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Abstract Proper movement timing is essential to the

successful execution of many motor tasks and may be

adversely affected by muscle fatigue. This study quantified

how muscle fatigue affected task performance during a

repetitive upper extremity task. A total of 14 healthy young

adults pushed a low load back and forth along a low-fric-

tion horizontal track in time with a metronome until

volitional exhaustion. Kinematic, force, and electromyog-

raphy (EMG) data were measured continuously throughout

the task. The first and last 3.5 min were analyzed to rep-

resent ‘‘early’’ and ‘‘late’’ fatigue. Means and standard

deviations of movement distance, speed, and timing errors

were computed. We also decomposed variations in move-

ment distance and speed into deviations that directly

affected achieving the task goal and those that did not, by

identifying the goal equivalent manifold (GEM) of all valid

solutions to this task. Detrended fluctuation analysis was

used to quantify the temporal persistence in each time

series. Principle components analysis provided a direct

measure of alignment with the GEM. Median power fre-

quencies of the EMG significantly decreased in six of the

nine muscles tested indicating that subjects did fatigue.

However, there were no differences in the means or vari-

ability of movement distance, speed, or timing errors.

Thus, subjects maintained overall performance despite

fatigue. Subjects applied slightly higher peak handle forces

when they were fatigued (P = 0.032). Muscle fatigue

caused significant reductions in the temporal persistence

of movement speed (P = 0.037) and timing errors

(P = 0.046), indicating that subjects corrected errors more

quickly when fatigued. Mean deviations and variability

perpendicular to the GEM were much smaller than

variability along the GEM (P \ 0.001). Deviations per-

pendicular to the GEM were also corrected much more

rapidly than those along the GEM (P \ 0.001). Subjects

aligned themselves very closely (\±7�), but not exactly

(P \ 0.001), with the GEM. These measures were not

significantly affected by muscle fatigue. Overall, these

results indicated that subjects altered their biomechanical

movement patterns in response to muscle fatigue, but did

so in a way that specifically preserved the goal relevant

features of task performance.
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Introduction

Rhythmic movements performed during daily activities are

often triggered and sustained by external signals (e.g.,

auditory, visual, etc.) (Bove et al. 2007). Timing is often

critical to these repetitive movement tasks. During coor-

dinated movements, specific muscles must be activated

and/or inactivated in both the correct sequence and at

appropriate times (O’Boyle et al. 1996). Muscle fatigue can

alter muscle timing (Wilder et al. 1996; Strange and Berg

2007) and muscle coordination (Corcos et al. 2002;
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Goerlick et al. 2003; Billaut et al. 2005), thus impeding

task performance. However, exactly how muscle fatigue

affects the control of timing during repetitive tasks has not

been established.

Muscle fatigue is defined as a decrease in the force

generating capacity of a muscle or muscle group after

activity (Bigland-Ritchie and Woods 1984; DeLuca 1984;

Gandevia 2001). Fatigue is a combination of both central

and peripheral processes (Gandevia 2001). At the periph-

eral level, there is a loss of force generating capacity of

individual motor units (Selen et al. 2007). To maintain

force, the central nervous system can increase its drive to

the muscles. This causes already active motor units to fire

more frequently and causes larger motor units to be

recruited. This leads to an increased sense of effort

(Gandevia 2001). As fatigue progresses, the number of

active motor units decreases, muscle fiber conduction

velocity decreases (Farina et al. 2002), motor units fire

more slowly (Bigland-Ritchie and Woods 1984), and the

motor units become more synchronized (Arihara and Sa-

kamoto 1999). This leads to decreased mean or median

frequencies of the electromyogram (EMG) signal (Bigland-

Ritchie and Woods 1984) and eventually to task failure

(Hunter et al. 2004).

Muscle fatigue may impair a person’s ability to properly

execute a task. Reaction time during a choice reaction time

task increased with muscle fatigue (Lorist et al. 2002).

fMRI studies showed increased activity in the prefrontal

areas of the brain after muscle fatigue, which may explain

this increase in processing time (van Duinen et al. 2007).

At the muscle level, fatigue causes an increase in muscle

response time or ‘‘electromechanical delay’’ (Wilder et al.

1996), possibly due to the decrease in muscle fiber con-

duction velocity. Muscle fatigue may also affect the body’s

ability to successfully reproduce a movement. In a study of

rapid elbow flexion/extension, fatigue of the extensor

muscles caused an undershoot of the final position during

extension but had no affect on flexion (Jaric et al. 1999).

However, other studies showed no affect of fatigue on the

end-point trajectories in multi-joint tasks (Lucidi and

Lehman 1992; Côté et al. 2002; Heuer et al. 2002; Selen

et al. 2007). In each of these studies, it was presumed that

subjects changed their neural control (muscle activation) or

coordination strategies to achieve the same overall task

goal.

Little is known about how muscle fatigue affects

movement control. To determine this, it is important to

define what parameters humans actively try to control.

