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Abstract Current models of the basal ganglia assume a
firing-rate code for information processing. We have
applied five complementary computing methods to assess
firing patterns in 188 cells of the substantia nigra in the
anaesthetized rat. Fractal firing activity was found in
100% of nigral cells projecting to the superior colliculus,
in 51% of cells projecting to the thalamus and in 33% of
cells projecting to the pedunculopontine nucleus, but was
practically absent in dopaminergic nigrostriatal neurons
(3%). The finding of fractal firing patterns may lead to a
better understanding of the normal operational mode and
pathological manifestations of the basal ganglia.
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Introduction

The substantia nigra (SN) is a key structure in the control
of input and output neuronal activity of the basal ganglia
(BG) (Gerfen et al. 1990; Parent and Hazrati 1995; Obeso
et al. 2000). It is composed of two cell groups: a
dopaminergic group that projects to the striatum (ST) and
a GABAergic group that projects to the thalamus,
superior colliculus (SC) and pedunculopontine nucleus
(PPTg) (Gonz�lez-Hern�ndez and Rodr�guez 2000). The

current model of BG assumes a firing-rate code (the time
between consecutive spikes is the only significant vari-
able) for information processing in the SN. However, a
firing-pattern code involving a complex relationship
between several successive spikes may also be operative
(Abeles 1991, Wilson et al. 1977; Terman et al. 2002).
We evaluated the latter possibility by studying the
stochastic properties of SN cell activity over a large
range of time scales, paying special attention to those
measures that reveal the existence of fractal activity. A
fractal is an object composed of sub-units that resemble
the larger scale structures, a property known as scale-
invariance or self-similarity (Mandelbrot 1997). Fractals
with scale-invariance have been found in both the space
(e.g. morphology of the tracheobronchial tree) and time
(signals with a similar fluctuation in multiple time scales)
domains (Goldberger 1996). Fractals in the time domain
may be identified in the electrophysiological activity of
neurons when spike firing shows clustering, with clusters
of spikes within larger clusters and so forth, over a range
of cluster sizes (Teich et al. 1997). In this study, we used
the multi-spike interval histogram (MIH) and the recur-
rence plot (Faure and Korn 1997) to unravel the existence
of the long-term correlation characteristic of fractal series.
Additionally, the fractal grouping of spikes was con-
firmed by the Fano (FF) and Allan (AF) factors (Fano
1947; Allan 1966) and the periodogram (Lowen and
Teich 1996).

Methods

The activity of SN neurons was recorded in male Sprague-Dawley
rats (300–350 g) using previously reported procedures (Rodr�guez
and Gonz�lez-Hern�ndez 1999). Since fractal behaviour has been
described in visual and auditory neurons (Lowen and Teich 1996),
and these sensory systems may influence SN cells (Schultz and
Romo 1990), the experimental set up was prepared so as to
minimize the effect of the environment on brain activity. Thus, the
recording sessions were performed under chloral hydrate anaesthe-
sia (400 mg/kg i.p.) in a sound-proofed, dark room and body
temperature maintained at 36.5–37.5 �C. The extracellular activity
of SN neurons was recorded with glass electrodes filled with 2 M
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NaCl containing 2% Pontamine Sky Blue (6–9 MW at 1,000 Hz).
All recordings were obtained in the ventral mesencephalon (2.8–
3.4 mm anterior to lambda, 2.0–2.5 mm lateral to the midline and
6.5–7.5 under the cortical surface; Paxinos and Watson 1988). The
brain signal was amplified and filtered (200–5,000 Hz) in a
CAN96T model (Telcan, Tenerife, Spain). The signal was digitized
and stored in a Pentium-based computer using a 16-bit analogue-to-
digital converter (LTI-C30, Tecnolog�a de la Informaci�n, Madrid,
Spain). Only recordings showing single-unit activity were used.
Action potentials were considered as belonging to the same neuron
when their spike shape, which was analysed by using both hardware
(SD1 spike discriminator, Tucker-Davis Technologies, Gainesville,
Fla., USA) and software (hybrid multi-layer artificial neural
network; Garcia-Baez et al. 1998) procedures, remained stable
during the recording session. The collision test was used to classify
SN cells according to their antidromic activation from the caudate
nucleus (0.0 mm anterior to bregma, 3.2 mm lateral to midline and
5 mm ventral to the brain surface), ventral thalamus (�2.5 mm
posterior to bregma, 1.5 mm lateral to midline and 6.5–7 mm
ventral to the brain surface), SC (1.5 mm anterior to lambda, 1.5–
2.5 mm lateral to midline and 4.0–4.5 mm ventral to the brain
surface) and PPTg (0.7 mm anterior to lambda, 1.5–2.5 mm lateral
to midline and 7.5 mm ventral to the brain surface). The neuronal
recording was considered valid for further analysis when it
contained spike activity corresponding to only one cell (Garcia-
Baez et al. 1998), showed an antidromic response to stimulation of
one nucleus only and the duration of recording was of a minimum
of 4 min.

