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Abstract In advance of grasping a visual object embed-
ded within fins-in and fins-out Müller-Lyer (ML) con-
figurations, participants formulated a premovement grip
aperture (GA) based on the size of a neutral preview
object. Preview objects were smaller, veridical, or larger
than the size of the to-be-grasped target object. As a
result, premovement GA associated with the small and
large preview objects required significant online reorga-
nization to appropriately grasp the target object. We
reasoned that such a manipulation would provide an
opportunity to examine the extent to which the visuo-
motor system engages egocentric and/or allocentric vi-
sual cues for the online, feedback-based control of
action. It was found that the online reorganization of
GA was reliably influenced by the ML figures (i.e., from
20 to 80% of movement time), regardless of the size of
the preview object, albeit the small and large preview
objects elicited more robust illusory effects than the
veridical preview object. These results counter the view
that online grasping control is mediated by absolute
visual information computed with respect to the ob-
server (e.g., Glover in Behav Brain Sci 27:3–78, 2004;
Milner and Goodale in The visual brain in action 1995).
Instead, the impact of the ML figures suggests a level of

interaction between egocentric and allocentric visual
cues in online action control.
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Introduction

An overwhelming body of evidence has shown that goal-
directed reaching and grasping movements executed
with continuous vision (so-called visually guided ac-
tions) are structured to take maximal use of that infor-
mation for the online, feedback-based control of action
(e.g., Berthier et al. 1996; Carlton 1981; Churchill et al.
2000; Connolly and Goodale 1999; Gentilucci et al.
1994; Heath 2005; Heath et al. 2004a, 2005b; Jakobson
and Goodale 1991; Keele 1968; Khan et al. 2002; Meyer
et al. 1988; Wing et al. 1986; Woodworth 1899; see El-
liott et al. 2001 for extensive review). Moreover, it has
been proposed that visually based movement corrections
rely on visual information (Goodale and Westwood
2004), or a visual representation (Glover 2004), which is
refractory to the context-dependent properties of picto-
rial illusions (e.g., Müller-Lyer [ML] or Ebbinghaus/
Titchener figures). Indeed, a number of studies have
shown that visually guided grasping movements are
mostly immune to the illusion-evoking properties of
pictorial illusions (e.g., Aglioti et al. 1995; Brenner and
Smeets 1996; Heath et al. 2005a, b; Jackson and Shaw
2000; Westwood et al. 2000a, b; Westwood and Goodale
2003)1. This finding has frequently been framed within
the theoretical tenets of the perception/action model
(PAM: Milner and Goodale 1995) and the assertion that
real-time movement planning and online control are
mediated by dedicated visuomotor mechanisms residing
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1Although Brenner and Smeets (1996) and Jackson and Shaw
(2000) noted that a measure of visually guided grasping control
(i.e., maximum grip aperture) was refractory to pictorial illusions,
grasping force was found to be ‘‘tricked’’.
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in the dorsal visual pathway that compute absolute (i.e.,
Euclidean) object metrics with respect to the observer
(so-called egocentric frame of reference). It has also been
proposed that movement planning and movement con-
trol are mediated by distinct visual representations that
are differentially influenced by pictorial illusions (plan-
ning/control model, PCM: Glover 2004). The PCM
states that the initial planning of an action is supported
by a context-dependent ‘‘visual planning representa-
tion’’ that is sensitive to the cognitive properties of
pictorial illusions. As the action unfolds, however, the
PCM asserts that a context-independent ‘‘ visual control
representation’’ gradually assumes command of the
unfolding action, thus rendering the later stages of the
action refractory to pictorial illusions (see Glover and
Dixon 2001a, b, c, 2002). Importantly, both the PAM
and PCM assert that visually based movement correc-
tions are computed using an egocentric frame of refer-
ence that is immune to the illusion-evoking properties of
pictorial illusions.

