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Abstract This paper presents ILGM (the Infant Learning
to Grasp Model), the first computational model of infant
grasp learning that is constrained by the infant motor
development literature. By grasp learning we mean
learning how to make motor plans in response to sensory
stimuli such that open-loop execution of the plan leads to a
successful grasp. The open-loop assumption is justified by
the behavioral evidence that early grasping is based on
open-loop control rather than on-line visual feedback. Key
elements of the infancy period, namely elementary motor
schemas, the exploratory nature of infant motor interac-
tion, and inherent motor variability are captured in the
model. In particular we show, through computational
modeling, how an existing behavior (reaching) yields a
more complex behavior (grasping) through interactive
goal-directed trial and error learning. Our study focuses on
how the infant learns to generate grasps that match the
affordances presented by objects in the environment.
ILGM was designed to learn execution parameters for
controlling the hand movement as well as for modulating
the reach to provide a successful grasp matching the target
object affordance. Moreover, ILGM produces testable
predictions regarding infant motor learning processes and
poses new questions to experimentalists.

Keywords Grasp learning model . Infant active
exploration . Infant motor behavior . Motor development .
Motor learning . Reinforcement learning

Introduction

Although it was recently suggested that human grasping is
a generalized reaching movement encompassing the
fingers so as to bring them to their targets on the object
surface (Smeets and Brenner 1999, 2001), the general
view is that separate but coordinated controllers execute
mature hand transport and finger movements (see
Jeannerod et al. 1998). Neither of these hypotheses
explains the development of grasping behavior from
infancy to adulthood. Although there are many experi-
mental studies on the attributes of infant reaching and
grasping and a number of models of reaching to grasp
(Arbib and Hoff 1994), there are no computational models
of infant grasp learning that combine the results of the
empirical studies and pose new questions to experimen-
talists. Following Meltzoff and Moore (1977) it is assumed
that infants are able to imitate facial and manual gestures
soon after birth. Imitation of object manipulation has been
reported for 14-month-old infants (Meltzoff 1988). How-
ever, it is yet unknown whether infants (as young as
4 months old) develop grasping ability via imitation or by
self-regulated learning mechanisms. In this paper, we
review evidence from literature that visual processing of
hand-object relation is not developed at early grasping
ages, and build ILGM, the Infant Learning to Grasp
Model, based on the literature to answer the question
whether grasping skill can be acquired with limited visual
processing (that forbids a delicate object-related imitation
capability.) Then we investigate the properties of ILGM
grasp learning for validating the model and making
predictions for the experimentalists. In particular, we
analyze the effect of environment and task constraints in
shaping infant grasping skill. The model is built on the
notion that infants initially have a concept neither of
minimizing an ‘error’ between hand shape and object
shape, nor of how to match their hands to objects for
grasping. The model shows that two assumptions suffice
for an infant to learn effective grasps: 1) infants sense the
effects of their motor acts, and 2) infants are able to use
feedback to adjust their movement planning parameters.
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The basis for motor learning is established early in
development. Infants begin to explore their bodies,
investigating intermodal redundancies, and temporal and
spatial relationships between self-perceptions by 2–
3 months of age (Rochat 1998). By 3–5 months, infants
are aware of the visual, proprioceptive and haptic
consequences of their limb movements (Rochat and
Morgan 1995). Children learn the possibilities of action
and the affordances for action in the environment through
such exploratory behavior (Olmos et al. 2000). In
particular, the affordances for object manipulation include
the visual or tactile cues indicating that an object or a
portion of it constitutes a suitable target for a stable grasp.
Infants also learn to overcome problems associated with
reaching and grasping by interactive trial and error
learning (von Hofsten 1993; Berthier et al. 1996). They
learn how to control their arms and to match the abilities
of their limbs with affordances presented by the environ-
ment (Bernstein 1967; Gibson 1969, 1988; Thelen 2000).
Our study focuses on the latter skill, how to learn to
generate grasps that match the affordances presented by
objects in the environment. By learning to generate grasp
we mean learning how to make motor plans in response to
sensory stimuli such that execution of the plan without
visual feedback can lead to a successful grasp (without
denying the importance of visual feedback in more
elaborate manual tasks).

The basic motor elements for reach to grasp are
established early in development, and early motor learning
leads to rapid development of sensorimotor strategies
during the first year. Infants exhibit a crude ability to reach
at birth (von Hofsten 1982), which evolves into distinct
skills for reaching and grasping by 4–5 months, and adult-
like reaching and grasping strategies by 9 months (von
Hofsten 1991), achieving precision grasping by 12–
18 months (von Hofsten 1984).

Reaches of the neonate elicited by vision of a target can
be executed without vision of the hand because infants
12 weeks of age make hand contact with glowing and
sounding objects under lighted and dark conditions with
similar frequency, and the onset of successful grasping
under the two conditions occurs at approximately the same
age of 15–16 weeks (Clifton et al. 1993). Furthermore,
experiments controlling the visual information (i.e., hand
vision and target vision) available to 9-month-old infants
during grasping show that visual monitoring of hand and
target is not necessary for online adjustment of the hand to
match target object orientation (McCarty et al. 2001). Yet,
infants are apparently also learning to use visual informa-
tion for monitoring as well as preplanning reaches because
by 5 months of age, unexpected visual blockade of the
hand disrupts the reach (Lasky 1977). Around 5–7 months,
hand closure begins near the time of object contact (von
Hofsten and Ronnqvist 1988) and hand orientation is
partially specified relative to the vertical versus horizontal
orientation of an object prior to contact (von Hofsten and
Fazel-Zandy 1984) or by the time of contact (McCarty et
al. 2001). Between 9–13 months of age, reaches appear
more distinctly pre-programmed, as evidenced by earlier

hand orientation and anticipatory grasp closure relative to
object orientation and size (Lockman et al. 1984; von
Hofsten and Ronnqvist 1988; Newell et al. 1993). While
both power and precision grips are observed during
reaches at 6 months of age, the precision grip gradually
becomes the dominant form, appropriately modified for
smaller (pincer grasp) versus larger objects (forefinger
grasp) during the second year (Butterworth et al. 1997).
Collectively, these studies suggest that infants use so-
matosensory information to increase the success of early
reaching and grasping efforts and to establish a basis for
visually elicited (but not so much guided) reaching to
grasp during the later portion of the first postnatal year.
Later in development, deployment of initial visually
elicited grasping probably provides the training stimuli
for development of visual-feedback-based grasping re-
quired for delicate manipulation and accommodation of
unexpected perturbations of the target and/or trajectory.

In this study, we tested various hypotheses and made
testable predictions on the process of motor learning in
infancy using computational modeling. The Infant Learn-
ing to Grasp Model (ILGM) we developed embraces the
learning-based view of motor development without
denying the necessity of a mature neuromuscular sub-
strate. Our model interacts with its environment (plans and
executes grasp actions), observes the consequences of its
actions (grasp feedback), and modifies its internal
parameters (corresponding to neural connections) such
that certain patterns (grasp plans) are selected and refined.
Based on the available experimental literature, we propose
that infant grasp learning is mediated by neural circuits
specialized for grasp planning which can function with
only limited visual analysis of the object, i.e., its position
and a crude assessment of grasp affordance. In the
macaque monkey, a specialized circuit in the parietal
area AIP extracts object affordances relevant to grasping
(Taira et al. 1990; Sakata et al. 1998, 1999; Murata et al.
1996, 2000) and relays this information to the premotor
cortex where contextual and intention related bias signals
are also integrated for grasp selection/execution (see Fagg
and Arbib 1998). It is very likely that a similar circuit
exists in the human (see Jeannerod et al. 1995) and is
adapted during infancy for subsequent acquisition of adult
grasp skills. Our model presents mechanisms for the
functional emergence of grasp circuits with training.

With ILGM we have performed four groups of simu-
lation experiments. Simulation Experiment 1 (SE1) tested
whether ILGM could emulate the first stage of infant
grasping skill by learning to grasp using goal-directed
variable reaches. SE1a assumes an automatic palm
orientating function, while SE1b removes this assumption
to test whether ILGM can learn the appropriate palm
orientations required for stable grasps. In Simulation
Experiment 2 (SE2) we tested the hypothesis that context-
enforced task constraints could be a factor responsible for
the infants’ transition from power grasp to precision grip
during development by having ILGM interact with a small
cube either placed on or under a horizontal plane.
Simulation Experiment 3 (SE3) was designed to test the
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controlled effect of affordance availability to ILGM and
compare simulation findings to those for infant grasping
which show that although infants younger than 9 months
of age can grasp an object once they contact it, they appear
not to use the object affordance information (e.g.,
orientation) in grasp planning and execution. Finally,
Simulation Experiment 4 (SE4) tested execution general-
ization to different target locations via training of ILGM
with random object locations in the workspace. In the
remainder of the paper, we specify ILGM in detail and
analyze the model’s relevance via simulation experiments.
We present the resulting behavioral responses and make
comparisons where experimental human data are avail-
able. We discuss predictions generated by the simulations
that can be experimentally tested.

Methods

All studies with human and animal subjects at the University of
Southern California do require prior IRB approval. However, the
experiments conducted in preparing this paper were all carried out as

computer simulations. Such studies do not require approval of the
University’s Internal Review Board. The data from human and
animal subjects used to evaluate our simulation results are all taken
from the literature.
The simulation environment created is composed of 1) a model of

the infant hand and arm based on the kinematics model of Oztop and
Arbib (2002), 2) the computer routines implementing the infants’
elemental hand behaviors, and 3) the actual implementation of
ILGM learning routines.
In general, a simulation session is set up as follows. ILGM

generates a set of grasp parameters based on the probability
distribution represented in its layers (detailed below). However, with
a small probability a random plan can be generated. The randomness
captures the infant’s variable and spontaneous movements and
provides the exploration required for learning. When testing, the
model generates the grasp plans solely based on the probability
distribution represented in the layers. The task of learning is then to
adjust the weights determining the layer probability distributions so
that successful grasp parameters are represented with higher
probability. The model receives positive rewards from those grasps
that yield successful or nearly successful grasps, and negative
rewards for plans yielding unstable grasps or no object contact.
Thus, an almost-grasp program is encouraged, leading to a greater
chance of producing similar plans on subsequent trials.

