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Abstract Human movement control is inherently sto-

chastic, requiring continuous estimation of self-motion

based upon noisy sensory inputs. The nervous system must

determine which sensory signals are relevant on a time

scale that enables successful behavior. In human stance

control, failure to effectively adapt to changing sensory

contexts could lead to injurious falls. Nonlinear changes in

postural sway amplitude in response to changes in sensory

environmental motion have indicated a dynamic changing

of the weighting of the nervous system’s multiple sensory

inputs so that estimates are based upon the most relevant

and accurate information available. However, the time

scale of these changes is virtually unknown. Results here

show systematic changes in postural gain when visual

scene motion amplitude is increased or decreased abruptly,

consistent with sensory re-weighting. However, this re-

weighting displayed a temporal asymmetry. When visual

motion increased, gain decreased within 5 s to a value near

its asymptotic value. In contrast, when visual motion

decreased, it took an additional 5 s for gain to increase by a

similar absolute amount. Suddenly increasing visual

motion amplitude threatens balance if gain remains high,

and rapid down-weighting of the sensory signal is required

to avoid falling. By contrast, slow up-weighting suggests a

conservative CNS strategy. It may not be functional to

rapidly up-weight with transient changes in the sensory

environment. Only sustained changes necessitate the

slower up-weighting process. Such results add to our

understanding of adaptive processing, identifying a tem-

poral asymmetry in sensory re-weighting dynamics that

could be a general property of adaptive estimation in the

nervous system.

Keywords Sensory re-weighting � Multisensory fusion �
Vision � Adaptive control � Posture

Introduction

A crucial component of flexible upright stance control is

the multiple sensory modalities that are sensitive to dif-

ferent forms of physical energy and are fused to provide

information about self-motion relative to the motion in the

environment. The multisensory fusion process necessitates

that our nervous systems estimate which sensory signals

are relevant within a given sensory context. How this

multisensory integration is accomplished has been the

focus of several recent theoretical efforts (e.g., Anastasio

and Patton 2004; Knill and Pouget 2004; Pouget 2006;

Ernst and Banks 2002), which have argued that neural

computation can be understood as probabilistic (i.e.,

Bayesian) in nature: because neural systems are inherently

noisy, their sensory inputs cannot be strictly deterministic.

It is postulated that neurons compute the conditional
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probability of the stimulus value (e.g., if a target is present

or not within a neuron’s receptive field), given the uncer-

tainty in their sensory inputs (cf., Anastasio and Patton

2004, for an in-depth treatment of the Bayes’ rule model to

multisensory neurons in the deep superior colliculus).

The Bayesian framework can also be applied to the

problem of estimating quantities that change stochastically

with time, such as when sensory estimates of self-motion

need to be continuously updated for compensatory cor-

rections to an individual’s motor state (Todorov 2004;

Wolpert and Ghahramani 2000). In the case of a linear

stochastic system, Bayesian inference can be implemented

using a Kalman filter. Kalman filters have been used, for

example, in models of postural control of human upright

stance (van der Kooij et al. 1999; Kiemel et al. 2002; Kuo

2005). In these models, a Kalman filter continually esti-

mates the body’s position and velocity based on noisy

inputs from multiple senses, and these estimates are used to

generate appropriate motor commands to stabilize upright

stance.

Visual, somatosensory, and vestibular inputs, all play

important roles in postural control (Bronstein et al. 1990;

Horak and Macpherson 1996; Jeka et al. 2000). System-

atic spatiotemporal patterns of postural sway responses

can be induced by visual and somatosensory environ-

mental motion (Dijkstra et al. 1994; Jeka et al. 1998,

2000). For example, an increase in the amplitude of

environmental motion is accompanied by a corresponding

decrease in the amplitude of compensatory sway in

response to environmental motion (i.e., gain) (Oie et al.

2001, 2002; Peterka 2002; Peterka and Benolken 1995).

One of the prevailing hypotheses is that this nonlinear

aspect of postural responses indicates that the nervous

system adapts to changing sensory contexts by decreasing

its dependence, or weighting, when information from one

or more sensory systems is compromised, while increas-

ing its weighting of other inputs in order to prevent a loss

of balance (e.g., Carver et al. 2005; Keshner et al. 2004;

Mahboobin et al. 2005; Oie et al. 2002; van der Kooij

et al. 2001; however, see Mergner et al. 2003 for an

alternative interpretation).