Since movement variability may increase with muscle

fatigue (Selen et al. 2007), there may be active higher level

processes occurring to combat this variability in order to

retain accuracy. Many multi-joint tasks exhibit an infinite

number of possible movement solutions (i.e., equifinality),

so determining an optimal control strategy is difficult. One

way to quantify the system’s degree of control is to study

how quickly subjects respond to deviations away from the

task goal. Cusumano and Cesari (2006) introduced the idea

of a ‘‘goal equivalent manifold’’ (GEM), which provided a

rigorous approach to quantifying motor redundancy in

goal-directed movements. This method defines an explicit

mapping between the variability of the body state variables

(e.g., position, speed) and variability of the goal variables

defined by the task. All possible solutions to the task lie

along the GEM. Using this approach one can determine

whether muscle fatigue affects the outcome (i.e., the

‘‘goal’’), the body, or both.

One way to determine how quickly deviations are cor-

rected is to quantify the temporal correlation structure of

the variations in a time series (Hausdorff et al. 1995; Peng

et al. 1995). When deviations in one direction are more

likely to be followed by deviations in the opposite direc-

tion, the time series exhibits ‘‘anti-persistent’’ correlations.

This indicates a highly controlled process. When deviations

in one direction are more likely to be followed by devia-

tions in the same direction (i.e., the deviations get bigger in

magnitude) the time series exhibits ‘‘persistent’’ correla-

tions. To date, only one group has examined the affect of

fatigue on such temporal correlations. Localized muscle

fatigue of the ankle plantarflexors caused the center of

pressure trajectories during quiet standing to become more

anti-persistent (Corbeil et al. 2003). These results sug-

gested that the actions taken by the postural control system

to maintain balance were more frequent post-fatigue

(Corbeil et al. 2003).

The goal of this project was to determine how muscle

fatigue affected the control of repetitive goal-directed

upper extremity movements. Subjects performed a repeti-

tive sawing-like task in time with a metronome until

volitional exhaustion. The increased force variability and

delayed reaction times associated with muscle fatigue

(Bigland-Ritchie and Woods 1984; Farina et al. 2002;

Lorist et al. 2002; van Duinen et al. 2007) suggest that task

performance should deteriorate with fatigue: i.e., that

timing errors would increase in magnitude. Alternatively,

subjects could alter their movement patterns to maintain

task performance: i.e., they would continue to achieve the

task goal (Côté et al. 2002; Selen et al. 2007). We

hypothesized that subjects would adopt a control strategy

that aligned their movements with the GEM for this task,

i.e., that deviations perpendicular to the GEM would be

much smaller in magnitude and would be corrected more

rapidly than deviations along the GEM. We further

hypothesized that while subjects would alter their move-

ment patterns to combat the effects of muscle fatigue, those

features of motor performance that were specifically ‘‘goal

relevant’’ would not change.
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Methods

Subjects

A total of 14 healthy right-handed subjects (nine male, five

female) participated. Their mean ± SD age, body mass,

and height were 27 ± 2.7 year, 72.5 ± 16.9 kg and

1.72 ± 0.10 m, respectively. All participants signed insti-

tutionally approved informed consent forms and were

screened to ensure that no subject had a history of medi-

cations, surgeries, injuries, or illnesses that might have

affected their upper extremity joint movements. To deter-

mine handedness, subjects completed a modified version of

the Edinburgh Inventory (Oldfield 1971). This inventory

indicates the level of dominance of one hand over another.

A score of 0/10 indicates a complete left-handed prefer-

ence, while a score of 10/10 indicates a complete right-

handed preference. All subjects scored at least 9/10 on the

Edinburgh Inventory, indicating a strong right-handed

dominance.

Experimental protocol

To monitor timing parameters during fatigue, we built a

device to simulate a repetitive work task similar to sawing

(Fig. 1). Subjects made bi-directional horizontal move-

ments in the anterior–posterior direction with their right

arm while holding a handle mounted to a carriage riding on

a low friction track attached to a support frame. Inertial

resistance was supplied by an adjustable set of weights

mounted on the carriage. Therefore, the resisting load was

always opposed to the direction of motion so the arm

extensors were the primary agonists during the pushing

stroke, while the flexors were the primary agonists on the

pulling stroke.

The device was adjusted so the subject’s legs were at a

90� angle with the ground. The height of the bar was

adjusted so the midpoint between the third and fourth fin-

ger was in line with the xiphoid process. The front/back

position of the chair was adjusted to be comfortable for the

subject and allow for a full range of motion. This was

defined as a maximum point almost to full extension (no

hyperextension) and a minimum point at the level of the

sternum.

To ensure the task resistance was comparable across

subjects, we first measured each subject’s maximum

pushing/pulling force using a second custom handle

attached to a Baseline� dynamometer that was rigidly

mounted on a table. Subjects alternately pushed and then

pulled on this rigidly fixed handle as hard as they could for

5 s each, three times, with 60 s of rest in between each

attempt. The average of these six peak forces applied

during each maximal effort defined that subject’s maxi-

mum isometric pushing/pulling strength.

Subjects were instructed to move in time with a met-

ronome. To ensure the task was dynamically equivalent

across subjects, the frequency of the metronome was set to

twice the average of the predicted resonant frequencies of

the upper arm and forearm segments of each subject (two

beats per cycle). The natural frequency, fn, of a rigid body

pendulum is

fn ¼
1

2p

ffiffiffiffiffiffiffiffi

mgr

Io

r

ð1Þ

where m is the mass of the limb segment, Io is the moment

of inertia of the limb segment about the axis of rotation,

and r is the distance from the axis of rotation to the center

of mass of the limb segment. Given each subject’s height

and weight, values for m, Io, and r were estimated from

standard anthropometric tables (Winter 2005). The average

natural frequency was 1.07 ± 0.03 Hz.

