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Abstract In Parkinson’s disease (PD), the striatal
dopamine depletion and the following overactivation of
the indirect pathway of the basal ganglia leads to very
early disinhibition of the subthalamic nucleus (STN)
that may contribute to the progression of PD by gluta-
matergic overstimulation of the dopaminergic neurons
in the substantia nigra. Adenosine A2A antagonism has
been demonstrated to attenuate the overactivity of the
striatopallidal pathway. To investigate whether neuro-
protection exerted by the A2A antagonist 8-(3-chloro-
styryl)caffeine (CSC) correlates with a diminution of the
striatopallidal pathway activity, we have examined the
changes in the mRNA encoding for enkephalin, dynor-
phin, and adenosine A2A receptors by in situ hybrid-
ization induced by subacute systemic pretreatment with
CSC in rats with striatal 6-hydroxydopamine(6-OHDA)
administration. Animals received CSC for 7 days until
30 min before 6-OHDA intrastriatal administration.
Vehicle-treated group received a solution of dimethyl
sulfoxide. CSC pretreatment partially attenuated the
decrease in nigral tyrosine hydroxylase immunoreactiv-
ity induced by 6-OHDA, whereas no modification of the
increase in preproenkephalin mRNA expression in the
dorsolateral striatum was observed. The neuroprotective
effect of the adenosine A2A antagonist CSC in striatal 6-
OHDA-lesioned rats does not result from a normaliza-
tion of the increase in striatal PPE mRNA expression in

the DL striatum, suggesting that other different mech-
anisms may be involved.
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Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder
that progresses over years affecting prominently the
dopaminergic neurons of the substantia nigra pars
compacta (SNc). Indeed, most of the disabling motor
symptoms of PD are due to this neuronal loss and the
concomitant dramatic reduction of the dopamine con-
tent in the striatum. Although several dopaminomimetic
drugs are useful in relieving motor symptoms, none of
them clearly diminishes or prevents the progression of
the disease.

Recently, adenosine A2A receptor antagonists have
appeared to have an anti-parkinsonian effect in several
experimental models of PD (Kanda et al. 1998, 2000;
Grondin et al. 1999; Koga et al. 2000; Pinna et al. 2001),
and to reverse levodopa-induced motor fluctuations
(Bové et al. 2002). Adenosine A2A receptors are mainly
expressed in the striatum (Jarvis and Williams 1989;
Ongini and Fredholm 1996; Moreau and Huber 1999;
Svenningsson et al. 1999; Kaelin-Lang et al. 2000; El
Yacoubi et al. 2001) and colocalized with preproen-
kephalin mRNA (Schiffmann et al. 1991; Augood and
Emson 1994; Augood 1999) and dopamine (DA) D-2
receptor mRNA (Fink et al. 1992; Pollack et al. 1993;
Johansson et al. 1997) in the striatopallidal medium
spiny neurons that constitute the so-called indirect
pathway of the basal ganglia. In PD (Miller and DeLong
1987; Bergman et al. 1990) and in experimental models
(Mitchell et al. 1989; DeLong 1990), it has been dem-
onstrated that this output pathway is overactive. This
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phenomenon is revealed by up-regulation of enkephalin
and its encoding mRNA in humans (Grafe et al. 1985;
Nisbet et al. 1995; Calon et al. 2002), monkeys (Asselin
et al. 1994; Herrero et al. 1995; Jolkkonen et al. 1995;
Morissete et al. 1997) and rats (Voorn et al. 1987; Gerfen
et al. 1990; Jian et al. 1990; Engber et al. 1991; Nisen-
baum et al. 1994; Carta et al. 2002). A deficient level of
striatal dopamine and the following overactivation of
the indirect pathway leads to a very early (Vila et al.
2000) disinhibition of the subthalamic nucleus (STN)
and, subsequently, to excessive subthalamopallidal
drive. This results in decreased facilitation of cortical
motor areas and consequent development of akinesia
and bradykinesia (Bergman et al. 1990).

In addition to its main targets, the STN also sends
excitatory projections to the dopaminergic neurons in
the SNc (Kita and Kitai 1987). Therefore, it has been
postulated that the subthalamic desinhibition may also
contribute to the progression of PD by glutamatergic
overstimulation of SNc neurons, leading to a vicious
circle in which STN overactivity and nigral damage
support each other (Rodriguez et al. 1998). In agreement
with this notion, it has been shown that reducing STN
activity by means of local infusion of the glutamate
antagonist MK801 (Blandini et al. 2001) or STN lesion
(Piallat et al. 1996, 1999) protects SNc neurons from 6-
OHDA neurotoxicity.