The recurrence plot of inter-spike intervals (ISI) is a useful
graphic tool for the detection of complex structures in a signal
(Takens 1981; Faure and Korn 1997; Abarbanel 1996). It was
computed with delayed vectors formed by embedding the ISI series
in 3-dimensional space (Takens 1981). The components of these 3-
dimensional vectors were the values of the ISIs taken every t=2
intervals. The value of t was chosen by mutual information criteria
to avoid spurious correlations between consecutive components of
the vectors (Abarbanel 1996). Traditional recurrence plots are
constructed on an all-or-nothing basis by placing a point in the
position (i, j) whenever the vector i is closer to vector j than a fixed
distance r. Instead, in this study, we used an extended version of
this graphic tool, which provides a more comprehensive description
of the dynamic (Manetti et al. 1999). A 2-dimensional plot was
created by filling the position (i, j) with a colour that represented
the distance between the vectors i and j. Finally, a bicubic spline
smoothing procedure was used to fit the mesh surfaces of this 2-
dimensional figure, a procedure that, despite the fact that it
produces a slight asymmetry in the image (and causes the 45� line,
where the embedding vector is compared with itself, to nearly
disappear from view), often increases the visual clarity. Thus,
clusters of points with similar colours in the recurrence plot reflect
epochs of the signal with similar dynamics. Therefore, the existence
of a long term correlation—such as a fractal dynamic—should
cause a definite set of clusters to appear, whereas a random signal
should exhibit a homogeneous distribution of colours.

Sequence of rates (SR) represents the modification of firing rate
over time. The SR was calculated by counting the number of spikes
found in contiguous non-overlapping time windows of duration T.

The shuffled sequence of rates (SSR) is the SR of shuffled inter-
spike intervals (SISI). The MIH is a probability-density function of
the time elapsed between two spikes that has a number n of spikes
between them. The MIH can be calculated for n=1, 2, 3…, the ISI
histogram being the MIH when n=0. The expected distribution of
accumulated intervals of a random point process is the negative
binomial distribution (distribution of the number of Bernoulli trials
before n potentials are found). The Chi-square test was used to
identify differences between the MIH of original and surrogate ISIs.
When accumulation of ISIs produced MIH with a dispersion higher
than expected by random (negative binomial distribution) and
higher in original than in the shuffled ISIs-sequences, data were
interpreted as indicating that the natural order of ISIs increases the
firing rate variability, which is a characteristic expected for fractal
point processes. This possibility cannot be observed with the ISI
histogram because it has no information about the relationship
between successive ISIs.