It is, however, important to note that some studies
have reported that pictorial illusions influence visually
guided actions. For instance, Aglioti et al’s (1995) sem-
inal work, which is frequently cited as explicit evidence
that visually guided actions are refractory to pictorial
illusions, showed that the Titchener circles illusion pro-
duced an illusory effect on action that was approxi-
mately 60% of that of their perceptual judgment task.
Similar results on maximum grip aperture have been
linked to the ML figures (Daprati and Gentilucci 1997;
Westwood et al. 2001; see also Heath et al. 2004a).
Moreover, visually guided as well as memory guided
pointing movements executed along the shaft of the ML
figures show endpoint bias’ consistent with the percep-
tual effects of the illusion (Elliott and Lee 1995; de
Grave et al. 2004; Gentilucci et al. 1996; Glazebrook
et al. 2005). Most interestingly, Meegan et al. (2004)
reported that the illusory effects of ML figures on ulti-
mate movement endpoints were not attenuated by
visually based movement corrections. Those findings
suggest that online corrections do not unfold entirely on
the basis of absolute visual information; rather, it ap-
pears that online limb adjustments entail collaboration
between egocentric and allocentric (i.e. scene-based) vi-
sual frames of reference.

The view that egocentric and allocentric visual frames
interact to support the online, feedback-based control of
action is congruent with evidence showing that geo-
metric objects or contextual features—apart from illu-
sory arrays—surrounding a target facilitate reaching/
grasping movements. For example, Conti and Beaub-
aton (1980) and Velay and Beaubaton (1986) reported
that visually guided reaching movements were more
accurate when actions were directed to a target embed-
ded in a structured visual background (i.e., a grid-like
pattern surrounding the target) than when reaching
movements were completed to a target in an otherwise
empty or neutral visual background. More recent re-
search has suggested that contextual features surround-

ing a target enhance the accuracy and effectiveness of
visually guided reaching/grasping movements due to the
evocation of improved feedback-based limb corrections
(Krigolson and Heath 2004; see also Coello and Grealy
1997). As well, it has been shown that cognitive
knowledge concerning the allocentric location of an
object in peripersonal space can be used to support
online action control (Carrozzo et al. 2002). In other
words, converging evidence suggests that allocentric vi-
sual information surrounding a target can be explicitly
identified by a performer and used in combination with
vision of the moving limb (i.e., egocentric visual cue) to
facilitate online limb adjustments.

The present investigation sought to determine whe-
ther the online reorganization of an initially biased
grasping posture is based on absolute visual information
specified in an egocentric visual frame of reference, or
whether online corrections are influenced by the inter-
action of egocentric and allocentric visual frames of
reference. To address this question, we asked partici-
pants to formulate a premovement grip aperture (GA)
based on the perceived size of a preview object presented
in a neutral (i.e., empty) visual background. The preview
object was 2 cm smaller, veridical, or 2 cm larger than
the to-be-grasped target object. As participants main-
tained their premovement GA, the preview object was
replaced with a target object embedded within the fins-in
or fins-out ML configuration. Participants were in-
structed to reach out and grasp the target object coin-
cident with its visual presentation. In this scenario, two
of the initial response sets elicited a premovement GA
that was ‘‘too small’’ or ‘‘too large’’ to grasp the target
object; hence, appropriate grasping of the target object
required online reorganization of grip aperture. Nota-
bly, previous research has shown that when grasping an
object presented in a neutral visual background, the vi-
suomotor system is able to quickly reorganize an altered
premovement GA based on extrinsic task characteristics
(i.e., object size). For instance, Saling et al. (1996) and
Timmann et al. (1996) reported that when thumb and
finger are maximally separated prior to movement onset,
GA is rapidly brought into a position consistent with a
normal starting position (i.e., thumb-finger together).
Those results show that visual feedback permits sub-
stantial reorganization of GA during the early stages of
action based on visual object properties (see also Meu-
lenbroek et al. 2001).