Adenosine A2A antagonism has been demonstrated to
attenuate the overactivity of the striatopallidal pathway
since systemic administration of adenosine A2A receptor
antagonists reverses increased gammaminobutyric acid
(GABA) release in the globus pallidus (Ochi et al. 2000)
and reverses the increased expression of preproenkeph-
alin (PPE) in the striatum of unilateral 6-OHDA-le-
sioned rats (Aoyama et al. 2002). On the basis of these
data, it seems reasonable that adenosine A2A antagonists
might exert a neuroprotective effect, at least in part, by
counteracting striatopallidal pathway overactivity, and
therefore reducing the glutamatergic input to the SNc
from the STN.

With regard to neuroprotective activity, the A2A

antagonists have shown to protect against neuronal
damage in excitotoxicity (Jones et al. 1998a, b) and
ischemic models (Von Lubitz et al. 1995; Bona et al.
1997; Monopoli et al. 1998). Recent experimental data,
has also indicated that A2A antagonists have neuropro-
tective properties in PD models, specifically in 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated
mice and 6-OHDA-treated rats (Chen et al. 2001, 2002;
Ikeda et al. 2002; Schwarzschild et al. 2002). In vitro
studies have pointed out some possible mechanisms of
its neuroprotective effect. On one hand, the A2A antag-
onist KW-6002 modifies the packaging of [3H]MPP+
into synaptic vesicles (Ikeda et al. 2002) and in the other
hand, another A2A antagonist, 8-(3-chlorostyryl)caffeine
(CSC), inhibits monoamine oxidase-B (MAO-B) (Chen
et al. 2002), although it is still not clear how A2A

antagonists exert their neuroprotective effect in PD
experimental models.

The aim of the present study was to investigate
whether neuroprotection exerted by CSC administration
correlates with a diminution of the striatopallidal path-
way activity. For this purpose, we examined the striatal
changes in the mRNA encoding for enkephalin, dynor-
phin, and adenosine A2A receptors induced by subacute
pretreatment with a selective A2A antagonist CSC
(Moreau and Huber 1999) in an experimental model of
PD in rats with striatal 6-OHDA administration.

Materials and methods

Animals and protocol treatments

Male Sprague-Dawley rats weighting 240–280 g and
housed on a 12-h light/dark cycle with free access to
food and water were used for the experiments. Animals
received subacute administration of the selective A2A

antagonist of 8-(3-chlorostyryl)caffeine (CSC, 5 mg/kg/
day, ip, distributed in two injections, n=7; Sigma-Al-
drich Co., Spain) for 7 days until 30 min before 6-
OHDA intrastriatal administration. Vehicle-treated
group received a solution of 2% DMSO ip (n=9). The
dose of CSC used in the present study has been shown to
potentiate levodopa effects in several behavioral para-
digms (Bové et al. 2002). Animal experiments were
carried out in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory
Animals and approved by the local Government.

Striatal 6-OHDA lesion

Animals were anaesthetized with sodium pentobarbital
(50 mg/kg, ip) and placed in a stereotaxic frame with the
incisor bar positioned at 0 for all injections. Unilateral
stereotaxic injections of 6-OHDA (Sigma-Aldrich) were
made into the left striatum using a Hamilton syringe. A
concentration of 3.0 lg/ll of 6-OHDA hydrobromide
dissolved in vehicle was injected into four striatal sites
(2 ll/site, total dose 24 lg, n=16) at the following
coordinates: (1) A: +1.4, L: +2.6, V: �5.0; (2) A: +0.4,
L: +3.0, V: �5.0; (3) A: �0.4, L: +4.2, V: �5.0; (4) A:
�1.3; L: +4.5, V: �5.0. These coordinates were calcu-
lated from bregma and according to the atlas of Paxinos
and Watson (1982). Rate of injection was 1 ll/min,
leaving the needle in place for a further 2 min before
withdrawal. Rats were kept housed as before the exper-
iment for 21 days allowing the progressive degeneration
of the nigrostriatal system (Przedborski et al. 1995; Kirik
et al. 1998). Sham-lesioned group received intrastriatal
administration of 0.2% ascorbic acid/saline (n=5).