A main requirement for identifying fractal activity is the
observation of the power law that characterizes self-similarity. The
power law was explored by analysing the variance of firing rate for
an increasing observation window T. Three complementary
approaches were used, the FF (Fano 1947), AF (Allan 1966) and
the periodogram (Lowen and Teich 1996). The FF time curve is the
ratio of the count variance to the count mean for increasing T. The
AF time curve is the ratio of the event-number Allan variance (the
mean of the square values of differences between successive
observation windows) to twice the mean for increasing T. The
periodogram curve estimates the power spectral density of a point
process. It was calculated with the discrete Fourier transform for a
500-ms observation window. The finding of a power law function
in the FF, AF and periodogram that vanished after the random
shuffling of ISIs (constructed according to and as described by
Teich, 1992) was used to identify fractality in firing activity.
Differences between original and shuffled data were statistical
when the FF and the AF time curves were not included within the
range mean€1 SD of data shuffled 100 times (P<0.05, t-test,
df=100).

Results

In response to antidromic stimulation, 188 SN-neurons,
out of 475 tested, were identified according to their
projection (Table 1). The recurrence plots showed
distinctive clusters (Fig. 1C), that clearly decreased
(Fig. 1D) after the random shuffling of ISI sequences
(surrogate ISI). This indicates a complex non-random
dynamic with long-term correlations suggesting “fractal
behaviour” (similar clusters for different pairs of vectors
that are far apart from each other). This possibility was
subsequently demonstrated by different procedures
(Fig. 2).

Table 1 General electrophysio-
logical characteristics of sub-
stantia nigra cells (VC variation
coefficient, ISI inter-spike
interval)

n Antidromic latency1

(ms)
Firing rate2

(spikes/s)
VC of ISI3

Nigrostriatal DA-cells 121 12.8€4.34 3.7€1.83 0.56€0.21
Nigrothalamic GABA-cells 43 3.3€3.33* 13.0€8.3* 0.76€0.38*
Nigrocollicular GABA-cells 9 1.9€1.15* 13.6€8.71* 0.66€0.17*
Nigropeduncular GABA-cells 15 1.9€1.62* 12.5€9.29* 0.83€0.39*

1 The antidromic latency was longer in DA cells than in GABAergic cells (ANOVA, F=50.01,
P<0.0001)
2 The basal firing rate was lower in DA cells than in GABAergic cells (F=29.20, P<0.0001)
3 The variation coefficient was lower in DA cells (F=5.19, P<0.001)
*P<0.001 vs. nigrostriatal DA-cells; the GABAergic groups did not differ
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As Teich (1992) has pointed out, simple inspection of
the firing rate plot for an increasing time window T
(between 100–5,200 ms in the example in Fig. 2) shows a
higher variance in the original (SR in Fig. 2) than in the
shuffled (SSR in Fig. 2) ISIs. As expected for a fractal
pattern, this difference increases with the amplitude of T.
This high variability was verified with the MIH that was
more dispersed in the original (Fig. 2 shows the MIH for
accumulations of 2–100 ISIs) than in the shuffled (Fig. 2)
data (curves distribution was compared with a Chi-square
test). Thus, the natural order of the ISI sequence increased
the variance of the mean firing rate, indicating fractality.
The FF, AF and periodogram showed for an increasing
observation window T a power law characteristic of a
fractal pattern. This is shown in the example of Fig. 2 for
observation windows that exceeded 100 ms for the AF
(Fig. 2A) and FF (Fig. 2B) respectively. The periodogram
showed a power law reduction of the power spectral
density that corresponds with a fractal pattern (Fig. 2C).
The power law vanished in all tests after the random
shuffling of ISIs.

Some 40 out of 188 cells (21.3%) fulfilled the
requisites for identifying a fractal pattern in the ISI
sequences. (1) The variance of the MIH was higher in
original, than in shuffled ISIs; (2) the recurrence plot

suggested scale-invariance; (3) a power law was found in
both the FF and AF and this vanished after the ISIs
shuffling; (4) the power spectral density decreased as a
power law function of the frequency in the original but
not in shuffled ISIs. None of the remaining 148 neurons
exhibited fractality with any of the four methods
employed here. The presence of a fractal pattern was
not evenly distributed in the different SN cell groups. It
was present in 100% of nigrocollicular cells, 51% of
nigrothalamic cells, 33% of nigropeduncular and 3.3% of
nigrostriatal cells (Fig. 3)