For a complete description of the re-weighting process,

its magnitude and time course are necessary. Recent evi-

dence suggests that sensory re-weighting may be intact, for

example, in the elderly (Allison et al. 2006), but at a slower

time scale that prevents appropriate postural responses

(Allison et al. 2005). Previous studies have implicated

deficient multisensory re-weighting as a contributor to

instability and falls in older adults (Teasdale et al. 1991a,

1991b, 1993; Hay et al. 1996). Multisensory re-weighting

is thought to be slowed in older adults, both in circum-

stances where sensory information is withdrawn or

becomes unreliable, and when reliable sensory information

becomes available after a period of withdrawal. For

example, Woollacott et al. (1986) observed appropriate

responses in young control subjects on the first trial in

different sensory organization test (SOT) conditions, but it

was not until the second trial that many elderly subjects

responded appropriately. While indicative of deficient

processing between trials, effects are difficult to assess in a

temporally precise manner.

Moreover, recent accounts of human postural control

use an adaptive Kalman filter to model the multisensory re-

weighting process (van der Kooij et al. 2001; Carver et al.

2006). By an adaptive Kalman filter, we mean a state

estimator that has the form of a Kalman filter with one or

more parameters that are varied based on some adaptive

scheme. Different models hypothesize different adaptive

schemes; however, currently there exist little experimental

data to constrain the type of adaptive scheme implemented.

In the Carver model, adaptation is based on minimizing the

mean squared ankle torque specified by the neural con-

troller. As a consequence of this adaptation scheme, the

model predicts what we refer to as a ‘‘temporal asymme-

try’’ in response to changes in environmental motion

(Carver et al. 2006). Specifically, if the amplitude of

environmental motion is changed abruptly, the initial

decrease in gain when environmental motion is increased is

predicted to be faster than the initial increase in gain when

environmental motion is decreased. This finding was

completely unexpected and was not designed into the

model in any explicit manner. In the present experiment,

we tested this prediction by analyzing the dynamics of re-

weighting when visual amplitude changed within a trial.

Results are qualitatively consistent with the asymmetric

prediction of the Carver et al. model.

Methods

Thirty participants (15 female, 15 male, mean age 20.9

(±1.6) years of age) took part in this study. All participants

had normal or corrected-to-normal vision, were free of any

self-reported musculoskeletal or neurological disorders,

and gave written consent to participate according to the

guidelines implemented by the Internal Review Board of

the University of Maryland.

Participants were asked to stand quietly, approximately

0.5 m from a large translucent screen (2.0 m 9 1.0 m, Da-

Lite Screen Company, Inc., Warsaw, IN), as shown in

Fig. 1. The visual stimulus consisted of a pattern of ran-

domly positioned, white triangles distributed throughout a

fronto-parallel plane on a black background. When the

visual scene was stationary, all triangles were of equal size

(approximately 0.2� 9 0.3� 9 0.2� of visual angle). The

pattern was rear-projected onto the screen via a direct drive
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image light amplifier (D-ILA) projector (JVC M15, JVC

America, Wayne, NJ). The visual displays were generated

using a desktop PC (Dell PWS650, Dell, Inc., Austin, TX)

with a Wildcat4 7210 video adapter (3Dlabs US, Madison,

AL) at a resolution of 1,280 9 1,024 pixels.

Before the beginning of a trial, the visual scene was

stationary, providing binocular information about the dis-

tance to the visual wall. Sinusoidal environmental motion

was then specified by varying the projected size and the

distance between the triangles to simulate translation in a

forward–backward direction of the entire visual scene rel-

ative to the participant, with the mean position of the

simulated wall corresponding to the position of the pro-

jection screen (0.5 m from the subject). The focus of

expansion of visual motion was positioned at the approx-

imate center of the participant’s foveal region prior to the

start of data collection, and no triangles were placed near

the focus of expansion to suppress the visibility of aliasing

effects. Participants wore goggles that limited their visual

field to approximately 100� vertically and 120� horizon-

tally, while allowing them to wear prescription eyeglasses,

if necessary. The goggles prevented subjects from seeing

the edges of the screen or other potential visual cues rel-

ative to stance control.

Participants were asked to keep their head level, eyes

open, gaze directed at the focus of expansion, and to avoid

locking their knees during the conduct of an experimental

trial. Stimulus motion comprised a 0.4 Hz sinusoid whose

amplitude was changed twice within a 360 s trial, from 0.3

to 1.2 cm and back to 0.3 cm at 120 and 180 s into the

trial, respectively. A stimulus frequency of 0.4 Hz was

chosen for the strong postural responses documented

between 0.2 and 0.4 Hz (e.g., Kiemel et al. 2006).

