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Abstract: We study spectral properties of a hamiltonian by analyzing the structure of
certainC*-algebras to which it is affiliated. The main tool we use for the construction of
these algebras is the crossed product of abéliaalgebras (generated by the classical
potentials) by actions of groups. We show how to compute the quotient of such a crossed
product with respect to the ideal of compact operators and how to use the resulting
information in order to get spectral properties of the hamiltonians. This scheme provides
a unified approach to the study of hamiltonians of anisotropic and many-body systems
(including quantum fields).

1. Introduction

1.1. Algebras of hamiltonians. Throughout this papeX will be a locally compact not
compact abelian group (with the operation denoted additively) equipped with a Haar
measure d. For example X could be a finite dimensional vector space over-adic

field (or rather the underlying additive group). We shall calladgebra of (classical)
interactions on X any C*-algebras/ of functions such that

Cx(X) C & C CH(X) and«/ is stable under translations (1.2)

Let X* be the group dual t& and forh : X* — C Borel leth(P) be the operator
on L2(X) defined byr(P) = F*M,F, whereF is the Fourier transformation and
M, is the operator of multiplication by in L2(X*). A self-adjoint operato on
L?(X) of the formh(P) + v(Q), whereh is a real continuous function ox* such that
limg_ oo |A(k)] = oo andv(Q) is the operator of multiplication by a functiane <7,

1 CB‘(X) is theC*-algebra of complex uniformly continuous bounded function&othenC (X), Co(X)
andCc(X) are the subalgebras of functions which have a limit at infinity, are convergent to zero at infinity,
or have compact support, respectively # is a Hilbert space the® (%) is the space of bounded linear
operators oy?’ and K (#¥) the subspace of compact operators.
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will be called arelementary hamiltonian of type <7 (if X* is compact, there is, of course,
no condition at infinity ori). We use the symbol® and P in order to keep notations
close to those of quantum mechanics, wh@rand P are the position and momentum
observables respectively; here we do not attach any meaning to them.

We recall that theC*-algebra generated by a family of self-adjoint operators is the
smallestC*-algebra which contains their resolvents.

Definition 1.1. Denote by o7 x X the C*-algebra of operators on L2(X) generated by
the elementary hamiltonians of type .. A self-adjoint operator H on L2(X) such that
(H +i)~! e o x X iscalled hamiltonian of type 7.

We shall often refer taz’ x X as theC*-algebra of hamiltonians (or energy ob-
servables) of type o7. The notationeZ x X is standard in the theory af*-algebras,
meaning crossed product.of by an action of the groufg. Theorem 1.1 below justifies
its use in the present context. Note that we shall also use the terminalgglebra
of hamiltonians” for algebras which are not crossed products (see (1.5) and Sects. 1.7
and 1.8).

In this paper we shall use operator algebra techniques in order to study the spectral
properties of type7 hamiltonians. More precisely, we show thatthe algeldra X hasa
rather remarkable structure which allows us to propose a general method of computation
of the essential spectrum of these hamiltonians. The same ideas allow one to prove the
Mourre estimate for certain choices of conjugate operators, but this question will be
treated very briefly in this paper, in connection with a quantum field model, see Sect. 1.7.
In [12,13] the method is applied to a general class of dispergimdy hamiltonians,
and in [20] to quantum field models with a particle number cut-off.

We emphasize that the class of type hamiltonians is much larger than the ele-
mentary ones. Although in concrete examples we t#dke h(P) + V, in generalV is
not a function but only a symmetric operator satisfying certain conditions (it could be a
pseudo-differential operator). Theorem 2.1 gives a perturbative method of constructing
such hamiltonians (see Theorem 6.1 and [13] for applications). On the other hand, the
C*-algebras x X can often be described in direct terms, as in Theorems 1.2 and 1.3,
and this allows one to get very general classes of hamiltonians ofdypéich have
no natural decompositions into a sum of a kinetic and a potential part as above (see,
for example, the comments after Theorem 1.4 from Sect. 1.6). We mention that some
algebras are such that it is always possible to define the kinetic part of a hamiltonian
affiliated to them. For example, in the context of Sect. 5.2 the kinetic componéht of
is its quotient with respect to the ide#l o(X). One can similarly define the kinetic
part of observables affiliated to the gradéttalgebra associated t8-body systems,
see Sect. 1.4.

A slight modification of the algebra’, obtained by taking the tensor product with an
algebra of compact operators, allows one to greatly improve the applications of the theory.
More precisely, leE be a complex Hilbert space. Then thie-algebraw® = &/ K (E)
has a natural structure af-algebra (see Sect. 3.1) and so the crossed prodtfci X
is well defined. Theorem 4.1 extends in an obvious way to the present case, the space
L?(X) being replaced by.%(X; E) = L?(X) ® E. Corollary 4.1 holds in the form (see
Sect. 1.3 for the notations)

Co(X)E x X = [Co(X)F - Co(X*)l = K(L3(X; E)) = # (X) ® K(E).

Most of what we do in the rest of the paper can be extended with no difficulty to this
setting, so we shall not stress this point. This trivial mathematical extension is, however,
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quite useful in applications to the spectral theory of differential operators with operator
valued coefficients (e.g. Dirac operators) and also in other contexts (see Sect. 1.4). In
order to treat couplings between two systems it is important to consider tensor products
with C*-algebras more general th&(E); this less trivial problem is studied in Sect. 1.8.

We give now a short description of the content of the paper. The rest of this introduction
is devoted to a detailed presentation of the method we use and of several classes of
examples, including ones which do not belong to the crossed product setting introduced
above. We hope that this will clarify the scope and power of this algebraic approach. In
Sect. 2 we discuss several questions concerning the self-adjoint operators affiliated to
C*-algebras, their essential spectra and the connection with the problem of computing
guotients ofC*-algebras with respect to some ideals. Theorem 2.2 will be particularly
useful later on. Sections 3 and 4 are devoted to a short presentation of the theory of
crossed products af*-algebras by actions of abelian groups with emphasis on some
results that we need and which we have not been able to find in the literature (atleastin a
sufficiently explicit form). Especially important for us are Theorems 3.1 and 4.1. Many
examples are given in this introduction, but we devote the whole Sect. 5 to a detailed
study of one of the most interesting of these algebras: that suggested by the work of
Klaus [27] on potentials with infinitely many “bumps”. In Sect. 6 we point out a large
class of hamiltonians affiliated to it. The appendix is devoted to the rather long proof of
Theorem 1.2.

We have to mention that we decided to change the title of the preprint version [22] of
this paper because there are substantial modifications in the presentation of the results
and in the subjects we treat: besides a quite different introduction (the examples in the
second part of Sect. 1.6 and the Sects. 1.7, 1.8 are new), we have eliminated topics and
examples which are either not so important or will be developed elsewhere. On the other
hand, several proofs are more detailed in the preprint, which could be useful especially
to a novice inC*-algebras. In [26] one can find a preliminary description of our results.
We also note that recently the preprints [30, 31] containing various applications of our
ideas have appeared.

There is a very large literature on the applications of the abstract theory of
C*-algebras to the study of spectral properties of various classes of operators. One
can find references on this question in [14] and [32]. The work of H.O. Cordes [9]
is partly relevant in our contextC*-algebras also appear in many other branches of
mathematical physics: statistical mechanics and quantum field theory (algebras of local
observables, crossed products), scattering theory (algebras of asymptotic observables).
But our purposes and techniques are quite different.

Let us notice thatC*-algebras generated by the energy observable appear already
in the work of J. Bellissard in relation with solid state physics. In [3,4] he pointed
out a remarkable connection betwegntheory, cyclic cohomology o *-algebras,
and quantum Hall effect, opening thus the way to many other applications of algebraic
methods in the study of models in condensed matter physics (cf. [3—5] and also [6, 8] and
references therein). In particular, he considergihalgebra generated by the translates
of the hamiltonian of a physical system and shows that under certain conditions it is a
crossed product. Although this should be considered as an “algebra of hamiltonians” in
our terminology, it is quite different from those we consider here, being rather tightly
related toone hamiltonianH (see Sect. 1.3 for more comments on this question). In the
models considered by Bellissard this is an advantage and allows him and his co-workers
to get much more precise spectral propertied afhich lead, for example, to a beautiful
mathematical description of the quantum Hall effect. The algebras which appear in our
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work are much larger and, in a certain sense, simpler. So we can treat a large class of
models but we are not able to study finer spectral properties of the hamiltonians. On the
other hand, we are mainly concerned with the quotient ofthalgebra of hamiltonians

of a system with respect to the ideal of compact operators. In the situations studied by
Bellissard, this does not seem to be of interest, sinc€thalgebras that appear in his
most important applications do not contain compact operators. The techniques we use
do not give anything interesting concerning almost periodic or random operators. In
fact, we think that the main future development of the ideas presented in this paper will
concern many-body systems (consisting of a large and variable number of particles) and
quantum fields.

1.2. C*-algebratechniques. We shall explain the main ideas of our approach in a more
general setting. Assume that we are asked to compute the essential spreifBinof

a self-adjoint operatof acting on a Hilbert space?. If Hp is a second self-adjoint
operator on’ such that H +i)~1 — (Ho + i)™t € K (), thenoesd H) = 0esd Ho)
(Weyl's theorem). Thus an idea would be: try to mafesimpler by adding to it a
compact operator (for unbounded the addition being interpreted in a generalized
sense: the difference of the resolvents should be compact). The problem is that in
many physically important situations it is impossible to get a simflgby this proce-

dure: think about the 3-body problem or the most elementary anisotropic hamiltonian
H = P2+ V(Q) on L2(R), where the functiorV has distinct limits at-oo.

C*-algebras offer a straightforward solution to this difficulty: there is alway&gn
simpler thanH that can be used in the preceding argument, there is even an optimal one.
Of course, a new kind of problem appears: this operator does not act (in a natural way)
in the initial Hilbert spaces”’. The main purpose of our paper is to show how to solve
such problems, first in a general framework and then in a concrete but rather remarkable
situation.

Consider the quotier*- agebraC(%) B(s)/ K (2¢) (this is called theCalkin
algebra). If H € B(J¢), let H be its image inC (). Then Weyl's theorem can be
stated awes{ H) = o(H ). The “abstract” operatoH will be the optimal choice we
talked about beforef( is abstract in the sense that it does not act on a Hilbert space).

In order to use this for unbounddd, we have to define the notion of self-adjoint
operator in a purely algebraic setting. It is converfieand physically motivated, to
define anobservable affiliated to a C*-algebra ¢ as a morphisnH : Co(R) — €
(see Sect. 2.1 for basic*-algebra terminology). In order to keep close to standard
notations, we denotg(H) (not H (¢)) the image ofp € Co(R) through this morphism.
The spectrum of the observablé! is defined by:

o(H)={» eR | ¢ € CoR) andep(r) # 0 = ¢(H) # 0}. (1.2)

If P:% — % is amorphism into a secor@*-algebras” we can define the image
H' = P[H] of H through’P as the observable affiliated @’ given by ¢(H') =
Ple(H)]. In part|cular if #is an ideal m‘gand‘g %// is the quotient algebra,
we may defined as the observable affiliated ® given byH = nw[H], wherer is the
canonical morphisng — Z.

2 The notion of observable is related to that of a self-adjoint operator affiliated with-algebra in the
sense of Woronowicz. Following a suggestion of the referee, we discuss this question in Sect. 2.1.
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Assume that theC*-algebra¥ is realized on a Hilbert spacg?, i.e. € is a
C*-subalgebra ofB(J7"), and let us take abovgZ = ¢ N K (J¢). A self-adjoint
operatorH on 7 is calledaffiliated to ¢ if (H — z)~1 € ¥ for somez € C\ o(H).
This impliesp(H) € ¢ forall ¢ € Co(R), so each self-adjoint operator cff affiliated
to ¢ defines an observable affiliated 0. ThenH is well defined as an observable
affiliated to the (abstract)*- algebrafﬁ We recall that a real numbgrdoes not belong
to the essential spectrum of a self-adjoint operatdaf and only if o (H) € K (J7) for
somegp € Co(R) such thatp(1) # 0. Hence from (1.2) we getesd H) = a(H) (see
also (2.1)).

We stress the fact that the operation which assocHtee H has no meaning from
a strictly hilbertian point of view. Indeed, in most cadésis not an operator og?’,
becausé&s has no natural realization os’. But we shall see in Sect. 2.1 that/f
s “strictly” affiliated to ¢, then one can realiz& as a self-adjoint operator in each
nondegenerate representatiorsof

After these preliminary definitions, we go back to our problem: we would like to
study the spectral properties of a given self-adjoint operAtan a Hilbert space?.
We shall consider only spectral properties which are stable under compact perturbations,
for example the determination of the essential spectrum or the validity of the Mourre
estimate (which indeed is, in a sense which can be made precise, stable under such
perturbations). As we explained befof¢,is also an observable affiliated B(.7’), so
H is well defined as an observable affiliated to the Calkin algélyrat”). Clearly, what
we really have to do, is to study the spectral propertied ¢fand for this we have first
to compute it! This cannot be a trivial task since the Calkin algebra is a rather complex
object, e.g. it cannot be faithfully represented on a separable Hilbert space. Now we
come to the main Eomt of our approach. Assume #ilas affiliated to aC*-subalgebra
¢ C B(s¢).ThenH is affiliated to theC*- subalgebr% €€ N K@) ofC(#)
and% could be much simpler tha@ (7). If we can deiermm% rather explicitly,
we have good chances to obtain an explicit expressiafi pand so to say something
interesting about!. Our purpose is to show that this strategy works and allows one to
treat in a systematic way hamiltonians of physical systems with a complicated structure.
The preceding formulation could give the wrong impression that the main object
is H and that#’ is an auxiliary construction needed only at an intermediate step of the
computation. Butin the most interesting situations this is not the @asenecessary not
only to isolate the natural and general class of hamiltoni&his (lefined by its affiliation
to ¥), but also for the formulation of the results (again, in the convenient degree of
generality). In this respect, it is instructive to compare the statements of Theorems 5.3,
5.6 and 6.1. Thus, we simply forget the hamiltonian and state the problem we have to
solve as follows: &*-subalgebr&” C B(s¢) being given, describ® c C (7).
We have to point out situations in which this approach is useless. First, we cannot
expect to get an interesting result4dfN K (7)) = {0}, because the = z (where
= means “canonically isomorphic”). For example, this is the case if the algebra of clas-
sical interactions consists of almost periodic functions. On the other hand, assume that
%o is aC*-algebra of operators ap¢’ such thatép N K (s#) = {0} (this means that
%o has no nonzero finite rank projections) and#t= %y + K(5¢). Then% is a
C*-algebra and the projectiai — %o associated with the linear direct sum decompo-
sition which define’” is a morphism which gives a canonical identificatién= .
So in this cas&’ is naturally realized on the same Hilbert spac&a®ur approach
is not really useful in such a simple situation. Indeed, a self-adjoint opefaton
J is affiliated to% if and only if there is a self-adjoint operatéfy affiliated to%p
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such that(H + i)~1 — (Ho + i)' is compact, and theWl = Hp. Now the fact that
oesd{ H) = o (Hp) is a standard fact of Hilbert space nature and the algebraic approach
we propose is, at this level, irrelevant. The quantum mechanical two-body problem is a
particular case of this example, see (1.4).