Fig. 1 The structure of the Infant Learning to Grasp Model. With o
the location of the center of the target object, the aim of learning in
the LG module is to provide inputs v, r and h to the MG module
such that o + h is a good via-point for a grasp based on virtual finger
vector v and wrist rotation vector r to successfully grasp the object at
o when it has the affordance encoded by affordance layer A. The
individual layers are trained based on somatosensory feedback (AZ
azimuth, EL elevation, RD radius; EF extension/flexion, SP

supination/pronation, D radial/ulnar deviation). The affordance
layer is used to convey the affordances available to the model. In
the simplest case, the model has only the information about the
existence of an object (1 unit). In the most general case, it may
include any object information, including the location. In the
simulations reported in this paper, the affordance layer is engaged in
encoding either the existence or the orientation or the position of the
target object
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Infant learning to grasp model (ILGM)

In our model, initiation of the reach is programmed, not learned, for
our concern was to develop a model of grasp learning that shapes
reaching movements into grasping movements. However, ILGM
does learn to coordinate the reach with the grasp parameters it
generates as a result of interactions with target object(s). These
design elements are consistent with infants’ real life experiences in
that they begin grasping objects before reaching ability is fully
developed, and each imperfect reach provides the opportunity to
explore the space surrounding the object.
The schema level architecture of the Learning to Grasp Model is

illustrated in Fig. 1. The left side panel shows the input (I) module
providing sensory information. We assume that the general details of
neural architecture for the reach and grasp are shared by human and
monkey brains. Thus, while the behavior of the ILGM is designed to
learn grasping in a manner consistent with data from human infants,
the layers of the model are associated with general brain areas in a
fashion based on monkey neurophysiology data. In brief, the input
module (I), located in the parietal lobe, extracts object affordances
and relays them to the learning to grasp module (LG), assumed to be
in premotor cortex, the center implicated in grasp programming
(Taira et al. 1990; Sakata et al. 1998, 1999; Murata et al. 1996,
2000). In turn, premotor cortex makes a grasp plan and instructs the
movement generation module (MG) in the spinal cord and motor
cortex for task execution (see Jeannerod et al. 1995). The sensory
stimuli generated by the execution of the plan are integrated in the
primary somatosensory cortex which contains the movement
evaluation module (ME). Output of the somatosensory cortex
mediates adaptation of the grasping circuit. The LG module’s Virtual
Finger, Hand Position and Wrist Rotation layers are based on the
Preshape, Approach Vector and Orient grasping schemas proposed
by Iberall and Arbib (1990). These layers encode a minimal set of
kinematic parameters specifying basic grasp actions.
During early visually-elicited reaching while infants are reaching

towards visual or auditory targets, they explore the space around the
object and occasionally touch the object (Clifton et al. 1993). ILGM
models the process of grasp learning starting from this stage. We
represent infants’ early reaches using an object-centered reference
frame and include random disturbances during initial reach trials by
ILGM so that the space around the virtual object is explored. We
posit that the Hand Position layer specifies the hand approach
direction relative to the object, realizing that the object can be
grasped and touched from many angles. Intuitively speaking, the
Hand Position layer contains the information for determining how to
approach the object from, e.g., the top, bottom or right in a
continuum of possible directions. A spherical coordinate system
(instead of a Cartesian system) centered on the object center was
chosen for the Hand Position layer, for its robustness in specifying
an approach direction in the face of perturbations in vector
components (see Fig. 14 in Appendix 1). More generally, the
coordinate system may be centered on a particular affordance, rather
than the object center.
Wrist orientation depends crucially on where the object is located

relative to the shoulder as well as on how the reach is directed
towards the object. Thus, the task of ILGM is to discover which
orientations and approach directions are appropriate for a given
object at a certain location, emphasizing that both an object’s
intrinsic properties and also its location create a context in which the
grasp can be planned and executed. Thus, the Wrist Rotation layer
learns the possible wrist orientations given the approach direction
specified by the Hand Position layer. The Wrist Rotation layer also
receives projections from the Affordance layer, because in general,
different objects afford different paired sets of approach-direction
and wrist-rotation solutions. The parameters generated by this layer
determine the movements of hand extension-flexion, hand supina-
tion-pronation, ulnar and radial deviation.
The Virtual Finger layer indicates which finger synergies will be

activated given an input. This layer’s functionality is fully utilized in
adult grasping and is engaged in only learning the synergistic
enclosure rate of the hand in the current simulations. This layer can
account for the developmental transition from synergistic finger

coordination during grasping (Lantz et al. 1996) to selective digit
control for matching hand shape to object shape (Newell et al.
1993). In the simulations presented, the output of the Virtual Finger
layer is a scalar value determining the rate of enclosure of the fingers
during the transport phase. However, this does not restrain us from
reproducing infant behavior and generating testable predictions.

Joy of grasping

Infants spontaneously engage in manual manipulation. Infants as
young as 2 months of age play with their own hands, manipulate
objects put in their hands, and play with rattles (Bayley 1936). When
the hand contacts a glowing or sounding object in the dark, infants
as young as 11 weeks try to grasp it (Clifton et al. 1993). We suggest
that the resulting tactile stimuli yield neural signals that motivate
infants to engage in grasping and holding. We further propose that
the sensory feedback arising from the stable grasp of an object, ‘joy
of grasping’, is a uniquely positive, motivating reward for the infant
to explore and learn actions that lead to grasp-like experiences. This
may be akin to the adaptive value of an action proposed by Sporns
and Edelman (1993) when postulating three concurrent steps for
sensorimotor learning: 1) spontaneous movement generation; 2)
ability to sense the effects of movements and recognize their
adaptive value; and 3) ability to select movements based on their
adaptive value. Along these lines, we present a probabilistic neural
network architecture that uses ‘joy of grasping’ as the reward
stimulus and employs adaptive mechanisms similar to those used in
reinforcement learning (see Sutton and Barto 1998 for a review).
However, the goal of ILGM is not simply to find action which
returns the maximal reward but rather to discover the repertoire of
rewarding grasp actions in the form of probability distributions over
the individual grasp parameters. This structure allows fast
subsequent adaptations (e.g., inhibition of a hand position vector
will block the generation of compatible wrist rotation vectors
without retraining).

Movement parameter representation: learning to grasp (LG)
module

This section describes the encoding used within the LG layers
shown in Fig. 1.

Virtual finger (V) layer

In the simulations, the Virtual Finger layer generates a scalar value
controlling the rate of flexion of the finger joints during movement
execution. The MG module uses this value to implement the enclose
phase for the virtual hand during reach (see Movement generation).
The minimal value, zero, informs the MG module that the hand will
move without any enclosure, while the maximal value, one,
indicates that the hand will move with an enclosure speed such
that when the reach is complete the hand will be fisted. (Of course,
this only happens if the reach does not produce manual contact with
the target object.) The V layer is formed by a linear array of units
each of which has a preferred enclosure value. The net movement
parameter is calculated using a population-coding scheme: the
activity-weighted sum of preferred values is returned (see Move-
ment parameter generation and Learning) as the parameter
represented.

Hand position (H) layer

In reaching for a target whose center is at position o, the hand must
reach a via-point outside the target from which it moves toward the
target. Let us represent that initial position by the vector sum o + h.
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The H layer produces this offset vector, h. The parameter h is
composed of azimuth, elevation and radius components. Each unit
in the H layer thus has a preferred (azimuth, elevation, radius) value.
The topology of the units forms a three-dimensional mesh. The net
movement parameter is calculated using a population-coding
scheme (see Movement parameter generation and Learning).
The MG module combines the vector o (available to it as a vector

without neural encoding) and the offset h and then takes the hand to
a via-point at o+h and then to the object center o. (Note that this
movement will often be interrupted by the collision of the hand with
the object, triggering the enclosure reflex.) This simple scheme
captures the basic ability to approach a goal from a range of
directions.

Wrist rotation (R) layer

The R layer produces a vector, r, which informs the arm/hand
simulator of the extent of the wrist movements to be made during
the reach. The wrist movements indicated with r are hand extension/
flexion, hand supination/pronation, ulnar/radial deviation. Similar to
the H layer, each unit has preferred extension/flexion, hand
supination/pronation and ulnar/radial deviation values. Thus, the
topology of the units forms a three-dimensional mesh. The net
movement parameter is calculated using a population-coding
scheme as in the H layer. The reach simulator uses the r-value to
rotate the hand via a linear interpolation between the current wrist
angles and the r-value during the execution of the reach.

Movement generation: MG module

Since the goal of our study was to model how infant reaching
movements can be shaped into grasping movements, reaching was
not learned but implemented using techniques from robotics. More
specifically, the Jacobian transpose method (see Sciavicco and
Siciliano 2000) was used to solve the inverse kinematics (Appen-
dix 2). As described in Appendix 2, our hand model has many
degrees of freedom and thus its interaction with the target object can
yield many contact situations. Figure 2 shows a simple contact
scenario with two contact points. In general, each segment of the
fingers can potentially create object contact. Our formulation takes
into account the case of multiple contacts but uses the assumption
that each one is a point contact. The list of contacts points (contact
list) is provided to the movement evaluation module (ME) which
computes the success value emulating the somatosensory feedback
that we call the ‘joy of grasping’.
One of the simulation decisions is which part of the hand to use as

the end-effector (see Appendices 2 and 3). Empirically we observed
that reaches with (any part of) the thumb as the end-effector allow
very limited grasp learning. The index and the middle finger are

most suited for ILGM (and indeed a study of neonates by Lantz et
al. [1996] reports that the index finger is the first to contact an
object). To keep the learning time required low, we did not
implement another layer to learn end-effector assignment but rather
specify it as a simulation parameter (Appendix 3). Figure 1 shows
the inputs available to the MG module. Except for the o vector
(object center), the parameters are generated by neural layers of the
LG module. The algorithm for the execution of the movement is as
follows:

1. Initialization: the vectors: o (object center), h (approach offset), r
(hand rotations), θc (current arm joint configuration), rc(current
wrist joint configuration) and v (enclosure rate)

2. While the via point o+h is not reached
a. Compute joint angle increment (Δθo+h) to reach o+h

(Appendix 2)
b. θc ← θc +Δθo+h
c. (Linearly) interpolate wrist joint angles rc→r

3. While o is not reached or enclosure is incomplete
a. Compute joint angle increment (Δθo) to reach o

(Appendix 2)
b. θc ← θc +Δθo
c. Continue interpolating wrist joint angles rc→r
d. Flex finger joints with rate v
e. If target angles are achieved go to 4
f. Check for hand-object collision, if collision, execute

enclosure reflex (Step 5)

4. Return empty contact points list. End
5. Independently flex each finger joint until object surface

contacted or the joint limit is hit
6. Return the list of contact points
7. End

Appendix 2 presents the details of the simulated arm model
together with the algorithm used to compute Steps 2a and 2b. In the
algorithm above, the wrist joints are activated at the onset of reach
(Step 2). However, for learning purposes this is not crucial; the
algorithm works equally if the wrist joints were activated at a later
time during hand transport. Remember that the aim of the algorithm
is not to replicate human reaching (i.e., we are not concerned with
for example generating bell shaped velocity profiles observed in
adults) but rather to provide a wide range of hand object contact
possibilities to mimic the infant’s variable reaches and grasp
attempts, which mediate learning. ILGM’s learning routine will
exploit whatever successful grasps occur to learn appropriate grasps
to use when the hand approaches the object in the manner specified
by MG.

