Exemplary data

from one participant are shown from three blocks. Circles represent

actual throws made by the participant, and diamonds represent

surrogate data with one component idealized. The panels in the top
row show data from the first block of practice on Day 1; the middle

row shows data from the first block of practice on Day 6, and the

bottom row shows data from the first block of practice on Day 15. The

left column shows data optimized in terms of tolerance; the middle
column shows data optimized in terms of noise, and the right column
shows data optimized in terms of covariation. For more detail see text
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Importantly, the present calculation can also be applied to

more than two variables, although it becomes numerically

more involved (see discussion below). The three panels in

the right column show the actual and optimized data sets

used to calculate C-Cost for one subject at the same three

phases of learning. Again, the numbers in the top of each

panel show the exact values for each of the example

data sets. They decrease with progressing experience as

covariation becomes more pronounced.

Results

Result variable: error

Decrease of error and variability with practice is a robust

phenomenon, frequently documented in the motor learn-

ing literature. In order to attest that our data indeed show

these signatures of performance improvement consistent

with many other motor learning studies, a first analysis

evaluated the traditional error measures. Figure 4 displays

the means and standard deviations of error over blocks of

trials for the group of 12 subjects and, separately, for the

expert subjects who practiced for 15 days. The error bars

denote the standard error of the mean across the group of

participants. As expected, there was a decrease across

practice in both measures, with the greatest changes at the

beginning. The experts’ errors and standard deviations

were lower than those of the average participants from

beginning to end. The expert group continued to show

improvement in both measures through block 45. Expo-

nential functions highlight these changes over time. Note

that the first value was excluded from the fitting procedure

to avoid distortion of the fits in later stages of practice

due to this generally very high initial value. The fitting

parameters and the goodness of the fits are reported in

Table 1.

Execution variables: release angle and velocity

Figure 5 displays the changes in release angle and release

velocity over blocks of trials for the average subjects and

the expert subjects. The error bars denote the standard

error of the mean across participants. Panel A shows mean

release angle over blocks, and Panel B shows mean release

velocity over blocks. The angle variable tended to stabilize

after block 9 (third day of practice). The velocity variable

showed some gradual change towards higher values in the

expert subjects. Panel C shows the standard deviations of

release angle per block, and Panel D shows the standard

deviation of release velocity per block. As these variability

measures decrease with practice in a similar fashion to the

error measures, exponential functions highlight the decline

(see Table 1). While the standard deviations of both vari-

ables indicated a plateau in the average participants,

they continued to decrease after 6 days in the expert

subjects.

Quantification of costs

Figures 6 and 7 depict the amount of error accounted for by

each of the three components, i.e., the cost to performance.

In Fig. 6 the means and the standard errors for both par-

ticipant groups are illustrated. The decline across blocks of

practice is highlighted by fitted exponential functions

(excluding the first data point); the fitting parameters are
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Fig. 4 Changes in the error to the target with practice. For each block

the data of 60 trials were averaged. Participants performed three

blocks of trials per day. a Mean error for each block of throws. Mean

results for 12 participants over 18 blocks (6 days) of practice are

shown in gray, and results for the expert participants over 45 blocks

(15 days) of practice are shown in black. Error bars show standard

error across participants. b Standard deviations of error averaged over

participants across blocks of trials. Error bars show standard error

across participants
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included in Table 1. T-Cost tends to decrease significantly

from block 1 to block 2 and reaches a low level close to

zero very early in practice. N-Cost is comparable for both

groups but shows pronounced decrease in the expert group

throughout the 15 days. C-Cost in the average group pla-

teaus while the experts showed continued decrease

throughout practice. Figure 7 shows the exponential fits of

all three components for ease of comparison. Panel A

shows the average costs for the 12 average participants.

Panels B, C, and D shows the three costs for each of the

three experts. Figure 8 summarizes the results of the 12

individual participants in the average group by showing the

rank ordering of the three costs in each block. Panel A

presents the number of participants for whom each com-

ponent made the largest contribution to error across blocks

of practice. The figure illustrates the number of occurrences

across the 12 participants for which each of the three costs

had rank 1 in the respective block. Panel B shows the

number of participants for whom each component made the

smallest contribution to error across blocks of practice. The

figure illustrates the number of occurrences across the 12

participants for which each of the three costs had rank 3 in

the respective block (Fig. 9).