Subjects performed the sawing task with the weight

mounted on the carriage (Fig. 1) set to 15% of this maxi-

mum pushing/pulling force. The actual forces experienced

XH

Reflective Marker

Fig. 1 The experimental setup. Subjects were seated in a high-back

chair and restrained by belts across the waist and shoulders. A handle

with an adjustable weight stack was able to slide with low friction

across a horizontal track. This track was adjusted to the level of the

subject’s sternum. A single marker on top of the handle quantified the

anterior–posterior motions of the handle (XH). EMG electrodes (not

shown) recorded the electrical activity of nine major arm and torso

muscles used in the task
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by each subject were a function of this external load, their

hand acceleration (through F = m 9 a), and to some

extent friction. Because movement distance and frequency

were also both scaled to each subject, so were these

external forces. Therefore, the forces applied to the handle

by each subject were monitored throughout the trial by a

six-axis load cell (JR3 Inc., Woodland, CA, USA) mounted

at the base of the handle.

Our goal was to quantify the effects of muscle fatigue on

movement timing and coordination. However, our findings

could have been potentially seriously confounded if sub-

jects simultaneously exhibited changes due to learning of

the task. Humans can adjust grip force to accommodate

simple inertial loads imposed by typical rigid objects

within as little as 135 ms during a single movement (Bock

1993). When subjects lift objects of unusually high densi-

ties, they adapt their responses within fewer than five

movements (Gordon et al. 1993). Even for more complex

modifications of the arm’s inertial properties, adaptation is

typically completed within 40–50 movements (Sainburg

et al. 1999). Thus, we expected subjects would ‘‘learn’’ to

manipulate the simple inertial load used in the present

experiment vary quickly. Pilot testing confirmed that sub-

jects did indeed learn this task (i.e., their mean errors

approached zero) within just a few (\10) movements.

Thus, to ensure that our results were not influenced by

learning effects, subjects were asked to perform a warm up

trial, moving in time with the metronome, for a minimum

of 30 s (*30 cycles) or until they felt completely com-

fortable with the task. Subjects then rested for 1 min to

minimize any fatigue effects that may have occurred during

this practice period.

Subjects then performed the fatigue task by sawing until

they reached voluntary exhaustion. Once the fatigue trials

began, data collection did not begin until subjects visually

reached steady-state (an additional *20 cycles). Subjects

were given strong verbal encouragement to continue and

were told to ‘‘focus on the metronome and keep time with

the beat’’ when they exhibited any difficulty maintaining

timing. They were similarly instructed to maintain full

range of motion if they began making smaller movements

than specified.

A single reflective marker was placed on the top of the

handle (Fig. 1) to define the beginning and end of each

cycle. The 3D position of this marker was recorded con-

tinuously during each fatigue trial at 60 Hz using an

8–camera Vicon-612 motion analysis system (Oxford

Metrics, Oxford, UK). Nine preamplified EMG surface

electrodes (Delsys Inc., Boston, MA, USA) were attached

to the dominant arm and torso to record activity in the

middle trapezius, pectoralis major, deltoids (anterior, lat-

eral and posterior), triceps (lateral head), biceps, flexor

carpi radialis, and extensor carpi radialis longus. Electrodes

were positioned over each muscle according to accepted

recommendations (Konrad 2005). EMG and metronome

data were recorded continuously at 1,080 Hz during all

trials. Additionally, ratings of perceived exertion (RPE)

were recorded once every 3 min during each trial using the

modified Borg scale (Borg 1974, 1982), on which subjects

subjectively rated their level of fatigue on a scale from 0

(none at all) to 10 (maximal exertion).

Data analyses

Raw EMG data were band-pass filtered from 20 to 400 Hz.

Time points defining the beginning, middle, and end of

each cycle, as determined from the marker data were used

to split each EMG signal into the push stroke and pull

stroke. Median power frequencies (MdPF) of the EMG

signals were used to indicate muscle fatigue (DeLuca

1984). The MdPF for each stroke (either push or pull) was

computed from the power spectrum of the signal using

Welch’s method (MATLAB, Mathworks, Natick, MA,

USA). The MdPF for each complete movement cycle (push

plus pull) was calculated as the average of the MdPFs for

the push and pull strokes (MacIsaac et al. 2001). For each

muscle, the average MdPF for the first 224 cycles and the

last 224 cycles (approximately 3.5 min) were compared

using paired t-tests. This range was chosen because the

other analyses used (see below) required relatively long

time series. The need for longer time series was balanced

against the need to capture only the earliest stages of

fatigue. Data from two subjects for the middle deltoid and

one subject for the wrist flexor were omitted due to tech-

nical problems during data collection.

The kinematic data from the handle marker (Fig. 1)

were filtered using a fifth order low-pass Butterworth filter

with a cutoff frequency of 6 Hz. These marker data were

then resampled to 1,080 Hz using a piecewise cubic in-

terpolant in Matlab (Mathworks, Natick, MA, USA) to

match the sampling frequency of the metronome. The

beginning and end of each movement stroke (i.e., either

push or pull) were defined as the minimum and maximum

excursions of the marker in the anterior–posterior direction.