Choosing the higher end of this range improved the tem-

poral resolution of the dynamic response on a cycle-to-

cycle basis. Stimulus amplitudes of 0.3 and 1.2 cm are

known to produce strong and weak postural responses,

respectively (Kiemel et al. 2006), allowing for the re-

weighting process to be studied dynamically. Three trials

were run for all participants.

Participants’ postural responses to visual display motion

were captured using an OptoTrak camera position tracking

system (Northern Digital, Inc., Waterloo, ON, CA) at a

sampling rate of 60 Hz. Markers were placed at the heel

(posterior calcaneous), ankle (lateral malleolus), knee

(lateral tibial tuberosity), hip (greater trochanter), and

shoulder (acromion) on the right side of the body. Center-

of-mass (COM) trajectories were estimated using a three-

segment model based upon the trajectories of these markers

(cf. Winter 1991).

To characterize the postural response to visual scene

motion, we used the frequency response function (FRF)

(Bendat and Piersol 2000) from visual scene position to

COM position at the stimulus frequency. To achieve rea-

sonable temporal resolution along with an accurate

estimate of the power spectrum density, each trial was

divided into 72.5-s intervals (two stimulus cycles per

interval). The complex-valued FRF for each interval was

computed by subtracting the mean from the COM trajec-

tory, multiplying the stimulus and COM trajectories by a

Hamming window to reduce side-lobe leakage of power

from non-stimulus frequencies, computing Fourier trans-

forms, and then dividing the COM Fourier transform by the

stimulus Fourier transform. The absolute value of the FRF

is gain; the postural response amplitude is divided by the

stimulus amplitude. The argument of the FRF is phase,

which indicates the temporal relationship between postural

response and stimulus motion. A positive phase indicates

that COM position leads stimulus position. Our use of gain

to track changes in coupling strength to the stimulus is

subject to errors due to transients. In the Appendix we use

simulated data to show that these errors are expected to be

small.

Figure 2a shows an example of FRFs from individual

subjects for one time interval. Because these FRFs were

Fig. 1 Experimental setup showing the subject standing in a semi-

tandem stance in front of the computer-generated visual display
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estimated based on a limited amount of data (one 5-s

interval from three trials), the FRF estimates contained

large sampling errors. Although using linear regression

reduced the sampling errors (Fig. 2b), the distribution of

FRFs still included the origin in the complex plane. To

reduce the effect of sampling errors on our analysis, rather

than computing gains and phases for individual subjects,

we averaged FRFs across subjects (the ‘x’ symbols in

Fig. 2) and computed ‘‘group gain’’ and ‘‘group phase’’ as

the absolute value and argument, respectively, of the

average FRF (see Appendix).

Our statistical analysis was based on estimated FRFs

from five 5-s time intervals (see Figs. 4, 5). These intervals

were: immediately before the first switch (b1), immediately

after the first switch (a1), immediately before the second

switch (b2), immediately after the second switch (a2), and

at the end of the trial (e). FRFs for intervals a1 and a2,

which occurred during fast changes in the FRFs following

a switch, were estimated directly only from the data from

their respective time intervals. FRFs for intervals b1, b2,

and e occurred just before a change in visual stimulus

amplitude or at the end of the trial (see Fig. 5), with pre-

vious time periods during which visual stimulus amplitude

was constant. To improve the estimate of these FRFs, we

assumed that the time interval previous to b1, b2, and e was

linear in the complex plane. Specifically, we fit the FRFs

by a linear function of the time-interval index over three

separate periods: the 18 5-s time intervals before the first

switch, the six time intervals before the second switch, and

the 30 time intervals before the end of the trial. We used

the fitted FRF value for the 18.5, 6 and 30 s time intervals

as the estimated FRF for the time intervals b1, b2 or e,

respectively. To insure that we were characterizing these

FRFs over relatively stable periods of behavior, the time

periods for the linear regressions exclude the first six time

intervals (30 s) at the beginning of the trial and after each

visual amplitude switch during which changes in the FRFs

were clearly nonlinear. We fit the FRFs by computing

least-squares fits of their real and imaginary parts.

