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Abstract: We study spectral properties of a hamiltonian by analyzing the structure of
certainC∗-algebras to which it is affiliated. The main tool we use for the construction of
these algebras is the crossed product of abelianC∗-algebras (generated by the classical
potentials) by actions of groups. We show how to compute the quotient of such a crossed
product with respect to the ideal of compact operators and how to use the resulting
information in order to get spectral properties of the hamiltonians. This scheme provides
a unified approach to the study of hamiltonians of anisotropic and many-body systems
(including quantum fields).

1. Introduction

1.1. Algebras of hamiltonians. Throughout this paperX will be a locally compact not
compact abelian group (with the operation denoted additively) equipped with a Haar
measure dx. For example,X could be a finite dimensional vector space over ap-adic
field (or rather the underlying additive group). We shall call analgebra of (classical)
interactions on X anyC∗-algebraA of functions such that1

C∞(X) ⊂ A ⊂ Cu
b(X) andA is stable under translations. (1.1)

Let X∗ be the group dual toX and forh : X∗ → C Borel leth(P ) be the operator
on L2(X) defined byh(P ) = F∗MhF , whereF is the Fourier transformation and
Mh is the operator of multiplication byh in L2(X∗). A self-adjoint operatorH on
L2(X) of the formh(P )+ v(Q), whereh is a real continuous function onX∗ such that
limk→∞ |h(k)| = ∞ andv(Q) is the operator of multiplication by a functionv ∈ A ,

1 Cu
b(X) is theC∗-algebra of complex uniformly continuous bounded functions onX; thenC∞(X),C0(X)

andCc(X) are the subalgebras of functions which have a limit at infinity, are convergent to zero at infinity,
or have compact support, respectively. IfH is a Hilbert space thenB(H ) is the space of bounded linear
operators onH andK(H ) the subspace of compact operators.
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will be called anelementary hamiltonian of type A (if X∗ is compact, there is, of course,
no condition at infinity onh). We use the symbolsQ andP in order to keep notations
close to those of quantum mechanics, whereQ andP are the position and momentum
observables respectively; here we do not attach any meaning to them.

We recall that theC∗-algebra generated by a family of self-adjoint operators is the
smallestC∗-algebra which contains their resolvents.

Definition 1.1. Denote by A � X the C∗-algebra of operators on L2(X) generated by
the elementary hamiltonians of type A . A self-adjoint operator H on L2(X) such that
(H + i)−1 ∈ A � X is called hamiltonian of type A.

We shall often refer toA � X as theC∗-algebra of hamiltonians (or energy ob-
servables) of type A . The notationA � X is standard in the theory ofC∗-algebras,
meaning crossed product ofA by an action of the groupX. Theorem 1.1 below justifies
its use in the present context. Note that we shall also use the terminology “C∗-algebra
of hamiltonians” for algebras which are not crossed products (see (1.5) and Sects. 1.7
and 1.8).

In this paper we shall use operator algebra techniques in order to study the spectral
properties of typeA hamiltonians. More precisely, we show that the algebraA � X has a
rather remarkable structure which allows us to propose a general method of computation
of the essential spectrum of these hamiltonians. The same ideas allow one to prove the
Mourre estimate for certain choices of conjugate operators, but this question will be
treated very briefly in this paper, in connection with a quantum field model, see Sect. 1.7.
In [12,13] the method is applied to a general class of dispersiveN -body hamiltonians,
and in [20] to quantum field models with a particle number cut-off.

We emphasize that the class of typeA hamiltonians is much larger than the ele-
mentary ones. Although in concrete examples we takeH = h(P )+ V , in generalV is
not a function but only a symmetric operator satisfying certain conditions (it could be a
pseudo-differential operator). Theorem 2.1 gives a perturbative method of constructing
such hamiltonians (see Theorem 6.1 and [13] for applications). On the other hand, the
C∗-algebrasA � X can often be described in direct terms, as in Theorems 1.2 and 1.3,
and this allows one to get very general classes of hamiltonians of typeA which have
no natural decompositions into a sum of a kinetic and a potential part as above (see,
for example, the comments after Theorem 1.4 from Sect. 1.6). We mention that some
algebras are such that it is always possible to define the kinetic part of a hamiltonian
affiliated to them. For example, in the context of Sect. 5.2 the kinetic component ofH

is its quotient with respect to the idealCL,0(X). One can similarly define the kinetic
part of observables affiliated to the gradedC∗-algebra associated toN -body systems,
see Sect. 1.4.

A slight modification of the algebraA , obtained by taking the tensor product with an
algebra of compact operators, allows one to greatly improve the applications of the theory.
More precisely, letE be a complex Hilbert space. Then theC∗-algebraA E ≡ A ⊗K(E)

has a natural structure ofX-algebra (see Sect. 3.1) and so the crossed productA E � X

is well defined. Theorem 4.1 extends in an obvious way to the present case, the space
L2(X) being replaced byL2(X;E) ≡ L2(X)⊗ E. Corollary 4.1 holds in the form (see
Sect. 1.3 for the notations)

C0(X)E � X ∼= [[C0(X)E · C0(X
∗)]] = K(L2(X;E)) = K (X)⊗K(E).

Most of what we do in the rest of the paper can be extended with no difficulty to this
setting, so we shall not stress this point. This trivial mathematical extension is, however,
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quite useful in applications to the spectral theory of differential operators with operator
valued coefficients (e.g. Dirac operators) and also in other contexts (see Sect. 1.4). In
order to treat couplings between two systems it is important to consider tensor products
withC∗-algebras more general thanK(E); this less trivial problem is studied in Sect. 1.8.

We give now a short description of the content of the paper.The rest of this introduction
is devoted to a detailed presentation of the method we use and of several classes of
examples, including ones which do not belong to the crossed product setting introduced
above. We hope that this will clarify the scope and power of this algebraic approach. In
Sect. 2 we discuss several questions concerning the self-adjoint operators affiliated to
C∗-algebras, their essential spectra and the connection with the problem of computing
quotients ofC∗-algebras with respect to some ideals. Theorem 2.2 will be particularly
useful later on. Sections 3 and 4 are devoted to a short presentation of the theory of
crossed products ofC∗-algebras by actions of abelian groups with emphasis on some
results that we need and which we have not been able to find in the literature (at least in a
sufficiently explicit form). Especially important for us are Theorems 3.1 and 4.1. Many
examples are given in this introduction, but we devote the whole Sect. 5 to a detailed
study of one of the most interesting of these algebras: that suggested by the work of
Klaus [27] on potentials with infinitely many “bumps”. In Sect. 6 we point out a large
class of hamiltonians affiliated to it. The appendix is devoted to the rather long proof of
Theorem 1.2.

We have to mention that we decided to change the title of the preprint version [22] of
this paper because there are substantial modifications in the presentation of the results
and in the subjects we treat: besides a quite different introduction (the examples in the
second part of Sect. 1.6 and the Sects. 1.7, 1.8 are new), we have eliminated topics and
examples which are either not so important or will be developed elsewhere. On the other
hand, several proofs are more detailed in the preprint, which could be useful especially
to a novice inC∗-algebras. In [26] one can find a preliminary description of our results.
We also note that recently the preprints [30,31] containing various applications of our
ideas have appeared.

There is a very large literature on the applications of the abstract theory of
C∗-algebras to the study of spectral properties of various classes of operators. One
can find references on this question in [14] and [32]. The work of H. O. Cordes [9]
is partly relevant in our context.C∗-algebras also appear in many other branches of
mathematical physics: statistical mechanics and quantum field theory (algebras of local
observables, crossed products), scattering theory (algebras of asymptotic observables).
But our purposes and techniques are quite different.

Let us notice thatC∗-algebras generated by the energy observable appear already
in the work of J. Bellissard in relation with solid state physics. In [3,4] he pointed
out a remarkable connection betweenK-theory, cyclic cohomology ofC∗-algebras,
and quantum Hall effect, opening thus the way to many other applications of algebraic
methods in the study of models in condensed matter physics (cf. [3–5] and also [6,8] and
references therein). In particular, he considers theC∗-algebra generated by the translates
of the hamiltonian of a physical system and shows that under certain conditions it is a
crossed product. Although this should be considered as an “algebra of hamiltonians” in
our terminology, it is quite different from those we consider here, being rather tightly
related toone hamiltonianH (see Sect. 1.3 for more comments on this question). In the
models considered by Bellissard this is an advantage and allows him and his co-workers
to get much more precise spectral properties ofH which lead, for example, to a beautiful
mathematical description of the quantum Hall effect. The algebras which appear in our
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work are much larger and, in a certain sense, simpler. So we can treat a large class of
models but we are not able to study finer spectral properties of the hamiltonians. On the
other hand, we are mainly concerned with the quotient of theC∗-algebra of hamiltonians
of a system with respect to the ideal of compact operators. In the situations studied by
Bellissard, this does not seem to be of interest, since theC∗-algebras that appear in his
most important applications do not contain compact operators. The techniques we use
do not give anything interesting concerning almost periodic or random operators. In
fact, we think that the main future development of the ideas presented in this paper will
concern many-body systems (consisting of a large and variable number of particles) and
quantum fields.

1.2. C∗-algebra techniques. We shall explain the main ideas of our approach in a more
general setting. Assume that we are asked to compute the essential spectrumσess(H) of
a self-adjoint operatorH acting on a Hilbert spaceH . If H0 is a second self-adjoint
operator onH such that(H + i)−1− (H0 + i)−1 ∈ K(H ), thenσess(H) = σess(H0)

(Weyl’s theorem). Thus an idea would be: try to makeH simpler by adding to it a
compact operator (for unboundedH the addition being interpreted in a generalized
sense: the difference of the resolvents should be compact). The problem is that in
many physically important situations it is impossible to get a simplerH0 by this proce-
dure: think about the 3-body problem or the most elementary anisotropic hamiltonian
H = P 2+ V (Q) onL2(R), where the functionV has distinct limits at±∞.

C∗-algebras offer a straightforward solution to this difficulty: there is always anH0
simpler thanH that can be used in the preceding argument, there is even an optimal one.
Of course, a new kind of problem appears: this operator does not act (in a natural way)
in the initial Hilbert spaceH . The main purpose of our paper is to show how to solve
such problems, first in a general framework and then in a concrete but rather remarkable
situation.

Consider the quotientC∗-algebraC(H ) = B(H )/K(H ) (this is called theCalkin
algebra). If H ∈ B(H ), let Ĥ be its image inC(H ). Then Weyl’s theorem can be
stated asσess(H) = σ(Ĥ ). The “abstract” operator̂H will be the optimal choice we
talked about before (̂H is abstract in the sense that it does not act on a Hilbert space).