These minima/maxima were found by first differentiating

the marker trajectory data and then locating the zero

crossings of the velocity. For each movement cycle (i.e.,

push followed by pull), i, movement distance, d(i), was

defined as the maximum minus the minimum anterior-

posterior marker excursions for the push phase. Movement

speeds, s(i), were defined as the movement distance, d(i),

divided by the elapsed time for each movement cycle.

Timing errors, e(j) were calculated separately for each

stroke, j, by subtracting the time the handle marker reached

a maximum or minimum from the time of the nearest

metronome signal (Fig. 2; Chen et al. 1997; Ding et al.
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2002). Thus, negative timing errors indicated that the

subject lagged behind the metronome, while positive value

indicated that they were ahead of it.

To appropriately non-dimensionalize these variables

(Hof 1996), movement speed was rescaled by a factor

1/(H 9 fm), where H was the subject’s height and fm was

the frequency of the metronome. Movement distance was

rescaled by 1/H. The non-dimensional distance, D(i), was

equal to the non-dimensional speed, S(i), at every location

where the goal, fm, was reached. Because the same char-

acteristic length (H) was used to non-dimensionalize both

movement distance and speed, this choice did not affect the

GEM analyses. Time series of non-dimensionalized E(j),

D(i), and S(i) values were analyzed to quantify task per-

formance and the overall movement patterns subjects used

to achieve that performance.

In addition to these measures, we also used a performance

analysis based on the idea of body-goal variability mapping

(Cusumano and Cesari 2006). The primary goal of this task

was to maintain movement time, T, with the metronome on

each movement. However, there are an infinite number of

combinations of movement distance, D, and speed, S, that

will achieve this goal, so long as D/S = T. These [D, S]

combinations define the goal equivalent manifold (GEM)

for this task (Fig. 3). It should be noted that this GEM is

defined explicitly by the goal of the task itself. It exists

independent of our choice of analyses and independent of

whether and how (or even if) subjects choose to control their

movements in relation to the GEM. Given the existence of

this GEM, we can then decompose the variability in the body

movement parameters, D(i) and S(i), into components that

directly affect task performance (i.e., achieving the task

goal) and those that have no effect on achieving the task goal

(Fig. 3; Cusumano and Cesari 2006). Variability in D(i) and
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S(i) were thus decomposed into variability tangent to and

perpendicular to the GEM:

d
*

ið Þ ¼ dT ið ÞêT þ dP ið ÞêP ð2Þ

where d
*

ið Þ was the vector-valued error in movement time

for movement i, dT(i) was the corresponding magnitude of

the deviation tangent to the GEM, dP(i) was the corre-

sponding magnitude of the deviation perpendicular to the

GEM, and êT and êPwere unit vectors defining directions

tangent to and perpendicular to the GEM (Fig. 3). Any

scalar deviations dT ið Þ ¼ d
*

ið Þ � êT do not contribute to

errors in movement time, while the deviations dP ið Þ ¼
d
*

ið Þ � êP do. Thus, changes in the magnitude, variability,

and/or cycle-to-cycle dynamics of these dP(i) deviations

would indicate changes in motor performance that were

specifically ‘‘goal relevant.’’

Because the GEM is defined strictly by the task itself,

this does not mean that subjects will take advantage of the

GEM in regulating their movements. Computing the rela-

tive magnitudes of the variability of deviations in the dP

and dT directions provides some insight as to how people

regulate their movements. However, the ratio of these

variances alone does not directly test the issue of alignment

itself. To directly quantify how well each subject aligned

their movements with the GEM, we also performed a

principle components analysis (Daffertshofer et al. 2004)

on the data obtained from each subject during each trial.

We computed the eigenvector associated with the largest

eigenvalue of the covariance matrix. This vector is known

as the first principle component (PC1) because it defines

the direction in which the greatest variance occurs. We

then computed the angle (h) between this PC1 vector and

the GEM using the dot product. Values of h very close to

zero would indicate that subjects were indeed aligning their

movements with the GEM.

Detrended fluctuation analysis (DFA) was used to

determine the degree to which each time series exhibited

persistent or anti-persistent temporal correlations across

successive movements. This method has been used exten-

sively in the analysis of experimental time series because it

reduces noise effects and removes local trends making it less

likely to be affected by nonstationarities (Hausdorff et al.

1995). Complete details of the methodology are published

elsewhere (Peng et al. 1993, 1994, 1995; Hausdorff et al.

1995). In brief, the data sequence of length N was first

integrated and then divided into equal, non-overlapping

segments of length n. In each segment, the series was detr-

ended by subtracting a least squares linear fit to that segment.

The squares of the integrated, detrended data points (i.e,

residuals) were then averaged over the entire data set and the

square root of the mean residual, F(n), was calculated. This

process was repeated for different values of segment lengths,

n, ranging from 4 to N/4.

Typically, F(n) increases with n and a graph of log[F(n)]

versus log(n) will often exhibit an approximately power-

law relationship indicating the presence of scaling, such

that F(n) & na (Hausdorff et al. 1995; Peng et al. 1995).