We tested various null hypotheses concerning group

gains from the time intervals b1, a1, b2, a2, and e, where

linear regression was used to obtain better estimates for the

intervals b1, b2, and e. Tests were performed using a sta-

tistical model that assumed multivariate normality for the

real and imaginary parts of the FRFs. For each null

hypothesis, group gains and phases for the constrained

model (the statistical model with parameters constrained by

the null hypothesis) and unconstrained model were esti-

mated using the method of maximum likelihood, and the

likelihood ratio was tested using the same method and

degrees of freedom applied to the Wilks’ K in linear

regression (Seber 1984). For group gain, we made com-

parisons for all pairs of the time intervals b1, a1, b2, a2,

and e. To test for temporal asymmetry, we tested whether

the changes at the two switches summed to zero (i.e., H0:

(gb1-ga1) ? (gb2-ga2) = 0). Group phases were tested in

the same fashion. A closed testing procedure (Hochberg

and Tamhane 1987) was used to adjust p-values to control

the family-wise Type I error rate at 0.05 for tests on gains,

and separately for the tests on phase. The preceding tests

on gain represent our primary analysis of re-weighting in

this study. We also tested several additional linear contrasts

involving gain to further refine our characterization of re-

weighting (see Results). For these additional tests, we

report unadjusted p-values.

In addition to FRFs, position and velocity variability of

the residual sway response was computed as the standard

deviation of COM motion excluding the postural response

at the stimulus frequency (cf., Jeka et al. 2000). Higher

variability reflects lower postural stability. Variability was

Fig. 2 FRFs at the stimulus frequency (0.4 Hz) from individual

subjects for last 5-s time interval before first switch (time interval b1).

a Directly computed FRFs. b FRFs estimated from linear regression.

Mean FRF is indicated by times symbol. The absolute value (distance

from the origin) and argument (phase angle in the complex plane) of

the mean FRF are the group gain and phase values, respectively, used

to characterize the average responses of the subjects (see Fig. 5

below). Ellipse indicates boundary of 95% confidence region for

mean FRF
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calculated over longer segments (six 60 s segments in a

trial) than gain and phase because we were interested in

whether visual amplitude changes led to changes in

overall postural stability, rather than cycle-to-cycle

effects. The Fourier transform for each 60 s segment was

computed at the stimulus frequency and then inverse

transformed to compute the sway response only at the

stimulus frequency. This component was subtracted from

the original COM position trajectory, resulting in the

corresponding residual COM position trajectory. The

residual COM velocity trajectory was computed by finite

differences with a time step of 0.167 s, to reduce the

effect of experimental measurement noise on the velocity

computation. Position or velocity variability was then

computed as the standard deviation of the respective

residual trajectory. We tested for differences in the log of

position and velocity variability using Hotelling’s T2 sta-

tistic. A closed testing procedure (Hochberg and Tamhane

1987) was used to control the family-wise Type I error

rate at a = 0.05 separately for position and velocity

variability.

Results

Figure 3 presents an exemplar time series of COM

(Fig. 3a) and stimulus (Fig. 3b) position for a single trial.

To visualize more clearly the spatiotemporal relationship

between the postural response and the sinusoidal stimulus

motion, the slow component of postural motion (cf., Kie-

mel et al. 2006) was removed by applying a zero-phase,

0.1 Hz high-pass Butterworth filter (Fig. 3c). Figure 3d

shows a close up view of the filtered COM position super-

imposed on stimulus position around the first switch from

low to high stimulus amplitude.

Gain and phase

Figure 4 shows exemplars of the mean cycle-to-cycle gain

and phase for two different subjects (A–C and D–F,

respectively). In general, subjects exhibited similar quali-

tative changes in response to the changes in stimulus

motion amplitude: gain decreased relatively quickly when

stimulus amplitude was increased at 120 s in the trial, and

increased more slowly when stimulus amplitude was then

decreased at 180 s. Individual differences were observed in

the overall response to stimulus motion. For example, gain

to low amplitude stimulus motion was relatively higher for

the subject in Fig. 4a than for the subject in Fig. 4d. These

individual differences are largely responsible for the inter-

subject variability shown in the mean cycle-to-cycle gain

and phase collapsed across all 30 subjects presented in

Fig. 5.

Across subjects, when visual motion amplitude was

low (t B 120 s, t C 180 s), gain was observed to be

higher than when visual motion amplitude was high

(120 s \ t \ 180 s), with phase showing an approximately

constant phase of about -90�. This general pattern was

observed across all subjects, though the more variable

mean gains across subjects at the beginning of trials

(*10–50 s) is due to the large observed variability in

phase during this time period.