In order to use this for unboundedH , we have to define the notion of self-adjoint
operator in a purely algebraic setting. It is convenient2, and physically motivated, to
define anobservable affiliated to a C∗-algebra C as a morphismH : C0(R) → C
(see Sect. 2.1 for basicC∗-algebra terminology). In order to keep close to standard
notations, we denoteϕ(H) (notH(ϕ)) the image ofϕ ∈ C0(R) through this morphism.
Thespectrum of the observableH is defined by:

σ(H) = {λ ∈ R | ϕ ∈ C0(R) andϕ(λ) �= 0�⇒ ϕ(H) �= 0}. (1.2)

If P : C → C ′ is a morphism into a secondC∗-algebraC ′ we can define the image
H ′ = P [H ] of H throughP as the observable affiliated toC ′ given byϕ(H ′) =
P [ϕ(H)]. In particular, ifJ is an ideal inC andĈ = C /J is the quotient algebra,
we may definêH as the observable affiliated tôC given byĤ = π [H ], whereπ is the
canonical morphismC → Ĉ .

2 The notion of observable is related to that of a self-adjoint operator affiliated with aC∗-algebra in the
sense of Woronowicz. Following a suggestion of the referee, we discuss this question in Sect. 2.1.
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Assume that theC∗-algebraC is realized on a Hilbert spaceH , i.e. C is a
C∗-subalgebra ofB(H ), and let us take aboveJ = C ∩ K(H ). A self-adjoint
operatorH on H is calledaffiliated to C if (H − z)−1 ∈ C for somez ∈ C \ σ(H).
This impliesϕ(H) ∈ C for all ϕ ∈ C0(R), so each self-adjoint operator onH affiliated
to C defines an observable affiliated toC . ThenĤ is well defined as an observable
affiliated to the (abstract)C∗-algebraĈ . We recall that a real numberλ does not belong
to the essential spectrum of a self-adjoint operatorH if and only if ϕ(H) ∈ K(H ) for
someϕ ∈ C0(R) such thatϕ(λ) �= 0. Hence from (1.2) we getσess(H) = σ(Ĥ ) (see
also (2.1)).

We stress the fact that the operation which associatesĤ to H has no meaning from
a strictly hilbertian point of view. Indeed, in most casesĤ is not an operator onH ,
becausêC has no natural realization onH . But we shall see in Sect. 2.1 that ifH
is “strictly” affiliated to C , then one can realizêH as a self-adjoint operator in each
nondegenerate representation ofĈ .

After these preliminary definitions, we go back to our problem: we would like to
study the spectral properties of a given self-adjoint operatorH on a Hilbert spaceH .
We shall consider only spectral properties which are stable under compact perturbations,
for example the determination of the essential spectrum or the validity of the Mourre
estimate (which indeed is, in a sense which can be made precise, stable under such
perturbations). As we explained before,H is also an observable affiliated toB(H ), so
Ĥ is well defined as an observable affiliated to the Calkin algebraC(H ). Clearly, what
we really have to do, is to study the spectral properties ofĤ , and for this we have first
to compute it! This cannot be a trivial task since the Calkin algebra is a rather complex
object, e.g. it cannot be faithfully represented on a separable Hilbert space. Now we
come to the main point of our approach. Assume thatH is affiliated to aC∗-subalgebra
C ⊂ B(H ).ThenĤ is affiliated to theC∗-subalgebrâC = C / [C ∩K(H )] ofC(H )

and Ĉ could be much simpler thanC(H ). If we can determinêC rather explicitly,
we have good chances to obtain an explicit expression ofĤ , and so to say something
interesting aboutH . Our purpose is to show that this strategy works and allows one to
treat in a systematic way hamiltonians of physical systems with a complicated structure.

The preceding formulation could give the wrong impression that the main object
is H and thatC is an auxiliary construction needed only at an intermediate step of the
computation. But in the most interesting situations this is not the case:C is necessary not
only to isolate the natural and general class of hamiltonians (H isdefined by its affiliation
to C ), but also for the formulation of the results (again, in the convenient degree of
generality). In this respect, it is instructive to compare the statements of Theorems 5.3,
5.6 and 6.1. Thus, we simply forget the hamiltonian and state the problem we have to
solve as follows: aC∗-subalgebraC ⊂ B(H ) being given, describêC ⊂ C(H ).

We have to point out situations in which this approach is useless. First, we cannot
expect to get an interesting result ifC ∩ K(H ) = {0}, because thenC ∼= Ĉ (where∼=means “canonically isomorphic”). For example, this is the case if the algebra of clas-
sical interactions consists of almost periodic functions. On the other hand, assume that
C0 is aC∗-algebra of operators onH such thatC0 ∩ K(H ) = {0} (this means that
C0 has no nonzero finite rank projections) and letC = C0 + K(H ). ThenC is a
C∗-algebra and the projectionC → C0 associated with the linear direct sum decompo-
sition which definesC is a morphism which gives a canonical identification̂C ∼= C0.
So in this casêC is naturally realized on the same Hilbert space asC . Our approach
is not really useful in such a simple situation. Indeed, a self-adjoint operatorH on
H is affiliated toC if and only if there is a self-adjoint operatorH0 affiliated toC0
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such that(H + i)−1 − (H0 + i)−1 is compact, and then̂H = H0. Now the fact that
σess(H) = σ(H0) is a standard fact of Hilbert space nature and the algebraic approach
we propose is, at this level, irrelevant. The quantum mechanical two-body problem is a
particular case of this example, see (1.4).

We note that the operatorH0 is not densely defined in general: strictly speaking, it
is only an observable affiliated toC0. For example, ifH has purely discrete spectrum,
H0 is the observable∞ defined byϕ(∞) = 0 for allϕ ∈ C0(R). This trivial observable
appears quite often in practical computations (see Sect. 1.6). Equivalent characterizations
of ∞, which is affiliated to anyC∗-algebraC , is σ(∞) = ∅, or D(∞) = {0} in each
representation ofC .

1.3. Relevance of crossed products. The preceding strategy has been applied in several
situations in [22] and [23]. A treatment of the dispersiveN -body problem and of some
quantum field models (including the proof of the Mourre estimate) along these lines can
be found in [12,13] and [20]. In this paper the main emphasis is on the technique of
crossed products (see Sect. 3), which allows one to do the computations at an abelian
level. The next result (whose proof can be found at the end of Sect. 4) explains the
relevance of these objects in our context.

We shall use the following notation: ifH is a Hilbert space andS ,T are subalgebras
of B(H ) thenS ·T is the set of sums of the formS1T1+· · ·+SnTn with Si ∈ S , Ti ∈
T , and[[S ·T ]] its norm closure. We also identifyC0(X

∗) with an algebra of operators
onL2(X) with the help of the mapψ �→ ψ(P ). A is as in (1.1) and is identified with
the corresponding algebra of multiplication operators onL2(X). The group operation in
X∗ will be denoted additively.

Theorem 1.1. Let h : X∗ → R be a continuous non-constant function such that
limk→∞ |h(k)| = ∞. Then the C∗-algebra generated by the self-adjoint operators
of the form h(P + k)+ v(Q), with k ∈ X∗ and v ∈ A real, is equal to [[A · C0(X

∗)]].
Moreover, this space is canonically isomorphic to the crossed product of the C∗-algebra
A by the action τ of X defined by (τxϕ)(y) = ϕ(y − x).

The result can be restated as follows:A �X is the smallest C∗-algebra of operators
on L2(X) which contains (h(P )+ v(Q)+ i)−1 for all v ∈ A real and which is stable
under all the automorphisms3 S �→ VkSV

∗
k .

Note that the theorem is stronger than expected, the functionh being fixed. Then it
is easily seen that it implies the following in the caseX = Rn. Let h be a real elliptic
polynomial of orderm and letA∞ be the set ofϕ ∈ A which are of classC∞ and such
that all their derivatives belong toA too. ThenA � X is theC∗-algebra generated by
the self-adjoint operators of the formh(P )+V , whereV runs over the set of symmetric
differential operators of order< m with coefficients inA∞.

From this one can also see the main difference between theC∗-algebras considered
by J. Bellissard in [3,4] and those we work with here: Bellissard fixesh and v and takes
the algebra generated by the operatorsh(P )+ v(Q+ x), x ∈ X, while we fixh and let
v vary on a quite large set of symmetric operators modeled byA. In our case crossed
products appear essentially by definition, while in the cases studied in [3,4] this is a
rather subtle feature. Note also that, although we start with a given kinetic energyh, the

3 Here and later on we denote byVk andUx the unitary operators onL2(X) defined by the relations
(Vkf )(x) = k(x)f (x) and(Uxf )(y) = f (x + y).
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final algebraA �X is independent of it. It is not clear for us whether this property holds
in the situations studied in [3–6].

Now we explain the procedure of reduction to an abelian situation. This is based on
certain properties (described in Sect. 3) of the correspondenceA �→ A � X. We set
K (X) = K(L2(X)) andB(X) = B(L2(X)) (theseC∗-algebras depend only onX, not
on the choice of the Haar measure). One hasK (X) ∼= C0(X) � X (see Corollary 4.1).
Thus from (1.1) we see thatK (X) is an ideal inA � X. The quotientC∗-algebra
A � X/K (X) is well defined and, by Theorem 3.2,

A � X
/
K (X)

∼= [A /C0(X)] � X. (1.3)

This relation reduces the problem of the computation of the quotient of the two noncom-
mutative algebras from the left-hand side to an easier abelian problem: that of giving a
convenient description ofA /C0(X).

We mention here an important point: in general, there are many (equivalent) de-
scriptions ofA /C0(X), each of them having its own merits, so that we end up with
quite different descriptions ofA � X/K (X), hence of the essential spectrum of the
hamiltonian. For example, Theorems 5.2 and 5.5 give rather different characterizations
of the same quotient, and this furnishes the quite different descriptions ofσess(H) from
Theorems 5.3 and 5.6 (see also Sect. 1.4).

