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Abstract Despite the beneWt high frequency stimulation
(HFS) of the subthalamic nucleus (STN) has on motor
symptoms of Parkinson’s Disease (PD), accumulating data
also suggest eVects of STN-HFS on non-motor behavior.
This may be related to the involvement of the STN in the
limbic basal ganglia-thalamocortical loops. In the present
study we investigated the eVect of acute STN-HFS on neu-
rotransmission in associated structures of these pathways,
i.e. the nucleus accumbens (NAc) core and shell as well as
the ventral tegmental area (VTA) using in vivo microdialy-
sis. Experiments were performed in anaesthetized naïve rats

and rats selectively lesioned in the substantia nigra pars
compacta (SNc) or VTA. We demonstrate that: 1. STN-
HFS leads to an increase in DA in the NAc, 2., these eVects
are more pronounced in the NAc shell than in the NAc
core, 3. STN-HFS leads to a decrease in GABA in the
VTA, 4. preceding lesion of the SNc does not seem to aVect
the eVect of STN-HFS on accumbal DA transmission
whereas 5. preceding lesion of the VTA seems to prohibit
further detection of DA in the NAc. We conclude that STN-
HFS signiWcantly aVects neurotransmission in the limbic
system, which might contribute to explain the non-motor
eVects of STN-HFS.
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Introduction

High frequency stimulation (HFS) of the subthalamic
nucleus (STN) improves motor symptoms in Parkinson’s
Disease (PD) (Deuschl et al. 2006; Kumar et al. 1998; Lim-
ousin et al. 1998). However, HFS of the STN or closely
adjacent structures also aVects psychiatric functions:
altered mood and depressive symptoms (Bejjani et al. 2002;
Czernecki et al. 2005; Doshi et al. 2002; Funkiewiez et al.
2004, 2006; Okun et al. 2003; Thobois et al. 2002; Witt
et al. 2006) with suicide (Albanese et al. 2005), transient
manic episodes partly with psychotic symptoms (Herzog
et al. 2003; Mandat et al. 2006), mirthful laughter, hilarity
(Krack et al. 2001), acute reinforcing psychotropic eVects
(Funkiewiez et al. 2003; Romito et al. 2002) as well as
reduction of craving behavior (Witjas et al. 2005) and
obsessive compulsive symptoms (Fontaine et al. 2004;
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Mallet et al. 2002) have been observed in PD patients
receiving STN-HFS.

These side eVects may be related to the subdivision of
the STN in three functionally segregated territories: a
motor, an associative and a limbic subregion. Thus, the
STN interconnects not only to the motor but also to the lim-
bic basal ganglia-thalamocortical circuitry, involving
orbitofrontal and cingulated cortices, nucleus accumbens
(NAc), limbic globus pallidus and ventral putamen, sub-
stantia nigra (SN), and ventral tegmental area (VTA) (Alex-
ander et al. 1986, 1990; Alexander and Crutcher 1990).
Consequently, PET studies in PD-patients demonstrate that
STN-HFS increases activity (Ceballos-Baumann et al.
1999; Limousin et al. 1997; Stefurak et al. 2003) (or rather
reduces abnormal background noise (Payoux et al. 2004) in
the anterior cingulate and prefrontal cortex as well as the
temporal and parietal cortex (Hilker et al. 2004). To date,
however, little is known about the mechanisms of how
STN-HFS modiWes non-motor behavior of PD patients.
One way of addressing this question is to investigate the
neurochemical consequences of STN-HFS in relevant lim-
bic brain structures via in vivo microdialysis in animals.