T-Cost. Figure 6a shows the cost to performance of non-

optimal tolerance. For most participants, T-Cost was the

first component to be maximally exploited (Fig. 7a),

dropping rapidly from relatively high values in the first

blocks to very low values. It ranked as the largest con-

tributor to cost for 5 subjects in the first block, and it made

the smallest contribution to error for 11 of the subjects by

the sixth block (Fig. 8). The expert participants showed the

same trend, with T-Cost reaching values close to zero after

block 20 (Fig. 6a).

N-Cost. Figure 6b shows the cost to performance of

non-optimal dispersion of the execution variables. N-Cost

was the largest contributor to error overall as evident from

Fig. 7. It was the highest contributor for seven participants

in the first block and for ten participants in the last block

(Fig. 8). The expert participants began with a lower N-Cost

than the group average and continued improving for longer

to reach similar values as C-Cost.

Table 1 Parameters and R2-values of the exponential fits to the

group data of the average subjects and the expert subjects

Average group Expert group

a b c R2 a b c R2

Error 58.0 -0.53 37.3 0.90 34.5 -0.13 18.4 79

SD error 35.1 -0.45 25.1 0.84 21.1 -0.08 8.8 77

SD release angle 13.3 -0.24 8.7 0.96 7.7 -0.11 4.8 82

SD release

velocity

209.5 -0.52 94.1 0.85 69.1 -0.12 66.0 75

T-Cost 15.8 -0.35 5.8 0.63 60.0 -1.20 3.6 59

C-Cost 12.1 -0.43 12.3 0.48 11.6 -0.10 6.1 76

N-Cost 27.5 -0.46 18.0 0.40 20.5 -0.08 6.9 78
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Fig. 5 Changes of the two

execution variables, angle and

velocity at release, across

blocks of practice. The gray
symbols represent averages

across 12 participants with the

error bars denoting the standard

error across participants. The

black symbols denote the expert

participants who practiced for

45 blocks (15 days). a Average

release angle. b Average release

velocity. c Standard deviations

of release angle. d Standard
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C-Cost. Figure 6C shows the cost to performance of

non-optimal covariation. For the average participants,

C-Cost declined relatively slowly across all days and

blocks of practice, and the decline for the experts was

similar. C-Cost was generally higher than T-Cost but lower

than N-Cost (Fig. 7). This general impression is mirrored in

the rank analysis of the individual subjects (Fig. 8).

Discussion

There were two major goals to this study. The first was to

take the concepts of tolerance, noise, and covariation, first

proposed by Müller and Sternad (2003, 2004a, b) to

quantify components of skill improvement, and to formu-

late them in terms of costs with respect to optimal

performance. The second goal was to apply the new cost-

analysis to investigate the relative importance of different

costs and their changes during 6 and as well 15 days of

practice in which the skill was learned and fine-tuned.

TNC-Cost analysis and comparison to related methods

Both the DTNC-analysis developed by Müller and Sternad

and the TNC-Cost analysis developed here (together

referred to as the TNC-approach) are related to but also

distinct from other methods in motor control that evaluate

distributional properties in data sets (Cusumano and Cesari

2006; Scholz and Schöner 1999). A central feature of the

TNC-approach is the known mapping between a complete

set of execution variables and their corresponding results as

specified by the task goal. On the basis of this functional

relation, analyses can be conducted on distributional

properties of execution variables and their effects on

results. In contrast to extant methods such as the UCM- and

Cusumano and Cesari’s approach that capitalize on the

well-established mathematical methods of null space

analysis, the TNC-Cost analysis developed new numerical

methods to quantify three components. The UCM-approach

analyzes the geometric properties of a data set by projecting

the data onto the tangent space around a point (typically the

mean of the data). This mathematical approach for detect-

ing linear covariance among variables, which is

mathematically related to principal component analysis,

has the advantage of relying on established tools, but it also

has some practical disadvantages. For instance, the linear-

ization is typically performed at the mean of the data set,

which may have a constant bias from the desired result. In

contrast, the TNC-approach evaluates relations among

execution variables in terms of their effects on the result.

Further, TNC-Cost calculations do not rely on linearization,

but can quantify alignment of data along any nonlinear

manifold, such as the highly nonlinear one employed in this

and previous studies (Müller and Sternad 2003, 2008).