In the present investigation, however, the initially
‘‘too small’’ and ‘‘too large’’ premovement GA required
online reorganization on the basis of a target object
presented in an illusory background (i.e., fins-in and
fins-out ML figures). In this context, a reasonable pre-
diction arising from the PAM is that metrical visual
information specified in an egocentric visual frame is
used to support the online reorganization of grasping
kinematics, thus resulting in a grasping movement that is
entirely impervious to the illusion-inducing elements of
the ML figures (Milner and Goodale 1995; see also
Goodale and Westwood 2004). If, however, the PCM is
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correct, then one would predict the independent use of
allocentric and egocentric visual cues at different stages
in the grasping trajectory. More specifically, the PCM
predicts a dynamic illusion effect such that an early
intrusion of the ML figures on action is monotonically
reduced during the later stages of the response (Glover
2004). Last, a prediction drawn from the visual back-
ground literature asserts that egocentric and allocentric
visual cues interact to support GA reorganization, thus
rendering the early and late stages of action entirely
susceptible to the ML figures (e.g., Krigolson and Heath
2004).

Methods

Participants

Participants were 15 undergraduate students from the
Indiana University community (seven men, eight wo-
men) ranging in age from 20 to 22 years. All participants
had normal or corrected-to-normal vision and were
right-handed as determined by a modified version of the
University of Waterloo Handedness Questionnaire
(Bryden 1977). All participants signed consent forms
approved by the Human Subjects Committee, Indiana
University, and this study was conducted in accordance
with the ethical standards laid down in the 1964 Dec-
laration of Helsinki.

Apparatus

Visual stimuli were preview objects presented in a neu-
tral visual background and target objects embedded
within fins-in and fins-out ML configurations (30� fin
angles). The preview objects were graspable 3, 5, 7 and
9 cm long rectangular bars (0.7 cm height x 0.7 cm
width) painted flat black and centered on individual
sheets of white paper (15x9 cm). The target objects were
graspable 5 and 7 cm long (0.7 cm height x 0.7 cm
width) rectangular bars painted flat black and placed
over the horizontal shaft of appropriately sized fins-in
and fins-out ML figures (i.e., the length of the horizontal
shaft between ML vertices was 5 and 7 cm). ML figures
were printed in black ink and centered on individual
sheets of white paper (15x9 cm). The long axis of pre-
view and target objects was oriented perpendicular to
the midline of participants and presented on a blackened
table surface at a distance of 35 cm from a home posi-
tion (i.e., a telegraph key located 5 cm from the front
edge of the table top). Grasping of the target object re-
quired 35 cm of limb displacement in the depth plane.
Vision of the grasping environment was controlled via
liquid-crystal shutter goggles (PLATO Translucent
Technologies, Toronto, ON, Canada) interfaced to
Eprime software (ver 1.0). The ML configurations used
in this investigation have been shown to reliably influ-
ence manual estimates of object size (Heath and Rival

2005; Heath et al. 2004a; Westwood et al. 2000a, b,
2001).

Procedure

Participants stood during the duration of the experiment
and grasped the target object ‘‘as quickly and accurately
as comfortable’’ along its long axis using thumb and
index finger. In advance of each trial, the shutter goggles
were set in their opaque state until the appropriate
preview object could be positioned on the tabletop.
During this time, participants rested the medial surface
of their right hand (i.e., the grasping hand) on the home
position with thumb and index finger pinched lightly
together. Once a preview object was positioned (i.e., 3, 5,
7 or 9 cm), the goggles were placed in their translucent
state for a 2000 ms preview period. During the preview
period, participants were instructed to formulate a stable
grip aperture (SGA) based on the perceived size of the
preview object by adjusting the separation between their
thumb and index finger. At the end of the preview per-
iod, the goggles reverted to their opaque state for a
1500 ms ‘‘exchange period’’. The exchange period was
used so that the preview object could be replaced with
one of the four target object arrays (i.e., fins-in 5 cm,
fins-out 5 cm, fins-in 7 cm, fins-out 7 cm). Importantly,
participants were instructed to maintain SGA during the
exchange period. Following the exchange period, the
goggles were set to their translucent state and partici-
pants were concurrently cued (via auditory tone) to
grasp the newly presented target object.