Fig. 2 The grasp stability used
in the simulations is illustrated
for a hypothetical precision
pinch grip in which the contact
list has two elements, one for
the thumb and one for the index
finger
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Mechanical grasp stability: movement evaluation (ME) module

The ME module takes the contact list returned by the MG module
and returns a reward (or success) signal to be used for adapting the
LG layer. A successful grasp requires that the object remains stable
in the hand (it must not drop or move) (MacKenzie and Iberall
1994). Figure 2 illustrates a precision pinch performed by our
simulator. To formalize this, let M be the number of contacts; Pi, Ni
and Fi, respectively, the coordinates of contact i, the surface normal,
and the force applied by the finger segment involved in the contact,
and let Pc represent the coordinate of the center of mass of the
object. Then grasp stability can be defined as follows (adapted from
Fearing 1986) (〈⋅〉 and ⊗ denote dot and cross products,
respectively):

1. The net force (Fnet) acting on the object must be zero where

Fnet ¼
XM
1

NihFi � Nii (1)

2. The net torque (Tnet) acting on the object must be zero where

Tnet ¼
XM
1

ðPi � PcÞ � NihFi � Nii (2)

3. For any force acting on the object, the angle between the
directions of the force and the surface normal must be less than a
certain angle ρ. This angle is defined through the finger and
contact surface dependent coefficient μ with the relation
p=tan-1μ (i). The constant μ satisfies the property that if Fn
and Ft are the normal and tangential components of an applied
force then there will be no slip if μ∣Fn∣>∣Ft∣ (ii). Combining
(i) and (ii) we can write: there will be no slip if

cos�1 ðhFi � Nii
Fij j Nij j Þ < � (3)

where ρ is a constant that is determined by the finger and contact
surface dependent friction coefficient.
To evaluate how good (in terms of grasp stability) a hand-object

contact is we may think of the “cost” of a contact list measured by a
cost function indicating how much it violates the above three
desiderata. However, since our simulator does not produce forces,
we have to evaluate the contact list without force specification (i.e.,
have to evaluate the hand configuration). We perform this by
checking whether a given contact list affords a set of contact-forces
conforming to (1–3) by minimizing the cost function with respect to
Fi. Then the grasp error is defined as the minimum value of the cost
function. The following cost function (E) was used in the simulation
experiments, which approximately captures the criteria (1–3).

EðFiÞ ¼ � Fnetj j þ ð1� �Þ Tnetj j

þ �
XM
i¼1

cos�1 ðhFi � Nii
Fij j Nij j Þ

Fij j > fmin;8i ¼ 1; :::;M

(4)

The constants α and β determine relative contributions of the
force (α), torque (1-α) and non-slipping (β) cost terms to the total
cost function. The first two terms capture the grasp stability
conditions that the net force and net torque acting on the object must
be zero (1, 2). The last term captures (approximately) the
requirement of non-slipping contacts (3). The value fmin is an
arbitrary small positive constant to avoid the degenerate solution
Fi=0. Although the friction between the fingers and object surfaces
is not explicitly specified, the non-slipping cost term ensures the
rejection of grasp configurations in which the angle between contact

forces and the surface normals have high angular deviation. This
means that the larger the β, the more slippery the object-finger
contact, as evidenced by the fact that a large β will cause a large E
for oblique forces acting on the object surface. Thus, while the α
terms only include the vertical component of the acting forces, the
tangential forces are included indirectly by the β term.
The grasp error (Emin, the minimum value of E with respect to

finger forces) is converted into a reward signal (rs) to be used for
adaptation in the LG layer as follows.

rs ¼ rsneg if Emin > Ethreshold

0:5þ e�Emin if Emin < Ethreshold

�
(5)

where rsneg is a negative, and Ethreshold is a positive simulation
constant (see Appendix 3). The exact form of the reward signal
generation is not important. What is sought is generation of a rs
value that is negative for movements that are clearly not stable (large
Emin), but positive for movements that are close to being stable
(Emin < Ethreshold), with increasing magnitude representing the
stability of the grasp. Note that the special cases of no contact and
single contact directly generate a negative reward. The constants are
empirically determined in conjunction with the σ2 parameter (see
Movement parameter generation and learning) which controls the
spread of activity to neighbor units during parameter generation and
learning.

Movement parameter generation and learning: learning to grasp
(LG) module

The LG layers are made up of stochastic units that represent
probability distributions (see Zemel et al. 1998), but the parameter
generated from a layer is determined by the unit that fires first
(within a simulation step) as in rank order coding (van Rullen and
Thorpe 2001). This probabilistic architecture enables representation
of multiple action choices at the same time and allows biasing from
other neural circuits. After learning, when presented with an object,
the ILGM generates a menu that contains different grasp plans that
are applicable to the affordances presented by the object. The menu
could be biased by other brain regions such as the prefrontal cortex
(Fagg and Arbib 1998) according to organism’s motivations or task
constraints, but this is outside the scope of the present study.
The firing probability of a neuron is directly proportional to the

sum of the weighted (by the connection matrix) input it receives
(normalized over a layer). Our goal in the design of LG layers was to
represent a probability distribution of grasp parameter values rather
than directly representing the parameters. Hence, a grasp plan is
determined by generating parameters based on the probability
distributions represented in the layers. The goal of learning is to
discover the probability distribution of grasp parameters that can
achieve stable grasping. The grasp parameter generation and weight
update algorithm given below computes the reward-weighted
histogram of the output patterns as a function of input. In the
simplest (1-layer) case, the action that returns reward causes a
weight strengthening between the unit coding the input stimuli and
the neuron coding the action. ILGM extends this 1-layer reward and
input dependent histogram learning to more layers with the goal of
eliminating parameter search around the incompatible parameters,
thus speeding up learning.
The following description employs a number of notations from

Fig. 1, and so the reader will find it helpful to refer to that figure
while reading the following details.

Grasp parameter generation

In the following description, all the layers (A, V, H and R)
are vectors (regardless of the encoded representation), the
weights (Wxy) are matrices. The individual elements of
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vectors are denoted by lowercase single letter subscripts
(e.g., Vk).

Step 0

Encode the affordances presented to the circuit in
Affordance layer (A) using population coding. Set the
vector o as the center of the target object. In the simplest
case the A is a single unit encoding the existence of an
object (Simulation Experiments 1 and 2); in the most
general case it encodes the features relevant for grasping
such as orientation (Simulation Experiment 3) and position
(Simulation Experiment 4).

Step 1

Compute the outputs of the Virtual Finger (V) and Hand
Position (H) layers based on the connection matrices WAV

and WAH (these connect I to LG; see Fig. 1):

Vnet ¼ ½WAVA�þ; Hnet ¼ ½WAHA�þ (6)

where the [ ]+ operation rectifies the negative operands to
zero; and

V ¼ VnetPNV

k¼1
Vnet;k

; H ¼ HnetPNH

k¼1
Hnet;k

(7)

where NVand NH represent the number of units in layers V
and H. This normalization step converts the net outputs
into probabilities so that V and H can be treated as
probability distributions.

Step 2

Process activity in layers Vand H to extract v*, h* for next
action. Below random represents a uniform random
variable in [0, 1]. If random <α (where 0<α<1), a random
output is generated, providing exploration in the parameter
space. But if random >α, then the probability distribution
on V and H determine which output is chosen:

if random > �ð Þ Pick v� 2 1;NV½ �; with the probability distribution represented by V
else Pick v� 2 1;NV½ �; with uniform probability distribution

�
if random > �ð Þ Pick h� 2 1;NH½ �; with the probability distribution represented by H
else Pick h� 2 1;NH½ �; with uniform probability distribution

� (8)

Step 3

This step over-writes the outputs of the Virtual Finger (V)
and Hand Position (H) layers from Step 2, now encode the
“action values” h* and v* as a population code with
variance σ2 (a predetermined constant),

Vk ¼ e
��ðk;v�Þ

2�2 ; Hj ¼ e
��ðj;h�Þ
2�2 (9)

for k=1 . . NV and for j=1 . . NH.

Here, δ(a,b) is the Euclidean distance metric defined
over the indexes of a and b in the neural population mesh.
In general, the function δ(a,b) measures how closely the
units a and b contribute to a particular parameter value.

Step 4

Compute the net synaptic inputs into the Wrist Rotation
layer (R) using the same conventions as in Step 1. NR

represents the number of units in R. (Again, see Fig. 1 for
the placement of the connection weight matrices.)

RsynV
net ¼ ½WVRV �þ; RsynH

net ¼ ½WHRH �þ;
RsynA
net ¼ ½WARA�þ

(10)

RsynV ¼ RsynV
netPNR

k¼1

RsynV
net;k

; RsynH ¼ RsynH
netPNR

k¼1

RsynH
net;k

;

RsynA ¼ RsynA
netPNR

k¼1

RsynA
net;k

(11)

Step 5

Combine the inputs multiplicatively, then normalize them.
(The intuition behind multiplication is that the probability
distributions represented in V, H are a multiplicative factor
of the probability distribution represented in R since the
wrist rotation is a function of virtual finger, hand position
and affordance input.)

R ¼ RsynV � RsynH � RsynA

PNR

k¼1
RsynV
k � RsynH

k � RsynA
k

(12)

where the * operator denotes component-wise multi-
plication.
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Steps 6 and 7 now do for R what Steps 2 and 3 did for V
and H.

Step 6

Obtain r* from layer R.

if random > �ð Þ Pick r� 2 1;NR½ �; with the probability distribution represented by R
else Pick r� 2 1;NR½ �; with uniform probability distribution

�
(13)

Step 7

Encode r*

Ri ¼ e
��ði;r�Þ
2�2 (14)

for i=1 . . NR.

Step 8

Extract the “population vector” to provide the actual
values that drive the generation of the movement.

v ¼
XNV

k¼1

Pk
VVk; h ¼

XNH

k¼1

Pk
HHk; r ¼

XNR

k¼1

Pk
RRk (15)

where Pk
X denotes the preferred movement parameter

associated with unit k in layer X.