Another core feature of the TNC-approach that differs

significantly from other methods is the assessment of tol-

erance or sensitivity. Standard sensitivity analysis is based

on the Jacobian and evaluates the sensitivity of a point with

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6
A

Average Group

Expert Group

0 5 10 15 20 25 30 35 40 45
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Average Group
Expert Group

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

Average Group
Expert Group

B

C

Fig. 6 Contributions of T-Cost, N-Cost and C-Cost to error. Mean

results for twelve participants over 18 blocks (6 days) of practice are

shown as in gray, and results for the expert group over 45 blocks

(15 days) of practice are shown in black. Error bars show standard

error across participants
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respect to infinitesimally small perturbations. While this

has the advantage of applying proven mathematical tools,

assessing the response to infinitesimally small perturba-

tions does not take into account that there may be a sizable

dispersion around a point. Given the different layout of

execution space and different curvature at different loca-

tions, a single solution in execution space may be locally

stable, but an extended neighborhood can make a solution

more or less robust with respect to variability. Further, a

discontinuity in a more extended neighborhood can have

severe negative effects on the result that go unnoticed in a

local sensitivity analysis. In response to these limitations of

standard sensitivity analysis, tolerance or T-Cost assesses

the effect of dispersion in the execution variables on result

over an extended neighborhood. Importantly, this neigh-

borhood is defined by the dispersion and covariation of the

data set. Hence, T-Cost is partly determined by the N-Cost

and C-Cost. For example, a large dispersion may favor a

location with a low curvature, while a reduced dispersion

may favor a different location. This highlights the impor-

tant point that variability may determine the strategy that

subjects choose.

C-Cost as a measure of covariation is also significantly

different from covariance, which is central to principal

component analysis, and is also applied by UCM, and the

approach developed by Cusumano and Cesari (2006).

Covariance is essentially a linear concept measured in units

of real-valued random variables. In contrast, C-Cost is

measured in units of the result, i.e., centimeters in the present

case. Therefore, the values have physical meaning and are

directly interpretable. Further, covariation and C-Cost can

be evaluated for variables that are nonlinearly related. Note

that we previously estimated covariation in comparison to a

permuted data set that had no covariation (Müller and

Sternad 2003). That quantification is conceptually different

from the one proposed here that compares actual perfor-

mance to that with the best possible covariation.

One last point to highlight is that the TNC-approach

does not require that the execution variables have the same

units, because comparison between different solutions is

performed in the space and units of the result. Hence, the

execution space does not need to have a metric. Another

aspect inherent to the two-level approach of TNC is that the

functional relation between result and execution predicts

the outcome of all execution strategies, which allows

a priori predictions about successful and preferred move-

ment strategies. For example, recent work by our group

tested the prediction that the most tolerant solutions would

be preferred by actors, a prediction that was supported for

two task variations with different solution manifolds (Hu

and Sternad 2007).

The rationale and results of our study are also in overall

accordance with a series of experiments by Trommershä-

user and colleagues that tested predictions from a decision-

theoretic formulation of the problem (Trommershäuser

et al. 2005, 2003). Using a speed-accuracy task where
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subjects point to a target area that is bounded by a penalty

area (at different distances and with different penalties), the

distribution of hits is examined with respect to the expected

gain (reward and penalty). Importantly, and different from

our approach, hitting success was binary (positive for the

target area and negative for the penalty area), and subjects

maximized the cumulative score over series of trials. For-

malized in a decision theoretical framework where a gain

function is optimized based on the weighted sum of the

gain and the subject’s inherent variability, the results

showed systematic effects of the location and relative

magnitude of the penalty and the target area on the dis-

tributions of end-point. The results supported the idea that

selection of a movement strategy is determined by the

subject’s inherent variability. In contrast to our approach,

their work places emphasis on selection of strategies, not

learning, and does not differentiate between routes partic-

ipants might take to optimize their score.

TNC-Cost analysis and comparison to the previous

TNC-decomposition

Although the concepts of tolerance, noise, and covariation

were drawn from Müller and Sternad’s earlier work, there

are two major differences in the way they are conceived

and implemented here: (1) comparisons to idealized data

sets; and (2) independent calculations of components. The

first difference is more central and will be described first.

In the previous TNC-method, the three components are

calculated as differences between two blocks of data, for

example between a block at the beginning of practice and a

block later in practice. The changes in the three compo-

nents, DT, DC, and DN, are reported as changes in

performance. This has the disadvantage that the results do

not give an absolute estimate of the contribution of a

component but only a relative one, which makes interpre-

tation of inter-individual differences difficult. In the TNC-

Cost approach developed here, the reference set for each

block of data is an optimized version of itself. Note that

this requires a logical reconceptualization of the compo-

nents from benefits to costs. Costs to performance are

defined as the algebraic differences between the results of

the actual data sets and those of the virtual data sets. Each

cost is an absolute measure of how much this data set could

improve if it optimized in terms of one component. The

payoff from this change from a relative to an absolute

estimate is that now the contributions can be quantified for

a single set of data. Furthermore, meaningful comparisons

can be made across subjects. For instance, in the present

data the expert participants had lower T-Costs in the first

block than the average participants. Similarly, the method

could be used to make comparisons between healthy par-

ticipants and participants with motor disorders.