Gain based on the average FRF across subjects varied

significantly across the five time intervals b1, a1, b2, a2,

and e (p \ 0.001). There were no significant differences in

phase (p = 0.707). Pair-wise contrasts for gain revealed

significant differences between the estimated FRFs:

gb1 [ gb2 (p \ 0.001) and gb2 \ ge (p \ 0.001), and no

difference between gb1 and ge (p = 0.652). This result

reproduces the characteristic gain-dependence of the pos-

tural response upon the amplitude of visual motion, where

gain has been observed to be higher when stimulus

amplitude was low, and lower when stimulus amplitude

Fig. 3 Exemplar time series of COM position (bold lines in A, C, D)

and stimulus position (thin lines in B, D). A Raw COM position, B
stimulus position, C high-pass (0.1 Hz) filtered COM position, and D
COM and stimulus position at first stimulus amplitude switch
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was high (e.g., Kiemel et al. 2006; Oie et al. 2002; Peterka

2002; Peterka and Benolken 1995; Mergner et al. 2003).

Some previous studies with visual motion as a stimulus

have found that response amplitude (gain times stimulus

amplitude) is roughly constant over some range of stimulus

amplitudes (Peterka and Benolken 1995; Kiemel et al.

2006). Our data were not consistent with such ‘‘response

saturation’’. For example, response amplitude during the

high-amplitude stimulus in time interval b2 was 0.50 mm,

which was significantly less than the response amplitude

during the low-amplitude stimulus in time intervals b1

(0.94 mm; unadjusted p = 0.041) and e (1.04 mm; unad-

justed p = 0.012).

When visual motion amplitude was increased at 120 s or

decreased at 180 s, the resultant change in the postural

response differed. Gain of the averaged FRFs showed a

significant difference (p \ 0.001) between b1 and a1,

when visual motion amplitude was increased, indicating a

Fig. 4 Mean cycle-to-cycle

gain and phase for two

individual subjects (A–C, D–F).

Mean gain and phase are based

on estimated FRFs averaged

across three trials

Fig. 5 Mean cycle-to-cycle (A) gain and (B) phase plotted with the

(C) visual stimulus. Heavy black lines indicate gain and phase

computed from the linear regression fits of FRFs over different time

intervals. Gray lines indicate endpoints of conservative 95% confi-

dence intervals (cf., Kiemel et al. 2006)
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significant decrease in gain within the first two cycles

of stimulus motion. By contrast, no difference in gain

(p = 0.903) was observed between intervals b2 and a2,

indicating that gain of the averaged FRF did not increase

significantly within the first two cycles of stimulus motion

after the decrease in stimulus motion amplitude. No change

in phase was detected between b2 and a2 (p = 0.471),

though an increase in the variability of phase across subjects

is observable at this change in stimulus motion amplitude.

Testing more explicitly for a temporal asymmetry, we

tested whether the sum of the changes in FRFs at the two

amplitude switches summed to zero (H0: (gb1-ga1) ?

(gb2-ga2) = 0). Results revealed a significant difference

from zero in the gain of the summed FRFs (p = 0.007),

indicating that the observed changes in gain during the

initial 5 s (two stimulus cycles) were significantly larger

(i.e., faster) when stimulus motion increased versus when it

decreased. If the FRF of interval a2 is replaced by the FRF

of the next 5-s time interval, the contrast H0 is no longer

significantly different than zero (unadjusted p = 0.75),

indicating that the amount of down-weighting that occurred

within the first 5 s was similar to the amount of up-

weighting that occurred within 10 s. In this sense, our data

are consistent with down-weighting being about twice as

fast as up-weighting.

Residual sway variability

Figure 6 shows how both position (Fig. 6a) and velocity

(Fig. 6b) variability showed a significant increase when

stimulus motion amplitude was increased at 120 s

(p’s \ 0.002). After stimulus motion amplitude decreased

back to low amplitude at 180 s, rather than decreasing to

the level observed before 120 s, both position and velocity

variability remained significantly higher (p’s \ 0.047) than

during the initial portion of the trial (0–120 s), except that

position variability was not different from the 60–120 s

interval for the two intervals between 180 and 300 s

(p’s = 0.055).

Discussion

Sensory re-weighting as an adaptive process in the nervous

system is not unique to the control of upright stance.