Step 9

Generate the reach using the parameters v, h and r and o
(see Movement generation).

Step 10

Compute stability and generate reward signal rs (see
Mechanical grasp stability).

Step 11: learning—adapt the weights using rs

The connection among layer units are updated with the
REINFORCE update rule1 (Williams 1992; Sutton and
Barto 1998), which is Hebbian for positive rs and anti-
Hebbian for negative rs values.

Wnew
AV ¼ WAV þ �AV rsAV

T ; Wnew
AH ¼ WAH þ �AHrsAH

T

Wnew
HR ¼ WHR þ �HRrsHR

T ; Wnew
VR ¼ WVR þ �VRrsVR

T

(16)

The η denote the learning rate parameters, and super-
script T denotes the vector transpose. Parameter values for
our simulations are set out in Appendix 3.

Note that firing rates play a different role within LG
from that which they play as outputs fed into the
Movement Generation module (MG). Acting within LG,
the initially determined firing rates across the V, H and R
layers are used to then pick a specific unit in each layer,
which will control the ensuing grasp (Steps 2 and 5).
However, in preparing the outputs from LG that will affect
MG, Step 3 over-writes the outputs of the Virtual Finger
(V) and Hand Position (H) layers, recoding the “action
values” from Step 2 as a population code for the chosen
action value. Similarly, Step 7 over-writes the output of the
Wrist Rotation layer (R), recoding the “action values”
from Step 6 as a population code. Step 8 then takes these
V, H and R population codes and extracts the “population
vector” to provide the actual values v, h, and r that drive
the generation of the movement. For a biological system,
the over-writing mechanism implemented may represent a
lateral inhibition mechanism within a layer, by which the
first firing neuron determines the information to be
transferred to subsequent layers (as suggested for visual
cortex by van Rullen and Thorpe 2001).

Since the output is represented as a population code
after Steps 3 and 7, respectively, the weight strengthening
(Step 11) not only increases the probability that the neuron
that coded the rewarding output will become active in
future but also increases the chance of neighboring output
units becoming active as well. Because the reward signals
are used to update not only the units contributing to the
action selection, but also their neighbors as well, large
negative reward signals (rsneg) may overpower the activity
of a unit that yields positive reward. This happens when
the parameters returning positive reward constitute only a
small fraction of the whole parameter space. Therefore, the
negative signal is usually chosen smaller than the positive
reward signals (e.g., less than 0.1 in absolute value as
compared with 0.5).

In summary, the Wrist Rotation layer receives the output
of Hand Position and Virtual Finger layers and dynami-
cally computes a probability distribution for wrist move-
ment parameters based on the input signals. The depen-
dency of wrist movement parameters on the input is
captured in the connection matrices via weight adaptation

1 Technically, REINFORCE requires the firing probability of
neurons be specified as a differentiable function of the input. Our
algorithm does not conform to this criterion (i.e., Step 1) but it can
be shown that a softmax approximation to Step 1 yields a learning
rule similar to the one we used.
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rule (Step 11). After learning, ILGM generates a set of
grasp parameters as follows (see Fig. 1). Presented with
the object, Hand Position layer produces the distribution of
possible approach directions. The distribution is used to
generate the hand approach direction vector that is relayed
to Wrist Rotation layer. Similarly, the enclosure rate
parameter generated by the Virtual Finger layer is relayed
to Wrist Rotation layer. The Wrist Rotation layer in turn,
computes the distribution of feasible wrist orientations
given the specified approach direction, enclosure speed
and the object affordance (output of Affordance layer).
The probability distribution computed in the Wrist Rota-
tion layer is then used to generate wrist rotation parameters
completing the parameters of a grasp plan.

Simulation experiments

To test the hypothesis that early grasp learning could be
mediated by simple goal-directed reaching without
affordance extraction and imitation capability, we mi-
micked infant elemental hand behaviors, implementing
reaching, grasp reflex and palm orienting behavior
(programmed for Simulation 1, learned for other simula-
tions). Each simulation experiment set was run indepen-
dently with different settings, however linked by the
conceptual progression of the hypotheses tested. For
example, in Simulation Experiment 2 (SE2), we intro-
duced an obstacle to create a ‘context,’ whereas in
Simulation Experiment 4 (SE4) we varied object location
to test the generalization of ILGM to different object
locations. Consequently, the learning results of a simula-
tion do not transfer to subsequent simulation experiments.
However, the consistent conclusions drawn from our
simulation results are presented in the Discussion. The
period our simulations address (except SE3b), corresponds
to the early postnatal grasping period when object
affordances are not fully appreciated because of either
maturational shortcomings (maturational theory) or devel-
opmental delays attributable to the complexity of learning
(learning-based theories of motor development).

Simulation experiments 1 (SE1): learning to grasp
with/without auto palm orienting

SE1a Although fisting appears to dominate open-hand
reaches in the second month of age, the hands open again
around the third postnatal month (von Hofsten 1984).
During reaches with an open hand, infants orient their
palms towards the target objects (see Streri 1993, pp 46–
47). It has been suggested that the grasp reflex constitutes
the first stage of grasping (Twitchell 1970; see Streri 1993
for a review). We designed our first simulation to verify
that our model emulates the first stage of grasping skill by
bootstrapping voluntary grasping based on goal-directed
variable reaches and grasp reflex.

Given o, the location of the center of the target object,
and the affordance encoded by affordance layer A, the

grasp plan provides a scalar v (hand enclosure rate), and
two vectors, r (3DOF rotations of the wrist) and h (3-
dimensional offset vector) to the MG module. The plan is
such that o+h is a good via point compatible with v and r
to successfully grasp the object at o. However, in this
simulation experiment (SE1a only), a grasp plan is defined
by the single vector h which specifies the via-point o+h
that the hand will pass through (see Movement genera-
tion), since we program an automatic function that drives
the fully extended hand with the palm always facing the
target (see Appendix 2). The location is specified using a
spherical coordinate reference frame centered on the
(modeled) object (see Appendix 1). The hand goes first
to the via-point, and then approaches the object. A contact
with the object triggers the grasp reflex, which is modeled
as a flexion of fingers over the object when the hand-
object contact occurs. We view the grasp reflex as a spinal
reflex, while viewing LG as modeling a crucial part of the
cortical control of the grasping. In general, the grasp reflex
need not yield stable grasping, as there is no guarantee that
the model (or an infant) approached the object from an
appropriate direction. Furthermore, although the object is
suspended in space, the position of the object does not
always allow grasping from all directions due to anatom-
ical constraints. Obviously, the total range is not
biologically feasible—but the model will learn which via
points achievable by the simulated arm will support a
stable grasp. An enclosure that yields a successful or
nearly successful grasp generates a positive reward (see
Mechanical grasp stability), whereas unstable grasps and
lack of object contact yield negative reward.

After learning, the Hand Position Layer represents a
probability distribution for the hand position vectors that
lead to a suitable contact for a stable grasp. Since the Hand
Position layer units encode azimuth, elevation and radius
parameters, (α, β, r), their activity creates a three-
dimensional probability distribution. The quantization of
the distribution is the result of the number of units
allocated for each parameter. For this simulation, we used
726 units (a grid of 11×11×7) (Appendix 3). By summing
over the radius component, we project a grasp plan to a
two-dimensional space and hence plot the probability as
shown in Results, SE1a.

SE1b Although there are accounts that infants usually
orient their hands during reaching to increase the likeliness
of a contact between palm and the object (von Hofsten
1984), there is, to our knowledge, no evidence that this
behavior is innate. The first aim of SE1b was to test
whether the model could learn to orient the hand to
produce appropriate object-contact for stable grasping (1).
Thus in SE1b, we no longer use the automatic palm
orienting capability, but instead test whether ILGM can
learn the appropriate palm orientations required for stable
grasps. The second aim of SE1b was to test whether ILGM
could replicate the findings that in the early postnatal
grasping period infants could initiate precision grips (2)
(Newell et al. 1989; Butterworth et al. 1997). In terms of
learning, the task of ILGM in this simulation was to
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discover the distribution of all possible wrist movements
(supination-pronation, extension-flexion, ulnar/radial de-
viation) that yield appropriate object-contact as a function
of finger flexion rate and hand-object approach direction.
The confirmation of (1) and (2) supports two hypotheses:
(H1) during the early postnatal period infants can learn to
orient their hand towards a target, rather than innately
possessing it; (H2) infants are able to acquire grasping
skills before they develop an elaborate adult-like object
visual analysis capability, indicating that learning-by-
imitation is not a prerequisite for grasp learning.

Simulation experiments 2 (SE2): task constraints
shape infant grasping

If a variable (e.g., onset of precision grasping) is
dynamically context specific, common experimental de-
signs may be too artificial to reveal the dynamical nature
of motor control (Bradley 2000). In Simulation Experi-
ments SE2a and SE2b, we controlled the environment to
observe the context specific nature of ILGM learning and
tested the hypothesis that task constraints due to environ-
mental context (or the action opportunities afforded by the
environment) are a factor shaping infant grasp develop-
ment (H3). If this hypothesis is correct, the observed
general progression in infant prehension from power to
dexterous precision grip (Halverson 1931; see Newell et
al. 1989 for a review) can be explained as a process of
reconciliation between increasing action possibilities (e.g.,
via postural development) with constraints introduced by
novel task requirements and/or changing environment
(e.g., a hanging toy versus a toy resting on a table). Task
constraints may be viewed as including the goal of the task
or the rules that constrain the response dynamics (Newell
1986). Some examples of task constraints are the object
properties such as size and shape (Newell et al. 1989).

Infants of 5 months fail to retrieve an object when it is
placed on a larger object, although they can retrieve an
object when it stands out from the base (Diamond and Lee
2000). An infant’s interaction with an object placed on a
flat surface such as the floor or table is constrained by the
base of the target as reach-to-grasp movements of the
infant are interrupted by accidental collision with the target
base (Diamond and Lee 2000). Thus, we tested hypothesis
H3 by having ILGM interact with a small cube placed on a
horizontal plane (SE2a: the cube on the table task.) In
addition, to observe the differential effect of different task
constraints, we repeated the experiment when the small
cube was placed just under the horizontal plane (SE2b: the
cube under the table task.)