Rotational behavior test

Rotational behavior induced by 0.5 mg/kg, sc apomor-
phine (Sigma-Aldrich) administration was measured
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21 days after striatal 6-OHDA microinjections. Rats
were placed in circular cages and tethered to an auto-
mated rotometer. The number of complete (360�) turns
made during each 5-min period was recorded by com-
puter. Rats were allowed 15 min to habituate to the
rotometer before the administration of apomorphine.
The total time of testing after apomorphine adminis-
tration was of 1 h. Total rotational activity was mea-
sured by counting the total number of net contralateral
turns after the deduction of the ipsilateral rotations.

Tissue collection

The day after apomorphine administration, rats were
killed with an overdose of anesthesia. Brains were quickly
removed from the skull and then frozen on dry ice and
kept at�80�C until were cut on a cryostat (Leica, Spain).
Coronal 14-lm thick sections were collected through the
striatum and the substantia nigra pars compacta onto
APTS (3-amino-propyltriethoxysilane; Sigma-Aldrich)
coated slides, and kept at �40�C until used.

Tyrosine hydroxylase immunohistochemistry

Nigral and striatal sections were defrozed and dried at
room temperature and fixed with acetone for 10 min at
4�C. Then were rinsed in phosphate buffered saline
(PBS) pH 7.4; Sigma-Aldrich) twice, 5 min each, and
immersed in 0.3% hydrogen peroxide (Merck-Schuc-
hardt, Hohennbrunn, Germany) in PBS for 10 min to
block the endogenous peroxidase. At this point, sections
were rinsed again in PBS and incubated with horse
serum (GibcoBRL, Life Technologies Ltd, Auckland,
New Zealand) with 0.1% Triton X-100 (Sigma-Aldrich)
for 20 min. Sections were incubated overnight at 4�C
with mouse anti-tyrosine hydroxylase (TH) monoclonal
antibody (Chemicon Int. Inc., Calif., USA) at a dilution
1:500 in PBS. Sections were rinsed twice in PBS, 5 min
each, and ImmunoPure Ultra-Sensitive ABC Peroxidase
staining kit (Pierce, Ill., USA) was used to carry out the
ABC staining method. By so doing, sections were incu-
bated with biotinylated horse anti-mouse Ig-G for
30 min, followed by two rinses in PBS, and then incu-
bated with avidin-biotinylated peroxidase complex for
30 min more. Finally, sections were rinsed in PBS and
incubated with 3-3¢-diaminobenzidine (Sigma-Aldrich)
and 0.01% hydrogen peroxide for 15 min. Slides were
washed with PBS, dehydrated in ascending alcohol
concentrations, cleared in xylene and coverslipped in
DPX-EXLI mounting medium.

TH-inmunoreactive (TH-IR) cell bodies were coun-
ted (10·, brightfield) in three consecutive sections per
animal. The counting started at the first section where
SNc was clearly separated from the ventral tegmental
area by the medial terminal nucleus of the accessory
optic tract. The optical densities of the TH-IR fibers in
the striatum were measured in three slices per animal of

the rostral level of the striatum, corresponding to the
area around the second 6-OHDA injection. Sections
were placed under a microscope connected via a video
camera to a computer. Quantitative image analysis were
performed with MCID computerized image analysis
system (St Catherines, Ontario, Canada). The measured
values (optical densities) were averaged for each rat and
then expressed as relative percent from intact striatum of
control animals.

In situ hybridization histochemistry

The oligonucleotides used were complementary to the
following base sequences (GeneBank accession number
in brackets): rat preprodynorphin, bases 607–654
[NM_019374]; rat preprodynorphin, bases 489–533
[NM_019374]; rat preproenkephalin, bases 513–542
[K02807]; human adenosine A2A receptor, bases 285–
329 [NM_00675]. They were custom-synthesized by
Amersham Pharmacia Biotech (UK). The oligonucleo-
tides were labeled at their 3¢-end by using [a�33P]dATP
(Amersham, UK) and terminal deoxynucleotidyl-trans-
ferase (Roche Molecular Biochemicals, Mannheim,
Germany). Labeled probes were purified trough QIA-
quick Nucleotide Removal columns (Qiagen, Germany).