Previous experimental studies have demonstrated that
STN-HFS modulates extracellular levels of GABA and glu-
tamate in the striatum and substantia nigra (Bruet et al.
2003; Windels et al. 2000, 2003) and increases DA-trans-
mission in the dorsolateral striatum of naïve and hemipar-
kinsonian rats. This eVect has been suggested to contribute
to the clinical motor improvement and the reduction of
DAergic medication in PD patients under chronic STN-
HFS (Lee et al. 2006; Meissner et al. 2001, 2003; Paul et al.
2000). With the functional subdivision of the STN and its
integration into motor as well as limbic circuitries, it is pos-
sible that STN-HFS may also induce neurochemical
changes in limbic structures which might attribute to the
co-occurrence of psychiatric eVects under STN-HFS.

The present study investigates the impact of STN-HFS
on the DAergic transmission in the NAc and GABAergic
transmission in the VTA using in vivo microdialysis in rats.
For further investigation of the pathways involved in medi-
ating the STN-HFS-dependent eVects on DA-transmission
in the NAc, two separate groups were included, receiving
selective 6-hydroxydopamine (6-OHDA)-lesions of either
the substantia nigra pars compacta (SNc) or the VTA prior
to STN-HFS and microdialysis analysis.

Material and methods

Animals

Principles of laboratory animal care (NIH publication No.
86–23, revised 1985) and of the European Communities

Council Directive (86/609/EEC) for care of laboratory ani-
mals were followed as well as guidelines of local ethical
authorities where applicable. Naive male Wistar rats (Har-
lan-Winkelmann, Borchen, Germany; n = 78, 280–320 g
during the experiment) were housed in a temperature- and
humidity-controlled vivarium with a 12-h light/dark cycle.
Food and water were available ad libitum. All experiments
were performed during day time and in anaesthetized rats
only.

Surgery

All surgeries were performed under general anesthesia (for
microdialysis sampling: chloral hydrate, 400 mg/kg i.p.;
Merck, Darmstadt, Germany, for stereotaxic lesions: pento-
barbital, 60 mg/kg, i.p.; Sigma Aldrich, Taufkirchen,
Germany (Meissner et al. 2001; Paul et al. 2000). For in vivo
microdialysis, microdialysis probes were stereotaxically
inserted into the left NAc core (1.6; L: 1.4; V: ¡7.4), the left
NAc shell (A: 1.6; L: 0.7; V: ¡7.7; CMA 11), or the probe
was inserted suchlike that it collected simultaneously from
the left NAc core and shell (A: 1.7; L: 1.3; V: ¡8.2), or the
VTA (A: ¡6.0; L: 0.6; V: ¡8.3; coordinates with respect to
bregma (Paxinos and Watson 1997). Microdialysis probes
for separate measures in the NAC core and shell were
0.24 mm in diameter and 1 mm in length (CMA 11, CMA,
Solna, Sweden), and for simultaneous collection from the
NAc core and shell 0.5 mm in diameter and 2 mm in length
(CMA 12). During the same surgical session, a concentric
bipolar stimulation electrode (SNEX 100; Rhode Medical
Instruments, Woodland Hills, CA, USA) was placed into the
left STN in all animals (A: ¡3.8; L: 2.5; V: 7.6).

Selective 6-OHDA lesions were performed 2 weeks
prior to STN-HFS and microdialysis sampling. 7 �g 6-
OHDA (Sigma Chemical Co., St. Louis, MO, USA), dis-
solved in 2 �l saline containing 0.1% ascorbic acid, were
applied stereotaxically into the left SNc (A: ¡5.3; L: 2.3;
V: ¡7.2) or the left VTA (A: ¡5.3; L: 0.6; V: ¡7.8)
through a 25 gauge stainless steel canula attached to a 20 �l
Hamilton microsyringe.