Unlike in Müller and Sternad’s (2004a, b) original

DTNC-analysis, the components in the TNC-Cost analysis

are computed independently. Thus, the order of calcula-

tions does not matter, and no assumptions are required

about priority or precedence of components. However, the

price for relinquishing these assumptions is that compo-

nents may overlap, which is not possible in the original

procedure. That method is applied in a nested fashion, such

that tolerance DT is estimated by the comparison of two

data sets in which covariation has already been removed;

thus, potential contributions from covariation are elimi-

nated. Noise reduction DN is then defined as the residual

after DT and DC are subtracted from the total change in

error. This has the advantage that the sum of the three

components is necessarily equal to the error. In contrast,

calculating the components independently allows overlap

to occur in the costs and they do not sum to the actual error.

As further detailed below, some caution is needed in their

interpretation. To recapture the benefit of components that

Fig. 8 Summary of rank orders of the three costs across blocks and

participants. a Number of participants across practice blocks for

whom each cost made the greatest contribution to error. b Number of

participants across blocks for whom each cost made the smallest

contribution to error

80 Exp Brain Res (2009) 193:69–83

123



sum, the present method of comparison to idealized data

sets could be similarly implemented in a nested way by first

shifting the data to an ideal location, then arranging it to

optimize covariation, and then reducing variability as

needed to achieve perfect performance. To illustrate the

differences between the two methods, we conducted both

analyses on one participant’s data (Expert 3). The results of

the DTNC method are plotted in a cumulative fashion

across blocks to convey the gradual improvement (Fig. 9).

Due to the conceptual differences the results should not be

compared directly.

The inter-relation between components is an important

aspect of the new method and some caveats have to be

made clear. As stated before, in the creation of each virtual

data set, only one aspect of variability in execution vari-

ables is optimized. However, this optimization can affect

more than one component. Importantly, the shape and

orientation of the solution manifold at a given location

determines the degree to which covariation can play a role.

For example, in the limit case that the manifold is linear

and parallel to one dimension, C-Cost is zero. Further,

shifting a data set to a more tolerant location on the solu-

tion manifold may increase or decrease the amount of

covariation and noise possible, and thus affect the magni-

tude of C-Cost and N-Cost.

Of particular importance for understanding the role of

motor noise in performance is the fact that the magnitude

of N-Cost depends both on T-Cost and on C-Cost. A given

variance in the execution variables may be harmful in an

error-sensitive region of the solution manifold but may

have negligible effect on the result in a less error-sensitive,

i.e., more tolerant region of the solution manifold. Simi-

larly, a given dispersion in execution variables with poor

covariation (not aligned with the solution manifold) may be

harmful to performance, while the same variance at the

same location but with good covariation (aligned with the

solution manifold) may allow perfect performance.

Understanding the relations among the components can

provide interesting insights into changes in variability

across practice. For instance, performers who have reached

their physiological limit in terms of reducing motor noise

can reduce the impact of that motor noise on their perfor-

mance (N-Cost) by continuing to optimize T-Cost and

C-Cost. Note that while most performers in the study

reported here did not continue to refine tolerance after the

first few days of practice, more improvement in that

component was possible, as illustrated by the performance

of the expert participants.

As a final comment on the method, it should be mentioned

that the quantification of the components is, to some degree,

dependent on the chosen coordinate system, i.e., the space of

execution variables. This issue was discussed in two earlier

articles (Müller et al. 2007; Smeets and Louw 2007) and

extended by Müller and Sternad (2008). As demonstrated,

the DTNC method is dependent on the choice of coordinates.

However, similar dependencies exist for other methods of

analyzing variance, including the related approaches of

UCM and optimal feedback control. In fact, this lack of

invariance across coordinate transformations is also present

in simple statistical measures such as means.

Application of the TNC-Cost analysis to learning

and fine-tuning a skill

In the virtual throwing task used here, all participants

became more accurate and consistent in their throws over

the course of the experiment. Six days of practice were

more than sufficient for most participants to reach a plateau

in performance. All three components contributed to error

in performance, and all three costs decreased across prac-

tice. Generally, the rank order of the contributions of the

three costs was consistent throughout the experimental

sessions, with T-Cost high at the beginning and then

dropping rapidly, contributing the least to error after the

first day or two. N-Cost contributed the most to error, and

C-Cost was intermediate to the other two.