The 3, 5, and 7 cm preview objects were presented in
advance of grasping the 5 cm target object in each ML
configuration (i.e., fins-in 5 cm and fins-out 5 cm). Sim-
ilarly, the 5, 7, and 9 cm preview objects were presented
in advance of grasping the 7 cm target object in each ML
configuration (i.e., fins-in 7 cm and fins-out 7 cm). This
combination of preview and target object allowed that
SGA was based on an object 2 cm smaller, veridical, or
2 cm larger than size of the to-be-grasped target object.
Participants completed 8 trials for each of the preview
object, target object and ML background combinations
specified above for a total of 96 experimental trials. Be-
cause the 5 and 7 cm preview objects were presented in
advance of grasping both the 5 and 7 cm target objects,
those preview objects were presented with greater fre-
quency (i.e., 32 trials each) than the 3 and 9 cm preview
objects (i.e., 16 trials each). The presentation of preview
object, target object and ML configuration was ordered
using the Eprime randomization protocol.

Data collection and reduction

We placed infrared-emitting diodes (IREDs) on the
lateral edge of the index finger, the medial edge of the
thumb, and the styloid process of the right wrist. The
three-dimensional IRED position data were captured
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using an OPTOTRAK 3020 motion analysis system
(NDI, Waterloo, ON, Canada) sampling at 200 Hz.
Offline, we filtered displacement data via a second-order
dual-pass Butterworth filter employing a low-pass cut-
off frequency of 15 Hz. Subsequently, we differentiated
displacement data using a three-point central finite dif-
ference algorithm to obtain instantaneous velocities.
Movement onset was marked as the first sample frame in
which resultant wrist velocity exceeded 50 mm/s for ten
consecutive frames (50 ms). Similarly, movement offset
was determined by the first sample frame in which
resultant wrist velocity dropped below a value of
50 mm/s for ten consecutive frames (50 ms).

Dependent variables and statistical analyses

The dependent variables used in this investigation in-
cluded: reaction time (RT: time from response cuing to
movement onset) and movement time (MT: time from
movement onset to movement offset). In line with other
recent work (e.g., Danckert et al. 2002; Franz 2003;
Glover and Dixon 2001a, b, c, 2002; Heath et al. 2004a,
b, 2005a, b), we computed grip aperture (GA: absolute
distance between thumb and index finger) at discrete
points in the reaching trajectory to examine the extent to
which the premovement manipulation of grasping pos-
ture influenced unfolding grasping control. Specifically,
we measured GA at six time-points: a premovement
interval (i.e., SGA formulation) and at 0, 20, 40, 60 and
80% of MT2.

For all statistical analyses, an alpha level of 0.05 was
set, and where appropriate, F-statistics were corrected
for violations of the sphericity assumption using the
appropriate Huynh-Feldt correction (corrected degrees
of freedom reported to one decimal place). Simple effects
analyses and, in some cases, examination of power
polynomials were used to decompose significant main
effects and interactions. Note that in most analyses (see
below), we refer to a ‘small preview object’ if the size of
the preview object was 2 cm less than the target object.
Similarly, we use the term ‘veridical preview object’ if the
size of the preview object matched the target object.
Lastly, we use the term ‘large preview object’ to repre-
sent a preview object that was 2 cm more than the target
object.

Results

The first analysis was designed to address two questions:
first, to determine whether SGA remained stable from

initial formulation until the time of response cuing, and
second, to determine whether participants scaled their
initial grasp posture in relation to the different sized
preview objects. To that end, GA values for the preview
objects (3, 5, 7 and 9 cm) were computed during the
initial preview period (i.e., at SGA) and the time of re-
sponse cuing (i.e., 0% of MT) and were subjected to 2
Time (SGA, 0% of MT) by 4 Preview Object (3, 5, 7,
and 9 cm) repeated measures ANOVA. As expected,
premovement GA scaled in relation to the size of the
preview object, F(3, 42)=724.94, P<.0001. The 3 cm
preview object produced the smallest SGA (39±1 mm),
followed by step-wise increases for the 5 cm
(56±1 mm), 7 cm (74±1 mm) and 9 cm (94±2) pre-
view objects (only linear effect significant:
F(1,14)=924.27, P<.0001). We did not observe a sig-
nificant effect of Time (F<1), thus demonstrating that
participants were able to maintain a constant premove-
ment grasping posture from SGA until response cueing
(see Figs. 1 and 2).