Microdialysis and HFS

Microdialysis procedures were performed as previously
described (Meissner et al. 2001; Paul et al. 2000). BrieXy,
microdialysis probes were perfused with artiWcial cerebro-
spinal Xuid (125 mM NaCl, 1 mM CaCl2, 1 mM
MgCl2 £ 6 H2O, 2.5 mM KCl, 5 mM Na2So4, 2.7 mM
NaHCO3, 0.5 mM NaH2PO4 £ 2 H2O, 2.4 mM NaH2PO4

(pH 7.4) adjusted with H3PO4) with a constant Xow rate of
1.1 �l per min. Samples were collected at 20-min intervals
in 5 �l of 1 M perchloric acid for immediate analysis
of extracellular concentrations of DA, its metabolites
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3,4-dihydroxyphenyl-acetic acid (DOPAC) and homova-
nillic acid (HVA) by HPLC (Synergi 4 � Hydro-RP 80A,
150 £ 2 mm, Phenomenex, AschaVenburg, Germany) and
electrochemical detection (LC-4C, BAS, West Lafayette,
USA). GABA was analyzed by HPLC after precolumn
derivatization with phthaldialdehyde (Merck) and Xuores-
cence detection. Prior to stimulation, samples were col-
lected until at least four consecutive stable values were
measured. Thereafter, one sample was collected during
STN stimulation and Wve thereafter. For STN-HFS the fol-
lowing parameters were applied: alternating pulses (130 Hz
for HFS, pulse width 60 �s) with an amplitude of 300 �A in
a constant current mode for 20 min using an isolated stimu-
lator (Coulbourn Instruments, Allentown, PA, USA). Fre-
quencies of 130 Hz and a narrow pulse duration of 60 �s
were chosen according to the parameters generally applied
in rats for inducing net inhibitory eVects of the STN
(Benazzouz et al. 1995; Meissner et al. 2003; Salin et al.
2002; Windels et al. 2000) and were comparable to the clin-
ical application (Moro et al. 2002). Current intensities of
300 �A were chosen to allow comparability with values
that have previously been shown to induce behavioral and
biochemical changes (Boulet et al. 2006; Meissner et al.
2001, 2003).

Control animals received no stimulation (insertion of the
electrodes and connection to the stimulation device only).
Microdialysis experiments were performed in anaesthetized
rats only.

Histological veriWcation and immunocytochemistry

After the experiment all animals were transcardially per-
fused with 0.1 M phosphate buVer saline and 4% parafor-
maldehyde in deep anesthesia. Free Xoating 40 �m thick
coronal sections of the NAc (+2.9 to +0.5), the STN (¡3.4
to ¡4.3), the SNc (¡4.8 to ¡6.3), and the VTA (¡4.52 to
¡6.3) were prepared. To verify location of electrode,
microdialysis probe, and injection canula, every second
section of the respective region was mounted and processed
for cresyl violet (CV) staining. Only rats with accurate
placement of all devices were included into data analysis.

For assessing the extent of the toxic lesions, tyrosine
hydroxylase (TH) immunostaining was performed in rats
that previously received 6-OHDA application into the
SNc or the VTA (plus respective controls). One-in-six
series of 40-�m sections (microtome setting) from the
rostrocaudal extent of the SNc and the VTA (240 �m
apart) were incubated with monoclonal antisera against
TH (Sigma Chemical Co., diluted at 1:500). Immuno-
staining was visualized by avidin-biotin complex and
3,3�-diaminobenzidine as described previously (Winter
et al. 2000, 2006). With this, a total of eight nigral and
VTA-sections per animal, respectively, were stereologically

analyzed for TH-positive cells as described previously
(Kempermann et al. 1997; Steiner et al. 2004, 2006).
Shortly, the boundaries of the SNc and the VTA were
determined with reference to internal anatomic landmarks
(Paxinos and Watson 1997; Steiner et al. 2006). The total
numbers of positive cells were determined with the opti-
cal fractionator method using the semi-automated stereol-
ogy system StereoInvestigator and as implemented in the
software (MicroBrightWeld, Magdeburg, Germany). The
setup uses a Hitachi HV-C20A video camera attached to a
Leica DM-RXE microscope. The coeYcient of error (CE,
ranging between 0.05 and 0.1) due to estimation was cal-
culated according to Gundersen and Jensen (Gundersen and
Jensen 1987). For quantiWcation of TH-labeled cells,
numbers were expressed as percentages of contralateral
unlesioned side.