Simulation experiments 3 (SE3): dowel grasping—the
affordance-on/off cases

This simulation series was designed to test the effect of
affordance availability to ILGM and compare simulation
findings to those for infant grasping in a study by

Lockman et al. (1984), which presented infants 5 and
9 months of age with dowels in either the horizontal or
vertical position. A successful grasp of an object with
variable affordance (e.g., orientation) requires affordances
to be incorporated into the grasp planning process.
Although infants younger than 7 months of age can
grasp an object once they contact it, they appear not to use
the object affordance information. Hand orientation
adjustments anticipate target rod orientation by mid-
reach between 7–9 months (McCarty et al. 2001). Thus,
we hypothesized that the inability of younger infants
tested by Lockman et al. (1984) to pre-orient their hands
could be explained by the lack of visual processing for
extracting object affordances, rather than by motor
immaturity. To test whether with this hypothesis ILGM
yields results comparable with Lockman et al. (1984),
ILGM was presented with a cylinder analogous to a
dowel. We also included a third, diagonal orientation
condition in addition to the existing horizontal and vertical
orientation conditions. According to our hypothesis, we
disabled the orientation encoding when simulating the
younger infants’ grasp learning (SE3a, affordance-off
condition), and enabled the orientation encoding in the
Affordance layer (as a population code) when simulating
older infants’ learning (SE3b, affordance-on condition). If
our initial hypothesis is supported by the simulation
results, then we can assert a stronger hypothesis: (H4)
grasping performance in the ‘affordance-off stage’ med-
iates the development of a visual affordance extraction
circuit. This extraction circuit is probably the homologue
of monkey AIP (the anterior intraparietal area), an area
known to be involved in computing object features
relevant for grasping (Murata et al. 1996, 2000; Sakata
et al. 1998, 1999). By detecting the common features of
successfully grasped objects, infants may shape their
visual analysis to emphasize the relevant features and
represent those as compact neural codes (i.e., object
affordances).

The Affordance (A) layer was modeled with 10 units
encoding the orientation of the cylinder. In SE3b, the
orientation of the cylinder was encoded in A; however, in
SE3a each unit in A was set to 1. Since object affordances
relevant for grasping were not available to ILGM in SE1,
SE2 and SE3a, we associate these simulations with the
infancy period of 2–6 months of age, and SE3b with the
infancy period of 9–12 months of age.

Lockman et al. (1984) used orientation difference
between the hand and the dowel as a measure of how
much infants adapted their hand orientations to the target.
If there was no orientation difference between hand and
dowel, the trial was scored a 0, and maximal mismatch
was scored a 4. Also, wrapping a finger around the dowel
was counted as a grasp. When ILGM was learning in both
Simulation 3 and Simulation 4, we used our grasp stability
measure (see Mechanical grasp stability), but to compare
our results with those of Lockman et al. (1984), we
included unstable grasps that conformed to their grasp
criteria. For example, the grasp in Fig. 7b does not satisfy
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our grasp stability criterion but it does conform to criteria
applied in Lockman et al. (1984).

Simulation experiment 4 (SE4): generalization to
different target locations

In earlier simulation experiments, we were not concerned
with the effect of object location and thus presented the
objects always in the same location within a simulation
session. Here we aim to show that when LG module has
access to object location information, it can generate
grasps as a function of object location. In this sense, the
location of an object is part of the affordance of the object
since the location (with other intrinsic object features)
determines the grasps that are afforded. Thus, the object
location is encoded in the Affordance layer as a population
code and relayed to LG (for grasp learning/planning). The
location was encoded using 100 (10×10) units in the
Affordance (A) layer. The location was specified as a point
on a (shoulder centered) sphere patch. We trained ILGM
by randomly encoding the place of the target dodecahe-
dron in the Affordance layer, in effect spanning the
workspace as shown by the grid nodes in Fig. 13a. The
generalization of the learning is tested by placing the target
object furthest from the grid nodes used in training (i.e.,
the centers of the squares formed by the four equidistant
nodes in the figure). Further we analyzed the dependency
of the Hand Position layer output on the object location by
plotting the Hand Position layer for a set of object
locations [G1].

Results

SE1a: learning to grasp with auto-palm-orienting

We ran two simulations in which we positioned a sphere
(modeled as a dodecahedron) in different locations in the
workspace to see the differential learning for fixed target
locations (but see SE4 for location dependent learning).
Figure 3a illustrates a grasp discovered by the model for
the case when the object was elevated in the workspace
and the hand could not reach the space above the object.
ILGM excluded grasping from the top, having discovered
the arm could only grasp the elevated object from
underneath and front/right. The azimuth, elevation and
radius parameters (α, β, r) of the Hand Position layer
create a three-dimensional probability distribution. We
projected the distribution to the (α, β) space for the
purpose of visualization (Fig. 3a) by summing over the
radius component. This plot approximates the normalized
histogram of (α,β) vectors generated by the model over
many trials.

Note that, the elevation (β) range is between −90 and
90°, whereas the azimuth (α) range is between −180 and
180° as illustrated in Appendix 1. The plot shows that the
model represented the approach directions β <00 (below
the object) and −90<α<90° (right and/or front of the
object) with a higher probability, indicating that a grasp
plan from this region will result in a stable grasp. The
correspondence between the region with the highest peak
and the approach direction is illustrated with arrows in
Fig. 3a. We ran another simulation session after moving
the object to a left lower area in the workspace of the
modeled (right-handed) arm. In this case, we observed that

Fig. 3a, b (SE1a) The trained
model’s Hand Position layers
are shown as a 3D plot for two
different object positions. One
dimension is summed to reduce
the 4D map to a 3D map. The
map shows that when the object
is elevated in the frontal work-
space a grasp from bottom is
appropriate (a), whereas when
the object is located on the left
side of the workspace, an ap-
proach from the right side of the
object would be appropriate (b).
The correspondence between
the most dominantly represented
parameters and the correspond-
ing approach directions are illu-
strated with arrows (a, b). The
polar coordinate system in
which the Hand Position layer
parameters are specified is illu-
strated in Appendix 1
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the model learned that a grasp directed to the right side of
the object is likely to result in a stable grasp evidenced by
the high activity where α>0°. Figure 3b shows the results
of this simulation.

SE1b: learning to grasp without auto-palm-orienting

Without auto-palm-orienting, the model learned to gen-
erate various grasp parameters to perform power and
precision grasps, and many variations of the two. The most
frequent grip generated was the power grip and its
variations. Precision type grips were only occasionally
generated.

ILGM simulation results are in accordance with empir-
ical findings, when tested under proper conditions, infants
are able to perform precision grips. The fact that the power
grasp is inherently easier is evident in both infant
performance and ILGM simulations: if the palm contacts
the object, the sensory event is likely to produce a power
grasp (i.e., palmer reflex). Figure 4a shows power grasp
examples for a cube, a sphere (dodecahedron) and a
cylinder. ILGM generated grasp plans for all three objects
after separate learning sessions for each object.

The learned precision grasp varieties mainly engaged
the thumb, index finger and one or two additional fingers;
examples are illustrated in Fig. 4b. Usually the object was
secured between the thumb and two or three fingers, the
thumb opposing the fingers. The latter opposition (thumb
opposing the index and middle finger) is in accordance
with the theory of virtual fingers and opposition spaces
(Iberall and Arbib 1990) and human tripod grasping
(Baud-Bovy and Soechting 2001). Figure 4c shows
examples of two finger precision grip that are less

frequently generated compared with the three- or four-
fingered precision grips.

Note the different wrist rotations that ILGM produced in
response to the location of the hand with respect to the
target object. ILGM learned to generate compatible hand
location and wrist rotations to secure the object. Simula-
tion results indicate that even without object affordance
analysis, precision type grips can emerge from open-loop
grasp learning, replicating findings on early infant
grasping skills (Newell et al. 1989; Butterworth et al.
1997), and that the palm orienting behavior can emerge as
a natural consequence of learning rather than being
innately available to infants.

SE2a: cube on the table task

With the cube on the table task, the grasp repertoire
formed by ILGM did not include power grasping (where
the object is secured between palm and the fingers).
Apparently power grasping was not represented in the
repertoire because the fingers always collided with the
modeled table surface and did not produce ‘joy of
grasping’ signals (positive reward). The grasp ‘menu’
acquired for the cube on the table task was composed of
grasps with wrist positions above the object. The contact
points on the cube showed variability (see Fig. 5). Many
of the precision grips that were learned enlisted supportive
fingers in addition to the thumb and the index finger
(Fig. 5a). However, two-finger precision grips were also
acquired (Fig. 5b). Most of the precision grips learned
correspond to inferior forefinger grasping (Fig. 5a) and
inferior pincer grasping (Fig. 5b), based on the classifi-
cation employed by Butterworth et al. (1997). One
interesting observation is that ILGM represented the

Fig. 4a–c (SE1b) a After
learning, ILGM planned and
performed power grasps using
different objects. Compare the
supination (and to a lesser extent
extension) of the wrist required
to grasp the object from the
bottom side (left) with the front
(center) and upper side (right)
grasp. b Two learned precision
grips with a cube shaped object
(left three fingered; center four
fingered), and a precision grip
learned for a cylinder (right) are
shown. Note the different wrist
rotations for each case. ILGM
learned to combine the hand
location with the correct wrist
rotations to secure the object. c
ILGM was able to occasionally
generate two-fingered precision
grips after learning; two exam-
ples are shown
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object affordances in the grasp ‘menu’ it learned. By
comparing Fig. 5a and b, we see that the opposition axes
used for grasping are 90° apart. In both forefinger grasps
of Fig. 5a, the thumb was placed on the left surface of the
cube, whereas during pincer grasping in Fig. 5b it is placed
on the surface that is parallel and closer to the simulated
shoulder.

SE2b: cube under the table task

The grasp repertoire formed by ILGM in the cube under
the table task did not include power grasping, as in SE2a.
ILGM learned precision type underarm grasps to avoid
collision with the modeled table (see Fig. 6). One
difference between cube on the table task and the cube
under the table case was that the latter afforded a lateral
pinch (Fig. 6b). This is apparently due to relative position
of thumb and index finger with respect to the modeled
table. With an underarm reach the thumb and the index
finger could be brought as close as possible to the table
surface, whereas with a reach from top, the thumb and the
index finger cannot achieve arbitrary proximity to the
surface (without an forceful awkward posture) disallowing
grips for short objects such as the one we used in this
simulation. By comparing the simulation results of SE2a
and SE2b (cube on/under the table), we predict that
underarm grasping is acquired late in development since
cube under the table type of contexts are rare in infants’
daily life. Consequently, lateral pinch development could
also be delayed compared to precision grip development.
Each of these grasps also requires varying amounts of
supination and Lockman’s study indicates forearm posture
is biased into pronation so explorations likely have a
pronation bias as well.