Figure 1 presents averaged GA profiles for an
exemplar participant in each preview object, target ob-
ject and ML background combination. A number of
important elements can be gleaned from this figure.
First, Fig. 1 shows that the different sized preview ob-
jects influenced premovement GA formulation as well as
the early and middle stages of the unfolding grasping
trajectory. It can be noted, however, that the later stage
of the grasping trajectory was reorganized to meet the
characteristics of the to-be-grasped target object (cf.
Saling et al. 1996). Second, the exemplar participant
demonstrates that the ML figures influenced the early
stages of grasping (i.e., between 20 and 40% of MT) and
remained present for upwards of 90% of MT. Of course,
at the end of the grasping response (i.e., 100% of MT),
the participant had physically touched the target object,
thereby removing the impact of the illusion.

GA data were submitted to 5 Time (0, 20, 40, 60, and
80% of MT) by 3 Preview Object (small, veridical, large)
by 2 Illusion (fins-in, fins-out) by 2 Target Size (5 cm,
7 cm) repeated measures ANOVA. Results for GA
elicited significant effects for Time, F(2.4, 34.3)=20.90,
P<.001; Preview Object, F(2, 28)=177.47, P<.001; Il-
lusion, F(1, 14)=49.56, P<.001; and Target Size, F(1,
14)=442.62, P< .001, as well as interactions involving
Time by Preview Object, F(2.9, 41.9)=181.43, P<.001;
Time by Illusion, F(3.3, 46.6)=14.96, P<.001; Preview
Object by Illusion, F(2, 28)=4.37, P<.03; and Time by
Preview Object by Illusion, F(8, 112)=2.05, P<.04. As
expected, the Target Size effect indicated that the 5 cm
target yielded smaller GA values than the 7 cm target. In
terms of the Time by Preview Object interaction, a clear
separation between small, veridical, and large preview
objects was observed at 0% (F (2,28)=822.58, P<.001),
20% (F (2, 28)=305.58, P<.001), and 40% (F(2,
28)=44.39, P<.001) of MT. At 60 and 80% of MT, GA
values for the different preview objects no longer differed
(60% of MT: F(2, 28)=1.99, P>.05; 80% of MT: F(2,
28)=1.54, P>.05) (Fig. 2). Examination of the Time by

2Scaled illusion effects are not reported in the present investigation.
Our previous work employing absolute and scaled illusion mea-
sures has not shown a monotonic reduction in illusory effects when
context-dependent visual information intrudes into the motor re-
sponse (Heath and Rival 2005; Heath et al. 2004a, 2005a, b; see
also Westwood 2004).
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Illusion interaction showed that GA for the ML figures
did not differ at 0% of MT (t(14)=1.02, P>.05); how-
ever, at 20% (t(14)=4.32, P<.01), 40% (t(14)=7.08,

P<.001), 60% (t(14)=6.93, P<.001) and 80% (t(14)
=6.82, P<.001) of MT, the fins-in figure elicited smaller
GA values than the fins-out figure. In terms of the Time
by Preview Object by Illusion interaction, we elected to
decompose this interaction without including 0% of MT
because our analysis above showed that the ML figures
did not influence grasping at this time point. In terms of
20% through 80% of MT, we found that the fins-out
ML figure produced larger GA values than the fins-in
figure, regardless of whether a small, veridical, or large
preview object was presented, ts(14)=6.84, 4.78, 5.62,
respectively, ps<.001 (Fig. 2).