We note that the operatdiy is not densely defined in general: strictly speaking, it
is only an observable affiliated . For example, ifH has purely discrete spectrum,
Hy is the observableo defined by (co) = 0 for all¢ € Co(R). This trivial observable
appears quite often in practical computations (see Sect. 1.6). Equivalent characterizations
of oo, which is affiliated to anyC*-algebra®’, is o(co) = @, or D(c0) = {0} in each
representation of’.

1.3. Relevance of crossed products. The preceding strategy has been applied in several
situations in [22] and [23]. A treatment of the dispersNebody problem and of some
quantum field models (including the proof of the Mourre estimate) along these lines can
be found in [12,13] and [20]. In this paper the main emphasis is on the technique of
crossed products (see Sect. 3), which allows one to do the computations at an abelian
level. The next result (whose proof can be found at the end of Sect. 4) explains the
relevance of these objects in our context.

We shall use the following notation:# is a Hilbert space an’’, .7 are subalgebras
of B(J#) then. - 7 is the set of sums of thefor;‘aTh +- - -+ S, T, with S; € &, T; €
7, and[[.¥ - 71 its norm closure. We also identifyo(X*) with an algebra of operators
on L2(X) with the help of the mag — ¥ (P). < is as in (1.1) and is identified with
the corresponding algebra of multiplication operator€.8¢X ). The group operation in
X* will be denoted additively.

Theorem1.1. Let & : X* — R be a continuous non-constant function such that
limy_ o |h(k)] = oo. Then the C*-algebra generated by the self-adjoint operators
of theformh(P + k) + v(Q), withk € X* and v € & real, isequal to [« - Co(X™*)]].
Moreover, this spaceis canonically isomor phic to the crossed product of the C*-algebra
</ by the action t of X defined by (z,¢)(y) = ¢(y — x).

The result can be restated as follows:x X isthe smallest C*-algebra of operators
on L2(X) which contains (h(P) + v(Q) + i)~ for all v € «7 real and which is stable
under all the automorphisms® § — Vi SV},

Note that the theorem is stronger than expected, the funétlmeing fixed. Then it
is easily seen that it implies the following in the case= R”". Let i be a real elliptic
polynomial of ordern and leter > be the set of € o7 which are of clas€ > and such
that all their derivatives belong t&’ too. Thene x X is theC*-algebra generated by
the self-adjoint operators of the fortiP) + V, whereV runs over the set of symmetric
differential operators of ordet m with coefficients ine/°.

From this one can also see the main difference betwee@*ragebras considered
by J. Bellissard in [3,4] and those we work with here: Bellissard fixasd v and takes
the algebra generated by the operataqiB) + v(Q + x), x € X, while we fixa and let
v vary on a quite large set of symmetric operators modeled/bin our case crossed
products appear essentially by definition, while in the cases studied in [3,4] this is a
rather subtle feature. Note also that, although we start with a given kinetic enetwgy

3 Here and later on we denote By and Uy the unitary operators oh2(X) defined by the relations
(Vi £)(x) = k(x) f (x) and (Ux /) (y) = f(x + ).
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final algebrar x X is independent of it. It is not clear for us whether this property holds
in the situations studied in [3—6].

Now we explain the procedure of reduction to an abelian situation. This is based on
certain properties (described in Sect. 3) of the correspondefee </ x X. We set
H(X) = K(L3(X))and#(X) = B(L?(X)) (theseC*-algebras depend only df, not
on the choice of the Haar measure). One JfagX) = Co(X) x X (see Corollary 4.1).
Thus from (1.1) we see tha¥ (X) is an ideal ineZ x X. The quotientC*-algebra
o/ x X /2 (X) is well defined and, by Theorem 3.2,

A X X/%(X) =~ [/ /Co(X)] % X. (1.3)

This relation reduces the problem of the computation of the quotient of the two noncom-
mutative algebras from the left-hand side to an easier abelian problem: that of giving a
convenient description of/ / Co(X).

We mention here an important point: in general, there are many (equivalent) de-
scriptions of«//Co(X), each of them having its own merits, so that we end up with
quite different descriptions off x X/ # (X), hence of the essential spectrum of the
hamiltonian. For example, Theorems 5.2 and 5.5 give rather different characterizations
of the same quotient, and this furnishes the quite different descriptiang£ff) from
Theorems 5.3 and 5.6 (see also Sect. 1.4).

1.4. Examples. 1t is worthwhile to begin with the simplest situation = Coo(X) =

C + Co(X). The corresponding algebra of type hamiltonians will be denoted (X)
and will be called théwo-body algebra (the hamiltonians of a particle in external fields
vanishing at infinity generate such an algebra). By Corollary 3.1, and &nisenot
compact, we have (with linear direct sums)

T(X) = Coo(X) x X = (C+ Co(X)) ¥ X = Co(X*) + #(X) Cc B(X). (L4)

We get.7 (X)/# (X) = Co(X*) either by using (1.3) and@'»(X)/Co(X) = C, or
directly becaus€o(X*) N 2 (X) = {0}. The canonical surjectio¥ (X) — Co(X™)
is given byS = s-lim,_, U, SU; (note that w-lim_, ., U, = 0).

We consider next the simplest anisotropic behavior: one dimensional physical systems
with different asymptotics at plus and minus infinity in configuration spaceXLetR
and.Z = C(R) be the algebra of continuous bounded complex function® evhich
have limits attoo. Observe that iR = R U {—o0, oo} is the two-point compactification
of R with the natural topology, the@(R) is the set of functions iy (R) which extend
continuously taR. It is very easy to describe the quotiefR)/Co(R): we have two
morphismsp — lim_, 1o ¢(x) from C(R) ontoC and the intersection of their kernels
is Co(R), so we get an identificatiof (R)/ Co(R) = C @ C. Taking the cross product
by the action ofR is also easy. Iff(R) = C(R) x R then we consider the morphisms
Py : €(R) — Co(R*) given by PL[T] = s-limy_, 100 U, TUY. The mapT +>
(P_[T1, P+[T]) is a surjective morphism & (R) ontoCo(R*) & Co(R*) and its kernel
equals’# (R). Thus we get

ER)/H (R) = Co(R*) @ Co(R*).
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Physically interesting self-adjoint operators affiliatedt@R) include Schrédinger op-
erators with locally singular potentials and different asymptoticsat.

In order to improve the applications of the theory we use the idea presented at the
end of Sect. 1.1. LefE(R) = C(R) ® K (E) be theC*-algebra of norm continuous
functionsR — K (E) which have limits attoo (in the norm topology). Then

¢@®)" = CE®) xR =¢[®) ® K(E) = [CE®) - Co®")]]
(we used Proposition 3.2) and exactly as above we get
¢®"/K(L2AR: B)) = CER*) @ CER"),

the isomorphism being induced by the safe Less trivial is the proof of the Mourre

estimate for operators affiliated %(K)E; our results in this direction will be published
elsewhere. The applications cover the spectral theory of elliptic operators on asymptoti-
cally cylindric (star shaped) domainslik¥ (with different asymptotics at various ends)
and on some manifolds with cylindrical ends. Our work on these questions has been
especially motivated by [7,10,16] and references therein. By takirgC?2 we cover

one dimensional Dirac operators with different asymptoticsat.

The preceding example has a simple and interesting extension which goes beyond
the crossed product framework. Let

¢® = [CE®R) - CE®R"] = [CER) - CRH]. (1.5)

This is aC*-algebra (but not a crossed product) which admits an intrinsic description
of the same nature as that of Theorem 1.2, &®)® c 4E. We clearly haver’® =

¢ ® K (E), where% is the algebra corresponding to the chole= C. If T € ¢F
thenTy = s-liMy 100 UcTUF @and TF = s-limi_ 100 VT Vi exist, and the map
T+ (T_, Ty, T—, T") is a morphism of¢’F into

CE®" @ CE®") @ CB®) @ CE®)

with kernel equal toK (L2(R; E)) and range given by the compatibility relations
(T_)* = (TH)_ and(T)* = (T*),. Thus we get

¢®/K(L3R; E)) — CE®" @ CE®") @ CE®) ® CER).

Hence ifH is an observable affiliated t6* then one can associate to it four asymptotic
observable#l., H™ (the firsttwoH.. correspondt@ — +oo while the other onesl *
correspond taP — +o00) and spectral properties like essential spectrum, thresholds,
Mourre estimate, oH can be expressed in terms of these observables. For example

OesdH) = o(H_)Ua(H)Uo(H ) Uo(H").

This is an elementary but physically interesting situation when the essential spectrum
of H is not determined by its localizations at infinity if the infinity is interpreted only in
the Q sense (compare with Theorem 1.4).

We now go back to an arbitra®y and consider the problem of constructing algebras
of classical interactions. These are in bijective correspondence with a certain class of
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compactifications oK : the spectrunX (=) of o/ is a compact space arklis homeo-
morphically and densely embeddediri.<?); thens/ is the set of functions i€} (X)
which have continuous extensions@.«), i.e..«f = C(X(«)). For exampleC., (X)

is related to the simplest compactificationof the Alexandroff compactification, and
C(R) involves the two-point compactification &.

The compactifications ok are quotients of the Storf@ech compactificatioX.
However, instead of considering expliciyx, one can construct algebras of interactions
by using limits at infinity along certain filters. L&t be a filter onX and assume thaf
is translation invariant (iA € 7, x € X, thenx + A € F) and finer than the Fréchet
filter (which is the family of subsets with relatively compact complements). We consider
the space op € C}(X) which have a limit at infinity along the filteF:

Cr(X) ={p € C{(X) | Iijr__n @ existg. (1.6)

Itis clear thatC £ (X) is an algebra of classical interactionsAis the Fréchet filter then
Cr(X) = Cx(X). There is a largest non-trivial ideal fir(X), namelyCr o(X) =
{p € CYUX) | limg g =0}, andCxr(X) = C 4 Cr o(X).

We consider a particular class of algebras of the preceding form. Fix a closked set
suchthatl + A # X if A is compact (this means that there are points as far as we wish
from L). Then the complements of the séist- A form the base of a filtef;, which
is translation invariant and finer than the Fréchet filter. The alg€b(&x) = Cr, (X)
consists of functiong € C{'(X) which tend to a constant when we are far away flom
The difficulty of the problem of describing the quotient algeﬁia(X)/Co(X) appears
already in the seemingly elementary case whes a straight line inX = R2.

In Sect. 5 we shall study in detail the preceding problem for a class of sets that we
call sparse. More precisely, the deis calledsparseiif it is locally finite and for each
compactA of X there is a finite sef’ ¢ L suchthatif e M = L\ Fandl’ € L\ {l}
then(l + A) N (I’ + A) = @. The corresponding class of hamiltonians generalizes that
of the Schrodinger operators with “widely separated bumps” introduced by M. Klaus in
[27] (see also [11,25]). This suggests calligig(X) = Cr(X) x X thebumps algebra.

As we shall see, this example fits very nicely in our framework, the quotient algebra
having an especially interesting structure (see Sect. 2.3 for the notations):

61 (X T (X)L
1O v = T - (2.7)

This implies the following about the essential spectrum of an arbitrary obserfable
affiliated to €7 (X). First, note that there is a (highly not unique) famil§f;);c; of
observables affiliated to the two-body algelraX) such that the quotient ¢ff,.,; H;
with respect to the ideak” (X)?) is equal to the image off through the embedding
(1.7). Then

sesdH) = () |J o(HD). (1.8)

FcL leL\F
Ffinite

In Sect. 5.4 we give a second description of the quotient algebra hence a new formula
for the essential spectrum: for each ultrafiltiner than the Fréchet filter adithe limit
s-lim; U HU;" = H, whenl — oo alongx exists in the strong resolvent sense and

vesdH) = Jo(H,). (1.9)
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In Sect. 6 we shall point out an explicit and quite general class of self-adjoint opefators
affiliated to%;, (R") and compute corresponding familieg;);<;,. This makes the con-
nection with the class of interactions studied by Klaus in [27]. We also mention a connec-
tion between (1.9) and previous work of Bellissard [3,4]. Indeed, the séltrafilters

finer than the Fréchet filter adhhas a natural topology such tH&t (L) /co(L) = C(L ).

But this is related to the spectrum of the quotient algejtaX)/. 7 (X), as it can be
deduced from (1.7). We do not insist on this aspect because the use of ultrafilters seems
to us more convenient in computations (see the last part of Sect. 1.6).

The set of algebras of interactions is obviously a complete lattice for the inclusion
order relation. Indeed, an arbitrary intersection of algebyasatisfying (1.1) satisfies
it too. The existence of the upper bound for arbitrary families is a consequence, because
Cp(X) isthe largest algebra of interactions. These operations allow one to construct new
algebras from the existing ones.

Algebras of N-body type are constructed using a slight modification of this idea.
Note first that ifY’ C X is a closed subgroup, then we can emioigdxX/Y) C Cp(X)
with the help of the map — ¢ o 7wy, wherery is the canonical surjection & onto
the quotient groulX /Y. Co(X/Y) does not contaif’« (X) but is translation invariant,

SO we may construct the crossed prodél¢t) = Co(X/Y) x X. Now assume thaX is

(the underlying additive group of) a real finite dimensional vector space. Then the norm
closures” of ), Co(X/Y), whereY runs over the set of all vector subspaces(ofs

an algebra of interactions afd = # x X is a generalized version of the algebras of
hamiltonians appearing in thé-body problem. We refer to [13] for a detailed study of

% and of the hamiltonians affiliated to it (including the Mourre estimate).

We mention however that” has a quite remarkable structuieis graded by the
lattice of all subspaces Y of X, and so belongs to a general class of algebras whose
guotient with respect to the compacts can be computed explicitly. More pre¢sdy,
the norm closure i¥4(X) of ), €(Y), one hasg'(Y) - 6€(Z) C €(¥Y N Z), and the
sumy_y ., € (Y) is direct (linearly and topologically) if is finite. For each subspace
Y we defingéy as the closure of the suln ,—, 4'(Z). Then there is a canonical linear
projectionPy of ¥ onto %y which is also a morphism. The ma@p— (Py[T])yen.,
where? is the set of hyperplanes a&f, induces an embedding

G/ H(X) C[lyen Gy

whose range consists of famili€®y)ycy such thaf{Ty | Y € #H} is a compact set in
% . As a corollary, ifH is an observable affiliated &, we have

OesdH) = U o(Hy),
YeH

whereHy = Py[H]. We note that{y can also be expressed, as before, as a strong limit
of translated observablés HU .

GradedC*-algebras which are not crossed products are also useful. For example, to
each symplectic space one can associate an algebra of this type, to which hamiltonians
of N-body systems in constant external magnetic fields are affiliated (see [23]). The
simplest case i€p(X) + Co(X™) + # (X).

In this paper we consider only crossed products of algebras of interactions
o/ C CJ(X) on whichX acts by translations. It is quite interesting, however, to re-
placeX by non commutative groups: this gives the possibility to treat particle systems
in magnetic fields which do not vanish at infinity. Indeed, we propose in [23] to consider
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groupsG which are extensions of by abelian groups. Thew x G is theC*-algebra

of energy observables of systems havitigis configuration space, subject to internal
interactions of type#, and whose “momentum observable” derives from the symmetry
groupG which is determined by the external magnetic field.