In the first day of practice, the main determinant of

performance improvement was the discovery of a solution,
Fig. 9 Results of the TNC-analyses applying the DTNC calculations

(a) and the TNC-Cost calculations (b)
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as quantified by pronounced changes in T-Cost. Later in

practice, reductions in T-, C- and N-Costs made compara-

ble contributions to improvement. T-Cost can be thought of

as the cost of not using the best strategy, i.e., not being in

the right region of execution space. Thus, finding a drop

earlier than in the other components is broadly consistent

with the idea that skill acquisition occurs in stages, with the

first stage being more cognitive or strategic where actors

discover the lay-out of solutions and find ‘‘the ball bark’’ of

the best solution (Fitts and Posner 1967). The larger

changes of tolerance at the beginning of practice are also

consistent with the findings of Müller and Sternad (2004a,

b) despite the fact that the TNC-calculations were different.

Following this drop in T-Cost, the other two costs gradually

decreased but maintained their relative ordering. Notably,

in the average group N-Cost remains highest throughout all

days of practice. Inspection of individual participants’ data

reveals that this general ordering is observed in many

individuals.

Three participants were of particular interest as they had

considerable expertise in real-world throwing and devel-

oped a personal ambition to achieve solid sequences of

perfect hits in this experimental task. Right from the start

their performance was better than the average group and

they continued to improve long after the group’s average

performance had leveled off. By the end of practice their

error scores were below the threshold that signaled success

50–75% of the time. Additionally, all three costs descended

to lower asymptotic values for these three participants than

for the average group. In fact, T-Cost diminished to almost

zero towards the end of practice, and N-Cost descended as

much in days 8–15 as it did in days 2–8. In relative terms it

is worth noting that late in practice N-Cost decreased to be

of equal magnitude as C-Cost. Potentially, this could be

viewed as a sign of fine-tuning a skill.

Motor noise is often shown to be signal-dependent

(Harris and Wolpert 1998). Thus, one plausible expectation

is that participants would gravitate toward the regions of

the solution space that allow them to throw with lower

velocity in order to reduce their motor noise. Notably, very

few of the participants chose this strategy. In fact, the

participant with the best performance gravitated toward a

solution region with fairly high velocity. This finding is

also consistent with results in the study by Hu and Sternad

(2007) that specifically tested this hypothesis but found no

evidence for it. Thus, other means of reducing the negative

effects of motor noise on performance had to be employed.

Taking the results of the two groups together what can

be learned from these results? Clearly, variability is more

than just noise. Reducing variability in performance can be

achieved in several ways that go beyond simply reducing

noise. One important aspect is to find a strategy or location

in the space of execution variables that is insensitive to

variations in execution. A second aspect is to covary the

variables in ways that optimize the result, in other words,

channel them into directions that do not matter to the result.

Lastly, reduce the dispersion in the execution variables,

although the importance of this latter route highly depends

on the former two. Hence, increasing consistency in per-

formance is achieved by at least three routes. Possibly, the

tuning of covariation and tolerance are the routes that

minimize the effect of the inevitable motor noise.

Summary and Conclusions

The underlying determinants responsible for performance

improvement and learning are not yet well understood. The

TNC-Cost analysis offers a new approach for uncovering

structure in data. In the throwing task examined here, the

results of this analysis quantified the first exploratory stage

of practice. The results further highlighted the development

of covariation between execution variables. Lastly, they

showed that noise remains high and seems to be tuned last.

Taken together, these results indicate that skill acquisition

consists largely of participants’ increasing sensitivity to

relatively subtle aspects of the execution space.

The TNC-approach is suitable for exploring any task in

which a performance goal can be defined as redundantly

dependent on several execution variables. It has been

applied to a ball-bouncing task (Sternad et al. 2008), to a

darts task (Müller and Sternad 2008), and, as in this paper,

to the skittles task. The method would also be suitable for

investigating a multi-joint pointing movement, a postural

task, or any other task in which execution variables can be

projected into result space. Only the functional relationship

between execution variables and results must be known.

Finally, the TNC-Cost analysis allows comparisons

across participants. This makes it suitable for application to

patients with different kinds of motor disorders, as well as

for development of training regimes for athletes. Future

investigations should continue to explore interventions

targeting each of the three components as potential routes

to improvement.
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