For in situ hybridization, frozen tissue striatal sec-
tions were brought to room temperature, air-dried, and
fixed for 20 min in 4% paraformaldehyde in phosphate-
buffered saline (1· PBS: 2.6 mM KCl, 1.4 mM KH2

PO4, 136 mM NaCl, and 8 mM Na2 HPO4), washed
once in 3·PBS, twice in 1·PBS, 5 min each, and incu-
bated in a freshly prepared solution of predigrested
pronase (Calbiochem, San Diego, Calif., USA) at a final
concentration of 20 IU/ml in 50 mM TrisHCl pH 7.5,
5 mM EDTA for 2 min at 20�C. Proteolytic activity was
stopped by inmersion for 30 s in 2 mg/ml glycine in PBS.
Tissues were rinsed in PBS and dehydrated in graded
ethanol 2 min each. For hybridization, labeled probes
were diluted to a final concentration of 107 cpm/ml in a
solution containing 50% formamide, 4·SSC (1·SCC:
150 mM NaCl, 15 mM sodium citrate), 1·Denhardt’s
solution (0.02% Ficoll, 0.02% polyvinylpyrrolidone,
0.02% bovine serum albumin), 1% sarkosyl, 10% dex-
tran sulphate, 20 mM phosphate buffer, pH 7.0, 250 lg/
ml yeast tRNA, and 500 lg/ml salmon sperm DNA.
Tissues were covered with 100 ll of the hybridization
solution and overlaid with Nescofilm (Bando Chemical,
Kobe, Japan) coverslips to prevent evaporation. Sec-
tions were incubated in humid boxes overnight at 42�C
and then washed 4 times (45 min each) in 600 mM
NaCl, 20 mM TrisHCl, pH 7.5, 1 mM EDTA at 60�C.
Hybridized sections were exposed to BIOMAX-MR film
(Kodak) for 15 days depending on the probe used at
�70�C with intensifying screens.

The specificity of the nucleotide hybridization signals
was assessed as follows. For a given oligonucleotide
probe the presence of a 50-fold excess of the same
unlabeled oligonucleotide in the hybridization buffer
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resulted in the abolishment of the specific hybridization
signal (data not shown). The thermal stability of the
hybrids was examined by washing a series of consecutive
hybridized sections at increasing temperatures. Specific
hybridization signals were still present in sections wa-
shed at 70�C but they were completely absent from
sections washed at 80�C. No such decrease was observed
in the background levels of the signal (data not shown).

The striatum were divided into two portions for the
mRNA expression measurement, including the dorso-
lateral and the ventromedial striatum (Carta et al. 2002).
Quantitative image analysis were performed with MCID
computerized image analysis system (St Catherines).

Statistical analysis

Data were analyzed by analysis of variance (ANOVA)
followed by Dunnett’s t-test for multiple comparisons.

The level of statistical significance was set at P<0.05 for
all analysis.

Results

Substantia nigra cell counts

We assessed the effect of the adenosine A2A receptor
antagonist CSC on the 6-OHDA-induced dopaminergic
neuronal degeneration in rats. In this experiment, CSC
or vehicle were subacutely (7 days) administered before
striatal 6-OHDA lesion. Striatal 6-OHDA administra-
tion induced a decrease in the number of TH-IR neurons
in the ipsilateral SNc of the vehicle-treated group by
48% in comparison with contralateral SNc (P<0.01).
Sham-lesioned animals did not show any difference
between both sides. Interestingly, CSC subacute
pretreatment conferred a significant attenuation of the

Fig. 1 Time-course of
experiments described in the
text
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6-OHDA-induced decrease in the number of TH-IR
neurons by about 12% (P<0.05) (Fig. 1).

Striatal TH-immunoreactivity

In the vehicle-treated group, TH-IR decreased after stri-
atal 6-OHDA administration by 20% in the ipsilateral
striatum in comparison to contralateral striatum
(P<0.01), while in the sham-lesioned animals no changes
in the TH-IR was observed. Subacute CSC pretreatments
failed to attenuate the decrease in the TH-IR induced by
striatal 6-OHDA administration (P<0.05) (Fig. 2).

Rotational behavior

Apomorphine induced rotational behavior to the 6-
OHDA-lesioned vehicle-treated animals (P<0.01).
Sham-lesioned animals did not show rotational behavior
after apomorphine administration. Subacute CSC pre-
treatment did not modify the rotational behavior
achieved by the 6-OHDA lesioned animals (Table 1).

Striatal adenosine A2A receptor mRNA expression

Levels of the different mRNA were measured in the
dorsolateral (DL) and ventromedial (VM) portion of the
striatum (Fig. 3). Striatal 6-OHDA administration in-
duced a significant increase of A2A receptor mRNA
levels in the VM, but not in the DL lesioned striatum,
compared with the sham-lesioned animals (P<0.05).
Subacute CSC pretreatment prevented this increase of
A2A receptor mRNA levels induced by the striatal 6-
OHDA administration (P<0.05) (Figs. 4 and 5).