1.5. Intrinsic description of algebras of hamiltonians. In the case of sparse sets it is
possible to define the algebiga (X) in a rather simple way without mentioning crossed
products. This is the content of the next theorem, where we characterize the elements of
%L (X) in geometric terms (involving the phase spac® X*). Its rather long proof will

be given in the Appendix Sect. 7. We denote)% (Q) the operator of multiplication

by the characteristic function of the sét (L + A). Below (and later on), when a symbol

such asI® appears in a relation involving an operaforwe mean that the relation is
satisfied (or has to be satisfied) bothbyand by7T*.

Theorem 1.2. A bounded operator T on L2(X) belongsto % (X) if and only if

(i) lim,ol(Ux —DHTH| =0,

(i) limy_ollVkiTVF —T| =0,

(iii) there exists T e Co(X™) such that for each ¢ > 0 thereisa compact set A C X
suchthat || X 1< (O)(T — T)®|| <e.

OnehasT € %1 o(X) if and only if one can take T = 0.

Itis interesting to note that this statement is of the same nature as the Riesz—Kolmogo-
rov characterization of the compact operator& fiX) (see [21]; we sef- = 1 — 5):
Anoperator T € #(X)iscompactifandonlyifit satisfies oneof thefollowing equivalent
conditions:

(i) lim,_oll(Uy — DT =0andlim_ol(Vi — DT = 0;
(i) Ve > 03p € Co(X) I € Co(X*) such thatl(Q)LT || + ¥ (P)LT| < e.

There are characterizations similar to that of Theorem 1.2 in many of the concrete
examples o*-algebras of hamiltonians. The case of the (generalixetdpdy algebra
is treated in [13]. The grade@*-algebra associated with a symplectic space admits
a similar description, see [23]. The following very simple description of the algebra
Cp(R™) x R" has been obtained in [13] by the methods of the Appendix Sect. 7 (recall
the results of R. Beals [2], although they belong to the rather different setting of smooth
pseudo-differential operators):

Theorem 1.3. A bounded operator 7 on L2(R") belongsto Cp(R™) x R" if and only if
limy—o |(Ux — DT®| — 0and limy_o |V TVx — T| — O.

1.6. Localizations at infinity. We consider here the largest algebra of interactions
o/ = Cy(X). A rather detailed sketch of the proof of Theorem 1.4 can be found in
[22]; complete proofs and applications will be published elsewhere. We must first give
a “convenient” description ofj(X)/Co(X). As we mentioned above, there are many
such descriptions; our choice is motivated by the desire to obtain an algorithm efficient
in practical computations.

Let ¢ € Cp(X) and letx be an ultrafilter onX finer than the Fréchet filter; we
denote byy X the set of all such ultrafilters. Thecalization at infinity of ¢ at the
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point x is the functiong, € C{(X) given byg, (x) = lim, ¢(x + y), wherey — oo
along the filterx and the limit exists locally uniformly irx. For example, it is easy
to check that all the localizations at infinity @f are constant functions if and only
if im yoool@(x + ¥) — @(y)] = 0 for eachx € X. It can be shown that the map
@ > {@x}xeyx is @a morphismCl(X) — C(X)7X! (see (2.5)) withCo(X) as kernel.
Thus we get a canonical embeddi@t(X)/Co(X) C CA(X) X!, From (1.3) and (3.7)

we then deduce an embeddi@f(X) x X/# (X) C [CE(X) x X]“’X' which, in turn,
allows one to prove the following:

Theorem 1.4. Let H be an observable affiliated to the algebra C{/(X) »x X. Then for
each » € y X thestrong limit s-lim, U, HU = H,, existswhenx — oo along x and

Oes{H) = U;{ o(H,). (1.10)

By strong convergence we mean s iU, HU}) = 6(H,) for eachy € Co(X). The
observabled?, are affiliated toCy(X) x X and will be calledocalizations at infinity

of H. The proof of the theorem and a better insight of the objects involved require the
Stone-€ech compactification ok. We give some applications of Theorem 1.4 with

X = R in order to make the connection with [24].

Theorem 1.3 allows us to get many hamiltonians affiliated§aR") x R" which
cannot be obtained with the help of Theorem 2.1 (because the perturlvatidlhnot
be comparable wittHy). Assume thaH is a self-adjoint operator oh?(R") such that
¢ = D(|H|Y?) c D6(P))with8(p) — ooif p — oo. ThenT = (H +i)~ ! satisfies
the first condition of Theorem 1.3 (and conversely). To ensure the second condition, we
askV,y c Y forallk e R" andliny_o |V, HVy — H| |4« = 0. ThenH is affiliated
to CE(R") x R™.

For example, consider a generalized elementary hamiltoHiaa i2(P) + V(Q),
whereh, V are real functions ofR”. Assumeh continuous, polynomially bounded,
h(p) — ooif p — oo, and limk_.osup, [h(p + k) — h(p)|(L+ |h(p))~* = 0. LetV
be locally integrable and assume that its negative part is form bounded with respect to
h(P) with relative bound< 1. ThenH is a well defined self-adjoint operator (sum in the
sense of forms) witl = D(|h(P)|Y/2) N D(V.(Q)¥?) and the preceding conditions
are satisfied. We havé, HU} = h(P) + V(x + Q), so the localizations at infinity of
H are determined by the (suitably defined) localizations at infinity of the fundtion
Thus, in order to compute.s{ H), we are once again reduced to an abelian situation.
The “elementary” case, whén € Cj(R"), is very easy: we havH,, = h(P) + V,(Q),
where the localizations at infinity, are as defined before.

More interesting is the case of unbounded potentials. For simplicity we consider func-
tionsV bounded from below and of clagg' ™1 for somem € N, such tha¥ @ (x) — 0
if @] = m 4+ 1andx — oo. Then, if x € yR", there are only two possibilities
(the limits are taken along): either lim, V(x 4+ y) = +oo for almost allx € X, or
lim, V(x +y) =: Vi (x) exists (and is finite) locally uniformly in € X. In the second
caseV,, is a polynomial (bounded from below) of degrgem and these polynomials
will be called localizations at infinity of/. Strictly speakingV has one more local-
ization, the function equal teé-oco almost everywhere; but the corresponditig is the
observablex ando(co) = @, so it does not contribute to the union from (1.10). The
next result covers those from [24] when the magnetic field is absent.
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Theorem 1.5. Under the preceding conditions
Oesdh(P) + V) =J, o (h(P) +v),
where the union is performed over all the localizations at infinity v of V.

We shall give an explicit example in the case- 1. Note that ifx € yR then either
[0, o0) € x or (—oo, 0) € x. Thus there are two contributioaggs(H) to the union from
(1.10) antbesd H) = 0t { H)Uo g { H). We takeH = h(P)+V (Q) onL2(R), whereh
is as before an#t : R — R s continuous and bounded from below. Thiéns affiliated
to CE(R) x R ande E( H) is determined by the behavior bfat+o00. Assume now that
for large positivexr we haveV (x) = x%w (x?) witha > 0,0 < 6 < 1 andw a positive
continuous periodic function with period 1. Moreover, we assumedhanishes only
at the points o and that there are real numbersw > 0 such thato () ~ 1|z|* when
t — 0 (different asymptotics from left and right can be treated). Then there are three
possibilities:

(1) If a < (1 — 6) the localizations at-oco of V are all the non-negative constant
functions, thusrid H) = [inf h, +00).

(2) If a = u(1—0) the localizations at-oco of V are the functions(x) = A|6x + c|*
with ¢ € R. Thuseid{ H) = a(h(P) + 1|6 Q|*), hence it is a discrete not empty
set.

(3) If a > (1 — 6) the only localization at-oo of V is 400, SO0 H) = ¢.

1.7. Quantum fields. We shall discuss here th&*-algebra of hamiltonian operators of
a quantum field, extending thus the results from [20], where only models with a particle
number cut-off are considered. Our main purpose is to explain how one can derive a
Mourre estimate from a knowledge of this algebra, so we shall restrict ourselves to the
case when the one-particle Hilbert spacejis= L2(R*), although most of the next
considerations are valid in an abstract and general setting, like in [20]. We refer to [15]
for a proof of the Mourre estimate for th&(¢)> model and for the second quantization
formalism that we use without further explanation. We recall only that the field operator
iS¢ ) = (a(u) +a*w))/V2ifu € 9.

The Hilbert space generated by the states of the field is the symmetric Fock space
' ($). We takeCo(R**) as aC*-algebra of one-particle kinetic energies and our purpose
is to study models for which the “elementary” hamiltonians (compare with Sect. 1.1)
are of the formdI"(w) + W, wherew is affiliated to Co(R**) with infw = m >
0 and W is a polynomial in the field operators with a particle number cut-off (we
stress that one of the main points of our approach is to start with a small class of
elementary hamiltonians which, however, should generaté-algebra to which the
physically realistic hamiltonians are affiliated). Ieet= Co, (R**). An argument similar
to that of the proof of Theorem 1.1 justifies the following definition: thgebra of
energy observables of the quantum field is th€*-algebr&s” generated by the operators
dw)T'(S), whereu € $H andS € € with || S|| < 1. If we denoter () = K(I'(H)),
the main result is:

Theorem 1.6. Thereisaunique morphismP : ¢ — € ® % suchthat P [¢ (u)T'(S)] =
S ® [¢ ()T (S)]. The kernel of this morphismis # () (which isa subset of ). Thus

C=C/H®) > CRFE. (1.11)
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It is interesting to note that one can proceed as in Sect. 1.1 and @&fasea kind
of crossed product: if thalgebra of interactions is the C*-algebra</ obtained by
taking€ = C above and thalgebra of kinetic energiesis theC*-algebraZ generated
by the operator§™(S) with § € &, ||S|| < 1, then¥ = [« - #] (compare with
Theorem 4.1). We haveZ ($)) C o/ and there is a unique morphisfy : &/ —

&/ such thatPo[¢p ()T (M)] = 2o @)T'(L) if L € C and|r| < 1. Py is surjective
and hasx (%)) as kernel, so we get a canonical identificatigh = <. An easy and
interesting consequence is tlafitthe operatorsin .7 have a countable spectrum (note
that||7>’5[T]|| — 0if k - 00). .« is also the algebra generateddy: ) (N) withu € $
andg € C.(R), where N is the particle number operator, &ds uniquely determined
by the relatiorPo[¢ (1)p(N)] = ¢ (u)p(N + 1).

Inthe present situation the most convenient affiliation criterion is the followirkgyisf
aself-adjoint bounded from below operatorioi)), and ife 7 e ¢, thenH is affiliated
to €. For example, ifw is as above and the symmetric operatoris a (generalized)
polynomial in the field operators, and W, = X,,(N)WX,,(N) (wheren € N and X
is the characteristic function @b, n]), then it is easy to see that & I'(e ) € ¥
andP [e"'T'(e7)] = e @ [e”"»-1T'(e"*)]. Then the “norm convergence” version
of the Trotter—Kato formula shows th&t(n) = dI"(w) + W, is affiliated to% and
Ple W] = e @ @e =1 |fthere is a self-adjoint operatdf such thate™ —

e " in norm asn — oo, we get thatH is affiliated to¢ andd =0®1+1Q H.

These ideas must be used in conjunction with the fact that affiliation is preserved by
convergence in the norm resolvent sense of sequences of self-adjoint operators. In this
way one can prove, for example, that the hamiltonian ofRli¢)> model ¢ = 1) with

a spatial cut-off is affiliated t& .

We come now to the question of the Mourre estimate for a hamiltohiaof the
preceding type. We refer to [20] for a résumé of the Mourre method adapted to the
present case. Here we consider only conjugate operators of thetfesriI" (a), where
a = F(P)Q+ QF(P) andF is a vector field of clas€¢°; such anA will be called
standard. A self-adjoint operator off ($)) which is of clas& C1(A) or C11(A) for each
standardA will be called of clasgC} or €11, respectively.

Theorem 1.7. Let H be a bounded from below hamiltonian strictly affiliated to ¢ and
suchthat H = w(P) ® 1+ 1® H, where w : RS — R (the one-particle kinetic
energy) is a function of class C1, infw = m > 0, and w(p) — oo if p — oco. Then
oesd H) = [m + inf H, 00). Assume that H is of class C&. Denote k(w) the set of
critical values of the function w, let k, (w) = k(w) + - - - + k(w) (n terms), and define
the threshold set of H by

t(H) = U2y [kn (@) + op(H)] (1.12)

where a,(H) is the set of eigenvalues of H. Then 7(H) isa closed set and H admitsa
standard |local conjugate operator at each point notin ¢ (H). In particular, the eigenval -
ues of H which do not belong to T (H) are of finite multiplicity and their accumulation
pointsbelongto = (H). If H isof class C1-1, then it hasno singular continuous spectrum
outside T (H). If we also assume that « (w) is countable, then T (H) is countable too, so
H hasno singular continuous spectrum.

4 H is of classCl(A) if the mapr — &'A(H +i)~le~/'4 is of classC? in norm. Thec11(4) class is
defined by requiring that this map be of Besov clﬂégl, a slightly stronger regularity condition.
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The preceding result is a rather straightforward consequence of Theorem 1.6, as ex-
plained in [20]. We use standard operatdrassociated witlC'e® vector fields satisfying
F(p)-Vw(p) > 0. We define thei-threshold set 7 4 (H) of H as the set of real numbers
2 such that: ifp(H)*[H, i Alp(H) > alp(H)|? + K with a real,p € C, p(1) # 0,
and K a compact operator, then< 0. Obviouslyt s (H) C oesd H). The A-critical
set k 4(H) of H is defined in the same way but witi = 0. Leto,(H) be the set of
eigenvalues off. Thenka(H) = t4(H) U op(H) andk 4 (H) \ T4 (H) consists of
eigenvalues of finite multiplicity which can accumulate only towayd H). The ex-
pression forH given in the theorem impliegs (H) = kq(w(P)) + k4 (H) (see [20]).

This suggests to consider the $€#H) satisfying the relation

T(H) = k(o) + [7(H) Uop(H)] = [k(@) + T(H)] U [£(0) + op(H)]

The unique solution is given by (1.12).

Observe that the strict positivity conditien > 0 plays an important role above. This
is no longer necessary if we consider hamiltonians with a particle number cut-off, as in
[20]. Indeed, ifH is given by a formal expressioH = dT'(w) + W, the restrictions
H, = X,(N)HX,(N) are often well defined self-adjoint operators and they satisfy
H, = 0w ®1+1® H,_1. Then the threshold set @f, is defined by the relation (with
op(Ho) = {0}):

T(Hy) = Uiy [i (@) + op(Hn—)] - (1.13)

1.8. Coupling of two systems. We have mentioned in Sect. 1.1thatinthe applicationsitis
often useful to considet *-algebras of hamiltonians of the forfi® K (E). Physically
speaking, this means that we couple the system hayirgs C*-algebra of energy
observables with a confined system havikige) as C*-algebra of hamiltonians (the
observables affiliated t& (E) have purely discrete spectrum). We shall consider now
the coupling of two arbitrary systems. Assume that 4>, areC*-algebras of operators
on the Hilbert spaces#, 7% respectively such tha& (%) c ;. We think of ¢; as

the algebra of hamiltonians of the systémvhich has’# as state space. Then we take
JA ® % as the state space of the coupled systenf@ng %> as its algebra of energy
observables. Sinck (A1) ® K (%) = K (74 ® ) we are in a situation similar to the
preceding onesk (74 ® J42) C 61 ® 62 C B(J4 ® 7). We shall prove in Sect. 2.4
thatif the C*-algebras 1, 62 are nuclear, then there is a canonical embedding

GG C[G 0ot (1.14)

where a hat means a quotient with respect to the ideal of compact operators. In particular,
let P; be the natural morphisrd; — ;. If H is an observable affiliated t61 ® %>,

let HH = (P1@ D[H]andH2 = (1® P2)[H]. Then we gebesd H) = o(H1) Uo (H>).