Hypotheses of sensory re-weighting appear across many

functional behaviors, including object perception and

manipulation (Ernst and Banks 2002), perception of full-

body motion (Lambrey and Berthoz 2003), and goal-

directed reaching (Sober and Sabes 2003, 2005). However,

few studies have investigated the dynamics of the re-

weighting process. Here we studied the time course of

sensory re-weighting and found evidence of a temporal

asymmetry that is qualitatively consistent with the pre-

dictions of an adaptive model (Carver et al. 2005, 2006).

Specifically, when visual motion increased, gain decreased

within 5 s to a value near to its asymptotic value. In con-

trast, when visual motion decreased, it took an additional

5 s for gain to increase by a similar absolute amount.

We emphasize that these values are general indications

of the time scale of reweighting and should not be strictly

viewed as time constants. Moreover, because our temporal

resolution was limited to 5 s, the down-weighting time

could be considerably faster than 5 s. Temporal resolution

was limited by the trade-off with spatial resolution; we

averaged responses across two stimulus periods to increase

the accuracy of gain estimates.

In addition to the speed of re-weighting, it is noteworthy

that we observed a temporal asymmetry that is consistent

with the Carver et al. (2006) model. The model contains an

adaptive Kalman filter that uses noisy sensory measure-

ments to estimate the body’s position and velocity (see

Introduction). The relative weighting of visual and non-

visual inputs in the Kalman filter is specified by an adaptive

parameter, q, which is continually adjusted to minimize a

performance index J, the mean squared ankle torque

specified by the neural controller. (This choice of J is not

crucial; there are other choices that lead to qualitatively

similar behavior.) J is minimized by changing q at a rate

proportional to -dJ/dq (gradient descent).

The model’s adaptive scheme leads to a temporal

asymmetry qualitatively like that reported here (Carver

et al. 2006). When motion of the visual scene is small,

adaptation leads to substantial weighting of both visual and

Fig. 6 Mean position and velocity variability averaged across

subjects over 60 s intervals. Error bars indicate standard errors.

Asterisks indicate significant differences between observed position or

velocity variability in a given interval compared to the two intervals

between 0–60 and 60–120, respectively
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non-visual inputs, since using all the available sensory

information reduces the effect of sensory noise on sway

and thus, the need for corrective ankle torques. When

visual motion amplitude suddenly increases, the sway at

the stimulus frequency suddenly increases, leading to a

large increase in corrective ankle torques that are highly

sensitive to changes in the adaptive parameter. As a result,

the adaptive parameter changes quickly to down-weight

vision and gain quickly decreases. Later, when visual

motion amplitude suddenly decreases, there is only a small

decrease in sway at the stimulus frequency, since gain is

initially low. This small decrease in sway leads to a small

decrease in corrective torques that is not very sensitive to

changes in the adaptive parameter. As a result, the adaptive

parameter changes slowly to up-weight vision and gain

slowly increases. As noted above, when visual scene

motion is small, substantial weighting of both visual and

non-visual inputs reduces corrective ankle torques. There-

fore, gain eventually increases to its original value.

The preceding description of the model’s temporal

asymmetry refers to the initial change in gain after a

change in visual motion amplitude. In the model, the

change in gain produced by a sudden change in visual

motion amplitude is not exponential and therefore, cannot

be characterized by a single fixed time constant. Changes

in gain are only predicted to be approximately exponential

for small changes in visual motion amplitude. Even with

this approximation, the time constant depends on the cur-

rent gain level. When gain is high, the time constant is

small (fast); when gain is low the time constant is large

(slow). This means that the time constant depends on the

current gain level, not the direction in which gain is

changing. For example, if visual motion amplitude is low

and suddenly changed by a small amount, the model pre-

dicts that gain will quickly converge to a new level

regardless of whether amplitude is increased or decreased.

While the behavior of gain was qualitatively consistent

with the Carver et al. (2005) model, the sway variability

results were only partially consistent. The model predicts

the observed increase in sway variability as vision is down-

weighted (120–180 s, see Fig 5). However, the predicted

decrease in sway variability as vision is up-weighted (180–

240 s, Fig 5) was not observed. The latter result is also not

consistent with previous studies which found a consistent

trade-off between re-weighting and variability (Allison

et al. 2006). This trade-off reflects the degree of weighting

to a stimulus versus the precision of estimating body

dynamics. Large amplitude sensory inputs are down-

weighted to minimize responses that would threaten sta-

bility, if for example, coupling to vision remained high.