We elected to further examine the Time by Illusion
and Preview Object by Illusion interactions noted above
via examination of illusion effects (GA for the fins-out
ML figure minus GA for the fins-in ML figure). Illusion
effects were examined via 4 Time (20, 40, 60, 80% of
MT) by Preview Object (small, veridical, large) by Tar-
get Size (5 cm, 7 cm) repeated measures ANOVA. We
did not use 0% of MT in this analysis because we pre-
viously established (see above) null illusion effects at this
time point. The illusion effects data elicited significant
effects for Time, F(2.2, 31.1)=5.65, P<.01, and Preview
Object, F(2, 28)=3.71, P<.04. The magnitude of illu-
sion effects increased from 20 to 40% of MT and then
reversed to asymptote at 60% through 80% of MT
(significant third-order polynomial: F(1, 14)=10.57,
P<.01) (Fig. 2). The effect for Preview Object indicated
that illusion effects for the veridical preview objects were
less than the small (t(14)=2.75, P<.02) or the large
(t(14)=2.67, P<.04) preview objects (which did not
differ) (t(14)=0.79, P>.43) (Fig. 2).

RT and MT data were subjected to 3 Preview Object
(small, veridical, large) by 2 Illusion (fins-in, fins-out) by
Target Size (5 cm, 7 cm) repeated measures ANOVA.
The analyses of RT (Grand Mean = 259±12 ms) and
MT (Grand Mean = 656±38 ms) did not yield signif-
icant effects or interactions.

Discussion

We found that SGA (a manual estimate of object size)
scaled in relation to the size of the preview object and
influenced the early stages of the grasping response (i.e.,
20–40% of MT). As the action unfolded, however, the
differently sized preview objects no longer influenced
grasp parameters (i.e., 60–80% of MT). Moreover, and
in spite of the altered premovement GA used here,
Figs. 1 and 2 demonstrate the characteristic attainment
of maximum GA at 60–70% of MT (see Jeannerod
1984). Thus, and in accordance with other work, sub-
stantial online reorganization of the altered premove-
ment GA was undertaken as the hand approached the
target object (Saling et al. 1996; Timmann et al. 1996).
Most interestingly, we observed that the online reorga-
nization was influenced by the ML figures (20–80% of
MT), regardless of the size of the preview object, albeit

Fig. 1 Average grip aperture (mm) data for an exemplar partici-
pant at stable grip aperture (SGA) and eleven normalized time-
points (i.e., 0, 10...90, 100% of MT) as a function of small (top
panel), veridical (middle panel), and large (bottom panel) preview
objects and the 5 and 7 cm target objects embedded within fins-out
and fins-in ML configurations. Error bars represent the within-
participant SEM
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with the small and large preview objects eliciting more
robust illusory-effects than the veridical preview object.

Recall the PAM’s assertion that the real-time plan-
ning (e.g., Danckert et al. 2002; Haffenden et al. 2001;
Haffenden and Goodale 1998; Hu and Goodale 2000;
Hu et al. 1999) and online control (Westwood et al.
2000a, b) of visually guided action is mediated by dorsal
stream visuomotor mechanisms that process absolute
object metrics in an egocentric visual frame of reference
(see Goodale and Westwood 2004 for recent review).
Hence, a reasonable prediction arising from the PAM is
that online GA reorganization is based on visual feed-
back that is immune to the illusion-inducing elements of
the ML figures because dorsal stream mechanisms
operate without the influence of the top–down contex-
tual information driving cognitive illusions. Notably,
this assertion is consistent with the previous work from
the NeuroBehavioral Laboratory at Indiana University
showing that consecutively executed visually guided
grasping movements initiated with a typical start posture
(i.e. thumb and finger together) are entirely immune (i.e.,
20–80% of MT) to the same ML figures used in the
present research (Heath et al. 2005a, b). The present
findings however, showed that the altered premovement
GA postures elicited reliable illusory effects for upwards
of 80% of MT, a finding that is not consistent with the
PAM.