For example, these results allow one to study quantum fields interactingVialithdy
systems.

2. Observablesand Their Essential Spectra

2.1. Observables and self-adjoint operators. We recall several notations and conven-
tions which are usual in the theory @6f*-algebras. Ax-homomorphism between two
C*-algebras will be callednorphism. ./ = % means that th€*-algebras«’ and %
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are canonically isomorphic; in such a situation the canonical morphism is either obvious
from the context or we give it explicitly. Bydeal we mean a closed bilateral (hence
self-adjoint) ideal. We make the same conventions for the more general case of Banach
x-algebras.

We say that an observabl¢ affiliated to aC*-algebra¥’ is strictly affiliated to ¢
if the linear subspace generated @(H)S | ¢ € Co(R), S € ¥} is dense in%.
Now consider the case where thé-algebra?’is realized on a Hilbert spac#’. The
affiliation of a self-adjoint operatal on.# to ¥ has been defined in Sect. 1.2 and the
strict affiliation is defined in an obvious way. We mention that there are no observables
strictly affiliated toB (7)) (if dim % = oo) and that the operator of multiplication by
the functionk (x) = x + x~1in L2(R) is affiliated toCo(RR) but not strictly.

The observables affiliated # can always be realized as operatorsséh but these
operators are not densely defined in general. On the other hahd ifondegenerate on
A (i.e. if the elementsf, with § € ¥ and f € 7, generate a dense linear subspace),
then the correspondence between self-adjoint operator&’ostrictly affiliated to¢
and observables strictly affiliated # defined above is bijective (see [13]).

We stress once again the fact thagifis an ideal irig’ andH is a self-adjoint operator
affiliated to’, then the quotientl is a well defined observable affiliated#o = %/ 7.
But this operation is meaningless in a pure Hilbert space setting: in most Babes
no meaning as an operator gff. However, by the preceding remarksHfis strictly
affiliated to%” then one can realizH as a self-adjoint operator in each nondegenerate
representation o# .

There is a close connection between the notion of obsergainddy affiliated to%
and that of a self-adjoint operator affiliated with as it was defined by Woronowicz
in [36] (according to [37], this notion first appeared in [1]; see also Chapter 9 in [29]).
More precisely, ifH is such an observable, I&}; be the closure of the operator defined
on the dense subset &f consisting of elements of the forg(H) S with ¢ € C.(R) by
Tyo(H)S = ¢1(H)S, wherep; (1) = Ap()). ThenH — Ty is a bijection between the
set of observables strictly affiliated # and the set of self-adjoint operators affiliated
with ¥ in the sense of Woronowicz. Let us note that the observables affiliatgégl 1)
are the continuous functions on open subsetX ofvhereas the self-adjoint operators
affiliated with the same algebra in the sense of Woronowicz are the function€ft&@m

The point of view of Woronowicz is convenient in two respects: (1) it is easy to
consider operators more general than self-adjoint, and (2) there is an obvious candidate
for the sum of two such operators. On the other hand, our definition makes the operation
of taking the image through a morphism (hence of taking the quotient with respect to
an ideal) very natural and easy to define, and this is the operation of main interest in
our approach. Moreover, we emphasize that observables not strictly affilisteglay
an important role here: for example, most of the localizations at infinity which appear
in Theorem 1.4 are of such type. Besides the trivial observable oo (defined by
¢(H) = 0 for allp € Co(R)) and those of the examples given above, we mention that
the hamiltonian of anv-body system with hard-core interactions is affiliated but not
strictly to theN-body algebra (see Sect. 1.4).

Let Hp be a self-adjoint bounded from below operator#h Let V be a continuous

symmetric sesquilinear form a#f = D(|Ho|%) such thatV > —uHy — 8§ as forms
on¥, for some numberg € [0,1) andé € R. Then the form sunfd = Hy+ V is
a self-adjoint operator o’ with the same form domain a&dy. We are interested in
conditions which ensure the affiliation &f to ¥ if Hy is affiliated to%’. The following
result is from [13]. Letx be any real number such they + A > ¢ > 0.
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Theorem 2.1. If Hg is strictly affiliated to ¢ and (Ho + 1)~V (Ho + ) ~1/2 belongs
to ¥ for some o > 1/2, then H is strictly affiliated to .

2.2. Aformulafor oes{ H). Let H be an observable affiliated to -algebraz’, # an
ideal in¢, andH the quotient off with respect to #. Clearly

o(H)={reR|ge CoR) andp(r) # 0= p(H) ¢ 7). (2.1)

In this subsection we give a descriptiona{’rﬁ) in a situation important for us.
Let {%;}ic; be an arbitrary family ofC*-algebras. We recall the definition of their
direct producf [;.; ¢; and their direct surdp, .; ¢;:

[lic; € = {S = (Si)ier | Si € ¢ and||S|| := sup||S; || < oo},
iel

Dic; 6 =1{S = (Siier | Si € ¢ and||S;|| — 0 asi — oo}.

These areC*-algebras for the usual operations &y, ¢; is an ideal in[ [, ., €;. We
denote by[ [;., Si and@,, S; an element of |, ., ¢; and@;; i respectively.

If for eachi € I an observabldd; affiliated to%; is given, we may associate to it
an observablé! = [[,.; H; affiliated to¢” = [[;; ¢; by settingp(H) = [[,<; ¢(H;)
for eachp € Co(R). Itis easily shown thati is affiliated to the subalgebé®,.; ¢; if
and only if H; — oo asi — oo in I in the following sense: for each compact real set
K there is a finite subseét C I suchthab(H;)NK =@ ifi € I \ F. One has

o(H) = 0(H)), (2.2)

and if H is affiliated to@p;; ¢; then the union is already closed. We will need the
following generalization of this relation.

Theorem 2.2. For eachi € I let ¢; beanideal in¢; andlet ¢ = ,.; 7, sothat
Zisanideal in¢ = [];.; ¢;. Denote by H; the quotient of H; in¢;/_#; and let H
be the quotient of H# in%’/_#. Then

o) = (" {(Uier o)) U (Userr o) |- (2.3)
[ff%it[e
Proof. Let A ¢ o(H). By (2.1) there existy € Co(R) such thatp(u) = 1 on a
neighborhood/ of A andg(H) € _#. Thus for alli € I one hasp(H;) € _#; and
le(H;)|_— 0asi — oo in I. The first assertion shows (again by (2.1)) that
U;e; 0(H; ) and the second one ensures the existence of a finité get/ such that
lo(H)Il < 1ifi ¢ F.Butsudle(x)| | x € o(H)} = llp(H)| < 1,50/ No(H;) =V
foralli € I\ F, hencex ¢ Ule,\Fa(H,»). Sincea(f]?) C o(H;) for all i, we get
A ¢ Uje 0(H ) U Uienr 0H) = U,er o(H ) U U, o (H;) for some finiteF".
Conversely, ifA does not belong to the r.h.s. of (2.3) (which is a closed set of the

form (), ., XFr) there is a compact neighborhodaf A disjoint from it. Since the upper
directed family of open sefR \ Zr coversJ, there isFy (a finite subset of) such that
J CR\Zp. Thus/ NUicp o(H;) andJ NU;c\ r, 0(H;) are empty sets. This means
that there is & € C.(J), Wlth ¢ = 1 on a neighborhood df, such thaip(H;) € _7;
foralli € Fp andep(H;) = 0 for all i ¢ Fo. In partlcularga(H) e giforalli e I and
le(H;)| — 0asi — ocoin I. ThUS(p(H) e 7,ie. A¢a(H) O
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Itis interesting to remark on the similarity between (2.1) and one of the characteriza-
tions of the usual notion of essential spectrum in a Hilbert space setting (see Sect. 1.2).
Itis thus natural to call this set thessential spectrum of H with respect to theideal #
and to denote it 7-oesd H). Then (2.3) may be written as:

f‘aess(H) = ﬂ [(UieF /i'o'ess(Hi)) ) (Uje[\F G(Hj)>} .

Fci
Ffinite

Assume, more specifically, that eaeh is realized on a Hilbert space? and that
Ji = K(J). Let o = @, #¢ and let us realiz& on 7 in the usual way. It is
easy to show that” N K (J¢) = _7. We get

OesdH) = ﬂ {[UieF aess(Hi)] U [UieI\F G(Hi)]} . (2-4)

Fci
Ffinite

2.3. Restricted products of C*-algebras. We consider here the case wheh= .« is
an algebra independent ofe 7. Then we denote by7 ) the C*-algebradp, ., <.
Besides the direct product and the direct sum one can introduce now &'thaldebra:

A = ((Sp)ier € [1;e; @ | {Si | i € I} is relatively compact in/}. (2.5)

This is aC*-subalgebra of |, ¢ and</" is an ideal inez!/!. We denote byo(/; o)
andl®(I; <) theC*-algebras consisting e¥ valued maps o which converge to zero

at infinity (I being equipped with the discrete topology) or are bounded, respectively.
Thena/D = co(I; o) and[[;.; & = °(1; /). Moreover,

M =1"°(I; o) .= {S : I - < | S has relatively compact range in}.

Lemma 2.1. If o/ isa C*-algebra, then
oD = co(l) @ o7 and M =1°(1) @ o7 (2.6)

Proof. The first relation is obvious. To prove the second one, assume#hatB(.7)
and realizd> (I) as aC*-algebra ori(1) in the standard way. Thef® (1) ®alg & IS
realized on?(I) ® 2 = 12(1; ) as the setZ°(I; /) of operators of multiplication
by functionsF : I — < such that the range df is included in a finite dimensional
subspace of7. Finally, the fact that the closure & (I; <) in [*°(I; <) is equal to
I"°(I;, &) is easy to prove. O

One more object will appear naturally in our later investigations:I/tasymptotic
algebra of «7. This is the quotient algebra:

[1]
)= A /%(,). 2.7)
The following description ofz{!) explains the name we gave it. LEt= yI be the

set of ultrafilterse on I finer than the Fréchet filter, equipped with its natural topology
of compact spacd (is the boundary of in its Stone€ech compactification). Then for
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eachS = (8))ic; € «!' and eache € T the limit lim; S; := S, asi — oo along the
filter » exists (because the range of the nsap/ — <7 is included in a compact subset
of 7). It can be shown that the morphissn— (S,),,.7 has/? as kernel and induces
an isomorphism (see [22] for details)

g =cT; o). (2.8)

We now describe a certain class@f-subalgebras of7!’1 containing the ideat? ).
LetZ be a finite partition of consisting of infinite sets and

T = ((Spier € | lim S =S, existsine, VJ € T}. (2.9)

i—o0,iel

Clearly, this is the set of € !/ such that, for eacti € Z and for each ultrafilter

x € I with J € x, the limit S, depends only ory. Note that for eachx e T there

is a uniqueJ € 7 such that/ € x soZ defines also a partition of (consisting of
subsets which are open and closed, as it can be easily shown). The following fact is a
consequence of the definition (2.9):

T
L ) = Byer . (2.10)

2.4. Tensor products. We prove here a result implying (1.14). L&t, 42 be nuclear
C*-algebras equipped with idealg1, #>. For eachi let P; : 6; — €;/_#; be the
canonical surjection and let us consider the tensor products of these morphisms with
the identity map. We get morphisi® = P1 ® 1 andP;, = 1® P> of 61 ® %> into

% ® 6o and%, @ G respectively.

Theorem 2.3. The kernel of the morphism
PLOP): LR — [C1 @) @ [61® %]
isequal to 71 ® 7.

Proof. The nuclearity of¢> implies that the kernel oP; is equal to_#1 ® %2 (see
Theorem 6.5.2 in [32]). For the same reason we gef%e& 41 ® _#>. It remains to
prove that

[/10G]|N[60® f2)= /1 f 2.11)

Only the inclusionc is not trivial, so assume that belongs to the left hand side of
(2.11). Foreach > Owe canfindKy, ..., K, € #1andTx, ..., T, € 6> suchthatthe
operators’ = ) K; ® T; satisfieg|S — §'|| < . Since_#; has an approximate identity,
we can findk” € _#1 with |[K'|| < 1 and||K'K; — K;|| < ¢/(n||T;|) for eachi. Then
IK'®1-8"—8'|| <e hencelS—K'®1-S|| < 3e. Similarly we findK” € _#> with
K" <land|S—S-1® K”|| <3¢.Thus||S—K'®1-5-1® K| < 6¢. Finally
[S—K' ®1-5-1®K"|| <7¢.SinceK'®1-5-19 K" € /1 ® 7> andeis
arbitrary, we gefS € 71 ® 7. O
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3. Crossed Products

3.1. Definition of crossed products. In this section we first recall the definition of
crossed products in the particular case of abelian groups and then we discuss several
results which we have not been able to locate in the literature in a form convenient to us.
We fix a locally compact abelian group and a Haar measurex @n it. But note that
the crossed products’ x X defined below are independent of the choice of d

We shall say that &*-algebrag is an X-algebra if a homomorphisnw : x — oy
of X into the group of automorphisms @f is given, such that for each € </ the
mapx — oy (a) is continuous. A subalgebra of is calledstable if it is left invariant
by all the automorphisme,. If (<7, @) and (4, B) are twoX-algebras, a morphism
¢ : o — Ais called anX-morphism (or covariant morphism) if¢[c, (a)] = By [¢ (a)]
forallx € X anda € &

Let o/ be anX-algebra and leL1(X; /) be the Banack-algebra constructed as
follows. As a Banach space it is just the space of (Bochner) integrable (equivalence
classes of) functions§ : X — . The product and the involution are defined by:

(S T)(x) = fx SO ay[T(x — )] dy, (3.1)
S*(x) = a [S(—x)™]. (3.2)

Assume, furthermore, that/ is realized on a Hilbert space” and let 7y =
L2(X; ). Then we get a faithful representation b¥(X; <) on .#%, the so-called
left regular representation, by defining the action o € L1(X; <) onto&¢ € % by

(Se&)x) = /Xa—x[S(x —»1&(y) dy. (3.3)

Definition 3.1. If o7 is an X-algebra, then the crossed product o x X of o/ by the
action « of X, isthe enveloping C*-algebra of L1(X; 7).

Thus.< x X is the completion of.1(X; .7) under the largest*-norm on it, and each
representation ot1(X; &) extends to a representation.ef x X (for the notion of
envelopingC*-algebra see Sect. 2.7 in [17]). Due to the fact tkias abelian, hence
amenable, the crossed product defined above coincides with the “reduced crossed pro-
duct” (Theorems 7.7.5 and 7.7.7 in [34]): the left regular representatidrt ot ; .7)
extends to a faithful representation .of x X. In particular,o/ x X is canonically
isomorphic to the closure iB(5#x) of thex-algebra of operators of the form (3.3).
Heuristically, one should think off x X as a kind of twisted tensor product of the
algebrasez andCo(X*), whereX* is the group dual t&X. In fact, if the action ofX on
o/ is trivial, thens x X = o/ ® Co(X™).