Data analysis

Baseline for microdialysis samples was deWned as the
mean of the last four dialysate samples collected before
HFS/sham-HFS. Stability of baseline values was assessed
with respect to raw data. All data then were converted to
percent of baseline (deWned as 100%) in relation to the
peak area of the chromatograms (Meissner et al. 2001).
Statistical analysis was performed using two-way
repeated measures (RM) ANOVA, with stimulation (HFS/
control) or lesion (VTA/SNc/control) as the between sub-
jects factor and time bin as the repeated within-subjects
factor. If appropriate, this was followed by a Holm Sidak
post hoc t-tests corrected for multiple comparisons. A
probability level of P < 0.05 was considered signiWcant.
Data are shown as mean § SEM. Baseline values are
given as fmol/20 �l dialysate for DA and pmol/20 �l dial-
ysate for DOPAC and HVA.

Results

Figure 1a presents a representative photomicrograph of a
coronal section taken from a rat implanted with an elec-
trode in the STN. Figure 1b show schematic reconstruc-
tions of the stimulating electrodes, placed correctly in the
STN of all experimental animals included into the study.

Experiment 1

For investigating the eVects of STN-HFS on extracellular
DA in the NAc, 41 rats were divided into two subgroups.
For the Wrst group (1A; HFS, n = 13; controls, n = 9),
microdialysis sampling was performed in the NAc core, for
the second group (1B; HFS, n = 12, controls, n = 7) in the
NAc shell.
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STN-HFS and DAergic transmission in the NAc core

Two-way RM ANOVA revealed a signiWcant diVerence
across stimulation as well as time and a signiWcant interac-
tion between the factors stimulation/sham stimulation and
time for DOPAC and HVA, but not for DA (Table in
Fig. 2). STN-HFS led to a reversible and non-signiWcant
trend towards increasing extracellular levels of DA when
compared to baseline and non-stimulated controls
(P > 0.05; Fig. 2a). Furthermore, STN-HFS signiWcantly
and reversibly increased extracellular levels of DOPAC,
and HVA when compared to baseline (DOPAC: t = 0–40 min;
HVA: t = 20–60 min P < 0.05) and non-stimulated controls
(DOPAC: t = 0–60 min; HVA: t = 20–60 min, P < 0.05;
Fig. 2b, c).

STN-HFS and DAergic transmission in the NAc shell

Two-way RM ANOVA revealed a signiWcant diVerence
across stimulation as well as time and a signiWcant interac-
tion between the factors stimulation/sham stimulation and
time for all parameters investigated, i.e., DA, DOPAC, and
HVA (Table in Fig. 2). STN-HFS signiWcantly and revers-
ibly increased extracellular levels of DA, DOPAC, and
HVA when compared to baseline (DA: t = 0–60 min;
DOPAC: t = 0–80 min; HVA: t = 0–100 min; P < 0.05) and
non-stimulated controls (DA: t = 20–60; DOPAC: t = 0–120;
HVA: t = 0–120; P < 0.05; Fig. 2d–f). Maximal increases
of extracellular concentrations of all parameters were

signiWcantly more pronounced in the NAc shell than the
NAc core (t-test, P < 0.05).

Experiment 2

In 16 rats (HFS, n = 8; controls, n = 8) the eVects of STN-
HFS on extracellular contents of GABA in the VTA was
investigated.

Two-way RM ANOVA revealed a signiWcant diVerence
across stimulation [F(1, 84) = 52.68; P < 0.001] as well as
time [F(6, 84) = 11.4; P < 0.001] and a signiWcant interac-
tion between the factors stimulation/sham stimulation and
time [F(6, 84) = 3.4; P = 0.005]. As shown in Fig. 4, STN-
HFS signiWcantly decreased extracellular levels of GABA
in the VTA when compared to baseline and non-stimulated
controls (t: 0–120, P < 0.05; Fig. 3). Notably, baseline val-
ues of HFS-stimulated and controls were not stable
{ANOVA, HFS: [F(3, 39) = 15.04; P < 0.05]; controls:
[F(3, 39) = 11.825; P < 0.05]}. The Wrst stimulation value,
however, was signiWcantly diVerent to the mean baseline
and the last baseline value indicating that the drop in
GABA following HFS did not represent the extension of a
trend originating during baseline sampling, but was an
independent Wnding.