1.4. Examples. It is worthwhile to begin with the simplest situation:A = C∞(X) =
C+ C0(X). The corresponding algebra ofA type hamiltonians will be denotedT (X)

and will be called thetwo-body algebra (the hamiltonians of a particle in external fields
vanishing at infinity generate such an algebra). By Corollary 3.1, and sinceX is not
compact, we have (with linear direct sums)

T (X) = C∞(X) � X = (C+ C0(X)) � X = C0(X
∗)+K (X) ⊂ B(X). (1.4)

We getT (X)/K (X) ∼= C0(X
∗) either by using (1.3) andC∞(X)/C0(X) ∼= C, or

directly becauseC0(X
∗) ∩K (X) = {0}. The canonical surjectionT (X) → C0(X

∗)
is given byŜ = s -limx→∞ UxSU

∗
x (note that w -limx→∞ Ux = 0).

We consider next the simplest anisotropic behavior: one dimensional physical systems
with different asymptotics at plus and minus infinity in configuration space. LetX = R

andA = C(R) be the algebra of continuous bounded complex functions onR which
have limits at±∞. Observe that ifR = R∪{−∞,∞} is the two-point compactification
of R with the natural topology, thenC(R) is the set of functions inCu

b(R) which extend
continuously toR. It is very easy to describe the quotientC(R)/C0(R): we have two
morphismsϕ �→ limx→±∞ ϕ(x) fromC(R) ontoC and the intersection of their kernels
is C0(R), so we get an identificationC(R)/C0(R) ∼= C⊕ C. Taking the cross product
by the action ofR is also easy. IfC (R) = C(R) � R then we consider the morphisms
P± : C (R) → C0(R

∗) given by P±[T ] = s -limx→±∞ UxT U∗x . The mapT �→
(P−[T ],P+[T ]) is a surjective morphism ofC (R) ontoC0(R

∗)⊕C0(R
∗) and its kernel

equalsK (R). Thus we get

C (R)/K (R) ∼= C0(R
∗)⊕ C0(R

∗).
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Physically interesting self-adjoint operators affiliated toC (R) include Schrödinger op-
erators with locally singular potentials and different asymptotics at±∞.

In order to improve the applications of the theory we use the idea presented at the
end of Sect. 1.1. LetCE(R) = C(R) ⊗ K(E) be theC∗-algebra of norm continuous
functionsR → K(E) which have limits at±∞ (in the norm topology). Then

C (R)
E = CE(R) � R = C (R)⊗K(E) = [[CE(R) · C0(R

∗)]]
(we used Proposition 3.2) and exactly as above we get

C (R)
E
/K(L2(R;E)) ∼= CE

0 (R∗)⊕ CE
0 (R∗),

the isomorphism being induced by the sameP±. Less trivial is the proof of the Mourre

estimate for operators affiliated toC (R)
E

; our results in this direction will be published
elsewhere. The applications cover the spectral theory of elliptic operators on asymptoti-
cally cylindric (star shaped) domains inRn (with different asymptotics at various ends)
and on some manifolds with cylindrical ends. Our work on these questions has been
especially motivated by [7,10,16] and references therein. By takingE = C2 we cover
one dimensional Dirac operators with different asymptotics at±∞.

The preceding example has a simple and interesting extension which goes beyond
the crossed product framework. Let

C E = [[CE(R) · CE(R∗)]] = [[CE(R) · C(R∗)]]. (1.5)

This is aC∗-algebra (but not a crossed product) which admits an intrinsic description
of the same nature as that of Theorem 1.2, andC (R)E ⊂ C E. We clearly haveC E =
C ⊗ K(E), whereC is the algebra corresponding to the choiceE = C. If T ∈ C E

thenT± = s -limx→±∞ UxT U∗x andT ± = s -limk→±∞ V ∗k T Vk exist, and the map
T �→ (T−, T+, T −, T +) is a morphism ofC E into

CE(R∗)⊕ CE(R∗)⊕ CE(R)⊕ CE(R)

with kernel equal toK(L2(R;E)) and range given by the compatibility relations
(T−)± = (T ±)− and(T+)± = (T ±)+. Thus we get

C E/K(L2(R;E)) ↪→ CE(R∗)⊕ CE(R∗)⊕ CE(R)⊕ CE(R).

Hence ifH is an observable affiliated toC E then one can associate to it four asymptotic
observablesH±, H± (the first twoH± correspond toQ→±∞while the other onesH±
correspond toP → ±∞) and spectral properties like essential spectrum, thresholds,
Mourre estimate, ofH can be expressed in terms of these observables. For example

σess(H) = σ(H−) ∪ σ(H+) ∪ σ(H−) ∪ σ(H−).

This is an elementary but physically interesting situation when the essential spectrum
of H is not determined by its localizations at infinity if the infinity is interpreted only in
theQ sense (compare with Theorem 1.4).

We now go back to an arbitraryX and consider the problem of constructing algebras
of classical interactions. These are in bijective correspondence with a certain class of
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compactifications ofX: the spectrumX(A ) of A is a compact space andX is homeo-
morphically and densely embedded inX(A ); thenA is the set of functions inCu

b(X)

which have continuous extensions toX(A ), i.e.A = C(X(A )). For example,C∞(X)

is related to the simplest compactification ofX, the Alexandroff compactification, and
C(R) involves the two-point compactification ofR.

The compactifications ofX are quotients of the Stone-Čech compactificationβX.
However, instead of considering explicitlyβX, one can construct algebras of interactions
by using limits at infinity along certain filters. LetF be a filter onX and assume thatF
is translation invariant (ifA ∈ F, x ∈ X, thenx + A ∈ F) and finer than the Fréchet
filter (which is the family of subsets with relatively compact complements). We consider
the space ofϕ ∈ Cu

b(X) which have a limit at infinity along the filterF :

CF (X) = {ϕ ∈ Cu
b(X) | lim

F
ϕ exists}. (1.6)

It is clear thatCF (X) is an algebra of classical interactions. IfF is the Fréchet filter then
CF (X) = C∞(X). There is a largest non-trivial ideal inCF (X), namelyCF ,0(X) =
{ϕ ∈ Cu

b(X) | limF ϕ = 0}, andCF (X) = C+ CF ,0(X).
We consider a particular class of algebras of the preceding form. Fix a closed setL

such thatL+) �= X if ) is compact (this means that there are points as far as we wish
from L). Then the complements of the setsL + ) form the base of a filterFL which
is translation invariant and finer than the Fréchet filter. The algebraCL(X) ≡ CFL

(X)

consists of functionsϕ ∈ Cu
b(X) which tend to a constant when we are far away fromL.

The difficulty of the problem of describing the quotient algebraCL(X)/C0(X) appears
already in the seemingly elementary case whenL is a straight line inX = R2.

In Sect. 5 we shall study in detail the preceding problem for a class of sets that we
call sparse. More precisely, the setL is calledsparse if it is locally finite and for each
compact) of X there is a finite setF ⊂ L such that ifl ∈ M = L \ F andl′ ∈ L \ {l}
then(l +)) ∩ (l′ +)) = ∅. The corresponding class of hamiltonians generalizes that
of the Schrödinger operators with “widely separated bumps” introduced by M. Klaus in
[27] (see also [11,25]). This suggests callingCL(X) ≡ CL(X) � X thebumps algebra.
As we shall see, this example fits very nicely in our framework, the quotient algebra
having an especially interesting structure (see Sect. 2.3 for the notations):

CL(X)
/

K (X)
↪→ T (X)[L]/

K (X)(L). (1.7)

This implies the following about the essential spectrum of an arbitrary observableH

affiliated toCL(X). First, note that there is a (highly not unique) family(Hl)l∈L of
observables affiliated to the two-body algebraT (X) such that the quotient of

∏
l∈L Hl

with respect to the idealK (X)(L) is equal to the image of̂H through the embedding
(1.7). Then

σess(H) =
⋂
F⊂L
F finite

⋃
l∈L\F

σ(Hl). (1.8)

In Sect. 5.4 we give a second description of the quotient algebra hence a new formula
for the essential spectrum: for each ultrafilter, finer than the Fréchet filter onL the limit
s -liml UlHU∗l ≡ H, whenl →∞ along, exists in the strong resolvent sense and

σess(H) =
⋃
,

σ(H,). (1.9)
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In Sect. 6 we shall point out an explicit and quite general class of self-adjoint operatorsH

affiliated toCL(R
n) and compute corresponding families(Hl)l∈L. This makes the con-

nection with the class of interactions studied by Klaus in [27]. We also mention a connec-
tion between (1.9) and previous work of Bellissard [3,4]. Indeed, the setL̃ of ultrafilters
finer than the Fréchet filter onL has a natural topology such thatl∞(L)/c0(L) ∼= C(L̃ ).
But this is related to the spectrum of the quotient algebraCL(X)/K (X), as it can be
deduced from (1.7). We do not insist on this aspect because the use of ultrafilters seems
to us more convenient in computations (see the last part of Sect. 1.6).

The set of algebras of interactions is obviously a complete lattice for the inclusion
order relation. Indeed, an arbitrary intersection of algebrasA satisfying (1.1) satisfies
it too. The existence of the upper bound for arbitrary families is a consequence, because
Cu

b(X) is the largest algebra of interactions. These operations allow one to construct new
algebras from the existing ones.

Algebras ofN -body type are constructed using a slight modification of this idea.
Note first that ifY ⊂ X is a closed subgroup, then we can embedC0(X/Y ) ⊂ Cu

b(X)

with the help of the mapϕ �→ ϕ ◦ πY , whereπY is the canonical surjection ofX onto
the quotient groupX/Y . C0(X/Y ) does not containC∞(X) but is translation invariant,
so we may construct the crossed productC (Y ) = C0(X/Y )�X. Now assume thatX is
(the underlying additive group of) a real finite dimensional vector space. Then the norm
closureA of

∑
Y C0(X/Y ), whereY runs over the set of all vector subspaces ofX, is

an algebra of interactions andC = A � X is a generalized version of the algebras of
hamiltonians appearing in theN -body problem. We refer to [13] for a detailed study of
C and of the hamiltonians affiliated to it (including the Mourre estimate).

We mention however thatC has a quite remarkable structure:it is graded by the
lattice of all subspaces Y of X, and so belongs to a general class of algebras whose
quotient with respect to the compacts can be computed explicitly. More precisely,C is
the norm closure inB(X) of

∑
Y C (Y ), one hasC (Y ) · C (Z) ⊂ C (Y ∩ Z), and the

sum
∑

Y∈L C (Y ) is direct (linearly and topologically) ifL is finite. For each subspace
Y we defineCY as the closure of the sum

∑
Z⊃Y C (Z). Then there is a canonical linear

projectionPY of C ontoCY which is also a morphism. The mapT �→ (PY [T ])Y∈H,
whereH is the set of hyperplanes ofX, induces an embedding

C /K (X) ⊂∏
Y∈H CY

whose range consists of families(TY )Y∈H such that{TY | Y ∈ H} is a compact set in
C . As a corollary, ifH is an observable affiliated toC , we have

σess(H) =
⋃
Y∈H

σ(HY ),

whereHY = PY [H ]. We note thatHY can also be expressed, as before, as a strong limit
of translated observablesUxHU∗x .