These log[F(n)] versus log(n) plots were fitted with a linear

function using least squares regression. The slope of this

line defined the scaling exponent a (Fig. 4). A value of

a = 0.5 indicates the time series is completely uncorre-

lated (i.e., random white noise). When, a\ 0.5, the time

series contains anti-persistent temporal correlations. This

indicates a highly controlled process where deviations in

one direction are more likely to be followed by deviations

(i.e., corrections) in the opposite direction. Persistent

temporal correlations are present when 0.5 \ a B 1.0

(Hausdorff et al. 1995). In this case, deviations in one

direction are likely to be followed by deviations in the

same direction (i.e., the deviations are not immediately

corrected).

DFA was performed on the series of timing errors, E(j),

movement distances, D(i) and movement speeds, S(i), as

well as the deviations perpendicular to, dP(i), and along,

dT(i), the GEM. The first and last i[[1,..., 224] movement

cycles (i.e., j [ [1,..., 448] timing errors) from each

experiment were analyzed (approximately 3.5 min) to

obtain ‘‘early’’ and ‘‘late’’ fatigue measures. Early/Late

comparisons for means, standard deviations, and a of each

of these time series were made using paired t-tests (Minitab

14, Minitab Inc, State College, PA, USA). Comparisons

between directions (tangent vs. perpendicular to the GEM)

were also made using paired t tests.

Results

Subjects performed the task for 23.93 ± 10.44 min (range

8.64–41.20 min). At the end of the first three minutes,

subjects’ rates of perceived exertion (RPE) ranged from 2

to 6 (mean = 3.8), while at the beginning of the last seg-

ment all subjects had an RPE of 9 or higher. All subjects

exhibited localized muscle fatigue as measured by

decreased MdPF of the EMG signals (Fig. 5). These

decreases were statistically significant for six of the nine

muscles tested (P \ 0.039) and nearly significant

(P = 0.052 and P = 0.088) for two others.

To verify that subjects had sufficiently ‘‘learned’’ the

sawing task prior to data collection, the data from the first

240 cycles were divided into 24 non-overlapping bins of 10

movements each. Mean timing errors (E) and perpendicular

distances from the GEM (dP) were computed within each

bin to quantify performance accuracy. These data were

compared statistically using a single-factor ANOVA to test

for differences across the 24 bins. Neither timing errors nor

dP deviations changed over this period (P = 0.336 and
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0.770, respectively; Fig. 6). Indeed, the dP deviations ten-

ded to actually increase slightly, indicating that subjects

were slightly less able to maintain proper timing. Thus,

there was no evidence that any subject exhibited any fur-

ther learning during the early fatigue phases of these

experiments.

Mean values of the non-dimensional movement distance

(D), speed (S), and timing errors (E) were not affected by

muscle fatigue (P = 0.958, 0.245, and 0.404, respectively;

Fig. 7a). Timing errors were typically slightly negative,

indicating that subjects were responding to the metronome

signal rather than anticipating it. The magnitudes of the

variability (Fig. 7b) for the task parameters D and S were

unaffected by muscle fatigue (P = 0.695 and 0.538,

respectively). The variability of timing errors exhibited a

slight decrease with muscle fatigue that did not reach sta-

tistical significance (P = 0.192). However, a did decrease

significantly with muscle fatigue (Fig. 7c) for both move-

ment speed (P = 0.046) and timing errors (P = 0.037), but

not for movement distance (P = 0.472). On average, all of

these variables exhibited persistent temporal correlations

(0.5 \ a\ 1.0), suggesting that they were not tightly

controlled.

The overall patterns of the forces subjects applied to the

handle appeared quite similar during both early and late

fatigue (Fig. 8a). However, the average magnitudes of the

peak forces each subject applied did increase significantly

(P = 0.032) with muscle fatigue from 28.5 ± 6.0% to

30.7 ± 7.5% of each subjects maximum pushing/pulling

force. These increases, although small, were generally

consistent across subjects (Fig. 8b).

The initial GEM decomposition revealed a strong ten-

dency for subjects to align themselves with the GEM.

Deviations perpendicular to the GEM were much smaller

than those tangent to the GEM (Figs. 9, 10). There were

differences between subjects in their responses to fatigue,

however (Fig. 9). Some subjects increased both movement

amplitude and speed post-fatigue (Fig. 9a), while others

showed a decrease (Fig. 9d). A few subjects became less

variable after fatigue (Fig. 9b), while others were
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decreased for all nine muscles tested. These decreases were statis-

tically significant for the posterior deltoid (PD, P = 0.006), middle

deltoid (MD, P = 0.039), anterior deltoid (AD, P = 0.002), triceps

(TR, P \ 0.001), wrist flexors (WF, P = 0.006), and wrist extensors

(WE, P \ 0.001). Decreases in MdPF were nearly statistically

significant for the trapezius (TP, P = 0.052) and biceps (BI,
P = 0.088), but were not significant for the pectoralis (PC,

P = 0.760). Error bars indicate ±1 between-subject standard devi-

ations about the mean
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consistently unable to keep time with the metronome post-

fatigue (Fig. 9c).

The mean magnitudes of the deviations perpendicular to

(dP) and tangent to (dT) the GEM were significantly dif-

ferent (P \ 0.001; Fig. 10a). Fatigue did not affect the

mean deviations tangent to the GEM (P = 0.573). Devia-

tions perpendicular to the GEM tended to increase slightly

post-fatigue (P = 0.087). The magnitude of the variability

(Fig. 10b) was unaffected by muscle fatigue (dP:

P = 0.593, dT: P = 0.837). The magnitude of variability

perpendicular to the GEM was significantly less than that

tangent to the GEM (P \ 0.001). Deviations perpendicular

to the GEM were also significantly less persistent

(Fig. 10c) than deviations along the GEM (aP \ aT;

P \ 0.001). This indicated that the dP deviations were

corrected more quickly than dT deviations. There was also

a slight tendency for a(to decrease in late fatigue for dT

deviations (P = 0.122), whereas temporal correlations in

dP deviations were unaffected by fatigue (P = 0.497).