Experiment 3

To investigate the involvement of the SNc and the VTA in
mediating the potential eVects of STN-HFS on DAergic

Fig. 1 PostMortem Histology. 
a Photomicrograph of a coronal 
section stained with cresyl violet 
and taken from a representative 
rat showing the tip of the elec-
trode with respect to bregma as 
assessed by small insertion trau-
ma. b–g Schematic reconstruc-
tions of electrodes in the STN of 
experimental animals of the fol-
lowing experimental paradigm: 
b Exp. 1: HFS, microdialysis in 
NAc core, c Exp. 1: HFS, micro-
dialysis in NAc shell, d Exp. 2: 
HFS, microdialysis in VTA, e 
Exp. 3: HFS, microdialysis in 
NAc core/shell, preceding lesion 
of VTA, f Exp. 3: HFS, microdi-
alysis in NAc core/shell, preced-
ing lesion of SNc, g Exp. 3: 
HFS, microdialysis in VTA, no 
preceding lesion
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neurotransmission in the NAc, 21 rats were subdivided into
three groups depending on pre-treatment 2 weeks prior to
microdialysis sampling and HFS: 6-OHDA lesion of the
SNc (n = 8) versus 6-OHDA lesion of the VTA (n = 8) ver-
sus no lesion (n = 5). Microdialysis sampling was per-
formed simultaneously in the NAc core and shell.

Immunocytochemistry

SNc-lesioning resulted in a 88.66 § 9.97% reduction of TH
positive nigral cells when compared to contralateral (control)

side (Fig. 4a–c). VTA-lesioning resulted in a 81.98 § 8.10%
reduction of TH positive VTA cells when compared to con-
tralateral (control) side (Fig. 4b–d). Only animals were
included, in which the SNc- or VTA-lesioning resulted in a
loss of not more than 15 or 30% of TH expressing neurons in
the adjacent VTA or SNc, respectively (Fig. 4b–c).

Microdialysis

Following VTA-lesion, DAergic metabolites remained
below detection limit of the HPLC system applied, in all

Fig. 2 Neurotransmission in the 
NAc under STN-HFS. a–f 
Extracellular DA (A + D), 
DOPAC (B + E), and HVA 
(C + F) in the NAc core (A¡C) 
and NAcs shell (D¡E) before, 
during and after STN-HFS. 
Baseline concentrations of the 
NAc core were 
21.15 § 1.05 fmol DA/20 �l, 
14.36 § 0.35 pmol DOPAC/
20 �l, and 8.57 § 0.37 pmol 
HVA/20 �l. Baseline concentra-
tions of the NAc shell were 
37.47 § 3.17 fmol DA/20 �l, 
12.75 § 1.08 pmol DOPAC/
20 �l, and 6.63 § 0.40 pmol 
HVA/20 �l. Baseline concentra-
tions of DA, DOPAC, and HVA 
were signiWcantly higher in the 
NAc shell than in the NAc core 
(P < 0.05). Data are expressed as 
mean § SEM. §P < 0.05 versus 
baseline, *P < 0.05 versus non-
stimulated controls. The dead 
space in the microdialysis tubing 
is responsible for a lag time of 
10 min before analysis. 
Filled rectangular: duration 
of HFS, Wlled circle: HFS of the 
STN, open circle: controls. 
The table below the Wgure 
describes the two-way ANOVA 
assessing the eVect of STN-HFS 
and time on transmission of DA 
and its metabolites in the NAc. 
For further details see text
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animals investigated and under both, baseline and stimula-
tion conditions. VTA-lesioned animals were consequently
not included in further statistical analysis. For the control
and SNc-lesioned animals, two-way RM ANOVA solely
revealed a signiWcant diVerence across time for both,
DOPAC, and HVA (Table in Fig. 5). In unlesioned ani-
mals, STN-HFS signiWcantly and reversibly increased
extracellular accumbal levels of DOPAC and HVA when
compared to baseline (DOPAC: t = 0–80 min; HVA:
t = 20–100 min, Fig. 5a, b), reXecting what we have
observed in experiment 1. Also, in SNc-lesioned animals,
STN-HFS signiWcantly and reversibly increased extracellu-
lar levels of DOPAC and HVA when compared to baseline,
though the eVects on HVA were less pronounced than in
control animals (DOPAC: t = 0–80 min; HVA: t = 20–40,
Fig. 5a, b). Notably, however, baseline concentrations of all
parameters investigated were signiWcantly lower in SNc-
lesioned animals when compared to control animals
(P < 0.05, Fig. 5).