Discussion

The prevailing model of the BG is mainly based on the
assumption that neuronal processing is carried out by
inhibitory/excitatory interaction between cells, the firing
rate being the substrate for information transfer. A
putative role for oscillatory neuronal activity and pattern
of discharges in the BG is gaining increasing attention
(Wilson et al. 1977; Wichmann and DeLong 1996;
Terman et al. 2002; Farmer 2002). However, information
may be coded in firing patterns in many different
manners, giving rise to a large variety of possible codes

Fig. 1 An example of an extended recurrence plot for a fractally
firing nigrocollicular neuron (C) and its shuffled version (D). The
sequences of the original (A) and shuffled (B) inter-spike intervals
(ISI) are shown above (axis: number of ISI; ordinate: duration of
the ISI). The colour of each point represents the distance (in ms) in
a 3-dimensional space between two vectors corresponding to the

ISIs displayed in the position x for vector one and y for vector two.
The colour distribution shows long-term correlation clusters (C)
that suggest the typical scale-invariance of fractals and that
decreases after the random shuffling of ISI (D). Often a slight
clustering is still apparent after ISI shuffling, which is probably
induced by the finite size of the data sample
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whose identification is difficult with the usual methods.
Using different mathematical algorithms we have recog-
nized a fractal pattern in the firing activity of BG cells in
the rat.

The common recognition of fractal-like patterns in
physical and biological systems may cast doubt upon the
importance and specificity of such activity when referred
to neuronal functioning. The possibility of a noise-
induced fractal pattern was considered in preliminary
analyses (data not shown) conducted in our laboratory. A
computerized simulation of different types of random
point process and the inter-event intervals generated with
a natural source of noise (nucleus disintegration of
Ra226) were not associated with fractal patterns when
analysed with the four mathematical methods applied in

Fig. 2A–C An example of a nigrocollicular neuron showing the
basic characteristics of the fractal firing activity. As expected, the
variance of the sequence of rates (SR) was lower for long-duration
time windows (T), decreasing from T=100 to T=5,200 ms. How-
ever, this decrease (shuffled sequence of rates, SSR) was more
marked after shuffling the ISIs (shuffled inter-spike intervals;
SISIs) Thus, for any T value the variance of both the sequence of
rates and the multi-spike interval histogram (MIH) was higher in
the original than in the shuffled ISIs. The Allan factor (A), Fano

factor (B) and periodogram (C) are shown at left. Original intervals
are shown by solid lines, shuffled intervals by dotted lines (data
were shuffled 100 times: the mean is indicated by the central dotted
line and the standard deviation by the upper and lower dotted lines)
and expected values for a random point process by discontinuous
lines. For values of T>100 ms, the variance of the MIH was higher
in the original than in the surrogate data. The AF, FF and
periodogram show the typical power law dependence that charac-
terizes the fractal activity

Fig. 3 Percentage of cells showing fractal patterns (SN substantia
nigra, SC superior colliculus, PPTg pedunculopontine nucleus)
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the experiment reported here. On the other hand, these
methods showed homogenous and coherent results in
neurons, with no cell showing “fractal patterns” with one
method but not with the other three. More over, the fractal
pattern was not ubiquitously present in SN cells. A net
difference within cell populations was observed, ranging
from 100% of GABAergic nigro-collicular neurons to 3%
of DAergic nigro-striatal neurons showing fractal activity.
Overall, it appears unlikely that an unspecific source of
noise would be associated with such cellular distribution
and specificity.