The principle components analyses (Fig. 11) revealed a

slightly different view of how well subjects aligned their

movements with the GEM. In most cases, the differences in

alignment (h) between the GEM and the first principle

component (PC1) of the subjects’ data were less than ±10�
(Early: 5.9� ± 7.8�, Late: 6.1� ± 6.8�). Across subjects,

however, h was significantly positive (P \ 0.001), as

determined from a single sample t-test with the null
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hypothesis that l = 0. There were no significant changes

in alignment of the data with the GEM between early and

late fatigue (P = 0.93). Thus, even though subjects did

exhibit positive ratios of dT to dP variability (Figs. 9, 10b),

their movements were not aligned exactly along the GEM

itself (Fig. 11b).

Discussion

Muscle fatigue can alter movement timing (Lorist et al.

2002; van Duinen et al. 2007). However, little is known

about how muscle fatigue affects performance and control in

repetitive tasks. This study was conducted to determine how

muscle fatigue affected task performance during a repetitive

sawing-like task. We analyzed the magnitudes, variations

and temporal correlations of movement-to-movement tim-

ing errors, E(j), and cycle-to-cycle distances, D(i), and

speeds, S(i). We also analyzed performance by decomposing

variations in the task variables (D and S) into those that

directly affected achieving the task goal (dP) and those that

did not (dT), by identifying the goal equivalent manifold

(GEM) of all valid solutions to this task. Using these anal-

yses, we could determine if muscle fatigue affected overall

task performance at the ‘‘goal’’ level, the biomechanical

movement patterns subjects used to achieve this perfor-

mance at the ‘‘body’’ level, or both.

The increased rates of perceived exertion (RPE) and

decreased EMG median frequencies (Fig. 5) demonstrate

that the sawing task did induce significant muscle fatigue in

these subjects. The primary task goal was to perform the

reaching task in time with the metronome. The lack of

significant changes in average movement distance, speed,

and timing errors (Fig. 7a) demonstrate that overall task

performance did not change with fatigue. Similar results

were reported for other upper extremity repetitive tasks

(Lucidi and Lehman 1992; Côté et al. 2002; Heuer et al.

2002; Selen et al. 2007). The trend for mean deviations

perpendicular to the GEM (dP) to increase slightly (but not

quite significantly) with fatigue (Fig. 10a) suggests that

there was some (albeit slight) deterioration in task perfor-

mance. However, the lack of any significant changes

(P [ 0.49) in either the variability (Fig. 10b) or the tem-

poral correlation structure (Fig. 10c) of dP deviations or in

the alignment of subjects’ movements with the GEM

(Fig. 11) shows that subjects also maintained the same goal

relevant performance with respect to the GEM.

Conversely, the cycle-to-cycle temporal persistence (a)

of movement speed (S) and timing errors (E) both
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significantly decreased with fatigue (Fig. 7c). This indi-

cates that subjects corrected timing errors more quickly

when their muscles were fatigued. These decreases in a are

supported by similar decreases found with fatigue during

standing (Corbeil et al. 2003). Subjects also exhibited

small, but fairly consistent increases in the peak forces they

applied to the handle (P = 0.032; Fig. 8b). Likewise, 6 of

the 14 subjects shifted their operating point along the GEM

by making either longer faster movements (Fig. 9a) or

shorter slower movements (Fig. 9d) with fatigue. The

remaining subjects exhibited other qualitative changes in

their movement patterns relative to the GEM (Fig. 9b, c).

Together, these findings indicate that subjects significantly

altered their biomechanical movement patterns in response

to fatigue. However, these changes were made in such a

way that those features of motor performance that were

specifically ‘‘goal relevant’’ (Figs. 10, 11) did not change.

The goal equivalent manifold (GEM) approach adopted

here is similar in some respects to the uncontrolled mani-

fold (UCM) approach described in recent literature (Scholz

and Schöner 1999; Latash et al. 2002; Schöner and Scholz

2007). Both approaches identify a sub-set of body-level

variables, assumed to have the structure of a manifold, that

define a full set of motor solutions that equally achieve a

given task goal (Cusumano and Cesari 2006). The UCM

approach then attempts to tie the resulting geometrical

structure of this manifold directly to control by assuming

control will be exerted only orthogonal to this manifold and

not along it. Based on this assumption, putative control

variables are identified by quantifying the ratio of the

variance components parallel and perpendicular to the

manifold (Latash et al. 2002). Conversely, the GEM

approach makes no a priori assumptions about which

variables are being ‘‘controlled.’’ This is because the GEM

exists even for purely passive systems where no control is

applied at all. Also, there is no particular reason to nec-

essarily associate ‘‘control’’ with only one of the variance

components (Cusumano and Cesari 2006). If (but only if)

the body variables being analyzed do turn out to be the

variables that are controlled, then the GEM would also be a

UCM. However, this is not necessary and the ratio of the

parallel and perpendicular variance components alone does

not guarantee this. The GEM approach is thus both more

general and more precise than the UCM approach.