Discussion

Main Wndings of the present study comprise: 1. HFS of the
STN increases DA neurotransmission and metabolism in
the NAc shell and partly also NAc core. 2. Lesions of the
VTA but not of the SNc prevent the modulatory impact of
STN-HFS on the DA-system of the NAc. 3. HFS of the
STN decreases GABA in the VTA. These data suggest that
activation of DAergic neurons in the VTA, possibly via

decreased inhibition of GABA, is largely responsible for
the STN-HFS-induced increase in DA in the NAc.

The present animal Wndings indicate that STN-HFS
modulates DAergic neurotransmission in limbic areas func-
tionally interconnected with the STN. These data are selec-
tive for STN-stimulation at high frequencies as in an
additional experiment we could not Wnd any eVect on
accumbal DAergic neurotransmission following low-fre-
quency stimulation (5 Hz) of the STN (Supplementary
Fig. 1). The interconnections of the STN within the limbic
basal ganglia-thalamo-cortical circuitry and the similarity
between lesion and STN-HFS induced psychiatric eVects in
both, humans and rats (Absher et al. 2000; Hilker et al.
2004; Mandat et al. 2006; Stefurak et al. 2003; Temel et al.
2006; Trillet et al. 1995; Trost et al. 2006) suggest that the
observed eVects could be due to a speciWc action on the
STN function. Yet, the present experimental design does
not allow to diVerentiate, whether this eVect is mediated by
direct modulation of the STN or by current spread to adja-
cent structures (Ranck Jr. 1975). For instance, the STN is
directly adjacent to the lateral hypothalamus (LH), which is
highly interconnected with the NAc (DiLeone et al. 2003)
and involved in the motivational aspects of behavior. Con-
ceivably, current spread to passing Wbers such as the medial
forebrain bundle and/or adjacent brain areas such as the LH
may potentially contribute to the eVects of STN-HFS. In
order to distinguish between direct HFS-dependent modu-
lation of the STN activity from unspeciWc eVects to neigh-
boring brain areas and Wber tracts, the comparative
investigation of diVerent stimulation parameters (pulse
duration, current intensity, and frequency), aVecting the
extent by which current spreads would be essential. Also an
electrochemical method with higher temporary solution,
i.e., in vivo cyclic voltammetry (Lee et al. 2006), would
allow more detailed temporary information about the cou-
pling of STN-HFS and DA release. The aim of the present
study was, however, much more modest, and restricted to
test the possibility that HFS of the STN as used in the clini-
cal situation may have eVects on neurotransmission in rele-
vant limbic areas, which may contribute to explain the
limbic side eVects observed in PD patients undergoing
STN-HFS. Importantly, current may spread and aVect
neighboring brain areas and nerve Wbers, both, in the ani-
mal experimental as well as in the clinical situation (McIn-
tyre et al. 2004a; Stefurak et al. 2003). Conclusive studies
on how exactly STN-HFS aVects limbic brain function
would ultimately require clinical postmortem anatomical
reconstruction and computational modeling, which to date
are largely missing.