3.2. Functorial properties. The correspondencg — o/ x X extends to a covariant
functor from the category ok-algebras (withX-morphisms as morphisms) into the
category ofC*-algebras. Indeed, ip : &/ — £ is an X-morphism, then it clearly
induces amorphismy : L1(X; /) — LY(X; #) by the formula$oS) (x) := $[S(x)].
Hence we may define the morphighy : &/ x X — % x X as the canonical extension

of ¢g to the enveloping algebras. A very useful fact is described in the next theorem (see
[22] for a detailed proof).
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Theorem 3.1. Let 7, o/, % be X-algebras and let

0 A A BN 0

be an exact sequence of X-morphisms. Then

0—)]>4X£>427>4X£>93>4X—>0

isan exact sequence.

Let ¢ be a stable ideal of aki-algebrae/. By Theorem 3.1, iff : _# — &/ isthe
inclusion map, therj, : _# x X — &/ x X is an isometric morphism of¢ x X onto
an ideal ofeZ x X. From now orwe shall identify _# » X with itsimage under j,. So,
7 x X is just the closure in7 x X of the idealL(X; #) of LY(X; «7).

Now the quotientC*-algebraZ = <7/ ¢ has a natural structure af-algebra such
that the canonical morphismf — <7/ _# is aX-morphism. Theorem 3.1 says also that
the morphismeZ x X — [«//_#] x X2 associated with it has? x X as kernel. We
thus get the following reformulation of Theorem 3.1.:

Theorem 3.2. If ¢ isastableideal of a X-algebra <7 then

"Z{NX//NX;["Q{//]NX' (3.4)

The simplest case of the preceding situation is that when the exact sequence splits,
so thate7/ # can be realized as a stal@ié-subalgebra of7. Then we have:

Corollary 3.1. Let_# be a stable ideal and # a stable C*-subalgebra of <7 such that
o = %+ ¢ direct linear sum. Then ¢ x X isanideal in &/ x X, # x X isa
C*-subalgebraof &7 x X,and &/ x X = % x X + _# x X isdirect linear sum.

Corollary 3.2. Let <7, % be X-algebras and let o7 & £ be equipped with the natural
X-algebra structure. Then

(A DAB)XX=E(A xX)D (B xX). (3.5)

Proposition3.1. If ¢ : &/ — 2 is an injective or surjective X-morphism then
¢y @ x X — % x X isinjective or surjective respectively. In particular, if .o/
is a stable C*-subalgebra of the X-algebra 4, then o x X can be identified with a
C*-subalgebra of # x X.

The assertion is obvious in the surjective case. For the injective case, see Proposition
7.7.9 in [34]. So what we proved above for ideals is valid for subalgebras too.

Proposition 3.2. Let .« be an X-algebra and let & be a nuclear (e.g. abelian)
C*-algebra. Equip & ® % with the X-algebra structure defined by a, (¢ ® b) =
oy(a) ® b. Then

(A QB XNX = (A xX)RQA. (3.6)

Proposition 2.4 in [35] asserts more than this (in [22] one can find an elementary proof
of the last proposition).
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3.3. Direct products. We discuss now the behavior of the crossed product under infinite
direct products and sums. L&t };<; be an arbitrary family o”*-algebras. Assume

that eachs; is anX-algebra, the corresponding group of automorphisms heirighen

one may define : X — Aut([[;.; %) bya.[(ai)icrl = (ai[ai])iel. In this way we do

not (in general) get ak -algebra structure of[; ., <% because the continuity condition

is not satisfied. However, we may define an “equicontinuous product” algebra as the
largest subalgebra on whichacts continuously:

1_[,'X61 o = {(ai)ier € [lje; “ | limy—oSupe; leifa;] — a;ll = O}.

This is naturally anX-algebra which containép,.; < as a stable subalgebra, thus
D, ., % becomes aX-algebra too.

Proposition 3.3. (;c; @) x X = P, (% x X).

Proof. Denotesr = ,.; 4. Since eachs is an ideal ine/, we have canonical
embeddings of4; = o/, x X asideals ind = & x X. Now it suffices to show two
things: 1) A4; - A; = 0if i # j and 2) the linear subspage,; .A; generated by
U;<; Ai is dense inA. Both assertions follow easily from the fact th4t is the closure
of LY(X; %) in A. O

We shall go beyond direct sums only in the particular case we need. Assume that
</ is anX-algebra and is a set. The algebrag' () and.e7!/] have been introduced in
Sect. 2.3. Then th€*-algebrasr!/! is an X -algebra, and7!) is a stable ideal in it, if
we seta, [(a;)ier] = (axla;]ier. INdeed, for eaclt > 0 there is a finite sek C &
such that dista;, K) < ¢ foralli € I. Then

lex[(ai)ier] — (@iierll = supllaxla;] — a;|l < 2¢ + sup|lax[b] — b
iel bekK

and the last term is ¢ if x is in a suitable neighborhood of zero }a Note that we
could also consider thE—aIgebra]_[lXe, <7 which depends on the action &fon.«# and
which containseZ!!! as a stable ideal.

Proposition 3.4. If o7 isan X-algebra and I a s&t, then
D 3 X = (of x X)D and 1« X = (o7 3 X)L, (3.7)

Moreover, the I-asymptotic algebra .7/’ has a canonical structure of X-algebra and
one has

(o X)[”/ (@ x )0 =T o xX). (3.8)

(o x X)\D =

The first identification of (3.7) is a particular case of Proposition 3.3. The second one
is a consequence of Proposition 3.2 and of Lemma 2.1. The last part of the proposition
follows from Theorem 3.2 and the representation (2.8).
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4. Pseudo-Differential Operators

In this section we show that certain crossed products can be faithfully represented as
algebras of pseudo-differential operatord3iiX ). We first recall some facts concerning
the harmonic analysis ok (see [18]).

Let X* be the locally compact abelian group dualXo The Fourier transform of
u € LY(X) is the functionFu = i : X* — C given byw (k) = [, k(x)u(x)dx.
Then F is a linear mapL(X) — Co(X*) and we shall equipX* with the unique
Haar measure idsuch thatF induces a unitary mag : L2(X, dx) — L?(X*, dk).
>FromF~—1 = 7* we get(F~1v)(x) = [y. k(x)v(k) dk for v € L2(X*). The dual
group (X*)* of X* is identified withX, eachx € X being seen as a characterXf
through the formula (k) = k(x). Then the Fourier transform af L1(Xx*) is given
byw (x) = (F*y)(—x). For each) € Co(X*) we define the operataf(P) € A (X)
by v (P) = F*MyF, where My, is the operator of multiplication by in L2(X*)
(P is theX™ valued momentum observable). The injective morphism> v (P) gives
us an embeddingo(X*) C L(X).

We recall the embedding of thi&*-algebraCy (X) in Z(X) obtained by associating to
¢ € Cp(X) the operator of multiplication by the functign In order to avoid ambiguities
we often denote this operator by Q) (Q is the X valued position observable).

We have two strongly continuous unitary representati@ng .cx and{V;}rex+ of
X and X* in L*(X) defined by(U. f)(y) = f(x + y) and (Vi /)(») = k() f ()
respectively. The group*-algebra ofX is the C*-subalgebra ofZ(X) generated by
the convolution operatorg, u(z)U. dz with u € L(X), and is canonically isomorphic
to Co(X*). The isomorphism is determined by the formylaP) = fx fp\(z)UZ dz for
¥ € Co(X*) such thaty e L1(X).

The groupX acts in a natural way oy (X): if x € X and if we denote by
7y¢ the functiony — ¢(y — x) then forg e Cy(X) we haver,¢ € Cj(X) and
x = e € CE(X) is norm continuous. We consider-subalgebrae of C{(X)
stable under translations;¢ € .« if x € X andy € «/. Then« is anX-algebra and
we are interested in the crossed prodédct .« x X of o/ by the actiony, := 7_;
of X. In such a situation the crossed produ¢tx X has an especially useful faithful
representation that we shall describe below.

Let us use the embeddin@}(X) C #(X) and observe that,¢)(Q) = 1.[¢(Q)]
= Ui¢p(Q)U,. In particulareZ C Z(X) and our purpose is to show that x X can
also be realized as@*-algebra of operators on the Hilbert spdc&X).

Theorem 4.1. Let o7 be a C*-subalgebra of Cyj(X) stable under trandations. Then the
linear subspace [[.«7 - Co(X*)]] isa C*-algebra on the Hilbert space L2(X) and

[ - Co(X)) < o/ x X (4.1)

in the sense that there is a unique isomorphism @ : [/ - Co(X*)]] — &/ x X such
that @ [p(Q)y(P)] = S,y foral ¢ € o and ¢ € Co(X*) with ¢ € LY(X).
Here S,y isthe element y > S, 4 (-, y) € </ of LY(X; <) defined by the function

Sy (X, ¥) = 9OV ().

Proof. The factthafl.r - Co(X*)]] is aC*-algebra can easily be proved directly, but it
is also a consequence of the next arguments. By the comments which follow Definition
3.1 we have the following description of x X. Let Z = L%(X) and

Sy = LA(X; #) = 4 @ L%(X) = L3(X x X).
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To each integrable functiofi : X — ./ we associate an operat®s acting ons#x in
the following manner: it : X — 7 is L?, then

(Se&)(y) = /X T[S0y — D)1 E(2) de = /X USSQUEG — k. (4.2)

The mapS — Se of L1(X; <) into B(J#) is linear and injective. Equipt(X; <)
with a structure of«-algebra by asking thaf — Se be ax-morphism; then we set
ISI| :== || Sell B ) The completion ot.1(X; o) under this norm will then be identified
with a C*-subalgebra oB (%% ) and thisC*-algebra is (canonically isomorphic to) the
crossed producty x X.

This representation, however, is not convenient for our purposes. We thus construct a
new one with the help of the unitary operaWr: J#x — % defined agWé)(x, y) :=
&(x — y, x). Note that its adjoint is given bgW*&)(x, y) = £(y, y — x).

If $ € LY(X; /) thenS may also be viewed as a functich: X x X — C with
the conventionS(y) = S(-, y) € . Similarly, an elemenf : X — 7 of J# is
interpreted as a function: X x X — C by settingé(y) = £(-, y). Then (4.2) may be
written as:

(a6 = [ S=y by -,
which allows us to compute:
(W*Se WE)(x,y) =(Se WE)(y,y —x)
=[X Sx,2) (WE)(y,y —x —2)dz = /X Skx,2)&(x+z,y)dz

=/Xs<x,z> (U ® 1] (x,y>dz=/x{[S<Q,z> U. ® 1]€} (x. y) .

In other terms,
W* [Se] W = [/ S(Q,2) U, dzi| ® 1.
X

Consider the particular case whegx, y) = S,y (x, y) = <p(x)(i(y) asinthe statement
of the theorem. Then the above integral is equal @)y (P). So we have

W*[Sp.ue] W = [0(Q)¥(P)] ® 1.

Since the subspace generated by the elements of theSfpynis dense inL1(X; &),
the assertions of the theorem follow easilyz

Corollary 4.1. 7 (X) = [Co(X) - Co(X*)]| = Co(X) x X.

The first equality is easy to prove. Then the canonical isomorphism @) x X
follows from Theorem 4.1 (for another proof of the isomorphism/6i{X) with the
crossed produdfp(X) x X see Proposition 3.3 in [35]).

Theorem 1.1 is a consequence of Theorem 4.1 and of the next proposition.

Proposition 4.1. Let .o/ bea C*-subalgebra of C(X) which contains the constants and
isstableunder translations. Letz : X* — R bea continuous non-constant function such
that limy_ oo |2 (k)| = co. Then & x X isthe C*-algebra generated by the self-adjoint
operatorsof theformh(P + k) + V(Q), withk € X* and V € < real.
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Proof. Let ¢ be theC*-algebra generated by the operatéirs= h(P + k) + V(Q) =
Ho + V(Q), with k € X* andV € & real. By making a norm convergent series
expansion for large,

z—H)"t=> "(z— Ho) '[V(Q)(z — Ho) 'I",

n>0

we geté C o« x X. It remains to prove the opposite inclusion. For eacke R

the operatorH,, = h(P + k) + pnV(Q) is affiliated to¢ and (H, — i)~1is norm

derivable aty = 0 with derivative —(Ho — i)~ 1V (Q)(Ho — i)~L. We thus have
(Ho— )"V (Q)(Hy — i)™ € ©. Leto € C¢(R) with #(0) = 1 ande > 0. Since
Hy is affiliated to%’, we getd (s Ho) (Ho— i) € €, and s# (e Ho)V(Q)(Ho—i) 1 € .

From the uniform continuity o/, and since(h(p + k) — i)™ — 0 whenp — oo

in X*, we get||(Uy — )V (Q)(Ho — i)™ — 0if x — 0 in X. This implies
lim,—00(cHo)V(Q)(Ho — i)™t = V(Q)(Ho — i)t in norm in Z(X) (indeed, for
T € A(X) we have lim_||(U, — 1T| = 0 if and only if for eachs > 0 there is
n € Co(X*) such thatn(P)-T| < 8). HenceV(Q)(h(P + k) — i)~1 € ¥ for each
k € X* and eactV € «/ real. ButHy is affiliated to%’, so this impliesp(Q)y (P) € €

forall ¢ € o7 (notnecessarily real) and allin thex-subalgebrag c Co(X*) generated
by functions of the fornp — &(h(p + k)) with & € C.(R) andk € X*. By the Stone—
Weierstrass theoren® is dense inCo(X*). Hence, since the set gf € Co(X™) such
thate(Q)y (P) € € is norm closed and contairg, we finally obtaing(Q)y (P) € €

forallg € &,y € Co(X*). O

5. BumpsAlgebras

5.1. The algebra of classical interactions. In this section we will consider algebras of
interactions determined by setsc X by the following rule: the interaction tends to a
constant when the distance katends to infinity.

ForL c X closedand\ ¢ X compact,seiy =L+A={x+y|xe L, ye€ A}
andLq = X \ L,. For example, ifX is equipped with an invariant metric ardis the
closed ball of radiug, thenL¢ is the set of points at distance » from L. Note that
A C A = Lp CLy,inparticularLy ., C Ly, N LS. Moreover, for each € X
we havex + L) = L{_ ;.

If L has the property., # X if A is compact, then the family of open sg¢fs; |
A C Xcompaciis the base of afilteF; which, by the preceding remarks, is translation
invariant and finer than the Fréchet filter. Thus we are in the general framework described
in Sect. 1.4 and we can introduce the algela (X). We recall it, with notations adapted
to the present situation.

We denote by_-lim ¢ the limit along the filtetF; . Thus, ifp : X — CthenL-lim ¢
exists if and only if there is a complex numhes L-lim ¢ with the property: for each
¢ > 0 one can find a compact seétC X such thap(x) —c| < eif x ¢ Lx.