Additionally, there were several technical differences

between the analyses presented here and those associated

with the UCM approach. First, the UCM approach assumes

that stability can be equated with variability (Latash et al.

2002; Schöner and Scholz 2007). However, standard

deviations only quantify the average magnitudes of the

variations that occur across many cycles and do not directly

quantify how a system responds to perturbations from one

cycle to the next (Dingwell and Cusumano 2000; Dingwell
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and Kang 2007). The DFA analyses presented here

(Figs. 4, 7c, 10c) provide an additional measure of cycle-

to-cycle dynamics that is independent of variability (Peng

et al. 1994; Hausdorff et al. 1995). Furthermore, variance

ratios alone (Latash et al. 2002) do not directly quantify

how closely each subject’s movements are aligned with the

GEM. To assess this, we also conducted principle com-

ponents analyses (PCA; Fig. 11) on our data. While

previous authors have commented on the relationship

between UCM and PCA (Schöner and Scholz 2007), the

present analyses are the first we know of to simultaneously

apply both approaches to directly assess alignment with the

GEM. Even though subjects exhibited greater variability

along the GEM than perpendicular to it (Fig. 10b), their

performance was not aligned exactly with the GEM

(Fig. 11). This suggests, contrary to the UCM interpreta-

tion, that there was indeed at least some coupling between

performance (and likely also control), both perpendicular

to and along the GEM.

The results presented here provide some new insights into

the general nature of movement timing control and how this

control is affected by muscle fatigue. For example, it is clear

that subjects altered their biomechanical movement patterns

in response to fatigue only in such a way that they specifi-

cally preserved the goal relevant features of their motor

performance. However, these findings do not reveal which

specific variables were being ‘‘controlled’’ or whether the

changes that were observed were caused by physical chan-

ges in the plant (i.e., the musculoskeletal system being

controlled), by changes in the underlying control policy (i.e.,

the specific instructions that define how to produce the

desired output) each subject adopted, or possibly both. This

issue is particularly complicated in the context of fatigue

since the physical properties of the end effectors (i.e., the

muscles) change due to fatigue. Therefore, it is possible that

even the same governing control policy could induce dif-

ferent behaviors of these effectors. Therefore, contrary to the

typical UCM interpretation (Schöner and Scholz 2007), we

make no claims that subjects actively controlled their

movements perpendicular to the GEM but not along it

(Cusumano and Cesari 2006), nor that this control was

preserved in the face of fatigue. What we can say is that the

lack of fatigue-related changes in the goal relevant (i.e., dP)

performance measures (Figs. 10, 11) suggests that any

peripheral changes that might have directly affected these

variables were compensated for by concurrent changes in

the control policies subjects adopted.

As subjects tried to maintain time with the metronome,

they oscillated between leading it and lagging behind it

(e.g., Fig. 2b). The mean errors were negative (Fig. 7a),

indicating that most subjects reacted to the stimulus rather

than anticipating it. This result differs from previous

findings on finger tapping (Aschersleben 2002). One rea-

son for this is likely the larger inertial load involved in

this task. This was substantiated by the DFA results

(Figs. 7c, 10c), which showed that all five time series

measures quantified in this study exhibited statistical

persistence (i.e., a [ 0.5). To exhibit anti-persistence (i.e.,

a\ 0.5), subjects would have to be able to make imme-

diate adjustments to each movement based on the error

from the previous movement (e.g., Fig. 4; Bottom row).

The significant inertial load involved in this task likely

did not allow for such rapid corrections to be possible.

Nevertheless, the finding that the dP deviations perpen-

dicular to the GEM were significantly less persistent than

the dT deviations along the GEM (i.e.,(aP \ aT; Fig. 10c)

strongly suggests that subjects adopted a general control

strategy that corrected deviations in dP more rapidly than

deviations in dT.

As mentioned, all five time series measures quantified in

this study exhibited statistical persistence (i.e., a [ 0.5). It

has previously been proposed that findings of a [ 0.5 from

the DFA algorithm used here indicate the presence of ‘‘long-

range correlations’’ such that the underlying time series can

be characterized as having an infinite decorrelation time

(Peng et al. 1993, 1994, 1995; Hausdorff et al. 1995).

However, this algorithm was recently shown to yield ‘‘false

positives’’ for many processes with finite correlation times

(so-called ‘‘short-range correlations’’). For example, many
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linear auto-regressive models can also result in findings of

a[ 0.5 (Maraun et al. 2004; Gates et al. 2007). Thus, here

we make no claims that these a values represent true ‘‘long-

range correlations’’ (Maraun et al. 2004). For our purposes,

however, a still remains a valid measure of how rapidly the

time series is fluctuating and thus provides a valid indication

of how rapidly subjects were correcting deviations from

each movement to the next.

We expected that the variability of the performance

measures might increase with muscle fatigue (Selen et al.

2007). Instead, the variability of the timing errors actually

decreased while the distance, speed, and deviations per-

pendicular and tangent to the GEM remained relatively

constant (Figs. 7, 9). Although kinematic variability and

force variability have been shown to increase in static tasks

such as target tracking (Selen et al. 2007), these changes

have not been documented in goal-directed movement tasks

that require varying forces to achieve the goal.