In terms of the two-component PCM, a context-
dependent ‘‘visual planning representation’’ and a con-
text-independent ‘‘visual control representation’’ are
thought to mediate the early and later stages of action
resulting in a dynamic illusion effect (Glover 2004). In
support of that position, Glover and Dixon (2002)
showed that the Titchener circles illusion had an early
effect on GA that was continuously reduced as the hand
approached the target (i.e., 40–100% of MT) (see also

Glover and Dixon 2001a, b, c). In keeping with the
PCM, the present results showed a dynamic illusion ef-
fect such that an early increase in the illusion on action
(i.e., from 20 and 40% of MT) was reduced at 60% of
MT. It is, however, important to note that the reduction
of the illusion was not continuous. Indeed, a reliable and
constant impact of the ML figures was observed from 60
to 80% of MT, thus suggesting that the early and late
stages of GA reorganization were influenced, albeit
asymmetrically, by the context-dependent properties of
the stimulus array.

The important question that remains is why the on-
line reorganization of GA was influenced by the ML
figures. One possibility is that the instantiation of a
premovement GA disrupted the normally online opera-
tion of the visuomotor system and resulted in a grasping
trajectory specified primarily offline via perception-
based visual information. This argument stems from
recent work by Heath and colleagues wherein partici-
pants adopted a premovement GA based on the per-
ceived size of to-be-grasped target objects embedded
with ML figures (Heath and Rival 2005; Heath et al.
2004a). In that paradigm, premovement GA was biased
in a direction consistent with the perceptual effects of the
ML figures. Notably, the biased premovement GA
influenced ensuing motor output such that GA values
associated with the fins-out ML figure were larger than
GA values associated with the fins-in ML figure for
upwards of 80% of MT. It was reasoned that advance
scaling of GA based on the size of a target object
embedded within the ML configuration encouraged
participants’ use of perception-based (Milner and Goo-
dale 1995) or offline (Glover 2004) visual information to
support not only premovement GA but also the spa-
tiotemporal characteristics of GA during the response.
This explanation, however, does not appear to ade-
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quately account for the present results for at least two
reasons. First, the current investigation presented the
target object to participants only at the time of response
cuing, thus precluding advance perception-based or
extensive offline planning of the response (see Heath
2005; Heath et al. 2004b). In other words, even though
the occlusion period used in this investigation mandated
participants’ maintenance of a premovement GA—
based on either a stored sensory representation of the
neutral preview object (Heath and Westwood 2003) or a
stored postural value (Rosenbaum et al. 1993)—
evidence from the extant literature suggests that
unfolding grasping trajectories were specified on the
basis of visual information available to the performer at
the time of response cuing and not before (so-called real
time control hypothesis; Klapp 1975, Westwood and
Goodale 2003; see Goodale and Westwood 2004 for
recent review). Second, because the small and large
preview objects produced premovement GA values that
were either ‘‘too small’’ or ‘‘too large’’ to appropriately
grasp the target object, participants were required to
engage real-time visual information for the online reor-
ganization of GA.

A more tenable explanation of the present findings
pertains to the interaction of egocentric and allocentric
visual frames in online grasping control. Support for this
proposal stems from some pictorial illusion studies as
well as literature examining the impact of background
visual cues (apart from illusory arrays) on visually gui-
ded actions. Concerning evidence from the pictorial
illusions literature, it has been reported that single
measures of visually guided grasping and pointing
movements are influenced by the context-dependent
properties of the ML figures. For example, Daprati and
Gentilucci (1997) reported that grasping an object
embedded with the ML figures reliably influenced
maximum GA (see also Westwood et al. 2001). As well,
the endpoints of visually guided pointing movements
frequently demonstrate bias to the ML figures (Elliott
and Lee 1995; Gentilucci et al. 1996). Most recently,
Meegan et al. (2004) showed that in spite of feedback-
based movement corrections, the spatial trajectory and
ultimate movements endpoints of visually guided
reaching movements were influenced by the ML figures.
Concerning evidence from research investigating the
influence of non-illusory background structure, it has
been repeatedly shown that geometric features or con-
textual cues surrounding a target enhance the accuracy
and effectiveness of visually guided actions (Conti and
Beaubaton 1980; Coello and Grealy 1997; Velay and
Beaubaton 1986). For instance, Krigolson and Heath
(2004) found that reaches to a visual or remembered
target surrounded by a structured visual background
were controlled more online than reaches directed to a
target in an empty or otherwise neutral visual back-
ground. That finding, in concert with other research
(e.g., Lemay et al. 2004), has been taken as evidence that
visual structure surrounding a target (i.e., allocentric
frame of reference) is combined with online vision of the