Data from human (Filali et al. 2004; Welter et al. 2004)
and animal studies (Benazzouz et al. 2004; Meissner et al.
2005; Salin et al. 2002; Tai et al. 2003) show that selective
stimulation of the STN at high frequencies reduces the

Fig. 3 Neurotransmission in the ventral tegmental area. Extracellular
GABA in the VTA before, during, and after STN-HFS. Baseline
concentrations of the VTA were 4.53 § 0.38 pmol GABA/20 �l. Data
are expressed as mean § SEM. §P < 0.05 versus baseline. *P < 0.05
versus non-stimulated controls. The dead space in the microdialy-
sis tubing is responsible for a lag time of 10 min before analysis.
Filled rectangular: duration of HFS, Wlled circle: HFS of the STN,
open circle: controls
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activity of subthalamic neurons. In line with this hypothe-
sis, similar behavioral eVects of STN-HFS, STN lesion and
pharmacological inactivation of the STN have been
observed in both, PD patients and animal models of parkin-
sonism (Benazzouz et al. 1996; Darbaky et al. 2003; Deus-
chl et al. 2006; Levy et al. 2001; Limousin et al. 1995;
Wichmann et al. 1994). Electrical stimulation is generally
believed to excite nerve Wbers rather than to directly act on
cell bodies (Holsheimer et al. 2000; Nowak and Bullier
1998a, b). Consequently, the presumed inhibitory eVect of
STN-HFS might be due to a stimulation of presynaptic

GABAergic axon terminals. Provided that inhibition of
STN neurons represents the main mechanism, STN-HFS
could relieve the projection sites of the STN from their
excitatory glutamatergic input and normalize the thalamo-
cortical information Xow. Furthermore, modulatory eVects
of STN-HFS on glutamatergic STN eVerens have been sug-
gested to contribute to STN-HFS eYcacy (Hashimoto et al.
2003; Maurice et al. 2003; McIntyre et al. 2004b; Stefani
et al. 2005; Windels et al. 2000).

The results of the present study concerning involvement
of VTA and GABA on STN-HFS-induced modulation of

Fig. 4 Histological VerWcation of the lesion site. Microphotographs
of cresylviolet stainings of the SNc (a + c) and the VTA (b + d). a + b:
Exemplary microphotographs of a rat selectively lesioned in the SNc
(a) with the VTA left intact (b). c + d exemplary microphotograph of

a rat selectively lesioned in the VTA (d) with the SNc left intact (c).
Arrows mark boundaries of intact (solid arrow) and lesioned ( open
arrow) neuronal regions. Scale bar 100 �m
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DAergic neurotransmission in the NAc [i.e., (a) toxic prele-
sion of the VTA antagonizes the eVects of STN-HFS on
DAergic neurotransmission in the NAc; (b) STN-HFS
decreases GABA in the VTA] comply with previously
reported clinical and experimental data: Thus, converging
data from neuroanatomical studies of animals suggest that
the STN is directly and/or indirectly connected to the VTA
and NAc (Bonci and Malenka 1999; Hamani et al. 2004;
Woods et al. 2002). Furthermore, VTA DA-neurons project
to the NAc (Groenewegen et al. 1999) and are under the
control of inhibitory GABAergic VTA-interneurons (Ikem-
oto et al. 1997; Westerink et al. 1996). These GABAergic
VTA-interneurons may receive some modulating glutama-
tergic input from the STN, as has previously been sug-
gested by an in vitro study of glutamate eVects on VTA
neurons in slices (Bonci and Malenka 1999). Thus, STN-
HFS might relieve VTA DAergic neurons from their inhib-
itory GABAergic tone by modulating the excitatory drive
on VTA interneurons, Wnally resulting in increased levels
of DA in the NAc. Further studies allowing a deWnite cou-
pling of STN-HFS and GABAergic control of DAergic
VTA-NAc projection are needed to prove this hypothesis.