However, the consequence of down-weighting vision is

reduced sensory information available for estimation,

leading to increased sway variability at frequencies other

than the drive. Conversely, it is advantageous to up-weight

small amplitude sensory inputs because more information

is available for estimation, leading to a reduction in sway

variability. Strong coupling to small amplitude inputs does

not threaten stability. While this scenario has been sup-

ported in previous studies in which gain and sway

variability was averaged over 2–4 min trials with constant-

amplitude sensory stimuli (Allison et al. 2006), the

dynamic measures used here indicate that overall stability

does not behave similarly when the visual stimulus changes

abruptly.

De Ruyter van Steveninck et al. have also shown evi-

dence for sensory re-weighting at the level of neural coding

(Brenner et al. 2000; Fairhall et al. 2001). The authors

presented evidence of adaptive scaling of the transfer

function of motion-sensitive neurons in the fly visual sys-

tem based upon the variance of the visual input, such that

information is optimized across a wide range of sensory

contexts, as well as a temporal asymmetry dependent upon

whether variance increased or decreased. Adaptation of the

sort demonstrated by Brenner et al. (2000) and Fairhall

et al. (2001), as well as in the current study, where adap-

tation is based upon a statistical property of the sensory

input, necessitates that the nervous system estimates these

statistics, at least implicitly. Taken from this context, and

as pointed out by Tin and Poon (2005), these related con-

cepts of estimation, adaptive control and internal models

have been influential in furthering our understanding of

processes of sensorimotor integration, and by extension,

multisensory integration. The present empirical results add

to our understanding of adaptive processing by demon-

strating that the temporal asymmetry observed in sensory

re-weighting dynamics may be a general property of

adaptive estimation in the nervous system.

Conclusion: a functional interpretation

The observed temporal asymmetry in sensory re-weighting

can also be evaluated from a functional perspective:

Upright stance is inherently unstable, and the stance control

system must continuously respond to internal and external

perturbations that could produce an injurious fall. The

current thinking is that this response must be fast to be

beneficial. The present results suggest that in the case of

up-weighting to a stimulus, a slow process may be pref-

erable. In our paradigm, when visual motion amplitude is

low, vision provides a relatively stable source of infor-

mation for stance control. When visual motion amplitude is

increased beyond the stability boundaries of upright stance,

visual information provides a poor source of information

for stance control. Under such conditions, if gain to visual

motion remains high, the large visual motion amplitude

threatens balance, and the stance control system must
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diminish the visual weighting rapidly in order to maintain

upright standing. On the other hand, if current visual

motion amplitude is large and stance is already stable,

decreasing visual motion amplitude does not threaten bal-

ance and adapting rapidly to the new sensory conditions is

not critical to avoid falling. One may argue that slow up-

weighting reflects a conservative CNS strategy. Rapid up-

weighting may cause instability if the change in sensory

conditions is transient. Slow up-weighting insures stronger

coupling to only sustained changes in the sensory surround.

Thus, the temporal asymmetry can be interpreted to reflect

a scheme in which the nervous system commits resources

to sensory re-weighting based upon a functional need.

Balance control entails an inherent ‘‘cost function’’, mini-

mizing fall-risk, which modulates adaptive processes such

as sensory re-weighting, suggestive of a cognitive com-

ponent to the re-weighting process.
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Appendix

In this study we used gain computed in successive 5-s

intervals to track changes in the coupling strength of pos-

tural sway to visual motion (see Methods). However, this

method is potentially subject to biases due to transient sway

responses and side-lobe leakage of power from non-stimulus

frequencies. Our particular concern was that these errors

might be systematically different during up- and down-

weighting, leading to an apparent temporal asymmetry that

does not reflect a true temporal asymmetry in coupling

strength to the stimulus. Here we describe simulations that

show that: (1) biases due to transients, although present, are

too small to explain the temporal asymmetry observed in our

data; and (2) side-lobe leakage does not bias FRF values,

consistent with the assumptions of our statistical analysis.

To assess the biases due to transient responses and side-

lobe leakage we needed a quantitative stochastic model of

how the body’s center of mass responds to motion of the

visual scene. We used a linear stochastic model from a

previous study (Kiemel at al. 2006) combined with various

hypothesized time courses of coupling strength changes.