GradedC∗-algebras which are not crossed products are also useful. For example, to
each symplectic space one can associate an algebra of this type, to which hamiltonians
of N -body systems in constant external magnetic fields are affiliated (see [23]). The
simplest case isC0(X)+ C0(X

∗)+K (X).

In this paper we consider only crossed products of algebras of interactions
A ⊂ Cu

b(X) on whichX acts by translations. It is quite interesting, however, to re-
placeX by non commutative groups: this gives the possibility to treat particle systems
in magnetic fields which do not vanish at infinity. Indeed, we propose in [23] to consider
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groupsG which are extensions ofX by abelian groups. ThenA � G is theC∗-algebra
of energy observables of systems havingX as configuration space, subject to internal
interactions of typeA , and whose “momentum observable” derives from the symmetry
groupG which is determined by the external magnetic field.

1.5. Intrinsic description of algebras of hamiltonians. In the case of sparse sets it is
possible to define the algebraCL(X) in a rather simple way without mentioning crossed
products. This is the content of the next theorem, where we characterize the elements of
CL(X) in geometric terms (involving the phase spaceX⊕X∗). Its rather long proof will
be given in the Appendix Sect. 7. We denote byχ

Lc
)
(Q) the operator of multiplication

by the characteristic function of the setX\(L+)). Below (and later on), when a symbol
such asT (∗) appears in a relation involving an operatorT , we mean that the relation is
satisfied (or has to be satisfied) both byT and byT ∗.

Theorem 1.2. A bounded operator T on L2(X) belongs to CL(X) if and only if

(i) lim x→0 ‖(Ux − 1)T (∗)‖ = 0,
(ii) lim k→0 ‖VkT V ∗k − T ‖ = 0,
(iii) there exists T̃ ∈ C0(X

∗) such that for each ε > 0 there is a compact set ) ⊂ X

such that ‖χLc
)
(Q)(T − T̃ )(∗)‖ < ε.

One has T ∈ CL,0(X) if and only if one can take T̃ = 0.

It is interesting to note that this statement is of the same nature as the Riesz–Kolmogo-
rov characterization of the compact operators inL2(X) (see [21]; we setS⊥ = 1− S):
An operatorT ∈ B(X) is compact if and only if it satisfies one of the following equivalent
conditions:

(i) lim x→0 ‖(Ux − 1)T ‖ = 0 and limk→0 ‖(Vk − 1)T ‖ = 0;
(ii) ∀ε > 0 ∃ϕ ∈ Cc(X) ∃ψ ∈ Cc(X

∗) such that‖ϕ(Q)⊥T ‖ + ‖ψ(P )⊥T ‖ < ε.

There are characterizations similar to that of Theorem 1.2 in many of the concrete
examples ofC∗-algebras of hamiltonians. The case of the (generalized)N -body algebra
is treated in [13]. The gradedC∗-algebra associated with a symplectic space admits
a similar description, see [23]. The following very simple description of the algebra
Cu

b(R
n) � Rn has been obtained in [13] by the methods of the Appendix Sect. 7 (recall

the results of R. Beals [2], although they belong to the rather different setting of smooth
pseudo-differential operators):

Theorem 1.3. A bounded operator T on L2(Rn) belongs to Cu
b(R

n) � Rn if and only if
limx→0 ‖(Ux − 1)T (∗)‖ → 0 and limk→0 ‖V ∗k T Vk − T ‖ → 0.

1.6. Localizations at infinity. We consider here the largest algebra of interactions
A = Cu

b(X). A rather detailed sketch of the proof of Theorem 1.4 can be found in
[22]; complete proofs and applications will be published elsewhere. We must first give
a “convenient” description ofCu

b(X)/C0(X). As we mentioned above, there are many
such descriptions; our choice is motivated by the desire to obtain an algorithm efficient
in practical computations.

Let ϕ ∈ Cu
b(X) and let, be an ultrafilter onX finer than the Fréchet filter; we

denote byγX the set of all such ultrafilters. Thelocalization at infinity of ϕ at the
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point , is the functionϕ, ∈ Cu
b(X) given byϕ,(x) = limy ϕ(x + y), wherey → ∞

along the filter, and the limit exists locally uniformly inx. For example, it is easy
to check that all the localizations at infinity ofϕ are constant functions if and only
if lim y→∞[ϕ(x + y) − ϕ(y)] = 0 for eachx ∈ X. It can be shown that the map
ϕ �→ {ϕ,},∈γX is a morphismCu

b(X) → Cu
b(X)[γX] (see (2.5)) withC0(X) as kernel.

Thus we get a canonical embeddingCu
b(X)/C0(X) ⊂ Cu

b(X)[γX]. From (1.3) and (3.7)

we then deduce an embeddingCu
b(X) � X/K (X) ⊂ [

Cu
b(X) � X

][γX] which, in turn,
allows one to prove the following:

Theorem 1.4. Let H be an observable affiliated to the algebra Cu
b(X) � X. Then for

each , ∈ γX the strong limit s -limx UxHU∗x = H, exists when x →∞ along , and

σess(H) =⋃
, σ(H,). (1.10)

By strong convergence we mean s -limx θ(UxHU∗x ) = θ(H,) for eachθ ∈ C0(X). The
observablesH, are affiliated toCu

b(X) � X and will be calledlocalizations at infinity
of H . The proof of the theorem and a better insight of the objects involved require the
Stone–̌Cech compactification ofX. We give some applications of Theorem 1.4 with
X = Rn in order to make the connection with [24].

Theorem 1.3 allows us to get many hamiltonians affiliated toCu
b(R

n) � Rn which
cannot be obtained with the help of Theorem 2.1 (because the perturbationV will not
be comparable withH0). Assume thatH is a self-adjoint operator onL2(Rn) such that
G = D(|H |1/2) ⊂ D(θ(P )) with θ(p)→∞ if p →∞. ThenT = (H + i)−1 satisfies
the first condition of Theorem 1.3 (and conversely). To ensure the second condition, we
askVkG ⊂ G for all k ∈ Rn and limk→0 ‖V ∗k HVk−H‖G→G ∗ = 0. ThenH is affiliated
to Cu

b(R
n) � Rn.

For example, consider a generalized elementary hamiltonianH = h(P ) + V (Q),
whereh, V are real functions onRn. Assumeh continuous, polynomially bounded,
h(p)→∞ if p →∞, and limk→0 supp |h(p + k)− h(p)|(1+ |h(p)|)−1 = 0. LetV
be locally integrable and assume that its negative part is form bounded with respect to
h(P ) with relative bound< 1. ThenH is a well defined self-adjoint operator (sum in the
sense of forms) withG = D(|h(P )|1/2) ∩D(V+(Q)1/2) and the preceding conditions
are satisfied. We haveUxHU∗x = h(P ) + V (x +Q), so the localizations at infinity of
H are determined by the (suitably defined) localizations at infinity of the functionV .
Thus, in order to computeσess(H), we are once again reduced to an abelian situation.
The “elementary” case, whenV ∈ Cu

b(R
n), is very easy: we haveH, = h(P )+V,(Q),

where the localizations at infinityV, are as defined before.
More interesting is the case of unbounded potentials. For simplicity we consider func-

tionsV bounded from below and of classCm+1 for somem ∈ N, such thatV (α)(x)→ 0
if |α| = m + 1 andx → ∞. Then, if , ∈ γRn, there are only two possibilities
(the limits are taken along,): either limy V (x + y) = +∞ for almost allx ∈ X, or
limy V (x + y) =: V,(x) exists (and is finite) locally uniformly inx ∈ X. In the second
caseV, is a polynomial (bounded from below) of degree≤ m and these polynomials
will be called localizations at infinity ofV . Strictly speaking,V has one more local-
ization, the function equal to+∞ almost everywhere; but the correspondingH, is the
observable∞ andσ(∞) = ∅, so it does not contribute to the union from (1.10). The
next result covers those from [24] when the magnetic field is absent.
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Theorem 1.5. Under the preceding conditions

σess(h(P )+ V ) =⋃
v σ(h(P )+ v),

where the union is performed over all the localizations at infinity v of V .

We shall give an explicit example in the casen = 1. Note that if, ∈ γR then either
[0,∞) ∈ , or (−∞,0) ∈ ,. Thus there are two contributionsσ±ess(H) to the union from
(1.10) andσess(H) = σ+ess(H)∪σ−ess(H). We takeH = h(P )+V (Q) onL2(R), whereh
is as before andV : R → R is continuous and bounded from below. ThenH is affiliated
toCu

b(R)� R andσ±ess(H) is determined by the behavior ofV at±∞. Assume now that
for large positivex we haveV (x) = xaω(xθ ) with a ≥ 0,0 < θ < 1 andω a positive
continuous periodic function with period 1. Moreover, we assume thatω vanishes only
at the points ofZ and that there are real numbersλ,µ > 0 such thatω(t) ∼ λ|t |µ when
t → 0 (different asymptotics from left and right can be treated). Then there are three
possibilities:

(1) If a < µ(1− θ ) the localizations at+∞ of V are all the non-negative constant
functions, thusσ+ess(H) = [inf h,+∞).

(2) If a = µ(1− θ ) the localizations at+∞ of V are the functionsv(x) = λ|θx + c|µ
with c ∈ R. Thusσ+ess(H) = σ(h(P ) + λ|θQ|µ), hence it is a discrete not empty
set.

(3) If a > µ(1− θ ) the only localization at+∞ of V is+∞, soσ+ess(H) = ∅.

1.7. Quantum fields. We shall discuss here theC∗-algebra of hamiltonian operators of
a quantum field, extending thus the results from [20], where only models with a particle
number cut-off are considered. Our main purpose is to explain how one can derive a
Mourre estimate from a knowledge of this algebra, so we shall restrict ourselves to the
case when the one-particle Hilbert space isH = L2(Rs), although most of the next
considerations are valid in an abstract and general setting, like in [20]. We refer to [15]
for a proof of the Mourre estimate for theP(φ)2 model and for the second quantization
formalism that we use without further explanation. We recall only that the field operator
is φ(u) = (a(u)+ a∗(u))/

√
2 if u ∈ H.