The assessment of the presented baseline values of
accumbal DA reveals a structure-dependent diVerentiation
of the DAergic load in the NAc core and shell, with basal

DA levels being signiWcantly higher in the NAc shell than
in the NAc core. Interestingly, the HFS-dependent
increases of DA and DA-metabolites were predominantly
observed in the NAc shell; in fact, the increase of DA in the
NAc core following STN-HFS failed to reach statistical
signiWcance. Ascending projections from the mesencepha-
lon (A9 and A10) provide the DAergic innervation of the
NAc, with the SNc (A9) projecting mainly to the NAc core
and the VTA (A10) to the NAc shell (Groenewegen et al.
1999; Lindvall and Bjorklund 1974). Prelesions of VTA
(A10) DAergic neurons lead to larger decreases in DAergic
neurotransmission than prelesions of the SNc (A9). Ana-
tomical diVerences might account for the quantitatively
higher basal load and stronger eVect of STN-HFS on DAer-
gic transmission in the NAc shell when compared to the
NAc core. Alternatively or additionally, diVerent propor-
tions of DA and its receptors in these subregions could be
associated with the diVerential eVects of STN-HFS-induced
modulation of dopaminergic neurotransmission in the NAc
shell versus core (Bassareo et al. 2002; Cadoni and Di
2000; Groenewegen et al. 1999; Ito et al. 2000).

Obviously, and as pointed out by two recent publica-
tions, STN-HFS dependent alteration in the DAergic neuro-
transmission of the NAc may not be the only way by which
STN-HFS induces limbic eVects: Accordingly, Mallet et al.

Fig. 5 Neurotransmission in the NAc of rats prelesioned in either the
SNc. Extracellular DOPAC (a) and HVA (b) in the NAc before, during
and after STN-HFS of control rats and rats lesioned in the SNc. Base-
line concentrations of unlesioned control animals were 21.58 § 1.82 pmol
DOPAC/20 �l and 11.17 § 0.48 pmol HVA/20 �l. Baseline concentra-
tions of SNc-prelesioned animals were 7.39 § 1.21 pmol DOPAC/20 �l,
pmol and 4.89 § 0.53 HVA/20 �l. Data are expressed as mean §
SEM. §SigniWcant diVerence in  comparison to baseline (P < 0.05).

*SigniWcant diVerence between lesioned and control HF-stimulated
rats (P < 0.05). The dead space in the microdialysis tubing is responsible
for a lag time of 10 min before analysis. Filled rectangular duration of
STN-HFS, Wlled circle SNc-lesion, open diamond controls. The table
below the Wgure describes the two-way analysis of variance assessing the
eVect of substantia nigra pars compacta lesion and time on subthalamic
nucleus high frequency dependent transmission of dopamine metabolites
in the NAc. For further details see text
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(2007) found in a recent clinical study PET activation of
cortical and thalamic regions under STN-HFS which were
paralleled by a hypomanic state in two parkinsonian
patients. Furthermore, Baunez et al. (2007) found that
STN-HFS had partly similar eVects in a visual attention
task in both naïve and bilaterally DA-depleted rats, suggest-
ing that some STN-HFS mediated limbic and/or cognitive
functions may be independent of an intact DA system.

In conclusion, the present study supplies in vivo evi-
dence in rats for a functional interaction of the STN with
the DAergic VTA-NAc projection. Previously, a STN-HFS
dependent increase in striatal DA has been suggested to
contribute to the acute reversibility of PD symptoms while
DAergic medication can be reduced up to 50% under STN-
HFS (Lee et al. 2004, 2006; Meissner et al. 2003) Likewise,
the present STN-HFS dependent increase in accumbal DA
in naïve and SNc-prelesioned rats might present one possi-
ble explanation of some of the psychiatric eVects of STN-
HFS in PD.
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