Striatal preproenkephalin mRNA expression

A significant increase in PPE mRNA levels in the DL
lesioned striatum was caused by the 6-OHDA adminis-
tration in the vehicle-treated animals compared with the
sham-lesioned animals (P<0.01). In the VM striatum, 6-
OHDA administration did not induce any change on
PPE mRNA levels. Subacute CSC treated animals did
not modify the increase in PPE mRNA expression in-
duced by 6-OHDA in the DL striatum (Fig. 6, 7).

Striatal preprodynorphin mRNA expression

Striatal 6-OHDA administration induced no changes in
PPD mRNA levels neither in the DL or in the VM
striatum in the vehicle-treated animals compared with
the sham-lesioned animals. Subacute CSC pretreatment
produced a significant decrease in mRNA PPD levels in
the lesioned VM striatum compared with sham-lesioned
animals (P<0.05) (Fig. 8, 9, 10).

Discussion

In the present study, a four-site terminal lesion resulted
in a partial loss of TH-positive fibers in the striatum,
leading to a retrograde degeneration of the 48% of

Fig. 2 Effect of unilateral striatal 6-OHDA-induced lesion and
CSC pretreatment on nigral TH-IR. Upper: a representative TH
immunohistochemistry. Bottom: subacute administration of the
A2A antagonist CSC partially attenuated the decrease in TH-IR
when administered for 7 days until 30 min before 6-OHDA
administration. Vehicle-treated group received a solution of 2%
DMSO IP Sham-lesioned group received intrastriatal administra-
tion of 0.2% ascorbic acid/saline. Values are expressed as
mean±SEM.**P<0.01 vs intact side. #P<0.05 vs vehicle-treated
animals
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dopaminergic neurons in the SNc. Systemic CSC
administration partially attenuated nigral dopaminergic
cell loss induced by intrastriatal 6-OHDA administra-
tion. These results are in agreement with previous re-
ports that demonstrated a neuroprotective effect of A2A

antagonists in excitoxicity (Jones et al. 1998a,b; Behan
and Stone 2002) and in ischemia models (Von Lubitz
et al. 1995; Bona et al. 1997; Monopoli et al. 1998;
Melani et al. 2003). Moreover, it has been recently de-
scribed a neuroprotective effect of A2A receptor block-
ade in experimental models of PD since it has been
shown that caffeine and selective A2A antagonists such
as CSC, but not A1 antagonists, attenuated MPTP
toxicity in mice (Chen et al. 2001, 2002; Xu et al. 2002).
In 6-OHDA-treated rats, the selective A2A antagonist
KW-6002 has shown to protect against both the loss of
nigral dopaminergic cells and the degeneration of its
terminals (Ikeda et al. 2002). In the present study, CSC
administration did not attenuate the decrease in striatal
TH-IR induced by intrastriatal 6-OHDA indicating a
lack of protection of striatal dopaminergic terminals.

This result agrees with the observation that the rota-
tional behavioral showed by the group of animals pre-
treated with CSC did not differ from the vehicle-treated
animals. Two methodological differences need to be
taking in account to interpret the different results in
comparison to a previous report (Ikeda et al. 2002). First

Table 1 Effect of subacute administration of the adenosine A2A

antagonist CSC on apomorphine-induced rotations

Treatments Apomorphine-induced rotations

Sham �1.6±23
Vehicle+6-OHDA 187±43*
Subacute CSC+6-OHDA 212±62

Fig. 3 Effect of unilateral striatal 6-OHDA-induced lesion and
CSC pretreatment on striatal TH-IR. Subacute administration of
the A2A antagonist CSC did not attenuate the decrease in TH-IR
when administered for 7 days until 30 min before 6-OHDA
administration. Vehicle-treated group received a solution of 2%
DMSO IP Sham-lesioned group received intrastriatal administra-
tion of 0.2% ascorbic acid/saline. Values are expressed as
mean±SEM. *P<0.05, **P<0.01 vs intact side

Fig. 4 Schematic representation of striatal portions considered to
measure mRNA expression by in situ hybridization