The origin of fractal patterns in the basal ganglia is not
clear. Fractal activity has been identified in sensory areas
of the cortex, which, projecting to the BG (Teich et al.
1997; Lowen and Teich 1996), could induce fractal firing
in SN cells. The present findings do not support this
possibility because our recordings were performed in
anaesthetized rats under conditions of sensory depriva-
tion. SN reticulata cells are integrated within several
cortico-subcortical circuits (i.e. oculomotor, prefrontal,
etc.) (Parent and Hazrati 1995; Middleton and Strick
1997), which could be the origin of fractal activity in SN
cells. On the other hand, fractal patterns have been found
in the opening and closing of ion channels (Liebovitch
and T�th 1990) and in quantal neurotransmitter secretion
(Lowen et al. 1997). Accordingly, fractal activity could be
the result of a sub-cellular component of SN cells.
Whether the origin of a fractal pattern of neuronal firing
in the SN cells is “extrinsic” (i.e. related to circuits) or
“intrinsic” (i.e. related to membrane properties and
intracellular events) remains to be established. Regardless
of its intimate mechanisms of origin, we believe the
fractal pattern here described for SN firing reflects an
operational mode that could be relevant to various
functions of the BG.

One of the main characteristics of fractal images is the
spatial-invariance which make it possible for an object to
be reproduced by magnifying a portion of it (self-
similarity). Self-similarity in the case of fractal signals
make it possible for the information that they are carrying
to be recovered at any moment with any sampling time
(e.g. music recordings with fractal characteristics should
sound similar even when reproduced at different veloc-
ities). This time-invariance could be useful for systems
that, like the BG, receive and use a large load of sensory
stimuli (Marsden 1982; Middleton and Strick 1997) to
organize different motor patterns in parallel (Alexander et
al. 1986; Middleton and Strick 2000), each of them with a
specific time-cadence (for example walking, saluting and
speaking simultaneously). In this regard, fractal firing of
SN cells could be on the basis of the fractal dynamic
observed in different motor patterns. This is the case for
animal and human locomotion patterns (Goldberger et al.
1990; Hausdorff et al. 1995) that could be influenced by
the fractal activity found in nigro-PPTg neurons (PPTg is
considered as a locomotion region of the mesencephalon;
Ross and Sinnamon 1984; Masdeu et al. 1994). The
fractal dynamic also prevents persistence and persevera-
tion, thus facilitating the exploration of all possibilities

available to a system. Perseveration must be prevented in
some BG functions such as the control of oculo-motor
behaviour (Hikosaka and Wurtz 1983) and the switching
of attention (Schultz 1998; Redgrave et al. 1999). The
firing rate of nigro-collicular cells have a key role in
orienting ocular movements toward salient visual stimu-
lus (Hikosaka and Wurtz 1983) but probably it is not
efficient in generating the random exploration of the
visual field observed under basal conditions. The fractal
firing found in 100% of nigro-collicular cells could allow
a random exploration of the visual field, preventing, in the
absence of salient stimulus, the repetitive exploration of
the same visual region. The striking lack of fractal
activity in DA cells may also be relevant for BG function.
A fractal pattern of firing requires both a high variability
of ISIs (variation coefficient of DA cells in Table 1 is half
that expected by random) and the grouping of short or
long ISIs (see MIH in Fig. 2). Dopaminergic neurons
exhibit a relatively constant firing to keep extracellular
DA levels in the striatum stable (Gonon 1998; Grace
1991), thus avoiding marked variations in the motor state
(Obeso et al. 2000). It appears that the essential modu-
latory function of the DA nigro-striatal system would not
fit with the characteristics of fractal activity. Some motor
disturbances associated with BG disorders may also be
associated with fractality. Loss of fractal activity pro-
motes underlying periodic rhythms in different biological
systems (Sugihara et al. 1987). Resting tremor in
Parkinsońs disease is associated with rhythmical neuronal
firing in the BG and thalamus not observed under normal
condition (Zirh et al. 1997). We may hypothesize that a
putative loss of fractal activity in nigrothalamic cells
could be related with facilitation of rhythmical discharges
and tremor onset.

In conclusion, the present study reports fractal dy-
namic in the unit activity of basal ganglia cells. The
characteristics of fractal signals suggest that fractal firing
could be particularly useful in the BG where very diverse
information coming from all the cortex converge without
apparent time-coherence.
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