SE3a: dowel grasping—the affordance-off case

Figure 7 shows the orientations and the cylinder we used
in the simulation. The grasp actions shown were
performed by ILGM during the affordance-off condition.
In this simulation, different cylinder orientations afford
different hand orientations. Thus, we predicted that
without affordance input, the model would not be able
to learn a perfect grasping strategy. Using our grasp
stability measure, observations indicated the horizontal
cylinder was successfully grasped in six of ten trials. The
vertical cylinder was grasped successfully in four out of
ten trials, and the diagonal cylinder could not be grasped at
all. Using the grasp criteria used by Lockman et al. (1984),
the successful trials improved to: 8/10, 5/10, and 7/10,
respectively.

Analyses of individual errors made by the model
revealed six typical error curves (extent of mismatch) as
shown in (Fig. 8). Note that curve A1 is approximately
constant and indicates there is no mismatch between the
orientation of the hand and that of the cylinder, for both
are horizontally oriented (0°), whereas in the other two
curves of the same row (B1 and C1), although the error is
approximately constant, there is a 45° or 90° mismatch.
The lower row plots have non-constant error curves (A2,
B2 and C2). The columns, from left to right, correspond to
orientation mismatch of the hand with the dowel while
grasping the horizontal cylinder, diagonal cylinder and
vertical cylinder.

Lockman et al. (1984) reported that infants start their
reaches with the hand horizontally oriented; thus, in our
simulations the hand was set to a horizontal posture at
reach onset causing a maximal mismatch for vertical
cylinder grasping at the onset of movement. Consequently,
matching the Lockman et al. (1984) observation, ILGM
made more corrections during successful reaches for the
vertical cylinder (Fig. 8, C2) and fewer for the horizontal
cylinder (Fig. 8, A1). In the upper row of trials in Fig. 8
(A1, B1, C1), ILGM used a grasp plan appropriate for
horizontal orientation as evidenced by the level of constant
mismatch (0° for A1, 45° for B1 and 90° for C1). As can
be seen from the C2 panel, the model can also
occasionally perform a vertical cylinder adaptation
(remember that the architecture of ILGM allows repre-
sentation of multiple grasp plans). However, the model
cannot differentiate the two grasping strategies. The model
learns a strategy (probability distribution) that reflects the
cylinder orientation presentation frequency. In the simu-
lation, since the dowel orientation was selected randomly,
ILGM represented both strategies (grasping a vertical and
a horizontal dowel). However, the horizontal grasping
strategy was favored as we observed that most of the
errors made during grasp execution would fall into the
constant error curve class (i.e., one of A1, B1 or C1).

Fig. 5a, b (SE2a) ILGM learned a ‘menu’ of precision grips with
the common property that the wrist was placed well above the
object. The orientation of the hand and the contact points on the
object showed some variability. Two example precision grips are
shown in the figure. In addition to precision grips, where thumb
opposes more than one finger (a), ILGM also acquired precision
grips where the thumb opposes the index finger (b)
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SE3b: dowel grasping—the affordance-on case

First, ILGM was trained in the affordance-on condition.
The grasping data after learning was then used with the
grasping data from the affordance-off case learning (SE3a)
to make a comparison with the data for 5- and 9-month-old
infants in Lockman et al. (1984). For each condition,
ILGM performed 64 grasping trials during presentation of
the vertically oriented cylinder. We excluded the horizon-
tal case (but see the Discussion later in this section),
because for the horizontal cylinder ILGM learned a power
grasp with hand supination (underarm grasp), a forearm
posture not observed during reaches of infants tested by
Lockman et al. (1984). Figure 9 shows the averaged
orientation mismatch score for infants (a) and ILGM (b) at
three locations as the hand approaches the cylinder. For
capturing the manual scoring used by Lockman et al.
(1984) we used the function round(8*x/π) to convert
orientation differences (x) into mismatch scores. In the
remainder of the figures, we use actual orientation
difference (degrees) instead of mismatch score to avoid
loss of information caused by scoring. The dashed curve
in Fig. 9a depicts the performance of infants at 5 and
9 months. At 9 months of age (a, solid curve), infants more
closely matched their hands to the vertical cylinder
compared with infants at 5 months of age (Lockman et
al. 1984). McCarty et al. (2001) controlled for vision of
the hand and object and found the orientation was preset
even if the light was extinguished after the onset of reach
—suggesting that infants of 7–9 months needed only a
brief view of the object to preplan the grasp.

Although the absolute scores differed between ILGM
simulation and infant data, ILGM’s affordance-on perfor-
mance was better than the affordance-off case, analogous
to differences in performance of infants at 9 versus
5 months of age. Moreover, the performance increments
for ILGM and the infants were qualitatively comparable.
The difference between human and simulation data at

movement onset is due to specification of starting hand
orientation in the simulation in contrast to the variable
orientation of infant hands (note that the scales of the plots
in Fig. 9 are not same: the simulation always starts with
maximal mismatch while infants do not). We could not
incorporate the specification of variable hand orientation
in ILGM because we did not have access to a quantitative
account of the infant hand orientations at reach onset.

The ILGM in the affordance-on condition (modeling the
9-month-old infant) learned to perform grasps more
robustly than the affordance-off condition, as the model
could associate the affordance (the orientation) of the
cylinder with suitable grasp parameters. Figure 10 shows
the successful grasping results for the three orientations of
the target cylinder. A1 shows the grasp with supination,
whereas A2 shows a grasp with pronation, both applied to
the horizontal cylinder.

Figure 11 shows the plots for difference in hand and
cylinder orientations. A1 and A2 (Fig. 11) show the
differences in hand orientation for the horizontal cylinder
trials. The (approximately) constant curve wherein the
forearm remains pronated (see Figs. 10, A2, and 11, A2)
corresponds to the power grasp observed in affordance-off
condition simulations. The non-constant curve (see
Figs. 10, A1, and 11, A1) describes a reach during which
the forearm rotates from a fully pronated position (palm
down) to 90° of supination (thumb up) at mid reach, then
to the maximum supinated position. To our knowledge,
there is no report of whole hand grasping with maximum
supination during reaching in infancy, and apparently
Lockman et al. (1984) and McCarty et al. (2001) did not
observe this kind of grasp either.

In our simulations, supinated and pronated grasps of the
horizontal cylinder learned by ILGM (Fig. 11, A1 and A2)
were equal in their reward value. One could incorporate a
penalty term for energy use in the ILGM reward
computation that evaluates how easily a grasp action can
be implemented. This would tilt the balance of grasp

Fig. 6a, b (SE2b): underarm
grasping learned. Most of the
learned grasps were precision
grips (a). Side or lateral grips
(thumb opposing the side of the
index finger) were also ob-
served, as in b

Fig. 7a–c (SE3a) the three
cylinder orientations and grasp
attempts of ILGM in the affor-
dance-off condition. b and c
Grasps do not satisfy our grasp
stability criterion
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choice towards the pronated grasp (Fig. 11, A2) as it
requires no forearm supination.

One notable outcome of the simulations is that power
grasping with a supinated hand did not appear during the
affordance-off condition. Whereas during the affordance-
on condition, supinated and pronated reaches were equally
successful. From our results we propose the following
predictions of infant learning to grasp for testing the
ILGM. First, because we have no compelling reason at this
time to think infants are physically unable to supinate
during arm movements, we predict that neonates and
youngest infants employ supinated reaches more fre-
quently than infants 4–6 months of age. Second, we
predict that the supinated reaches of neonatal and young
infants do not generate successful contacts and rewards.
Third, we predict that lack of successful contact
extinguishes supinated reaches at 4–6 months of age as
other strategies yield greater success rates. Fourth, we
predict that all successful reaches at 4–6 months employ a
pronated forearm orientation and approach from either

Fig. 9a, b Comparing SE3a,
SE3b with infant data. The hand
orientation score versus grasp
execution is shown. The score
indicates extent of mismatch of
the hand to the vertical cylinder
(0 value indicates perfect
match). a Dashed line: 5-
months-old infant; Solid line: 9-
months-old infant (infant data
from Lockman et al. (1984)). b
Dashed line: ILGM in affor-
dance-off (SE3a) case; Solid
line: ILGM in affordance-on
(SE3b) case

Fig. 8 (SE3a) the hand orien-
tation and cylinder orientation
difference (error) curves for
individual trials demonstrating
the deficits that arise when no
affordance information is avail-
able for the orientation of the
target cylinder. The abscissa of
the plots represents the normal-
ized time for grasping move-
ments. The columns from left to
right correspond to horizontal
(0°), diagonal (45°) and vertical
(90°) orientation of the cylinder.
Upper row (A1, B1, C1): con-
stant class of error curves; lower
row (A2, B2, C2): non-constant
class of error curves

Fig. 10 (SE3b) the grasps performed after ILGM learned the
association of hand rotations with the object orientation input
(affordance-on condition)
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above or to the side of an object. Fifth, because the
simulation was equally successful in completing supinated
and pronated reaches in the affordance-on condition, we
predict that infants start employing supinated reaches more
frequently as they acquire the ability to recognize object
affordances. And sixth, we predict that between 7–
9 months of age, infants will increasingly supinate the
forearm and approach objects from underneath.

SE4: generalization to different target locations

After learning to grasp with varying object locations, the
model acquired a grasp planning ability that generalizes to
different locations in the workspace. Figure 12a illustrates
the learning achieved as superimposed images of com-
pleted grasps. Note that the locations of the objects in
Fig. 12a were not used in training. When we tested the
generalization of the learning (over the centers of the
squares formed by four equidistant nodes in Fig. 13a plus
the extrapolated locations over the right and bottom grid
boundaries) we found that 85/100 grasps conformed to the
successful grasp criteria used in training. The lower three
grasp actions in Fig. 12 are anatomically hard to achieve
but they were included to demonstrate the full range of
actions that ILGM learned. The illustration in Fig. 12a
only depicts a possible grasp for each location out of many
alternatives. We re-ran the trained model on exactly the
same object locations as in Fig. 12a. A set of different
grasping configurations was generated by ILGM, showing
that ILGM can both generalize and represent multiple
grasp plans for each target location (compare Fig. 12a and
b).

For each object location, Hand Position layer generates
a probability distribution of azimuth, elevation and radius
parameters, (α, β, r), specifying an offset from which the
hand will approach the target object. By summing over the

radius component, we visualize each object location’s
‘grasp affordibility’ as an image map. In Fig. 13b each
small image patch is a representation of the (azimuth,
elevation) probability distribution, with black having the
highest and white having the lowest probability. The
correspondence between the object location and the image
map matrix is indicated by the common labels 1, 2, 3, 4 in
Fig. 13a, b. The label O indicates the position of the
shoulder of the simulated arm. The results show that the
ipsilateral workspace affords a wide range of grasping: the
black strips in the plots indicate a range of elevation
values, i.e., a lower-to-upper range of approaches to the
target affords wrist rotations leading to successful
grasping. Thus, the results predict that infants are more
likely to learn the ‘easy locations’ (i.e., the locations with
darker image maps) that offer large sets of grasping
possibilities, early in grasp development.