Fig. 5 Effect of unilateral striatal 6-OHDA-induced lesion and
CSC pre-treatment on DL (upper) and VM (bottom) striatal
adenosine A2A mRNA expression. Subacute administration of the
A2A antagonist CSC attenuated the increase in A2A mRNA
expression in the VM striatum induced by intrastriatal 6-OHDA
lesion. Values are expressed as mean±SEM. *P<0.05 vs sham-
lesioned animals, #P<0.05 vs vehicle-treated animals
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of all, a much higher total dose of 6-OHDA has been
used in the present study and it has been injected at four
different sites of the striatum and not at a single one. In

fact, a four-site 6-OHDA lesion has been compared with
a manifest symptomatic stage in PD, whereas one-site 6-
OHDA injection causes more restricted presymptomatic

Fig. 6 Representative film autoradiograms of coronal brain sec-
tions (14 lm) showing striatal A2A mRNA labeling in control
(sham-lesioned), vehicle-treated and CSC-treated rats

Fig. 7 Effect of unilateral striatal 6-OHDA-induced lesion and
CSC pretreatment on DL (upper) and VM (bottom) striatal PPE
mRNA expression. Subacute administration of the A2A antagonist
CSC did not attenuate the increase in PPE mRNA expression in the
DL striatum induced by intrastriatal 6-OHDA lesion. Values are
expressed as mean±SEM. **P<0.01 vs sham-lesioned animals

Fig. 8 Representative film autoradiograms of coronal brain sec-
tions (14 lm) showing striatal PPE mRNA labeling in control
(sham-lesioned), vehicle-treated and CSC-treated rats

Fig. 9 Effect of unilateral striatal 6-OHDA-induced lesion and
CSC pretreatment on DL (upper) and VM (bottom) striatal PPD
mRNA expression. Subacute administration of the A2A antagonist
CSC decreased PPD mRNA expression in the VM striatum. Values
are expressed as mean±SEM. *P<0.05 vs sham-lesioned animals;
#P<0.01 versus vehicle-treated animals
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lesions (Kirik et al. 1998). The second methodological
difference is the treatment protocol used since in the
present study CSC was subacutely administered for
7 days until 30 min before 6-OHDA lesion. However, in
the work of Ikeda et al. (2002), the A2A antagonist, KW-
6002 was administered before the 6-OHDA adminis-
tration and during 1 week later.

The precise mechanisms underlying the neuropro-
tective effect of A2A antagonists are still not known.
Since there are evidences of the existence of functional
A2A receptor in nigral dopaminergic neurons, it is pos-
sible that these neurons might be the site of the neuro-
protective action by A2A antagonists (Okada et al. 1996;
Chen et al. 2000). However, different A2A receptor-
mediated mechanisms may be involved in central actions
of A2A antagonists. For example, A2A receptor stimu-
lation enhances striatal glutamate extracellular levels
(Simpson et al. 1992; Popoli et al. 1995; Sebastiao and
Ribeiro 1996) and the A2A antagonist SCH 58261 de-
creases both spontaneous and K+-evoked striatal glu-
tamate outflow in rats (Corsi et al. 2000). Since
glutamate is considered to play a major role inducing
ischemia and post-ischemia cell death (Choi and Roth-
man 1990), protective effects of A2A -receptor antago-
nists against ischemic injury may be attributed to their
ability to reduce excitatory amino acid outflow.

Several previous studies have involved A2A receptors
in cerebral inflammation (Sullivan et al. 1999) and
therefore adenosine might contribute to the pathological
changes in PD by triggering the activation of sur-
rounding glial cells, which are known to appear around
degenerating dopaminergic neurons in PD (Hirsch et al.
1999) since A2A receptor-mediated mechanisms have
been described in substantia nigra (Alfinito et al. 2003).
Although A2A receptors inhibit the production of several
pro-inflammatory cytokines (Dianzani et al. 1994), they
can also potentiate the pro-inflammatory effect of those

compounds (Scholz-Pedretti et al. 2001). Activation of
A2A receptors can promote glial proliferation after brain
injury (Hindley et al. 1994; Rathbone et al. 1999) and
enhances nitric oxide and cyclooxygenase production in
vitro (Fiebich et al. 1996). However, another report
suggests that adenosine may inhibit astroglial activation
(Michael et al. 1999). The protective effect of A2A

receptor antagonists may therefore reflect a net attenu-
ation of pro-inflammatory activity.