Let C1 (X) be the translation invariar*-subalgebra o€y (X) defined by

CrL(X) ={p € Cg(X) | L-lim ¢ existg,
and let us point out the following subalgebras:

Cr.o(X) = {p € Cy(X) | L-lim ¢ = 0},
Cr.o(X) = {p € CX(X) | 3A C X compact such that SuppC L }.
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ClearlyCy, o is an ideal ofC;, and one ha€;, = C + Cy, o, SOCy, is the unital algebra
associated witlC;, o. SinceCo C Cr. 0, we have

Cr ~ c+CLo

Co (5.1)

Co’
i.e.Cyr, / Cpis the unital algebra associated with ¢ / Co. We want to apply the general
theory from Sects. 3 and 4 to the algebra= ¢, (X) = C;(X) x X, hence we have

to give an explicit description of the quotient algeldta(X)/Co(X). By the preceding
remarks, we are reduced to the problem of compuéing(X)/Co(X). However, this

is not an easy task if no further conditions are puton

For this reasomve shall assume from now on that L is sparse, in the following sense:

L is locally finite and for each compadgt of X there is a finite seF c L such that if
leM=L\Fandl’ e L\{{}then(+ AN+ A)=0.

If the topology ofX is given by an invariant metri¢, we can restate the definition
of sparsity as follows. Let : L — R be defined bys(!) = infycz\gyd(l,1'). Then
L is sparse if and only i§(!) > 0 for alll and§(/) — oo when!/ — oo. Such a set
is much more rarefied than the uniformly discrete sets usually considered in the theory
of quasicrystals. Note also that the Delone sets considered in [28] have the property
L + A = X if A is asufficiently large compact, hence are quite different from the kind
of setsL studied here.

We begin by describing some properties of the sp@gg. We recall the Ascoli
theorem for the case of a locally compact spacea bounded subset 1 of Co(X) is
relatively compact in Co(X) if and only if I is an equicontinuous family of functions
and for each ¢ > O thereisa compact set A C X suchthat |p(x)| < ¢ for all p € K
andx € X \ A.

If Aisacompactsubsetafwe shall denote b .(A) the set of continuous functions
on X with support included in\.

Lemma5.l. (i) Cpisadensesef-adjointideal in Cy, o.

(ii) A function ¢ belongs to Cy . if and only if there is a compact set A € X and
an equicontinuous bounded family {¢;};c; of elements of C.(A) such that ¢ =
D ier T

(i) The linear subspace generated by functions of the form )", _,, ¢, where M isa
subset of L and ¢ € Cc(X), isdensein Cp o.

Proof. (i) Clearly Cy . is a self-adjoint (non-closed) ideal i6i;. We shall prove its
density inCy. o. Let A be a compact neighborhood of OXhand letd € C.(A) such that
0 <6 < 1andd = 1 on aneighborhood  of zero. Denote: the maximal number of
setsl + A, with € L, which have a non-empty intersection. Sirices a sparse subset
of X the number: is finite. Then®(x) = ) ,.; 0(x —1) is well defined, 0< O (x) < n,
and

©x) —6()| = nlSUDIG(x —D =0y =Dl =nllty—0 — 0],
el

where|| - || is the sup norm. S® is uniformly continuous an® € Cy, ..

Lety € Cr oande > 0. Then there is a compact neighborhaoadf zero inX such
that|g(x)| < ¢ if x ¢ L + A. ChooseF C L finite suchthatl + A)N{'+ A) =@
ifleM=L\Fandl' € L, I'# 1, and denoteX the compact sdtJ; [l + A].
Observe that it ¢ K and® is as above the® (x) = ) ,.,, 0 (x —[) and the supports
of the functionsr;6 are disjoint ifl € M; in particular 0< O(x) < 1. Letn be a
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continuous function such that® n < 1, = 0 on a neighborhood af andn = 1 on
a neighborhood of infinity. If we denotgy = ¢ we have

p—A=ne—0¢ =y —Oy.

If x € K then the r.h.s. above takes the value zero.itf x ¢ K andx € L + Ag
then there is a uniquee M such thatt € I + Ao, hence®(x) = 6(x — 1) = 1 and
Y(x)—O@)Yx)=0.1fx ¢ Kandx ¢ L + Agthen|y(x)] < eand0< O(x) <1,
so|y(x) — ®(x)¥(x)| < e. Thus we have

llo—A=mey—-0Y| <e.

Since(1 — n)¢ € C(X) and®y € Cp ., we proved that for each > 0 there is
@ € Cpcsuchthatlg — ¢ || < e. HenceCy, ¢ is dense irCy, o.

(i) If ¢ € Crthen there is a compaet C X such that supp C L + A. SinceL

is sparse one can write + A = K U |J,c,,(I + A), where the compact sé& C X
andM are chosen such that the sets which appear in the preceding union are pairwise
disjoint. Forl € M we definey; by ¢;(x) := ¢(x + 1) if x € A andg; = 0 otherwise.

If I € L\ M the definition ofy; is to a large extent arbitrary, e.g. we may take= 0
for all but onel = Iy and choose conveniently,; this is possible i is large enough.
Conversely, it suffices to notice that the equicontinuity of the farfgly;<; implies the
uniform continuity ofe.

(iii) Because of the first part of the lemma it suffices to prove that for eaels in
(i) and for eache > O there is a partitiofL1, ..., Ly} of L and there are functions
@1, ..., ¢ € Ce(A) such thatljp — Zf-‘zl Z,eL’, 71¢;|| < e. By the Ascoli theorem,
{¢; | 1 € L} is a relatively compact subset 6£(A), hence there is a finite number of
functionsegs := ¢y, ..., ¢r := ¢y, and there is a partitiofL1, ..., Ly} of L such that
lor — ¢ill < &/nforl € L;, wheren is the maximal number of sets of the foirs- A
which have non-empty intersection. Then, for each

k k
o) =Y Y ugi) = DY ulp — ¢i)(x)

i:llEL,‘ i=1 IGL,'

=n sup suplln(er—¢)ll<e. O
i=1,...kleL;

We are now ready to compute the quotigfif o/Co. We recall the notation
Co(X)'E) = Co(X)1/Co(X)) (see Sect. 2.3) and denote hbythe canonical mor-
phismCo(X)I — Co(X)L).

Theorem 5.1. Thereisauniquemorphism .7 : Cr o(X) — Co(X)‘) suchthat 7 (¢) =
ml(pDieL]if o = Y. ter, with {¢; )1, an equicontinuous bounded family in Co(A)
for some compact A C X. The morphism 7 is surjective and ker7 = Co(X). In
particular, 7 induces a canonical isomorphism:

Cro(X ~ Co(X)I] _
L.0( )/CO(X) =~ Co(X) /CO(X)(L) = Co(X)'. (5.2)

Remark. Asaconsequence of Lemma 5.1 and of the identifications (Z.8)the unique
morphismCyr o — Cé” such that for each subsét of L and each functiop € Cc(X)
one has7(} ;) iw) = (X ® @), whereX y; is the characteristic function of the
setM. There is another description gf based on the identification (2.8), but we shall
make it explicit only in the case of the algelfa o x X.
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Proof. The uniqueness @f is a consequence of (i) from Lemma 5.1. The surjectivity of

J is also easy to prove: since the range of a morphism is closed, it suffices to show that
the set of elements of the for(w;);c;., where the family{¢;};<;. is as in the statement

of the theorem, is dense '(q[)”. But this is a straightforward consequence of the Ascoli

theorem, becauséc[,” consists of relatively compact families of elementaf(see
Definition (2.5)).

We prove the existence ¢f. Note first that for a givew € Cr ¢ a family {¢;};eL
which verifiesp = Y, _; ¢ is notunique. Howevel, being a sparse set, the functions
¢; which correspond to large enougare uniquely defined. In particular, the image of
{¢1}ier in the quotientC([)L]/CéL) depends only ow. Thus7 is well defined onCy, ¢
and it is clearly a morphism with7 || < 1. This allows us to extend it by continuity to
all Cy. 0.

It remains to prove that the kernel gf is Co. We first make a preliminary general
remark.Let &7 be a C*-algebra and let S = (S));e;, € «/!* suchthat [|S|| < & for
somee > 0, where S istheimageof S in .o/t = o711 /071 Then thereisa finite set
F C L suchthat | $;|| < 2¢ifl ¢ F. Indeed,

ST =inf{lI(S; — Tierll | T = (T)ier, € /D)

so there isT € «/‘P) such that||(S; — T)ieLll = SUpe, IS — Tyl < 3e/2. Then
IS/ < IIT;|| + 3¢/2 and||T;|| — 0 asl — oo. So there is a finite sgt C L such that
Tyl < e/2ifl ¢ F, which proves the remark.

Lety € Cr o be suchthat/(¢) = 0 andlete > 0. Then there igr € Cy, ¢ such that
lo—¢ || < eand|J(¥)| < e.Choose acompadt C X and abounded equicontinuous
family {y;}ier in Co(A) such thaty = >, w. Then(¥)ier € Co(M)H and
Izl = 1T @) < & hence, by the preceding remark, there is a finite set
F C Lsuchthat|y;|| < 2¢ifl ¢ F.Buty(x) =) ,., v1(x — 1) and ifx is outside
some compact then at most one term in the sum is non-zerg; @9| < ¢ for x in
some neighborhood of infinity. Thep(x)| < |p(x) — ¥ (x)| + [¥(x)] < 3¢ for such
x. Sincege is arbitrary, this shows € Co. 0O

Corollary 5.1. The quotient algebra C; (X)/Co(X) is canonically isomorphic to the
unital C*-algebraassociated with Co(X){X). In particular, thereisanatural embedding:

Cr (X Coo (X)L
1O = S epnm: (5.3)

Proof. Thefirstassertion followsfrom (5.1). To get(5.3) we use the canonical embedding
C + Co(X) — Coo (X)L which associates to+ (¢;)cr the elementi + ¢;)cr -
O

Note that we have a simple description of the range of the embedding (5.3): this
is the quotient of the space of the elements of the fakm- ¢;);c; with A € C and
(@)ier € Co(X)IH.

Remark. We have considered a generalization of the class of sparse sets. We do not give
the details because it does not involve essentially new ideas; we shall, however, describe
it here succinctly. LeL be the union of a familys of pairwise disjoint compact sets such

that for each compact of X thereis afinite sdf, C BsuchthatB+A)N(B'+A) =@

if B ¢ By andB’ # B. Then we say that is adispersed set. If there is a compact set

K such that eacl® € B is a subset of a translate &f (i.e. L is “uniformly” dispersed),
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thenL is equivalent to a sparse set, in the sensefatoincides taF; o for some sparse
setL?. Indeed, it suffices to replace each compactBset 3 by a point sitting inside it.

In the case of a sparse set the main role in the computation of the quotient is played by
the algebraCo(X)!X! consisting of relatively compact familigs; };c; of elements of
Co(X). For a general dispersed set this has to be replaced with the aﬁégga?o(X)

(see Sect. 3.3 for the notations) consisting of equicontinuous such families (compare
with the statement of the Ascoli theorem in Sect. 5.1).

5.2. Hamiltonians of type C; (X). We are now ready to introduce tl&*-algebra of
energy observables corresponding to quantum systems with interactions having sparse
supports. For this we take the crossed producofX) by the action of translations on

the locally compact group. Note that the second equality below is a consequence of
Theorem 4.1.

Definition 5.1. €1 (X) := Cr(X) x X = [CL(X) - Co(XM].
In the same manner we may define the smalfealgebra,
GL.0o(X) == CLo(X) x X = [CLo(X) - Co(X")]. (5.4)
Then, by (3.5) we can writ&7 (X) as a linear direct sum,
EL(X) = Co(X™) + CL.0(X). (5.5)

The algebr&s;, o is an ideal of6, and4;, — Co(X*) is a surjective morphism which
gives the pure kinetic energy part, atfd /670 = Co(X™*). On the other hand;o(X)
being a stable ideal af;, the crossed product subalgelifg(X) x X is an ideal of
%1 (X). We recall thatCo(X) x X = #(X).

The general theory exposed in Sect. 3 allows us to give a complete characterization
both of the quotient algebras; o(X)/# (X) and 61 (X)/2# (X) in terms of much
simpler objects involving only the compact operator algelsfaX) and the two-body
algebra:

Theorem 5.2. The quotient algebra %, o(X)/.# (X) is canonically isomorphic to the
L-asymptotic algebra 7 (X)'L). One has a natural embedding:

€ (X T (X)L
1O o = T - (5.6)

Proof. The firstassertion follows from Proposition 3.4 because of (5.2). In order to prove
the second assertion we start with the embedding (5.3) and use (3.4), Proposition 3.1
and (3.7) to get

% _ (C X _C
Y = o nx) = Hegm * X

Coo(X)E] _ (Coo(XH % X
o COT ) w n X = TR0 o s x)

Coo(X) x X)) _ T
(Coo30 00 (Co(X) x X)) = %0 H (X)) -
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Remarks. (i) As in the abelian case, we have a precise description of the range of
the embedding (5.6): it is the quotient with respect#6(X)) of the subspace of

T (X)1 consisting of sequences of the fom (P) + K;);cr. for someyr € Co(X*)
and(K))ier € & (X)LE.

(i) The algebra7 (X)X has an obvious faithful representation on the Hilbert space
A =@, L2(X). In this representation we have' (X)) = 7 (X)L N K (o27).

Theorem 5.2 is the main result of this section: it allows, via Theorem 2.2, to compute
the essential spectrum of a hamiltonian affiliated to the algebra of energy observables
%1, in terms of spectra of hamiltonians affiliated to the two-body algebra. The details are
as follows. R

If H is an observable affiliated t6;, and if H is its image through the canonical
morphism@é, — €. /¢ (X), then there is a familyH;);.;, of observables affiliated to
the two-body algebra (X) such that the quotient ¢ff,.,; H; with respect to the ideal
(X)) is equal totheimage dff through the embedding (5.6). Such a fantit) <.
will be called arepresentative of H. By the discussion above we hayvg,; (H; — ) le
7 (X)L and the component 61, —z)~1in Co(X*) isindependent dfe L, Sooesd H;)
is independent af. Thus the next result is a consequence of Theorem 2.2.

Theorem 5.3. If H isan observable affiliated to 7 (X) and { H;};<;, isarepresentative

of H, then
vesd ) =) |J o(HD).
FcL leL\F

Ffinite

It is quite easy to give examples of a self-adjoint operator affiliatedtavith a
nontrivial essential spectrum. Lat: X* — R be a continuous divergent function (by
“divergent” we mean limp_, ., h(x) = o0). ThenHp = h(P) is a self-adjoint operator
strictly affiliated to%7, hence ifV is a self-adjoint operator in the multiplier algebra
of €7 thenH = Hp + V is also strictly affiliated td67 and we may apply to it the
Theorems 5.3 and 5.6. More explicitly, we may take= Y ",_; ©¢;(Q), where{y;} is
as in (ii) of Lemma 5.1, in which case the operatéfsof Theorem 5.3 are given by
H; = h(P) + ¢;(Q). Much more singular perturbations are, however, allowed, as we
shall show later on.

We close this paragraph by pointing out the interesting particular case when there
is only a finite number ofypes of bumps. Let £ be a finite partition ofL. consisting
of infinite setsM and let%, (X))~ be the space of € % (X) such that the limit
S-limyep 100 UiSUS" == Sy exists for eachM e L. This is clearly aC*-subalgebra
of €1 (X) which contains}i/(X).:gL(X)L is the set ofS € %7 (X) such that for each
M e L and each ultrafilterr € L with M € x the limit S,, is independent of. By
using the remarks made in the last part of Sect. 2.3 one can prove that

L
6L(X) oo P 7). (5.7)
MeLl

If H is an observable affiliated 6, (X)~ then S-liMem, 100 UUHU}" := Hy €Xists
in the strong resolvent sense for eaehe £ and

oesdH) = | J o(Hu). (5.8)

MeLl
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5.3. Dense subalgebras. We shall describe here a class of elements of the alggbea
This will give us a version of Theorem 5.2 independent of the constructions from the
abelian case.