moving limb (i.e., egocentric frame of reference) to
support highly accurate reaching and grasping move-
ments. In other words, there is sufficient evidence from
the extant literature to suggest that egocentric and
allocentric visual cues interact to influence the online
control of action.

One could argue that the degree to which egocentric
and allocentric visual cues interact varies with the re-
quired level of online movement reorganization. This
view is predicated on findings from the present investi-
gation showing that the small and large preview objects
produced more robust illusory effects than the veridical
preview objects. Although dissociation between con-
scious perception and online (e.g., Goodale et al. 1986)
and offline (Gentilucci et al. 1995) movement reorgani-
zation has been reported, the manipulation of premov-
ement GA in the present investigation may have
necessitated explicit awareness of the need for online
reorganization, thus favoring putative interactions be-
tween egocentric and allocentric visual frames. More
specifically, the degree to which participants are aware
of the need for online reorganization might influence
movement-related set (Schluter et al. 1999) and thus
favor direct and/or indirect interactions that exist be-
tween the visual systems supporting egocentric and
allocentric visual frames (see below). Such an explana-
tion provides a congruent framework for understanding
why the present work, but not our previous work
employing a neutral premovement grasping posture
(Heath et al. 2005a, b), showed visuomotor susceptibility
to the ML figures. Indeed, it is entirely possible that
explicit awareness of the need for online movement
reorganization enhanced a cognitive allocentric repre-
sentation of peripersonal space (Carrrozzo et al. 2002)
and facilitated the interaction of multiple visual coor-
dinate systems (Previc 1998; Schoumans et al. 2000).

Of course, it is possible that the visual system com-
putes a single representation of 3D space that is used by
the motor system to support actions (e.g., Franz et al.
2001). In other words, a single and context-dependent
visual representation of 3D space may serve as the only
source of visual information available to the visuomotor
system. This idea, however, is countered by extensive
neuroimaging and neuropsychology evidence indicating
that anatomically distinct cortical regions mediate the
computation of egocentric and allocentric space. Indeed,
the lateral occipital complex, a structure in the ventral
visual pathway has been shown to be involved in object
recognition and scene-based tasks (i.e. allocentric-based
frame of reference) (e.g., James et al. 2003). In contrast,
regions within the intraparietal sulcus, and the extensive
visuomotor networks of the dorsal visual pathway have
been shown to play a pivotal role coding an egocentric-
based representation of 3D space (e.g., Binkofski et al.
1998; Culham et al. 2003; Desmurget et al. 1999).
Importantly, although allocentric visual cues are
thought to be processed independently within the ventral
visual pathway, relative size information may influence
visuomotor control via the extensive interconnections
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between dorsal and ventral streams (Merigan and
Maunsell 1993), or by bypassing the dorsal stream en-
tirely and exerting influence on motor areas indirectly
through projections to the prefrontal cortex (Lee and
van Donkelaar 2002; Ungerleider et al. 1998). This level
of direct and/or indirect connectivity between egocentric
and allocentric visual maps might account for the reli-
able illusory effects observed in the present investigation.

Conclusions

Participants’ online reorganization of GA was reliably
influenced by the illusion-evoking properties of the ML
figures for upwards of 80% of MT. These findings are
not in line with the PAM or PCM’s assertion that online
control is supported by absolute visual information, or
an absolute visual representation, which is refractory to
pictorial illusions. Instead, we propose that conscious
awareness of the need to reorganize altered premove-
ment GA parameters facilitated the interaction between
egocentric and allocentric visual maps, resulting in
grasping movements ‘‘tricked’’ by the ML figures.
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