Despite making the task as dynamically equivalent as

possible, differences between subjects remained, particu-

larly for time to exhaustion. One reason for this is that

since this task was inherently redundant, there were

numerous alternative modalities subjects could use to

compensate for those that were altered by fatigue. Thus, it

is easily possible different subjects compensated for fatigue

in different ways. For example, each subject showed a

unique pattern as to which muscles were most affected by

fatigue during the task. By using different muscles, they

were still able to perform the task accurately with no

increase in movement variability. So while overall muscle

force variability may increase (Selen et al. 2007), this

effect could be counteracted by changing coordination

strategies to use less fatigued muscles. The between-sub-

ject variability observed in this study was similar to that

observed in previous studies of fatigue in complex multi-

joint tasks (Nussbaum et al. 2001; von Tscharner 2002;

Madigan and Pidcoe 2003; Voge and Dingwell 2003).

Another possible explanation is that the subjects fati-

gued to different degrees. Subjects could stop the

experiment as soon as they felt they could no longer con-

tinue the task. This ‘‘threshold’’ could be different for the

different subjects, depending on their motivation level and

previous experience pushing themselves past the early

stages of fatigue. To test this possibility, we correlated the

difference between ‘‘early’’ and ‘‘late’’ fatigue for each

dependent measure to each subject’s time to exhaustion.

Early-late differences in variability of movement distances

(D) were positively correlated with time to exhaustion

(r2 = 37.8%; P = 0.019). Subjects who performed longer

showed greater decreases in movement distance variability,

while subjects who stopped sooner showed greater

increases. Early-late differences in a of timing errors (E)

were negatively correlated with time to exhaustion

(r2 = 29.8%; P = 0.044). Subjects who performed longer

showed smaller decreases to slight increases in a of timing

errors. None of the other 13 comparisons were statistically

significant (0.4% \ r2 \ 23.2%; 0.82 [ P [ 0.08). Thus,

while time to exhaustion had some impact on some of our

results, the overall effects were not particularly strong.

It is possible that subjects experienced mental fatigue as

well as muscle fatigue, since trials lasted up to 41 min and

were fairly tedious. Cognitive factors can affect these

processes during finger tapping where increasing the

mental challenge of the task can lead to more persistent

(i.e., larger a) temporal correlations (Ding et al. 2002).

Previous work using fMRI has shown that after motor

fatigue, activity in the prefrontal areas of the brain

increases during reaction time task performance (van

Duinen et al. 2007). This results in increased reaction times

during auditory choice reaction time tasks (Lorist et al.

2002). Therefore, if the task became more mentally chal-

lenging, it is possible that this could offset the effect of

muscle fatigue in some subjects. This may explain why the

affect in a(is smaller in subjects who performed the task for

a longer duration.

In summary, subjects significantly altered their biome-

chanical movement patterns in response to muscle fatigue.

Muscle fatigue caused the deviations in movement speed

and timing errors to become more anti-persistent. This

suggests that subjects made more frequent corrections when

their muscles were fatigued. Subjects also increased the

peak forces they applied to the handle and exhibited qual-

itative changes in their behavior relative to the GEM when

they were fatigued. However, the lack of significant chan-

ges in either the variability or temporal dynamics of the dP

deviations perpendicular to the GEM demonstrate that these

changes were made only in such a way that they specifically

preserved the goal relevant features of task performance.
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Latash ML, Scholz JP, Schöner G (2002) Motor control strategies

revealed in the structure of motor variability. Exerc Sport Sci

Rev 30:26–31

Lorist MM, Kernell D, Meijman TF, Zijdewind I (2002) Motor

fatigue and cognitive task performance in humans. J Physiol

545:313–319

Lucidi CA, Lehman SL (1992) Adaptation to fatigue of long duration

in human wrist movements. J Appl Physiol 73:2596–2603

MacIsaac D, Parker PA, Scott RN (2001) The short-time Fourier

transform and muscle fatigue assessment in dynamic contrac-

tions. J Electromyogr Kinesiol 11:439–449

Madigan ML, Pidcoe PE (2003) Changes in landing biomechanics

during a fatiguing landing activity. J Electromyogr Kinesiol

13:491–198

Maraun D, Rust HW, Timmer J (2004) Tempting long-memory—on

the interpretation of DFA results. Nonlinear Processes Geophys

11:495–503

Nussbaum MA, Clark L, Kirst M, Rice K (2001) Fatigue and

endurance limits during intermittent overhead work. AIHA J

62:446–456

O’Boyle DJ, Freeman JS, Cody FWJ (1996) The accuracy and

precision of timing of self-paced, repetitive movements in

subjects with Parkinson’s disease. Brain 119:51–70

Oldfield RC (1971) The assessment and analysis of handedness: the

Edinburgh inventory. Neuropsychologia 9:97–113

Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger

AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E

49:1685–1689

Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantifica-

tion of scaling exponents and crossover phenomena in

nonstationary heartbeat time series. Chaos 5:82–87

Peng CK, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger

AL (1993) Long-range anticorrelations and non-Gaussian

behavior of the heartbeat. Phys Rev Let 70:1343–1346

Sainburg RL, Ghez C, Kalakanis D (1999) Intersegmental dynamics

are controlled by sequential anticipatory, error correction, and

postural mechanisms. J Neurophysiol 81:1045–1056
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