Fig. 11 (SE3b) the grasp errors that ILGM produced in the
affordance-on condition. Left two plots show typical error curves for
the horizontal cylinder with supination (A1) and without supination

(A2) during a reach to power grasp. B shows a typical error curve for
the diagonal cylinder, and C shows a typical error curve for the
vertical cylinder

Fig. 12a, b (SE4) the trained ILGM executed grasps twice (a, b) to
objects located at nine different locations in the workspace. The
grasp locations were not used in the training. Note that although the
target locations were the same for a and b cases, the grasps executed
differed showing that ILGM learned a set of grasps for each target
location
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Discussion

This paper presented the Infant Learning to Grasp Model
(ILGM) and simulations yielding predictions about the
process of motor learning in infancy. We first showed that
with just a limited set of behaviors (reaching and grasp
reflex) goal-directed trial and error learning yields
grasping behavior. We showed that palm-orienting could
be acquired through learning, and that object affordance
information was not a prerequisite for successful grasp
learning. The ‘grasp menu’ acquired via learning included
various precision grips in addition to power grasps.
Learning to grasp via imitation requires visual analysis
of the hand in action and its relation to the goal affordance.
Thus, infants’ early grasping could be mediated by self-
learning mechanisms rather than by learning by imitation.

During development, infants encounter constraints and
find ways to act within the limitations of the environment
and reach context. We showed how task constraints could
play a role in shaping an infant’s grasping behavior. We
simulated a situation where a small cube was placed on, or
just under, a table. The model was asked to interact with
this simple environment. The grasping configurations
learned by the model reflected the task constraints. The
model did not acquire whole hand prehension grasps but
acquired grasps that reach the cube from above or below,

as permitted by the constraints, using the precision grip to
avoid a collision with the table.

Finally, we analyzed what object affordance may add to
ILGM by simulating the experimental set up of Lockman
et al. (1984). With this simulation we showed not only the
improvement in grasp execution, the matching of an
infant’s hand orientation with that of a dowel, but also an
improvement pattern comparable to that observed by
Lockman et al. (1984) and McCarty et al. (2001). These
findings indicate that ILGM captured the behavior of 5-
and 9-month-old infants via control of affordance avail-
ability.

The work allowed us to provide computational support
for the following four hypotheses:

(H1) Early postnatal period infants can acquire the skill
to orient their hand towards a target, rather than
innately possessing it.

(H2) Infants are able to acquire grasping skills before
they develop an elaborate adult-like object visual
analysis capability suggesting that imitation might
not play a crucial role for grasp development in
early infancy.

Fig. 13a, b (SE4) a The object locations used in training is
illustrated. b The dependency of the Hand Position layer output on
the object location is shown. The grid in the left panel also indicates
the object locations used for the generation of the image map matrix

in panel b. The topology correspondence is indicated with the
common labels 1, 2, 3 and 4. The label O indicates the shoulder
position
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(H3) Task constraints due to environmental context (or
the action opportunities afforded by the environ-
ment) are a factor shaping infant grasp develop-
ment.

(H4) Grasping performance in the ‘affordance-off stage’
mediates the development of a visual affordance
extraction circuit.

In various simulations, we encoded the affordances as a
population code rather than modeling how affordances are
acquired. Here we suggest, as a basis for future
simulations, that our ILGM findings, by showing how a
repertoire of grasps can be acquired, lay the basis for a
model of the development of infants’ further visuomotor
skills. In particular, Affordance learning can be mediated
by the phase we have modeled by ILGM. Successful grasp
attempts of an infant categorize the interacted objects into
(possibly overlapping) classes depending on the grasps
afforded. Then, a compact representation of the object
features relevant for manipulation (i.e., affordances) can
be obtained by detecting the commonalities within these
classes (e.g., shape, orientation, etc.)

Adult grasping studies suggest that reach and grasp
components of a grasping action are independently
programmed and simultaneously implemented (Jeannerod
and Decety 1990). However, in infants the reaching
component first dominates action; infants first learn to
reach, or how to control projection of the hand, within a
given workspace. We suggest that over developmental
time a grasp planning inversion takes place, that is, later in
infancy the desired grasp configurations begin to alter the
control of reach. The inversion is driven by the ‘joy of
grasping’ as infants learn from the manipulations afforded
by successful reaches so that, eventually, a representation
of the desired manipulation of an object (e.g., power
grasping) would be an input to the reach and grasp
planning circuit.

We conclude the paper by relating ILGM to modular
reinforcement learning models and presenting future
research directions. The existing models of modular or
hierarchical reinforcement learning aim at decomposing
the task into simpler subtasks so that learning can be
accelerated (Dayan and Hinton 1993; Dietterich 2000;
Doya et al. 2002). The major problem is how to discover
proper subtasks automatically (see Barto and Mahadevan
2003 for a review). In ILGM, we had prior information
about the problem and thus implemented a modular
system manually, tuned for the task of learning to grasp.
Our implementation decomposed the action (i.e., enclo-
sure rate, hand position, wrist rotation) space and
enforced dependency constraints between action compo-
nents via the connection matrices.

When experimenting with ILGM, although the stability
analysis of a grasp included forces, the hand-object
interaction and the gravity were not simulated as a true
physical system (i.e., the hand/arm model was kinematics
based). Thus, a natural continuation of the study would be
to test the ILGM model with a realistic simulation of the
dynamics of the hand and arm. This will enable the

simulation of learning with anatomical and physiological
constraints (i.e., energy use, anatomical discomfort, etc.),
which will better reflect the course of grasp development.
In a natural situation after contacting an object, an infant
switches to a tactile search phase to compensate for the
errors in the open-loop grasp plan. However, tactile search
was not possible in the simulation, as it requires a complex
model of the fingers to provide, for example, the
compliance property of human fingers. In addition, the
mechanoreceptors of the fingers help stabilize object by
relaying slip and indentation based feedback forming a fast
grasp stabilizing motor servo (Johansson and Westling
1987a, b; Westling and Johansson 1987). Thus, we
propose that the process of infant grasping can be viewed
as the cooperation of three processes: (1) spinal reflex
loops for stabilizing a grasped object; (2) tactile search of
hand configuration suitable for the target object; and (3)
generating open-loop grasp plans that will yield successful
grasping when contacted with the target object.

This paper focused on (3) and used the palmar reflex in
the simulations. The modeling of mechanoreceptor
functioning and spinal reflex loops (1) and tactile search
(2) would add to our understanding of development of
grasping by showing how tactile input reduces the
complexity of grasp learning in cortical regions. From a
technical point of view, implementation of components (1)
and (2), would allow learning with fewer open-loop grasp
trials and leave computational power for detailed physics
simulation of the fingers and the object. Another major
modeling study would be to move from infant to adult
grasping by analyzing the development of visual feedback
circuits for manual manipulation and grasping. We
propose that grasping capability first (i.e., in infancy)
relies on (1), (2) and (3), and then it is augmented by
visual feedback control, which is necessary for dexterous
hand manipulation. Based on our predictions from the
current study, we suggest that the training stimuli for the
visual feedback circuit are provided by the open-loop
grasping performance. The construction of a biologically
realistic model of visual feedback control that bootstraps
its function by learning from the visual, proprioceptive and
haptic data produced during infant grasp execution
mediated and learned by processes (1–3) will present a
causally complete model that explains the transition from
infant grasping to adult grasping.
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Appendix 1

The simulation loop

The global logic of a simulation session is given below.
This applies to all simulations except Simulation 1, where
the function of the Wrist Rotation layer output is replaced
by the automatic palm orientation described in Appendix 2.
The Affordance layer encodes the orientation of the target
object in SE3b, and the location of the object in SE4. In
the remaining simulations it encodes the existence of a
target object.

Step 1: Encode the affordances presented to the circuit
in Affordance layer (A). Set the vector o as the
center of the target object.

Step 2: Compute the outputs of Virtual Finger (V), Hand
Position (H) and Hand Rotation (R) layers.

Step 3: Generate movement parameters v, h, r.
Step 4: Generate reach using the parameters v, h and r

and o while monitoring for contact.
Step 5: On contact (or failure to contact) compute a

contact list.
Step 6: Compute stability and generate reward signal rs

based on the contact list.
Step 7: Adapt weights using rs.
Step 8: Go to Step 2, unless interrupted by the user.

Hand Position layer output encoding

The Hand Position layer generates a vector composed of
azimuth, elevation and radius (α, β, r). The vector is
related to the rectangular coordinates (in a left-handed
coordinate system) as follows:

x ¼ r cos � sin �; y ¼ r sin �; z ¼ � cos � cos � (17)

Figure 14 illustrates the conversion graphically.

Appendix 2

The arm/hand model

Since the arm/hand model we used in our simulations is a
kinematics one, the absolute values of the modeled lengths
are irrelevant and thus not specified here; however, the
relative sizes of the segments are as shown in Fig. 15.

The arm is modeled to have a 3DOF joint at the
shoulder to mimic the human shoulder ball joint and a
1DOF joint in the elbow for lower arm extension/flexion
movements (see Fig. 15). The wrist is modeled to have
3DOFs to account for extension/flexion, pronation/supi-
nation, and ulnar and radial deviation movements of the
hand. Each finger except the thumb is modeled to have
2DOFs to simulate metacarpophalangeal and distalinter-
phalangeal joints of human hand. The thumb is modeled to
have 3DOFs, one for the metacarpophalangeal joint and
the remaining two for extension/flexion and ulnar and
radial extension movements of the thumb (i.e., for the
carpometacarpal joint of the thumb).

Inverse kinematics

The simulator coordinate system for the forward and
inverse kinematics is left-handed. The zero posture and the
effect of positive rotations of the arm joints are shown in
Fig. 16.

When we mention the reach component, we imply the
computation of trajectories of the arm joint angles (θ1,
θ2,θ3,θ4) to achieve a desired position for the end effector
(i.e. the inverse kinematics problem). The end effector
could be any point on the hand (e.g., the wrist, index
finger tip, middle finger joints, etc.) as long as it is fixed
with respect to the arm and the length of the lower limb of
the arm is extended (for the sake of kinematics computa-

Fig. 14 The conventions used in the spherical representation of the
Hand Position layer output. Note that azimuth values of 180 and
−180° coincide Fig. 15 The arm/hand model has 19 DOFs as shown
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tions) to account for the end effector position. The end
effector used in the simulations was the tip of either the
index or the middle finger (see Appendix 3). The forward
mapping, F, of the kinematics chain is a vector-valued
function of the joint angles relating the joint angles to the
end-effector position.