The Hilbert space generated by the states of the field is the symmetric Fock space
>(H). We takeC0(R

s∗) as aC∗-algebra of one-particle kinetic energies and our purpose
is to study models for which the “elementary” hamiltonians (compare with Sect. 1.1)
are of the formd>(ω) + W , whereω is affiliated toC0(R

s∗) with inf ω ≡ m >

0 andW is a polynomial in the field operators with a particle number cut-off (we
stress that one of the main points of our approach is to start with a small class of
elementary hamiltonians which, however, should generate aC∗-algebra to which the
physically realistic hamiltonians are affiliated). LetC = C∞(Rs∗). An argument similar
to that of the proof of Theorem 1.1 justifies the following definition: thealgebra of
energy observables of the quantum field is theC∗-algebraC generated by the operators
φ(u)>(S), whereu ∈ H andS ∈ C with ‖S‖ < 1. If we denoteK (H) = K(>(H)),
the main result is:

Theorem 1.6. There is a unique morphism P : C → C⊗C such that P [φ(u)>(S)] =
S ⊗ [φ(u)>(S)]. The kernel of this morphism is K (H) (which is a subset of C ). Thus

Ĉ ≡ C /K (H) ↪→ C ⊗ C . (1.11)
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It is interesting to note that one can proceed as in Sect. 1.1 and defineC as a kind
of crossed product: if thealgebra of interactions is the C∗-algebraA obtained by
takingC = C above and thealgebra of kinetic energies is theC∗-algebraB generated
by the operators>(S) with S ∈ C, ‖S‖ ≤ 1, thenC = [[A · B]] (compare with
Theorem 4.1). We haveK (H) ⊂ A and there is a unique morphismP0 : A →
A such thatP0[φ(u)>(λ)] = λφ(u)>(λ) if λ ∈ C and |λ| < 1. P0 is surjective
and hasK (H) as kernel, so we get a canonical identification̂A ∼= A . An easy and
interesting consequence is thatall the operators in A have a countable spectrum (note
that‖Pk

0[T ]‖ → 0 if k →∞).A is also the algebra generated byφ(u)ϕ(N) with u ∈ H
andϕ ∈ Cc(R), where N is the particle number operator, andP0 is uniquely determined
by the relationP0[φ(u)ϕ(N)] = φ(u)ϕ(N + 1).

In the present situation the most convenient affiliation criterion is the following: ifH is
a self-adjoint bounded from below operator on>(H), and if e−H ∈ C , thenH is affiliated
to C . For example, ifω is as above and the symmetric operatorW is a (generalized)
polynomial in the field operators, and ifWn = χ

n(N)Wχ
n(N) (wheren ∈ N andχ

is the characteristic function of[0, n]), then it is easy to see that e−Wn>(e−ω) ∈ C
andP [

e−Wn>(e−ω)
] = e−ω⊗ [

e−Wn−1>(e−ω)
]
. Then the “norm convergence” version

of the Trotter–Kato formula shows thatH(n) = d>(ω) + Wn is affiliated toC and
P [

e−H(n)
] = e−ω⊗e−H(n−1). If there is a self-adjoint operatorH such that e−H(n) →

e−H in norm asn → ∞, we get thatH is affiliated toC andĤ = ω ⊗ 1+ 1⊗ H .
These ideas must be used in conjunction with the fact that affiliation is preserved by
convergence in the norm resolvent sense of sequences of self-adjoint operators. In this
way one can prove, for example, that the hamiltonian of theP(φ)2 model (s = 1) with
a spatial cut-off is affiliated toC .

We come now to the question of the Mourre estimate for a hamiltonianH of the
preceding type. We refer to [20] for a résumé of the Mourre method adapted to the
present case. Here we consider only conjugate operators of the formA = d>(a), where
a = F(P )Q +QF(P ) andF is a vector field of classC∞c ; such anA will be called
standard. A self-adjoint operator on>(H) which is of class4 C1

u(A) orC1,1(A) for each
standardA will be called of classC1

u or C1,1, respectively.

Theorem 1.7. Let H be a bounded from below hamiltonian strictly affiliated to C and
such that Ĥ = ω(P ) ⊗ 1 + 1 ⊗ H , where ω : Rs → R (the one-particle kinetic
energy) is a function of class C1, inf ω ≡ m > 0, and ω(p) → ∞ if p → ∞. Then
σess(H) = [m + inf H,∞). Assume that H is of class C1

u. Denote κ(ω) the set of
critical values of the function ω, let κn(ω) = κ(ω)+ · · · + κ(ω) (n terms), and define
the threshold set of H by

τ (H) =⋃∞
n=1

[
κn(ω)+ σp(H)

]
(1.12)

where σp(H) is the set of eigenvalues of H . Then τ (H) is a closed set and H admits a
standard local conjugate operator at each point not in τ (H). In particular, the eigenval-
ues of H which do not belong to τ (H) are of finite multiplicity and their accumulation
points belong to τ (H). If H is of class C1,1, then it has no singular continuous spectrum
outside τ (H). If we also assume that κ(ω) is countable, then τ (H) is countable too, so
H has no singular continuous spectrum.

4 H is of classC1
u(A) if the mapt �→ eitA(H + i)−1e−itA is of classC1 in norm. TheC1,1(A) class is

defined by requiring that this map be of Besov classB
1,1∞ , a slightly stronger regularity condition.
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The preceding result is a rather straightforward consequence of Theorem 1.6, as ex-
plained in [20]. We use standard operatorsA associated withC∞c vector fields satisfying
F(p) ·∇ω(p) ≥ 0. We define theA-threshold set τA(H) of H as the set of real numbers
λ such that: ifϕ(H)∗[H, iA]ϕ(H) ≥ a|ϕ(H)|2 + K with a real,ϕ ∈ C∞c , ϕ(λ) �= 0,
andK a compact operator, thena ≤ 0. ObviouslyτA(H) ⊂ σess(H). TheA-critical
set κA(H) of H is defined in the same way but withK = 0. Let σp(H) be the set of
eigenvalues ofH . ThenκA(H) = τA(H) ∪ σp(H) andκA(H) \ τA(H) consists of
eigenvalues of finite multiplicity which can accumulate only towardτA(H). The ex-
pression forĤ given in the theorem impliesτA(H) = κa(ω(P ))+ κA(H) (see [20]).
This suggests to consider the setτ (H) satisfying the relation

τ (H) = κ(ω)+ [
τ (H) ∪ σp(H)

] = [κ(ω)+ τ (H)] ∪ [
κ(ω)+ σp(H)

]
.

The unique solution is given by (1.12).
Observe that the strict positivity conditionm > 0 plays an important role above. This

is no longer necessary if we consider hamiltonians with a particle number cut-off, as in
[20]. Indeed, ifH is given by a formal expressionH = d>(ω) + W , the restrictions
Hn = χ

n(N)Hχ
n(N) are often well defined self-adjoint operators and they satisfy

Ĥn = ω⊗ 1+ 1⊗Hn−1. Then the threshold set ofHn is defined by the relation (with
σp(H0) = {0}):

τ (Hn) =⋃n
i=1

[
κ i (ω)+ σp(Hn−i )

]
. (1.13)

1.8. Coupling of two systems. We have mentioned in Sect. 1.1 that in the applications it is
often useful to considerC∗-algebras of hamiltonians of the formC ⊗K(E). Physically
speaking, this means that we couple the system havingC asC∗-algebra of energy
observables with a confined system havingK(E) asC∗-algebra of hamiltonians (the
observables affiliated toK(E) have purely discrete spectrum). We shall consider now
the coupling of two arbitrary systems. Assume thatC1,C2 areC∗-algebras of operators
on the Hilbert spacesH1,H2 respectively such thatK(Hi ) ⊂ Ci . We think ofCi as
the algebra of hamiltonians of the systemi which hasHi as state space. Then we take
H1⊗H2 as the state space of the coupled system andC1⊗C2 as its algebra of energy
observables. SinceK(H1)⊗K(H2) = K(H1⊗H2) we are in a situation similar to the
preceding ones:K(H1⊗H2) ⊂ C1⊗C2 ⊂ B(H1⊗H2). We shall prove in Sect. 2.4
thatif the C∗-algebras C1,C2 are nuclear, then there is a canonical embedding

̂C1⊗ C2 ⊂
[
Ĉ1 ⊗ C2

]⊕ [
C1⊗ Ĉ2

]
, (1.14)

where a hat means a quotient with respect to the ideal of compact operators. In particular,
let Pi be the natural morphismCi → Ĉi . If H is an observable affiliated toC1 ⊗ C2,
letH1 = (P1⊗ 1)[H ] andH2 = (1⊗P2)[H ]. Then we getσess(H) = σ(H1)∪ σ(H2).
For example, these results allow one to study quantum fields interacting withN -body
systems.

2. Observables and Their Essential Spectra

2.1. Observables and self-adjoint operators. We recall several notations and conven-
tions which are usual in the theory ofC∗-algebras. A∗-homomorphism between two
C∗-algebras will be calledmorphism. A ∼= B means that theC∗-algebrasA andB
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are canonically isomorphic; in such a situation the canonical morphism is either obvious
from the context or we give it explicitly. Byideal we mean a closed bilateral (hence
self-adjoint) ideal. We make the same conventions for the more general case of Banach
∗-algebras.

We say that an observableH affiliated to aC∗-algebraC is strictly affiliated to C
if the linear subspace generated by{ϕ(H)S | ϕ ∈ C0(R), S ∈ C } is dense inC .
Now consider the case where theC∗-algebraC is realized on a Hilbert spaceH . The
affiliation of a self-adjoint operatorH onH to C has been defined in Sect. 1.2 and the
strict affiliation is defined in an obvious way. We mention that there are no observables
strictly affiliated toB(H ) (if dim H = ∞) and that the operator of multiplication by
the functionh(x) = x + x−1 in L2(R) is affiliated toC0(R) but not strictly.

The observables affiliated toC can always be realized as operators onH , but these
operators are not densely defined in general. On the other hand, ifC is nondegenerate on
H (i.e. if the elementsSf , with S ∈ C andf ∈H , generate a dense linear subspace),
then the correspondence between self-adjoint operators onH strictly affiliated toC
and observables strictly affiliated toC defined above is bijective (see [13]).

We stress once again the fact that ifJ is an ideal inC andH is a self-adjoint operator
affiliated toC , then the quotient̂H is a well defined observable affiliated tôC = C /J .
But this operation is meaningless in a pure Hilbert space setting: in most casesĤ has
no meaning as an operator onH . However, by the preceding remarks, ifH is strictly
affiliated toC then one can realizêH as a self-adjoint operator in each nondegenerate
representation of̂C .