The linear stochastic model is _xðtÞ ¼ AxðtÞ þ BnðtÞ þ
Cuðt � sÞ; where t is time, u(t) is the position of the visual

scene, x(t) is a 5-by-1 vector whose first component is the

body’s center of mass, n(t) is white noise, A is a 5-by-5

matrix, B and C are 5-by-1 vectors, and s is a time delay. In

Kiemel et al. (2006), A, B, C and s were fit based on data

from individual subjects and conditions. We used the

parameters from subject 1 in the low-amplitude condition.

Parameters from other subjects and conditions would pro-

duce similar results. We modified the model by scaling the

noise level by a factor b and adding a changing coupling

strength a(t): _xðtÞ ¼ AxðtÞ þ bBnðtÞ þ aðtÞCuðt � sÞ.
We simulated the model using the visual scene motion

u(t) from our experimental protocol. We assumed that

coupling strength a(t) had different asymptotic values for

each amplitude of visual motion. These asymptotic values

were chosen to reproduce our empirical estimates of group

gain during time intervals b1 and b2 (see Fig. 5). As a

simplification (see Discussion), we assumed that after a

switch in visual motion amplitude, a(t) decayed exponen-

tially with time constant sa to its new asymptotic value. We

ran simulations with various values of sa. For each simu-

lation, we computed gain before each switch, gb1 and gb2,

and during the 5-s interval after each switch, ga1 and ga2,

using the same method applied to our experimental data.

To assess biases due to transients, we first simulated the

model without noise (b = 0). Figure 7a shows the absolute

initial gain change during down-weighting, gb1 - ga1, and

during up-weighting, ga2 - gb2, as a function of the time

constant sa. So assess how accurately these initial gain

changes reflect the underlying initial change in coupling

strength a(t), we averaged a(t) in the 5-s interval following

each switch and computed the model’s corresponding

steady-state gain. The magnitude of the resulting ‘‘under-

lying’’ initial gain change, which is the same for both

down- and up-weighting, is shown as the grey curve in

Fig. 7a. Note that measured gain changes are fairly close to

the ‘‘underlying’’ gain change, indicating that the measured

changes in gain are a reasonable reflection of the change in

coupling strength. Importantly, gain changes measured

during down- and up-weighting for the same time constant

sa were very similar.

To assess biases due to side-lobe leakage, we simulated

the model with noise (b[ 0). Figure 7b shows the FRF

value in time interval b1 from 30 simulations. Note that

Fig. 7b is similar to Fig. 2a, although the variation in

Fig. 7b is due solely to sampling errors, whereas the var-

iation in Fig. 2a is due to both sampling errors and subject

differences. Sampling errors for the model are due to side-

lobe leakage of power from non-stimulus frequencies.

Side-lobe leakage does not bias the FRF value in the

complex plane; the mean FRF from the 30 simulations

(closed circle) is not significantly different than the FRF

value computed without noise (open circle). In contrast, the

mean gain from the 30 simulations (absolute value of open

square) does exhibit a positive bias compared to the gain
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computed without noise (absolute value of open circle).

Thus, side-lobe leakage biases gain values but not FRF

values. Since our statistical analysis is based on the dis-

tribution of FRF values, side-lobe leakage does not bias our

statistical results.

References

Allison L, Kiemel T, Jeka JJ (2005) The dynamics of multisensory

reweighting in healthy and fall-prone older adults. 35th annual

meeting of the Society for Neuroscience, Washington DC

Allison L, Kiemel T, Jeka JJ (2006) Multisensory reweighting is

intact in healthy and fall-prone older adults. Exp Brain Res

175(2):342–352

Anastasio T, Patton P (2004) Analysis and modeling of multisensory

enhancement in the deep superior colliculus. In: Calvert G,

Spence C, Stein BE (eds) Handbook of multisensory processes.

MIT Press, Boston

Bendat JS, Piersol AG (2000) Random Data: Analysis & Measure-

ment Procedures. Wiley-Interscience, New York

Brenner N, Bialek W, van Stevenink R (2000) Adaptive rescaling

maximizes information transmission. Neuron 26:695–702

Bronstein AM, Hood JD, Gresty MA, Panagi C (1990) Visual control

of balance in cerebellar and Parkinsonian syndromes. Brain

113:767–779

Carver S, Kiemel T, van der Kooij H, Jeka JJ (2005) Comparing

internal models of the dynamics of the visual environment. Biol

Cybern 92(3):147–163

Carver S, Kiemel T, Jeka JJ (2006) Modeling the dynamics of sensory

reweighting. Biol Cybern 95(2):123–134
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