CSC is also a potent and selective inhibitor of
monoamine oxidase-B (MAO-B) (Chen et al. 2002) and
it has been suggested that the neuroprotective effect of
this drug may be due to a blockade of the conversion of
MPTP to MPDP+, an oxidation mediated by MAO-B,
in the MPTP model of PD (Chen et al. 2002). The
generation of reactive oxygen species induced by 6-
OHDAmay arise from two distinct mechanisms, namely
deamination by MAO oxidation or auto-oxidation
(Blum et al. 2001). Thus, 6-OHDA, like DA, may be a
substrate for MAO (Breese and Taylor 1971; Karoum
et al. 1993). An involvement of MAO in 6-OHDA-in-
duced neurotoxicity has been suggested following the
observation that the MAO inhibitor, selegiline, prevents
6-OHDA toxicity (Salonen et al. 1996) and, conse-
quently, the inhibition of MAO by CSC could be one
explanation for the CSC neuroprotective effects.

The restricted expression of A2A receptors in the
striatum and the lack of evidence for their expression on
dopaminergic neurons themselves (Rosin et al. 1998;
Svenningsson et al. 1999) suggest that A2A receptors
modulation of dopaminergic neurotoxicity is indirect
either by an alteration in their retrograde neurotrophic
influence in nigrostriatal neurons (Siegel and Chauhan
2000) or more likely through a feedback circuit running
back to the dopaminergic nigral neurons (Rodriguez
et al. 1998). In the latter case, stimulation of A2A

receptors on striatopallidal neurons enhances GABA
release in the globus pallidus (Mayfield et al. 1996) and
thus may facilitate the indirect pathway disinhibition of
STN activity, which in turn through the glutamatergic
projections to the SNc may contribute to excitotoxic
injury of dopaminergic neurons (Piallat et al. 1996).
Inactivation of A2A receptors, on the other hand, would
prevent the proposed dopaminergic toxicity produced
through this circuit.

In order to investigate the possible involvement of the
indirect and the direct striatopallidal pathways activity
changes in the neuroprotection induced by CSC
administration we have study the expression of striatal
mRNA expression for adenosine A2A receptor, PPE and
PPD in rats with a striatal 6-OHDA-induced lesion. We
have shown that 6-OHDA intrastriatal administration
produce a significant increase in adenosine A2A receptor
mRNA expression in the VM striatum, but not in the
DL, ipsilateral to the lesion. These results are in agree-
ment with a recent report (Pinna et al. 2002) in which the
expression of adenosine A2A receptor mRNA was in-
creased in the striatum in association with a decrease in
striatal extracellular levels of adenosine. The increase

Fig. 10 Representative film autoradiograms of coronal brain
sections (14 lm) showing striatal PPD mRNA labeling in control
(sham-lesioned), vehicle-treated and CSC-treated rats
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was selectively detected in the lateral portion of the le-
sioned striatum which partially overlaps the portion that
in the present study has been defined as VM striatum. As
has been proposed (Pinna et al. 2002), the specific dis-
tribution of A2A receptors to the lateral portion of the
striatum may account for the lack of changes in A2A

mRNA expression when the whole striatum was studied
(Kaeling-Lang et al. 2000). Binding studies have failed
to demonstrate a modification of A2A receptor after 6-
OHDA-induced denervation (Alexander and Redding-
ton 1989; Martinez-Mir et al. 1991; Morelli et al. 1994;
Przedbordki et al. 1995). These discrepancies between
receptor binding and hybridization have been attributed
to different sensitivities of the two methodologies (Pinna
et al. 2002). In the present study, CSC pretreatment
prevented the A2A receptor mRNA up-regulation in the
VM striatum. This result suggests that the neuropro-
tective effect of CSC might be induced by an attenuation
of the increased activity of the indirect pathway in which
neuronal A2A receptors are expressed.

With the objective to investigate whether the atten-
uation of the hyperactivity of the indirect pathway is
involved in the neuroprotective effect of A2A antagonism
we have studied the expression of PPE mRNA, since its
increase has been correlated to the hyperactivity of this
pathway (Young et al. 1986; Gerfen et al. 1990; Cadet
et al. 1992; Asselin et al. 1994). We have shown that
striatal 6-OHDA administration increased the PPE
mRNA levels in the DL lesioned striatum in agreement
with previous descriptions after striatal (Winkler et al.
2002) and after nigrostriatal lesions induced by 6-
OHDA (Young et al. 1986; Gerfen et al. 1990; Cadet
et al. 1992; Zeng et al. 1995) or MPTP administration
(Augood et al. 1989; Asselin et al. 1994; Jolkkonen et al.
1995). The most relevant finding in the present study is
that CSC pretreatment did not attenuate this increase in
PPE mRNA in the DL lesioned striatum. Since the in-
crease in PPE mRNA may reflect an overactivity of the
striatopallidal indirect pathway leasing to increased
inhibition of pallidal neurons and subsequent overac-
tivity of STN (Levy et al. 1997; Parent et al. 2000), the
results obtained in the present work suggest that the
neuroprotective effect of A2A antagonist CSC is not re-
lated to an attenuation of the indirect striatopallidal
pathway.