Proposition 5.1. Let {K;};c; be a relatively compact family of compact operators on
2. Assumethat thereisacompact set A C X suchthat K; = X 5 (Q) K; X 5 (Q) for all
l € L.Thentheseries) ,.; U K; U; convergesin the strong operator topology and its
sum belongsto 47 0. The set of operators of the preceding formisdensein 7. o. More
precisely, the linear subspace generated by the operators » ., UK U;, where M isa
subset of L and K € 7 (X) hasthe property K = X 5 (Q) K X o (Q) for some compact
set A C X, isdensein 4y 0.

For the proof we need the following noncommutative version of the Ascoli theorem
(which follows from the Riesz—Kolmogorov compacity criterion, see [21]):
a bounded subset #° C ZA(X) is a relatively compact set of compact operators if
and only if it satisfies the following equivalent conditions:

(i) lim sup||(Uy —HT™®| =0and lim sup||(Vx — HT™| = 0.
x—0 Te At k—0 Tet
(i) Foreache > Othereare¢ € Cc(X) and ¢ € Co(X™) such that
lp(@ TP + 1y (PY TP <& forall T € K.

Thus, a family{K;},c;. satisfyingK; = XA (Q) K; X »(Q) is relatively compact if and
only if

lim sup|| (U, — DK ¥ | = 0. (5.9)

x—=>0er

Proof. Notice first that finite sum3 ;. U/ K; U; are compact operators, so belong to
%L.0- Hence we just have to prove the first part of the theorem under the assumption
I+M)NI"+AM)=0if K, #0, Ky #0. The serie§” =} ,.; U K; U; converges
strongly because the operatdrs K; U; are pairwise orthogonal for largeThe family
{K;}1eL being relatively compact, for eaeh> 0 there is a finite subsétof L such that
L decomposes into a disjoint uniprj; ., L; and for eachi € I we have|K; — K;|| < ¢
foralll e L;. LetthenT, =} ,; > ;. U/ Ki U and estimate for eacfi € 7.
T =T f1? = 1 Eics Xper, Xa(Q = DU (K1 — K) U XA(Q =D f II?
= Yier Yier, 1IXa(Q@ =D U (K; — K) UiX A(Q — D fII
< €23 XA (@ = D) 11 = eI L 1e X ai(Q) £ 12 < 21112,

Thus it suffices to show thdt € %, o which actually means that it suffices to prove the
proposition for the case wheki; = K is independent of. Note that in the arguments
below one can substitute foany subset of it.

So let K be a compact operator antl a compact subset ot such thatk =
Xa(Q)KX5(Q). We shall prove thak = )", U K U; € ¢ o (the series being
strongly convergent by the same argument as above). The getafo(X™*) such that
¥ = 7 for somen € C¢(X) is dense inCo(X*) (see (4.13) in [18]). By using also
Corollary 4.1, we see that for eaeh> 0 there are functiongy, ... , ¢,, 11, ..., n, iN
Ce(X) such thatl K — S|| < &, whereS = 3"_; :(Q)7; (P). Since( (P) f)(x) =
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Jx nx = y) f(v) dy we have(Sf)(x) = [y (32; ¢i()ni(x — ) f(») dy. LetT be a
compact set such that the supports of the functigns; are included if" and let2 be
the compactseA UT U (' = ). If Xg = Xo(Q)thenK = XqKXq, S=XqSXq.
This shows in particular that the serigs,.; U;*SU; is strongly convergentl( being
sparse) and its sus can be computed:

§ =2 Ui (O (P) = Y 13,90i(Q — DI i (P) = Y, (Q)7(P).

The functionsg; belong toCy o by Lemma 5.1, sd € %L.0. We havek — §
Y XU (K — S)UiX 1o and there is a f|n|te sdt C L suchthat, ifl,l’ e M
L\F, 1#!' then +Q)N '+ Q) =¢. Then

IR £ =5 F = X1erUf K = U] = | SienXieaUf (K — UK f|
=Y em [saUr (K = HUXira f|* < 2 ienXira fII? < 21 £1I2.

Thus for eackr > 0 there is an operatdf = S — Y ier U (K = 8)U; € 61,0 such
that||k — T|| < &. Hencek € %, 0.

The fact that the linear subspace generated by the operator sums
Y iem Ul (PY)U;, with M C L andg,n € C¢(X), is dense in¢, o follows
from Theorem 4.1, Lemma 5.1 and the preceding arguments (wiheaa be replaced
by M). O

The next result, a more explicit version of Theorem 5.2, is a straightforward conse-
quence of Proposition 5.1 and Theorem 5.2 (see also (2.6)).

Theorem 5.4. Thereisauniquemorphism%; — .7 (X)IH /¢ (X)) suchthat theim-
age of an eement of the form Y(P) + > ., UKU, where
Y e Co(X*),M C L,and K € #(X) issuchthat K = XA (Q) K X A (Q) for some
compact set A C X, isthe quotient of the element Xy ® (¥ (P) + K) € .7 (X)L with
respect totheideal .7 (X)), Thekernel of thismorphismis.# (X) anditsrestrictionto
%10 induces the canonical isomorphismof €7, o/¢ (X) with the L-asymptotic algebra
of compact operators .7 (X ){L)

5.4. Another description of the quotient. Let us give now a second description of the
quotient algebr&7, (X)/% (X), based on the formalism exposed in Sect. 2.3. According
to the notations introduced there, we shall denoté e set of ultrafilters od finer
than the Fréchet filteZ, is a compact topological space. We denote Jirthe limit over

[ along a filters.

Theorem 5.5. If S € 47, and x € L thelimit s-lim;, U;SUJ = S, existsin the strong
operator topology and belongs to .7 (X). The component of S, in Co(X*) is equal to
that of S'in Co(X*). Themap S +— (Sx),.; isamorphism ¢, — C(L 7 (X)) with
kernel 7' (X) and range equal to the set of (S,),.; such that the component of S, in
Co(X™) isindependent of x.

Proof. One has a unique decomposition $finto a sum7 + S’ with T € Co(X*)
andS’ € ¢7.,0. SinceU;TU; = T, it suffices to conside?” = 0. Then by (iii) of
Lemma 5.1 and (5.4) it suffices to talle= ¢(Q)¥(P) with ¢ = >, 1 Tmeo for
some subset C L and someyg € Co(A), A C X compact, and withy € Co(X*).
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SinceU;SUJ" = (t_19)(Q)¥ (P), it suffices to show that lig, 7_;¢ exists uniformly
on compacts orX. There are only two possibilities: eithef € », or L\ M € x;
in the first case we shall prove that lipmr_;¢ = ¢o and in the second one that
lim;, 7_;j¢ = 0. Indeed, lelk C X be a compact set and lete K. Thent_;p(x) =
Yomem wolx +1—m). If po(x +1—m) #0thenl e m + (A — K)andA — K isa
compact set. So if is large enough thepo(x +1 — m) # 0 only if | = m (L being
sparse). So for largeone has eithet_;p(x) = ¢o(x) or _;¢p(x) = 0 (independently
of x € K).

We have thus shown that the limit s -lijpU; SU;" := S, exists for eachx € L.The
argument also gives the explicit form of the limit for aclass of operafavhich is dense
in ¢7.. Namely, assume thétis of the formyo(P)+ >/ ; ¢i (Q)¥i(P) = T + §’, with

¥, , Y € Co(X*) andg; = Z/ 121@ T1¢ij, Where, foreach, {L;1, ..., Lix;}
isa partmon ofL andy;; € C¢(X). For each there isauniqug (@) € {1, ... ,k}such
thatL;;;) € ». Then

S =Yo(P)+ Y _ ¢iji (QVi(P). (5.10)

i=1

ThusS,, € 7 (X) and its projection oiCo(X™*) is Yo(P), which is the component of
in Co(X™*). This remains valid for alf by contmwty and density.

Fmally, consider the |magsf of " in %(X) ) given by Theorem 5.2 and identify
H (X)L ~C(L: K (X)), cf. (2.8). Thers’” will be the family of operators,, defined
by (5.10) so the theorem is provedo

The following result is a straightforward consequence of Theorem 5.5.

Theorem 5.6. Let H be an observableaffiliated to 47 (X). Thens -lim; ,, U HU} = H,
existsin the strong resolvent sense for each » € L and

oesdH) = |_J o (Hy).

xel

If {H;};cr isarepresentative of H, thenfor x € L onealsohas H, = u-lim;,, H; (limit
in the norm resolvent sense).

6. An Explicit Class of Hamiltonians

We shall construct here a large class of hamiltonians affiliated to the algglbr). We
consider explicitly only the cas€ = R” in order to be able to use the standard theory
of Sobolev spaces. However, our arguments easily extend to other groups.

We begin with a remark concerning the definition of the hamiltonians. In the sequel
we use the abbreviation) = (14 | - |92, Let #5 = #*[R") be the scale of
Sobolev spaces; hesee R, 0 = L2(R") = . Lets, ¢ be real numbers such
that 0< r < s. Let Hg be a self-adjoint operator is¢’ with D(|Ho|*?) c s#* and let
V . " — " beasymmetric operator. ThéR)% < C(|Ho|+ 1) for some constant
C and for eacte > O there is a constanrt < oo such thattV < &(P)% + ¢. Thus
the form sumHp + V defines a self-adjoint operatéf in .7 with form domain equal
to that of Hy. The self-adjoint operators from the next theorem should be interpreted in
this sense.
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Theorem 6.1. Let 1 : R” — R be a continuous function such that
C7Hx|% < |h(x)| < Clx|* for x| > R, (6.1)

for some constantss > 0, C > 0and R < oo; denote Hy = h(P). Letr € [0, s) real,
let L be a sparse subset of R”, and let {W;};c; be a family of symmetric operatorsin
B(s#", ") with the following property:t hereisa number a > 2n such that

ZSULDII(Q)“WZIIB<M,3f—t) < 0o. (6.2)
€

Then the series ) ., U'W,U; converges in the strong topology of
B, 2"y anditssumisasymmetricoperator W : 57" — ' .Let H = Ho+ W,
H; = Hp + W, be the self-adjoint operators in .7# defined as form sums. Then H is
strictly affiliated to 47, H; is strictly affiliated to .77 (X), and the family {H;};c; isa
representative of H. In particular:

sesd H) = (] |J o(HD. (6.3)
FcL leL\F
Ffinite
If % isan ultrafilter on L finer than the Fréchet filter, then u-lim;e,, H; := H,, existsin
the norm resolvent sense, one has H,, = s-lim;,, U;HU}* in the strong resolvent sense,
and

oesdH) = |_] o (H,). (6.4)

xel

Remarks. (i) If s <n/2 andW; : R" — R are Borel functions satisfying the condition
Syexj<1 Wi - 1y = x| dy < ¢(x)~® Vx e R” for some constanis, A > 0,
then the operator®; of multiplication by the function$V; satisfy (6.2) for some < s.

If s > n/2 then the simpler conditioﬁy_x|<1 [W(y)|dy < c(x)~¢ suffices. Ifs is an
integer and¥; is a differential operator of order less than &imilar explicit conditions
on its coefficients can be stated.

(ii) The conditiona > 2n is not natural and should be improvedito- n, but the version

of the Cotlar-Stein lemma that we use in the proof does not allow us to get such a result.
However, the assumption ammay be relaxed in terms of the “degree of rarefaction” of

L: the greatest lower bound faris actually inversely proportional to it, see Lemma 6.2.

(iii) As explained in Sect. 1.1, we can replace the Hilbert sgaieX) of physical states

by L2(X; E) where E is a finite dimensional Hilbert space. This allows us to treat,
for example, Dirac hamiltonianHy perturbed by the same class of potenti#lsThe
condition (6.1) is satisfied with = 1/2, |h(x)| being interpreted a: (x)%1Y2 (h(x) is

a self-adjoint operator in E). Note thaf is not semibounded in this case. Theorems
5.3 and 5.6 remain valid without any change in this context.

(iv) The assumption < s is not essential and can be improved te s, which allows one

to treat perturbations of the same orderrs But then one must add other conditions

in order to give a sense to the surlls + W; and Hp + W as self-adjoint operators.

This question is of some importance if one wants to treat Dirac operators with Coulomb
potentials or second order perturbations of the Laplace operator, but is outside the main
scope of this paper.

(v) Assume thak is bounded from below, so that its range is of the fofrma [u, co) for
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some realt. Then the spectrum of the operaft@dyris of the forme (H;) = J U D;, where

Dy is adiscrete subset 6f oo, ). From (6.3) it follows that thessential spectrum off

is of the formJ U D, whereD C (—oo, n) could have a quite complicated structure. The
spectrum inside/ is probably also of a rather complex nature: singularly continuous,
absolutely continuous, and pure point spectrum could coexist. The methods used in this
paper do not allow us to study such fine propertiesHofwe do not expect tha#!

admits conjugate operators locally insidg However, in the preprint version [22] of

this article we proved that the wave operators corresponding to the elastic channel exist
in rather general situations (the difficulty appears wheri*hare of the same order of
magnitude, e.g. do not depend QnOur results extend those from [25] and are valid in
any dimensiom > 2. In particular, the absolutely continuous spectruntofs often

equal toJ. On the other hand, if = 1, taking into account the results from [33], we

are tempted to think that the wave operators do not exist and there is no absolutely
continuous spectrum #V; is independent af.

We begin now the proof of the theorem and first recall the Cotlar-Stein lemma:

Lemma6.1. Let {B;};c; beafamily of operatorsin B(s#1, %) for someHilbert spaces
J4, 5. Assume that

1/2 1/2
supy max{lleB,}ZIIB/(%) , ||Bl*Bm||B/(,9ﬁ)} =b < o0.
leL meL
Then },.; B; = B existsin the strong operator topology and || B p.sa,.) < b.
Theorem 6.1 will be a consequence of the next lemma. We dendjtg|by the norm
in B(o#", 7).

Lemma6.2. Let L ¢ R" suchthat || — m| > const > 0if [, m are distinct points
of L, and let a > 2n. Then thereis C > 0 such that, for each family of operators
W; € B, 227) with W; = 0 for all but a finite number of /, the following estimate
holds:

[Sie i With],,, = € supmax{|(Q) Willuy . IWH(Q) lua}.  (6.5)
€

Proof. Let us denoteB; = U;*(P)"W;(P)~"U; and check that the hypotheses of the
Cotlar-Stein lemma are satisfied. For each couple of points of L we estimate:

1B Bl = {PY Wi (P)™ Uy Wy (P)" |
< IWHQ) o - ICPY(Q)Y ™ (PY 2 Up (@) (PYI| - I{Q) Wil 0. —u-

We have||W,, (0) llu.v = II{Q)* Wi | —v,—u. By standard commutator estimates, there
is a bounded operatsrsuch that P)* (Q)~4(P)~% = S(P)~"(Q)~¢, thus the middle
norm in the last term of the above inequality may be majoratebtiyimes the quantity:

I{P)Y ()™ Ui—m (Q) UL, (P) Il = I{Q)™(Q = (m — D)™ Nuu-

Let us denote by a generic positive finite constant. By interpolation between 0 and an
integerN > |u| the above quantity is dominated by

CIQ) (@ — (m = D) “lln.y = C sup sup |gfex)

xeR" |a|<N

’
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whereg;, (x) = (x)"%(x — (m — 1)) ~“. Furthermore, for eact there is a constant,
such that

“Pz(ﬁ?(x)‘ < ca lom()| < C (I —m)™.