The Jacobian transpose method for inverse kinematics
can be derived as a gradient descent algorithm by
minimizing the square of the distance between the current
(p) and the desired end-effector position (pdesired). The key
to the algorithm is a special matrix called the geometric
Jacobian matrix (J), which relates end-effector Cartesian
velocity to the angular velocities of the arm joints
(Sciavicco and Siciliano 2000):

_x
_y
_z

2
4
3
5 ¼ J

_�1
_�2
_�3
_�4

2
664

3
775 (18)

or in vector notation _p ¼ J _� .
Representing the upper arm length and the (extended)

lower arm length with l1 and l2, respectively; and
abbreviating sin(θ1) and cos(θ1) with s1 and c1; sin(θ2)
and cos(θ2) with s2 and c2; sin(θ3) and cos(θ3) with s3 and
c3; sin(θ4) and cos(θ4) with s4 and c4, the Jacobian matrix
of our arm model can be written as:

J ¼
0 l2 �c2s4 þ s2s3c4ð Þ � l1c2

l2 �s1c2s4 � s1s2s3c4 þ c1c3c4ð Þð Þ þ l1s1c2 l2 c1s2s4 þ c2s3c1c4ð Þ þ l1c1c2
l2 �c1c2s4 þ c1c4s2s3 � c3c4s1ð Þ � l1c1c2 l2 �s1s2s4 þ c2c4s1s3ð Þ þ l1s1s2

2
4

�l2 c2c3c4ð Þ l2 �s2c4 þ c2s3s4ð Þ
l2 c1s2c3c4 þ s1s3c4ð Þ �l2 �c1c2c4 � c1s2s3s4 þ s1c3s4ð Þ
l2 �c3c4s1s2 � c1c4s3ð Þ l2 �s1c2c4 � s1s2s3s4 � c1c3s4ð Þ � l1c1c2

3
5

(19)

Then the algorithm is simply composed of iterating the
following update rule until p=pdesired, where η represents

Fig. 16 Zero posture of the arm/hand together with arm DOFs is
shown. The arrows indicate the positive rotations

Fig. 17 The automatic hand
orientation is modeled as mini-
mizing the angle between the
vectors X (palm normal) and d
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the joint angle update rate.

�tþ1 ¼ �t þ �JT�t ðpdesired � ptÞ (20)

Note that the time dependency of the variables and the
dependency of the Jacobian matrix on the joint angles are
indicated with subscripts.

Automatic hand orientation

The automatic hand orientation employed in SE1a is
modeled as minimizing the angle between the palm
normal (X) and the vector (d) connecting the center of the
object to the index finger knuckle using the hand’s
extension/flexion degree of freedom (see Fig. 17). The
angle is minimized when the palm normal coincides with
the projection of d on to the extension/flexion plane of the
hand.

When the hand makes a rotation of φ radians as
illustrated in Fig. 17, the palm normal coincides with the
projection of d on to the extension/flexion plane of the
hand. Noting that object, index, pinky, wrist and elbow in
Fig. 17 represent three-dimensional position vectors, the
angle φ can be obtained as follows:

X ¼ ðpinky� indexÞ � ðwrist � indexÞ
ðpinky� indexÞ � ðwrist � indexÞj j

Y ¼ wrist � elbow

wrist � elbowj j
(21)

d ¼ object � index

dprj ¼ hX � diX þ hY � diY (22)

’ ¼ � cos�1 hdprj � X i
dprj
�� ��

 !
(23)

When automatic hand orientation is engaged, the hand
is rotated by φ radians at each cycle of the simulation
while reach is taking place. Note that when dprj is zero, the
angle φ is not defined. In that case, the angle is returned as
zero (i.e., hand is not rotated). This situation happens
when the extension/flexion movement of the hand has no
effect on the angle between the palm normal and d; in
other words, when d is vertical to both X and Y.

Appendix 3

ILGM simulation parameters

The main behavior of the simulation system is determined
by a resource file where many simulation parameters can
be set. In this file, the three-dimensional positions and
vectors are defined using a spherical coordinate system.

The PAR, MER and RAD tags are used to indicate
elevation, azimuth and radius components, respectively.

Object axis orientation range parameters

Object axis orientation range parameters define the
minimum and maximum allowed tilt of the object around
the z-axis (in the frontal plane). Ten units are allocated for
encoding the tilt amount. These parameters are only used
in SE3.

minTILT 0
maxTILT 90

(24)

Base learning rate parameter

Base learning rate parameter is used as the common
multiplier for all the learning rates in the grasp learning
circuit as ηAR = ηVR = ηHR = eta; ηAV = ηAH =
η/MAXROTATE.

eta ð�Þ 0:5 (25)

LGM layer size parameters

LGM layer size parameters define the number of units to
allocate for the layers generating the motor parameters.
The Virtual finger (V) layer is composed of ten units
which specify the synergistic control of the fingers. In
what follows BANK, PITCH and HEADING tags indicate
the supination-pronation, wrist extension-flexion and
radial/ulnar deviation movements, respectively. The size
of the Wrist Rotation (R) layer is determined with the
following parameters (in this example 9×9×1 units will be
allocated):

hand rotBANK code len 9

hand rotPITCH code len 9

hand rotHEADING code len 1

(26)

In what follows, the tags locMER, locPAR and locRAD
indicate the Hand Position (H) layer components. The size
of the Hand Position layer is determined with the
following parameters (in this example 7×7×1 units will
be allocated)

hand locMER code len 7

hand locPAR code len 7

hand locRAD code len 1

(27)
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Learning session parameters

Learning session parameters define the behavior of the
simulator during learning. For a learning session, the
simulator makes MAXBABBLE number of reach/grasp
attempts. For each approach-direction (H layer output), the
simulator makes MAXROTATE grasping attempts. After
MAXREACH reaches are done, the next input condition is
selected (e.g., the object orientation is changed). MAX-
BABBLE limits the maximum number of attempts the
simulator will make. A particular simulation may be
stopped at any instant. The saved connection weights then
can be used for testing the performance later.
Reach2Target parameter indicates which part of the hand
should be used as the end effector by MG module for
reach execution. The possible values are [INDEX,
MIDDLE, THUMB] × [0,1,2] where 2 indicates the tip
and 0 indicates the knuckle. An example set of parameter
specification is as follows:

MAXREACH 5

MAXROTATE 7

MAXBABBLE 10000

weightSave 4500

Reach2Target INDEX1

(28)

Grasp stability parameters

Grasp stability parameters define the acceptable grasps in
terms of physical stability. costThreshold specifies the
allowable inaccuracy in grasping. Ideally, the cost of
grasping should be small indicating that the grasp is
successful. Empirically, a threshold (Ethreshold) value
between 0.5 and 0.8 gives a good result for the
implemented cost function. If the distance of the touched
object to the palm is less than palmThreshold and the
movement of the object due to finger contact is towards
the palm, then the palm is used as a virtual finger to
counteract the force exerted by the fingers. The negRein-
forcement parameter specifies the level of punishment
returned when a grasp attempt fails (rsneg). Empirically
values greater than −0.1 and less than 0 result in good
learning. Generally, a large negative reinforcement over-
whelms the positively reinforced plans before they have
chance to get represented in the layers.

costThreshold 0:8

palmThreshold 150

negReinforcement �0:05

(29)

Exploration and exploitation parameter

α (Randomness) specifies how often to use the learned
distribution to generate grasp plans. A value of 1 means
always use random parameter selection, while a value of 0

means always generate parameters from the current
distribution of the layer. In all the simulations, the Virtual
finger layer used the probability distribution representation
to generate enclosure parameter (v). Next, we present the
parameters used for other layers in the simulation
experiments. The default parameters values used as
examples in the descriptions above are not repeated here
(Tables

Parameters for SE1a

hand_rotBANK_code_len N/A
hand_rotPITCH_code_len N/A
hand_rotHEADING_code_len N/A
hand_locMER_code_len 10
hand_locPAR_code_len 10
hand_locRAD_code_len 10
MAXREACH N/A
MAXROTATE N/A
MAXBABBLE 1000
Reach2Target INDEX0
costThreshold (Ethreshold) 0.75
palmThreshold 125
negReinforcement (rsneg) −0.1
Randomness (α) 0.85

a,

Parameters for SE2

hand_rotBANK_code_len 9
hand_rotPITCH_code_len 9
hand_rotHEADING_code_len 1
hand_locMER_code_len 7
hand_locPAR_code_len 7
hand_locRAD_code_len 1
MAXREACH 1
MAXROTATE 7
MAXBABBLE 45000
Reach2Target INDEX2
costThreshold (Ethreshold) 0.80
palmThreshold 150
negReinforcement (rsneg) −0.05
Randomness (α) 1

b,

Parameters for SE1b

hand_rotBANK_code_len 11
hand_rotPITCH_code_len 11
hand_rotHEADING_code_len 6
hand_locMER_code_len 6
hand_locPAR_code_len 6
hand_locRAD_code_len 1
MAXREACH N/A
MAXROTATE 55
MAXBABBLE 10000
Reach2Target INDEX0
costThreshold (Ethreshold) 0.75
palmThreshold 125
negReinforcement (rsneg) −0.1
Randomness (α) 0.95

c,

Parameters for SE3

hand_rotBANK_code_len 12
hand_rotPITCH_code_len 7
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Parameters for SE3

hand_rotHEADING_code_len 1
hand_locMER_code_len 5
hand_locPAR_code_len 5
hand_locRAD_code_len 5
MAXREACH 1
MAXROTATE 25
MAXBABBLE 20000
Reach2Target MIDDLE0
costThreshold (Ethreshold) 0.85
palmThreshold 150
negReinforcement (rsneg) −0.1
Randomness (α) 0.95

d and

Parameters for SE4

hand_rotBANK_code_len 10
hand_rotPITCH_code_len 7
hand_rotHEADING_code_len 5
hand_locMER_code_len 10
hand_locPAR_code_len 10
hand_locRAD_code_len 1
MAXREACH 10
MAXROTATE 30
MAXBABBLE 10000
Reach2Target MIDDLE0
costThreshold (Ethreshold) 0.75
palmThreshold 128
negReinforcement (rsneg) −0.1
Randomness (α) 1.0

e).
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