In the present study, no modification of PPD mRNA
levels has been induced by intrastriatal 6-OHDA lesion
in agreement with the level of denervation of the le-
sioned striatum as previously showed (Winkler et al.
2002). CSC pretreatment induced a decrease in the
expression of dynorphin mRNA in the VM striatum in
rats with a striatal 6-OHDA-induced lesion. The role of
this decrease in the expression of PPD in the VM le-
sioned striatum is not known. The VM striatum appears
to play a critical role in mediating motoric effects (Boye
et al. 2001; Ikemoto 2002; Ikemoto and Witkin 2003). It
has been suggested that the A2A receptors, localized in
the ventral striatum play a key role in the modulation of
motor activity. Barraco et al. (1993) showed that the

local infusion in the VM of the selective A2A agonist
CGS21680, but not a selective A1, induced a pronounced
motor depressant in mice. As far as the VM striatum is
concerned, low doses of caffeine stimulate spontaneous
motor activity (Svenningsson et al. 1995). Morphologi-
cal observations suggest that GABAergic striopallidal
neurons and strionigral-strioentopeduncular neurons
might be the main locus for A2A-D2 and A1-D1 inter-
actions, respectively (Schiffmann et al. 1991; Fink et al.
1992). The two subtypes of GABAergic efferent neurons
are also present in the VM striatum (LeMoine and Bloch
1995), although with a less well-defined separation of
their target brain areas. Although A2A and D1 receptor
are not located on the same striatal efferent neurons,
there are several studies that clearly illustrate an A2A

receptor modulation of the striatonigral pathway at
behavioral and biochemical level in 6-OHDA-lesioned
rats (Morelli et al. 1994; Pinna et al. 1996; Pollack and
Fink 1996). It has been shown that systemic adminis-
tration of the A2A antagonist SCH 58261 caused a de-
crease in the number of c-fos mRNA-containing
neurons in the striatum not only in the striatopallidal
pathway but in the striatonigral pathway (Le Moine
et al. 1997). A2A receptor antagonism-induced potenti-
ation of D1 receptor-mediated motor activation has been
demonstrated (Pinna et al. 1996). All these effects could
be explained by an interaction at the network level,
similar to the synergistic effect of dopamine D1 and D2

agonists (Robertson and Robertson 1986; Paul et al.
1992).

Since synaptic connections between spiny neurons of
the direct and indirect pathways have been described
(Aronin et al. 1986; Yung et al. 1996; Seeman and
Tallerico 2003), A2A antagonists could modulate the
direct pathway via the indirect pathway. The existence
of such functional interaction between adenosine A2A

receptors and dopamine D1 receptors may underlie the
effect of the administration of CSC diminishing PPD
mRNA expression in the VM striatum shown in the
present study. Furthermore, the increase of dynorphin
mRNA levels seen after chronic levodopa treatment in
6-OHDA lesioned mice is not seen in A2A knockout
mice (Freduzzi et al. 2002), demonstrating that A2A

receptors are involved in dynorphin mRNA levels
modulation and therefore in striatonigral pathway
activity. These results are in agreement with our results
showing that A2A blockade attenuates dynorphin
expression. The role of this decrease in PPD mRNA
expression in the VM striatum on the neuroprotective
effect of CSC is not known. However, a cytotoxic effect
of dynorphin has been described (McIntosh et al. 1994;
Hauser et al. 1999; Tan-No et al. 2001). Thus, it might
be speculated that a decrease in dynorphin might have a
neuroprotective effect.

In summary, the present results show that the neu-
roprotective effect of the adenosine A2A antagonist CSC
in striatal 6-OHDA-lesioned rats does not result from a
normalization of the increase in striatal PPE mRNA
expression in the DL striatum suggesting that other
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different mechanisms may be involved. A recent
hypothesis of a different role of A2A receptors at pre-
versus postsynaptic sites on neuroprotection needs to be
taken in account, since it has been shown (Tebano et al.
2004) that whereas effects of presynaptic A2A receptors
are potentially detrimental, the effects of postsynaptic
A2A receptors are potentially beneficial.
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