There is a close connection between the notion of observablestrictly affiliated toC
and that of a self-adjoint operator affiliated withC as it was defined by Woronowicz
in [36] (according to [37], this notion first appeared in [1]; see also Chapter 9 in [29]).
More precisely, ifH is such an observable, letTH be the closure of the operator defined
on the dense subset ofC consisting of elements of the formϕ(H)S with ϕ ∈ Cc(R) by
THϕ(H)S = ϕ1(H)S, whereϕ1(λ) = λϕ(λ). ThenH �→ TH is a bijection between the
set of observables strictly affiliated toC and the set of self-adjoint operators affiliated
with C in the sense of Woronowicz. Let us note that the observables affiliated toC0(X)

are the continuous functions on open subsets ofX, whereas the self-adjoint operators
affiliated with the same algebra in the sense of Woronowicz are the functions fromC(X).

The point of view of Woronowicz is convenient in two respects: (1) it is easy to
consider operators more general than self-adjoint, and (2) there is an obvious candidate
for the sum of two such operators. On the other hand, our definition makes the operation
of taking the image through a morphism (hence of taking the quotient with respect to
an ideal) very natural and easy to define, and this is the operation of main interest in
our approach. Moreover, we emphasize that observables not strictly affiliated toC play
an important role here: for example, most of the localizations at infinity which appear
in Theorem 1.4 are of such type. Besides the trivial observableH = ∞ (defined by
ϕ(H) = 0 for all ϕ ∈ C0(R)) and those of the examples given above, we mention that
the hamiltonian of anN -body system with hard-core interactions is affiliated but not
strictly to theN -body algebra (see Sect. 1.4).

LetH0 be a self-adjoint bounded from below operator onH . LetV be a continuous

symmetric sesquilinear form onG = D(|H0| 1
2 ) such thatV ≥ −µH0 − δ as forms

on G , for some numbersµ ∈ [0,1) andδ ∈ R. Then the form sumH = H0 + V is
a self-adjoint operator onH with the same form domain asH0. We are interested in
conditions which ensure the affiliation ofH to C if H0 is affiliated toC . The following
result is from [13]. Letλ be any real number such thatH0 + λ ≥ c > 0.
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Theorem 2.1. If H0 is strictly affiliated to C and (H0 + λ)−αV (H0 + λ)−1/2 belongs
to C for some α ≥ 1/2, then H is strictly affiliated to C .

2.2. A formula for σess(H). LetH be an observable affiliated to aC∗-algebraC , J an
ideal inC , andĤ the quotient ofH with respect toJ . Clearly

σ(Ĥ ) = {λ ∈ R | ϕ ∈ C0(R) andϕ(λ) �= 0�⇒ ϕ(H) /∈J }. (2.1)

In this subsection we give a description ofσ(Ĥ ) in a situation important for us.
Let {Ci}i∈I be an arbitrary family ofC∗-algebras. We recall the definition of their

direct product
∏

i∈I Ci and their direct sum
⊕

i∈I Ci :∏
i∈I Ci = {S = (Si)i∈I | Si ∈ Ci and‖S‖ := sup

i∈I
‖Si‖ <∞},⊕

i∈I Ci = {S = (Si)i∈I | Si ∈ Ci and‖Si‖ → 0 asi →∞}.
These areC∗-algebras for the usual operations and

⊕
i∈I Ci is an ideal in

∏
i∈I Ci . We

denote by
∏

i∈I Si and
⊕

i∈I Si an element of
∏

i∈I Ci and
⊕

i∈I Ci respectively.
If for eachi ∈ I an observableHi affiliated toCi is given, we may associate to it

an observableH =∏
i∈I Hi affiliated toC =∏

i∈I Ci by settingϕ(H) =∏
i∈I ϕ(Hi)

for eachϕ ∈ C0(R). It is easily shown thatH is affiliated to the subalgebra
⊕

i∈I Ci if
and only ifHi → ∞ asi → ∞ in I in the following sense: for each compact real set
K there is a finite subsetF ⊂ I such thatσ(Hi) ∩K = ∅ if i ∈ I \ F . One has

σ(H) =⋃
i∈I σ(Hi), (2.2)

and if H is affiliated to
⊕

i∈I Ci then the union is already closed. We will need the
following generalization of this relation.

Theorem 2.2. For each i ∈ I let Ji be an ideal in Ci and let J =⊕
i∈I Ji , so that

J is an ideal in C = ∏
i∈I Ci . Denote by Ĥi the quotient of Hi in Ci/Ji and let Ĥ

be the quotient of H in C /J . Then

σ(Ĥ ) =
⋂
F⊂I
F finite

{(⋃
i∈F σ(Ĥi )

) ∪ (⋃
j∈I\F σ(Hj )

)}
. (2.3)

Proof. Let λ /∈ σ(Ĥ ). By (2.1) there existsϕ ∈ C0(R) such thatϕ(µ) = 1 on a
neighborhoodJ of λ andϕ(H) ∈ J . Thus for alli ∈ I one hasϕ(Hi) ∈ Ji and
‖ϕ(Hi)‖ → 0 asi → ∞ in I . The first assertion shows (again by (2.1)) thatλ /∈⋃

i∈I σ(Ĥi ) and the second one ensures the existence of a finite setF ⊂ I such that
‖ϕ(Hi)‖ < 1 if i /∈ F . But sup{|ϕ(x)| | x ∈ σ(Hi)} = ‖ϕ(Hi)‖ < 1, soJ ∩ σ(Hi) = ∅
for all i ∈ I \ F , henceλ /∈ ⋃

i∈I\F σ(Hi). Sinceσ(Ĥi ) ⊂ σ(Hi) for all i, we get

λ /∈⋃
i∈I σ(Ĥi ) ∪⋃

i∈I\F σ(Hi) =⋃
i∈F σ(Ĥi ) ∪⋃

i∈I\F σ(Hi) for some finiteF .
Conversely, ifλ does not belong to the r.h.s. of (2.3) (which is a closed set of the

form
⋂

F⊂I
EF ) there is a compact neighborhoodJ of λ disjoint from it. Since the upper

directed family of open setsR \EF coversJ , there isF0 (a finite subset ofI ) such that
J ⊂ R\EF0. ThusJ ∩⋃i∈F0

σ(Ĥi ) andJ ∩⋃i∈I\F0
σ(Hi) are empty sets. This means

that there is aϕ ∈ Cc(J ), with ϕ = 1 on a neighborhood ofλ, such thatϕ(Hi) ∈ Ji

for all i ∈ F0 andϕ(Hi) = 0 for all i /∈ F0. In particularϕ(Hi) ∈ Ji for all i ∈ I and
‖ϕ(Hi)‖ → 0 asi →∞ in I . Thusϕ(Ĥ ) ∈J , i.e.λ /∈ σ(Ĥ ). )*
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It is interesting to remark on the similarity between (2.1) and one of the characteriza-
tions of the usual notion of essential spectrum in a Hilbert space setting (see Sect. 1.2).
It is thus natural to call this set theessential spectrum of H with respect to the ideal J
and to denote itJ -σess(H). Then (2.3) may be written as:

J -σess(H) =
⋂
F⊂I
F finite

{(⋃
i∈F Ji-σess(Hi)

) ∪ (⋃
j∈I\F σ(Hj )

)}
.

Assume, more specifically, that eachCi is realized on a Hilbert spaceHi and that
Ji = K(Hi ). Let H = ⊕

i∈I Hi and let us realizeC on H in the usual way. It is
easy to show thatC ∩K(H ) =J . We get

σess(H) =
⋂
F⊂I
F finite

{[⋃
i∈F σess(Hi)

] ∪ [⋃
i∈I\F σ(Hi)

]}
. (2.4)

2.3. Restricted products of C∗-algebras. We consider here the case whenCi ≡ A is
an algebra independent ofi ∈ I . Then we denote byA (I ) theC∗-algebra

⊕
i∈I A .

Besides the direct product and the direct sum one can introduce now a thirdC∗-algebra:

A [I ] = {(Si)i∈I ∈∏
i∈I A | {Si | i ∈ I } is relatively compact inA }. (2.5)

This is aC∗-subalgebra of
∏

i∈I A andA (I ) is an ideal inA [I ]. We denote byc0(I ;A )

andl∞(I ;A ) theC∗-algebras consisting ofA valued maps onI which converge to zero
at infinity (I being equipped with the discrete topology) or are bounded, respectively.
ThenA (I ) = c0(I ;A ) and

∏
i∈I A = l∞(I ;A ). Moreover,

A [I ] = lrc(I ;A ) := {S : I → A | S has relatively compact range inA }.

Lemma 2.1. If A is a C∗-algebra, then

A (I ) ∼= c0(I )⊗A and A [I ] ∼= l∞(I )⊗A . (2.6)

Proof. The first relation is obvious. To prove the second one, assume thatA ⊂ B(H )

and realizel∞(I ) as aC∗-algebra onl2(I ) in the standard way. Thenl∞(I )⊗alg A is
realized onl2(I )⊗H = l2(I ;H ) as the setl∞fin (I ;A ) of operators of multiplication
by functionsF : I → A such that the range ofF is included in a finite dimensional
subspace ofA . Finally, the fact that the closure ofl∞fin (I ;A ) in l∞(I ;A ) is equal to
lrc(I ;A ) is easy to prove. )*

One more object will appear naturally in our later investigations: theI -asymptotic
algebra of A . This is the quotient algebra:

A 〈I 〉 := A [I ]/
A (I ). (2.7)

The following description ofA 〈I 〉 explains the name we gave it. Let̃I ≡ γ I be the
set of ultrafilters, on I finer than the Fréchet filter, equipped with its natural topology
of compact space (̃I is the boundary ofI in its Stone-̌Cech compactification). Then for
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eachS = (Si)i∈I ∈ A [I ] and each, ∈ Ĩ the limit limi Si := S, asi →∞ along the
filter , exists (because the range of the mapS : I → A is included in a compact subset
of A ). It can be shown that the morphismS �→ (S,),∈Ĩ hasA (I ) as kernel and induces
an isomorphism (see [22] for details)

A 〈I 〉 ∼= C(Ĩ ;A ). (2.8)

We now describe a certain class ofC∗-subalgebras ofA [I ] containing the idealA (I ).
Let I be a finite partition ofI consisting of infinite sets and

A I = {(Si)i∈I ∈ A [I ] | lim
i→∞,i∈J Si ≡ SJ exists inA , ∀J ∈ I}. (2.9)

Clearly, this is the set ofS ∈ A [I ] such that, for eachJ ∈ I and for each ultrafilter
, ∈ Ĩ with J ∈ ,, the limit S, depends only onJ . Note that for each, ∈ Ĩ there
is a uniqueJ ∈ I such thatJ ∈ , so I defines also a partition of̃I (consisting of
subsets which are open and closed, as it can be easily shown). The following fact is a
consequence of the definition (2.9):

A I/
A (I )

∼=⊕
J∈I A . (2.10)

2.4. Tensor products. We prove here a result implying (1.14). LetC1,C2 be nuclear
C∗-algebras equipped with idealsJ1,J2. For eachi let Pi : Ci → Ci/Ji be the
canonical surjection and let us consider the tensor products of these morphisms with
the identity map. We get morphismsP ′1 = P1 ⊗ 1 andP ′2 = 1⊗ P2 of C1 ⊗ C2 into
Ĉ1 ⊗ C2 andC1⊗ Ĉ2 respectively.