Hence| BB || < C (I —m)~“supc; Wi {Q)*|l.,». Similarly we obtain the estimate
1B Bull < C{l —m)~"supcy II{Q)" W|lu,» which finally yields

max{[| BBy, |l , 1B/ Bull} < C (I —m)~* max{I(Q)*Willuv, IWi(Q)lluw}-

The hypothesig > 2n is then sufficient to ensurg.,, ., ({ — m)~%/? < const < oo
independently of € L, hence the hypotheses of Lemma 6.1 are verifieu.

If Hp is as in Theorem 6.1 then it is obviously affiliated@(X*) C %.. From
Theorem 4.1 it follows easily thallp is strictly affiliated to%;. Note that we can
assumeHp > 1. Then we write

H61/2WH61/2 _ H61/2<P>Y . <P>—XW<P>—S . <P>YH61/2 (66)

Below we shall prove that
(PY"W(P)™ € 6L. (6.7)

From Theorem 4.1 it follows that the elements of the f&HOP)T62(P) with 6, €
C.(X™*) are dense if5.. Then the relations (6.6) and (6.7) imp‘h]()_l/ZWHo_l/2 € 6L
Finally, Theorem 6.1 is a consequence of the affiliation criterion Theorem 2.1.

We shall prove (6.7) by constructing a family of symmetric operat®s} in ¢,
which approximatedV in the norm ofB(5¢*, 5¢~*). Choose& € C°(R") such that
0<6 <land(0) =1,andse®, =0(cQ)0(¢P).LetW, = >, ; UW, U;, where
W, = ©,W,;0%. Observe first that, for eaehe (0, 1], {W; . };c1. is arelatively compact
family of compact symmetric operators gff. Hence, by Proposition 5., belongs to
1.0 for eache > 0. It remains thus only to show the convergeie — Wi, _s — 0
ase — 0.Let 21 < @ < a, wherea is as in Theorem 6.1. We shall use Lemma 6.2 with
W replaced bW, — W, a by @, andu = s, v = —s. Then the first norm in the r.h.s. of
the corresponding inequality of type (6.5) is estimated as follows:

()" (Wie = W))lls,—s < I{Q)*(®r — YW, O |ls,—s + I{Q)* Wi (OF — D)Is,—s
< IKQ)* (O — D(Q) “ll—t,—s - IKQ)* Wille,— - 1O 5,
< HQY* W) *Ils,—s - IKQY* ™ *(OF — Dlls.s-
We shall use the scale of spack$' defined by the normig(P)*(Q)" - ||. By hypothesis,
the family of operatord¥; is bounded inB(5¢", 5,"). By interpolation, and since
t < s, we get that it is also bounded B(JZ/_,, 7, *). So in order to show that
1(OY* (W — W))|ls,.—s — 0if ¢ — 0Ot suffices to prove the next two relations:
[{P)*(Q)*(©: — 1)(Q)~*(P)'|
= [I(P)~*(Q)* (O — D(Q)"“(P)" - (P)~(Q)*"*(P)'|| = O,
[{P)™*(® = D)(Q)*“(P)'|
= [I(P)™*(® = )(P)* - (P)*(Q)*"“(P)'|| - O.
The operatot P)~* (Q)*~4(P)! is compact, so it suffices to show thagt — 1 strongly
in B(s%)') whene — 0, for eachu, v € R. But this is an easy consequence of the next

more precise lemma and its analog with the role@ @ind P interchanged. Theorem 6.1
is proved. O
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Lemma 6.3. Let 6 bein the Schwartz space . (R") and let u, v € R. Then

p!iino I{Q)", (e PYKQ)"llB(e) = O.
Proof. We use the Fourier representatiofz P) = | U, (x) dx in order to compute
[(Q)",0(eP){Q)" = / Uer (U7 Q) Uer (@) ™" — 1) 8 (x) dx
=ngx(<Q—sx>“<Q>*”—1>§<x>dx.

It is clear that||[(Q — x)"(Q) "l gy < C{x)" for some positive numberS andr,

so we shall havé[(Q)", 6(¢ P)I{Q) "l sy < const. Then, by an easy interpolation
argument, it suffices to prove the lemma in the case 0. Now the dominated con-
vergence theorem shows that it is enough to pitv@ — x)V(Q)~V — 1| — 0 when

x — 0. Butthis is a consequenced+ |x)"1 < (y —x)(y) P <A+ |x]). O

7. Appendix

In this appendix we shall prove Theorem 1.2. It clearly suffices to consider only the case
of T e 47 ,0. We denote by the set of operators verifying the conditions (i)-(iii) of
the theorem wittf’ = 0. Clearlyss is aC*-algebra.

We first show the easy inclusicsi, o C «7. By (5.4) it suffices to show that oper-
ators of the formp(Q)y (P) with ¢ € Cr (X) andy € Co(X™*) belong tog/. Since
Urp(Q)UY = ¢(Q + x), we have

[(Ux = D@ (Pl < l9(Q + x) — (DY (Pl + oD [(Ux = DY (P

The functiong is uniformly continuous so the first term in the r.h.s. above tends to zero
asx — 0. Since

(Ux = DY (P)Il = sup [k(x) — 1] [y (k)]
keX*

andy (k) — 0 ask — oo in X* we see that this norm also tends to zerocas> 0.
Thus (i) is satisfied. Further, (ii) is an immediate consequence of the uniform continuity
of ¢ because

Vip(QW (PYVE = oY (P) = 9(Q) [V (P + k) — ¥(P)].

Also, XLZ(Q)T = XL%(Q)go(Q)w(P) is zero if A is large enough, by the properties
of ¢ € Cr (X). In order to treat the terrﬂrXLR(Q) of (iii) we recall thatCo(X*) -
Cr.c(X) is dense in&., o, so for eactke > 0 one may findys, ..., ¥, € Co(X*) and
@1, ... ¢n € CpLc(X) suchthal|T — Y] ¥ (P)@i(Q)|| < &. For A large enough we
havegol-(Q)XLi\(Q) = O for all i, hence||TXL5\(Q)|| < ¢. This finishes the proof of
6L.0 C /. The reciprocal assertion is less elementary and we devote the rest of the
Appendix to its proof.

In what follows we shall need three groups of automorphisms @#’), namely
{Ustrex, Vitkexs and Weleexxx+, defined on evenl’ € B(J€) by U [T] =
U TUZ, Vk[T] := Vi TV andWy k) := Uy Vy respectively. Notice thdts,, Vi] = 0
for each coupléx, k) € X x X*. HencelV; is a representation aB(.7¢’) of the locally
compact groufE := X x X* equipped with the Haar measuré & dx ® dk. This
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representation is continuous if we eque7#’) with the strong operator topology but it
is not norm continuous. It is clear that

CUE):={T € B(#)| E 3 & — W:[T] € B(¢) is norm continuous ~ (7.1)

is aC*-subalgebra oB (7).
If T € B(s#) andu € L1(X), v € L1(X*), we denote

Tun = f WelT] (4 @ ) () de. (7.2)

This is related to the Wigner transform and Husimi quantization, see [19]. In the next
three lemmas we give properties of this object which showZhats a “regularization”

of T in a similar manner in which the convolution of a function is a smoothing of this
function. We mention that the regularizationainrealized by, is not needed for the
proof of Theorem 1.2, but is useful in other contexts (see [23]).

Lemma 7.1. For each T € B(J¢) the following statements are equivalent:

() For each ¢ > O there are u € LX) and v e LY(X*) such that
[Ty =TI <e.

(i) T eCOa).

(ii)) im y o Uy — DT || = 0and limy—o |V — DT || = 0.

Moreover, if one of these conditions is satisfied, the functions « and v from (i) may be

chosen such that their Fourier transforms ', v have compact support.

Proof. First, (ii) is equivalent to (iii), as a consequence of
IWaolT1=TI = U Vi T1=T) + U [T1 =TI < Ml T1=T I+ UT]1=T)].

We prove now the equivalence between (i) and (ii). For each cauple) € X x X*
we have

Wao.pTuvl = Uy V) Tyl = fx /X*(Uka)[T]M(X — y)v(k — p)dx dk.

Since the translations act continuouslylohwe see that the map, p) — We, ) [Tu,v]

is norm continuous. S, , € CS(E) for eachT € B(#). Then if (i) holds we get (ii)
becaus«SS(E) is a norm closed subspace®f.#’). Conversely, assume that (iii) holds.
Itcan be shown that for every open get~ ¢ of X and for every > Othereis: € LY(X)
suchthat > 0, [, u = 1,fX\A u < eandu € Co(X*) (putu = v in Lemma 2.1 from
[21]). Similarly, for each neighborhool of 0 in X* there isv € L1(X*) with v > 0,
Syrv=1, fx*\r v < e andv e C.(X). Then we have

1Tuw =TIl = H/ Wi ol T1 = T) u(x) v(k) dx dk H
X xX*

=< /X @ — 1)TIIM(X)O|JC+/X* I(Vk = DT || v(k) dk
< supl|Ux — DT +1§UFIOII(V1< — DT + 4T
€

xeA

By choosingA, I" such that the first two terms in the last member above are small, we
see that (i) holds. Moreover, we also proved the last assertion of the lemma.
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Lemma7.2. o/ ¢ CA(E)andif T € o andu € L1(X),v € LY(X*) then T, , € «/.

Proof. The condition (i) of Theorem 1.2 is stronger than oy || (U4, —1)T|| = 0 from
(i) of Lemma 7.1, hence each € & verifies the statements (i)—(iii) of this lemma. It
remains to prove thaf, , € <7, which obviously follows by dominated convergence if
WEeIT] € o foranyé € X x X*.

Let, more generally/ be the Fourier transform of an integrable measuré&and
T € «/. We shall prove thaty (P)T € <. SinceU, = x(P) the operatorny(P)T
clearly satisfies condition (i) of Theorem 1.2. Then

Vi, W (P)T] = (Vi (P)V{ — Yy (P)}ViT + ¥ (P)[ Vi, T1.
SinceViy (P)Vy = ¥ (P + k) andyr € Cy(X™), condition (i) of Theorem 1.2 is also

satisfied. Finally, to check (iii) we use the representatig®) = [, Uy ¥ (dx). If Ais
a compact subset of then

X (Y (P)T < /X 1X 25 (QULT || 19 |(dx).

Lete > 0. Sincey isan integrable measure, there is a compact subsétX such that
Jx\k ¥ 1(@x) < ¢/(2T1]), hence

1X 25 (QW(P)T| sg+fK 1X 25 (Q = )T ¥ |(dx).

SinceT e «7, there is a compact séf in X such thaf|X . (Q)T|| < e[21% |(K)]7L.
If we takeA = M — K thenA is also a compact itX and for eachx € K we have
M Cx+A,SOLy C Lp+x. ButXLcA(Q—x) = X(Lo+x)(Q) so||XL3~\(Q—x)T|| <
X e, (Q)T || With this choice ofA we shall thus havéX ;< (Q)¥(P)T || <e. O

Lemma7.3. Let 7, , be given by (7.2) with v of compact support. Then there is a
compact set A in X such that for 01, 62 € Co(X) with

suppd () (suppdz + A) =¥
onehas61(Q) T, 02(Q) = 0.

Proof. We have to prove

91(Q)/ / ViU TU;V u(x) v(k) dx dk 62(Q) =0
x Jx*

for suppd, and supp, sufficiently far away one from another and for @lle B(J¢).
By the weak density of the finite rank operators, it suffices to assunfeank one and,
by the polarization identity, we may take of the form|g)(g| for someg € 7. Then
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forany f1, f2 € 2 one has

(f1,01(O)T,,v62(0) f2)
/ (f1,01(Q) Vi Urg) (ViUx g, 02(Q) f2) u(x) v(k) dx dk

X xX*

=/ dx dk u(x) v(k) x

XxX*

x / f1(x1) 01(x1) g(x1 + x) k(x1)k(x2) g(x2 + x) O2(x2) fa(x2) dxy dxz

XxX

_ / / dr ey dp u(x) T2(x1) B1(x0) g1 + ) Gz + x) B2(x2) f2(x2)

XxXxX

x/ k(x1 — x2) v(k) dk.

The last integral ovek* equals(F ~1v)(x1 — x2), thus the triple integral above will be
non zero only ifc; —x» belongs to the compact set supplv. Thenxy = xo+(x1—x2) €
(suppdz + suppF ~1v) () suppd; shows that it suffices to chooge= suppF~1v. O

As a consequence of the previous results, for édch 7 and eacte > 0 there
areu € LY(X) andv e LY(X*) with o compactly supported such tha , € <,
IT.» — T| < & and such that the conclusion of Lemma 7.3 be satisfied. Hence there is
(and we may fix it) a compact sét C X such that Lemma 7.3 is valid and for which
we have

X2 (DTl + 1 Tu o X 15 (D < & (7.3)

Let nowd € Co(X) with0 <6 < 1andd = 1 onA. For eachH € L we denote simply
by 6! both the mapx — 6 (x — 1) and the operator of multiplication by this function (in
what follows we shall freely use the same condensed notation for other functidts on
too). Since the sdft is sparse, we may find a subgétc L with a finite complementary
such that

suppd’ N (suppp’ + A) =@ if [,1' e Mandl #1'.

Lemma 7.3 gives theH’Tu,vel’ = 0 for all the pairsl, !’ as above. Hence, setting
¢ =Y, 0 One obtains

Tuwp= Y 0'Tund =) 0'T, 0"

Ll'eM leM
On the other hand, since® ¢ < 1 there is a bounded, compactly supported function
psuchthatt-¢p =¢ + (1 — PIX L - This gives the following decomposition &} ,:
Tu,v = ¢ Tu,v ¢ + (1 - ¢)Tu,v ¢ + Tu,v(l - ¢)

=Y 0Tt + @Tuwd + Tuw @) + (L= $)X 16 Turv ¢ + T X 15 (1= $)).
leM

Let us observe that for eache < and each bounded function with compact support
¢ on X the operatorg(Q)S andS¢(Q) are compact. Indeed, choages C.(X) such
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thatpg = ¢. It suffices thus to show that(Q)S is compact. The second member of the
estimate

[(Ux = D(D)SI < pDINUx = DS+ [Uxp (DU — S (DI IS,

tends to zero becausee o and¢ is uniformly continuous. This shows tha{Q)S
satisfies the hypothesis of the Riesz-Kolmogorov compacity criterion.
Sop T,» ¢ + T, ¢ IS a compact operatdt . Thus we may use (7.3) to get

1Tuw — D 0'T 0 — K|l <.
leM

In this manner, we are reduced to the proof of the assertion
Y em 0 Tuwd! € €1 0. This may be reformulated 85, U K1 U € %1 if we
take into account that! = 6(Q — 1) = U0(Q)U; and if we denote byk; the com-
pact operatof (Q)U; T,,,, U6 (Q). Itis straightforward to check that the family of these
compacts verifies the hypotheses of Proposition 5.1 (see (5.9)). This finishes the proof
of the inclusioneZ C %7 0, hence that of Theorem 1.2.
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