Theorem 2.3. The kernel of the morphism

P ′1⊕ P ′2 : C1⊗ C2 →
[
Ĉ1 ⊗ C2

]⊕ [
C1⊗ Ĉ2

]
is equal to J1⊗J2.

Proof. The nuclearity ofC2 implies that the kernel ofP ′1 is equal toJ1 ⊗ C2 (see
Theorem 6.5.2 in [32]). For the same reason we get kerP ′2 = C1 ⊗J2. It remains to
prove that [

J1⊗ C2
]⋂ [

C1⊗J2
] =J1⊗J2. (2.11)

Only the inclusion⊂ is not trivial, so assume thatS belongs to the left hand side of
(2.11). For eachε > 0 we can findK1, . . . , Kn ∈J1 andT1, . . . , Tn ∈ C2 such that the
operatorS′ =∑

Ki ⊗Ti satisfies‖S−S′‖ ≤ ε. SinceJ1 has an approximate identity,
we can findK ′ ∈ J1 with ‖K ′‖ ≤ 1 and‖K ′Ki −Ki‖ ≤ ε/(n‖Ti‖) for eachi. Then
‖K ′ ⊗ 1 · S′ − S′‖ ≤ ε, hence‖S −K ′ ⊗ 1 · S‖ ≤ 3ε. Similarly we findK ′′ ∈J2 with
‖K ′′‖ ≤ 1 and‖S − S · 1⊗K ′′‖ ≤ 3ε. Thus‖S −K ′ ⊗ 1 · S · 1⊗K ′′‖ ≤ 6ε. Finally
‖S − K ′ ⊗ 1 · S′ · 1⊗ K ′′‖ ≤ 7ε. SinceK ′ ⊗ 1 · S′ · 1⊗ K ′′ ∈ J1 ⊗J2 andε is
arbitrary, we getS ∈J1⊗J2. )*
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3. Crossed Products

3.1. Definition of crossed products. In this section we first recall the definition of
crossed products in the particular case of abelian groups and then we discuss several
results which we have not been able to locate in the literature in a form convenient to us.
We fix a locally compact abelian groupX and a Haar measure dx on it. But note that
the crossed productsA � X defined below are independent of the choice of dx.

We shall say that aC∗-algebraA is anX-algebra if a homomorphismα : x �→ αx

of X into the group of automorphisms ofA is given, such that for eacha ∈ A the
mapx �→ αx(a) is continuous. A subalgebra ofA is calledstable if it is left invariant
by all the automorphismsαx . If (A , α) and(B, β) are twoX-algebras, a morphism
φ : A → B is called anX-morphism (or covariant morphism) ifφ[αx(a)] = βx[φ(a)]
for all x ∈ X anda ∈ A .

Let A be anX-algebra and letL1(X;A ) be the Banach∗-algebra constructed as
follows. As a Banach space it is just the space of (Bochner) integrable (equivalence
classes of) functionsS : X → A . The product and the involution are defined by:

(S · T )(x) =
∫
X

S(y) αy[T (x − y)] dy, (3.1)

S∗(x) = αx[S(−x)∗]. (3.2)

Assume, furthermore, thatA is realized on a Hilbert spaceH and let HX =
L2(X;H ). Then we get a faithful representation ofL1(X;A ) on HX, the so-called
left regular representation, by defining the action ofS ∈ L1(X;A ) ontoξ ∈HX by

(S • ξ)(x) =
∫
X

α−x[S(x − y)] ξ(y)dy. (3.3)

Definition 3.1. If A is an X-algebra, then the crossed product A � X of A by the
action α of X, is the enveloping C∗-algebra of L1(X;A ).

ThusA � X is the completion ofL1(X;A ) under the largestC∗-norm on it, and each
representation ofL1(X;A ) extends to a representation ofA � X (for the notion of
envelopingC∗-algebra see Sect. 2.7 in [17]). Due to the fact thatX is abelian, hence
amenable, the crossed product defined above coincides with the “reduced crossed pro-
duct” (Theorems 7.7.5 and 7.7.7 in [34]): the left regular representation ofL1(X;A )

extends to a faithful representation ofA � X. In particular,A � X is canonically
isomorphic to the closure inB(HX) of the∗-algebra of operators of the form (3.3).

Heuristically, one should think ofA � X as a kind of twisted tensor product of the
algebrasA andC0(X

∗), whereX∗ is the group dual toX. In fact, if the action ofX on
A is trivial, thenA � X = A ⊗ C0(X

∗).

3.2. Functorial properties. The correspondenceA �→ A � X extends to a covariant
functor from the category ofX-algebras (withX-morphisms as morphisms) into the
category ofC∗-algebras. Indeed, ifφ : A → B is anX-morphism, then it clearly
induces a morphismφ0 : L1(X;A )→ L1(X;B) by the formula(φ0S)(x) := φ[S(x)].
Hence we may define the morphismφ∗ : A �X → B �X as the canonical extension
of φ0 to the enveloping algebras. A very useful fact is described in the next theorem (see
[22] for a detailed proof).
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Theorem 3.1. Let J , A , B be X-algebras and let

0 −−−−→ J
φ−−−−→ A

ψ−−−−→ B −−−−→ 0

be an exact sequence of X-morphisms. Then

0 −−−−→ J � X
φ∗−−−−→ A � X

ψ∗−−−−→ B � X −−−−→ 0

is an exact sequence.

Let J be a stable ideal of anX-algebraA . By Theorem 3.1, ifj : J → A is the
inclusion map, thenj∗ : J � X → A � X is an isometric morphism ofJ � X onto
an ideal ofA � X. From now onwe shall identify J � X with its image under j∗. So,
J � X is just the closure inA � X of the idealL1(X;J ) of L1(X;A ).

Now the quotientC∗-algebraB = A /J has a natural structure ofX-algebra such
that the canonical morphismA → A /J is aX-morphism. Theorem 3.1 says also that
the morphismA � X → [

A /J
]

� X² associated with it hasJ � X as kernel. We
thus get the following reformulation of Theorem 3.1:

Theorem 3.2. If J is a stable ideal of a X-algebra A then

A � X
/
J � X

∼= [
A /J

]
� X. (3.4)

The simplest case of the preceding situation is that when the exact sequence splits,
so thatA /J can be realized as a stableC∗-subalgebra ofA . Then we have:

Corollary 3.1. LetJ be a stable ideal and B a stable C∗-subalgebra of A such that
A = B + J direct linear sum. Then J � X is an ideal in A � X, B � X is a
C∗-subalgebra of A � X, and A � X = B � X +J � X is direct linear sum.

Corollary 3.2. Let A , B be X-algebras and let A ⊕B be equipped with the natural
X-algebra structure. Then

(A ⊕B) � X ∼= (A � X)⊕ (B � X). (3.5)

Proposition 3.1. If φ : A → B is an injective or surjective X-morphism then
φ∗ : A � X → B � X is injective or surjective respectively. In particular, if A
is a stable C∗-subalgebra of the X-algebra B, then A � X can be identified with a
C∗-subalgebra of B � X.

The assertion is obvious in the surjective case. For the injective case, see Proposition
7.7.9 in [34]. So what we proved above for ideals is valid for subalgebras too.

Proposition 3.2. Let A be an X-algebra and let B be a nuclear (e.g. abelian)
C∗-algebra. Equip A ⊗ B with the X-algebra structure defined by αx(a ⊗ b) =
αx(a)⊗ b. Then

(A ⊗B) � X ∼= (A � X)⊗B. (3.6)

Proposition 2.4 in [35] asserts more than this (in [22] one can find an elementary proof
of the last proposition).
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3.3. Direct products. We discuss now the behavior of the crossed product under infinite
direct products and sums. Let{Ai}i∈I be an arbitrary family ofC∗-algebras. Assume
that eachAi is anX-algebra, the corresponding group of automorphisms beingαi . Then
one may defineα : X → Aut(

∏
i∈I Ai ) byαx[(ai)i∈I ] = (αi

x[ai])i∈I . In this way we do
not (in general) get anX-algebra structure on

∏
i∈I Ai because the continuity condition

is not satisfied. However, we may define an “equicontinuous product” algebra as the
largest subalgebra on whichα acts continuously:

∏X
i∈I Ai = {(ai)i∈I ∈∏

i∈I Ai | limx→0 supi∈I ‖αi
x[ai] − ai‖ = 0}.

This is naturally anX-algebra which contains
⊕

i∈I Ai as a stable subalgebra, thus⊕
i∈I Ai becomes anX-algebra too.

Proposition 3.3.
(⊕

i∈I Ai

)
� X ∼=⊕

i∈I (Ai � X).

Proof. DenoteA = ⊕
i∈I Ai . Since eachAi is an ideal inA , we have canonical

embeddings ofAi ≡ Ai � X as ideals inA ≡ A � X. Now it suffices to show two
things: 1)Ai · Aj = 0 if i �= j and 2) the linear subspace

∑
i∈I Ai generated by⋃

i∈I Ai is dense inA. Both assertions follow easily from the fact thatAi is the closure
of L1(X;Ai ) in A. )*

We shall go beyond direct sums only in the particular case we need. Assume that
A is anX-algebra andI is a set. The algebrasA (I ) andA [I ] have been introduced in
Sect. 2.3. Then theC∗-algebraA [I ] is anX-algebra, andA (I ) is a stable ideal in it, if
we setαx[(ai)i∈I ] = (αx[ai])i∈I . Indeed, for eachε > 0 there is a finite setK ⊂ A
such that dist(ai,K) < ε for all i ∈ I . Then

‖αx[(ai)i∈I ] − (ai)i∈I‖ = sup
i∈I
‖αx[ai] − ai‖ ≤ 2ε + sup

b∈K
‖αx[b] − b‖

and the last term is< ε if x is in a suitable neighborhood of zero inX. Note that we
could also consider theX-algebra

∏X
i∈I A which depends on the action ofX onA and

which containsA [I ] as a stable ideal.

Proposition 3.4. If A is an X-algebra and I a set, then

A (I ) � X ∼= (A � X)(I) and A [I ] � X ∼= (A � X)[I ]. (3.7)

Moreover, the I -asymptotic algebra A 〈I 〉 has a canonical structure of X-algebra and
one has

(A � X)[I ]
/
(A � X)(I)

≡ (A � X)〈I 〉 ∼= C(Ĩ ;A � X). (3.8)

The first identification of (3.7) is a particular case of Proposition 3.3. The second one
is a consequence of Proposition 3.2 and of Lemma 2.1. The last part of the proposition
follows from Theorem 3.2 and the representation (2.8).
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4. Pseudo-Differential Operators

In this section we show that certain crossed products can be faithfully represented as
algebras of pseudo-differential operators onL2(X).We first recall some facts concerning
the harmonic analysis onX (see [18]).

Let X∗ be the locally compact abelian group dual toX. The Fourier transform of
u ∈ L1(X) is the functionFu ≡ û : X∗ → C given by û (k) = ∫

X
k(x)u(x)dx.

ThenF is a linear mapL1(X) → C0(X
∗) and we shall equipX∗ with the unique

Haar measure dk such thatF induces a unitary mapF : L2(X, dx) → L2(X∗, dk).
>FromF−1 = F∗ we get(F−1v)(x) = ∫

X∗ k(x)v(k)dk for v ∈ L2(X∗). The dual
group(X∗)∗ of X∗ is identified withX, eachx ∈ X being seen as a character ofX∗
through the formulax(k) = k(x). Then the Fourier transform ofψ ∈ L1(X∗) is given
by ψ̂ (x) = (F∗ψ)(−x). For eachψ ∈ C0(X

∗) we define the operatorψ(P ) ∈ B(X)

by ψ(P ) = F∗MψF , whereMψ is the operator of multiplication byψ in L2(X∗)
(P is theX∗ valued momentum observable). The injective morphismψ �→ ψ(P ) gives
us an embeddingC0(X

∗) ⊂ B(X).
We recall the embedding of theC∗-algebraCu

b(X) in B(X)obtained by associating to
ϕ ∈ Cu

b(X) the operator of multiplication by the functionϕ. In order to avoid ambiguities
we often denote this operator byϕ(Q) (Q is theX valued position observable).

We have two strongly continuous unitary representations{Ux}x∈X and{Vk}k∈X∗ of
X andX∗ in L2(X) defined by(Uxf )(y) = f (x + y) and (Vkf )(y) = k(y)f (y)

respectively. The groupC∗-algebra ofX is theC∗-subalgebra ofB(X) generated by
the convolution operators

∫
X
u(z)Uz dz with u ∈ L1(X), and is canonically isomorphic

to C0(X
∗). The isomorphism is determined by the formulaψ(P ) = ∫

X
ψ̂ (z)Uz dz for

ψ ∈ C0(X
∗) such that̂ψ ∈ L1(X).

The groupX acts in a natural way onCu
b(X): if x ∈ X and if we denote by

τxϕ the functiony �→ ϕ(y − x) then forϕ ∈ Cu
b(X) we haveτxϕ ∈ Cu

b(X) and
x �→ τxϕ ∈ Cu

b(X) is norm continuous. We consider aC∗-subalgebraA of Cu
b(X)

stable under translations:τxϕ ∈ A if x ∈ X andϕ ∈ A . ThenA is anX-algebra and
we are interested in the crossed productC = A � X of A by the actionαx := τ−x

of X. In such a situation the crossed productA � X has an especially useful faithful
representation that we shall describe below.

Let us use the embeddingCu
b(X) ⊂ B(X) and observe that(τxϕ)(Q) ≡ τx[ϕ(Q)]

= U∗x ϕ(Q)Ux . In particularA ⊂ B(X) and our purpose is to show thatA � X can
also be realized as aC∗-algebra of operators on the Hilbert spaceL2(X).

Theorem 4.1. Let A be a C∗-subalgebra of Cu
b(X) stable under translations. Then the

linear subspace [[A · C0(X
∗)]] is a C∗-algebra on the Hilbert space L2(X) and

[[A · C0(X
∗)]] ∼= A � X (4.1)

in the sense that there is a unique isomorphism H : [[A · C0(X
∗)]] → A � X such

that H [ϕ(Q)ψ(P )] = Sϕ,ψ for all ϕ ∈ A and ψ ∈ C0(X
∗) with ψ̂ ∈ L1(X).

Here Sϕ,ψ is the element y �→ Sϕ,ψ(·, y) ∈ A of L1(X;A ) defined by the function
Sϕ,ψ(x, y) = ϕ(x)ψ̂ (y).

Proof. The fact that[[A · C0(X
∗)]] is aC∗-algebra can easily be proved directly, but it

is also a consequence of the next arguments. By the comments which follow Definition
3.1 we have the following description ofA � X. Let H = L2(X) and

HX = L2(X;H ) ∼=H ⊗ L2(X) ∼= L2(X ×X).
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To each integrable functionS : X → A we associate an operatorS• acting onHX in
the following manner: ifξ : X →H is L2, then

(S • ξ)(y) =
∫
X

τy[S(y − z)] ξ(z)dz =
∫
X

U∗y S(z)Uy ξ(y − z)dz. (4.2)

The mapS �→ S• of L1(X;A ) into B(HX) is linear and injective. EquipL1(X;A )

with a structure of∗-algebra by asking thatS �→ S• be a∗-morphism; then we set
‖S‖ := ‖S•‖B(HX). The completion ofL1(X;A )under this norm will then be identified
with aC∗-subalgebra ofB(HX) and thisC∗-algebra is (canonically isomorphic to) the
crossed productA � X.

This representation, however, is not convenient for our purposes. We thus construct a
new one with the help of the unitary operatorW :HX →HX defined as(Wξ)(x, y) :=
ξ(x − y, x). Note that its adjoint is given by(W ∗ξ)(x, y) = ξ(y, y − x).

If S ∈ L1(X;A ) thenS may also be viewed as a functionS : X × X → C with
the conventionS(y) = S(·, y) ∈ A . Similarly, an elementξ : X → H of HX is
interpreted as a functionξ : X ×X → C by settingξ(y) = ξ(·, y). Then (4.2) may be
written as:

(S • ξ)(x, y) =
∫
X

S(x − y, z) ξ(x, y − z)dz,

which allows us to compute:

(W ∗ S • Wξ)(x, y) = (S • Wξ)(y, y − x)

=
∫
X

S(x, z) (Wξ)(y, y − x − z)dz =
∫
X

S(x, z) ξ(x + z, y)dz

=
∫
X

S(x, z)
[
(Uz ⊗ 1)ξ

]
(x, y)dz =

∫
X

{[
S(Q, z)Uz ⊗ 1

]
ξ
}
(x, y)dz.

In other terms,

W ∗ [S•] W =
[∫

X

S(Q, z)Uz dz

]
⊗ 1.

Consider the particular case whenS(x, y) = Sϕ,ψ(x, y) = ϕ(x)ψ̂ (y)as in the statement
of the theorem. Then the above integral is equal toϕ(Q)ψ(P ). So we have

W ∗ [Sϕ,ψ•
]
W = [ϕ(Q)ψ(P )] ⊗ 1.

Since the subspace generated by the elements of the formSϕ,ψ is dense inL1(X;A ),
the assertions of the theorem follow easily.)*
Corollary 4.1. K (X) = [[C0(X) · C0(X

∗)]] ∼= C0(X) � X.

The first equality is easy to prove. Then the canonical isomorphism withC0(X) � X

follows from Theorem 4.1 (for another proof of the isomorphism ofK (X) with the
crossed productC0(X) � X see Proposition 3.3 in [35]).

Theorem 1.1 is a consequence of Theorem 4.1 and of the next proposition.

Proposition 4.1. Let A be a C∗-subalgebra of Cu
b(X) which contains the constants and

is stable under translations. Let h : X∗ → R be a continuous non-constant function such
that limk→∞ |h(k)| = ∞. Then A � X is the C∗-algebra generated by the self-adjoint
operators of the form h(P + k)+ V (Q), with k ∈ X∗ and V ∈ A real.
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Proof. Let C be theC∗-algebra generated by the operatorsH = h(P + k)+ V (Q) ≡
H0 + V (Q), with k ∈ X∗ andV ∈ A real. By making a norm convergent series
expansion for largez,

(z−H)−1 =
∑
n≥0

(z−H0)
−1[V (Q)(z−H0)

−1]n,

we getC ⊂ A � X. It remains to prove the opposite inclusion. For eachµ ∈ R

the operatorHµ = h(P + k) + µV (Q) is affiliated toC and (Hµ − i)−1 is norm
derivable atµ = 0 with derivative−(H0 − i)−1V (Q)(H0 − i)−1. We thus have
(H0 − i)−1V (Q)(H0 − i)−1 ∈ C . Let θ ∈ Cc(R) with θ(0) = 1 andε > 0. Since
H0 is affiliated toC , we getθ(εH0)(H0− i) ∈ C , and soθ(εH0)V (Q)(H0− i)−1 ∈ C .
From the uniform continuity ofV , and since(h(p + k) − i)−1 → 0 whenp → ∞
in X∗, we get‖(Ux − 1)V (Q)(H0 − i)−1‖ → 0 if x → 0 in X. This implies
limε→0 θ(εH0)V (Q)(H0 − i)−1 = V (Q)(H0 − i)−1 in norm in B(X) (indeed, for
T ∈ B(X) we have limx→0 ‖(Ux − 1)T ‖ = 0 if and only if for eachδ > 0 there is
η ∈ Cc(X

∗) such that‖η(P )⊥T ‖ < δ). HenceV (Q)(h(P + k) − i)−1 ∈ C for each
k ∈ X∗ and eachV ∈ A real. ButH0 is affiliated toC , so this impliesϕ(Q)ψ(P ) ∈ C
for allϕ ∈ A (not necessarily real) and allψ in the∗-subalgebraB ⊂ C0(X

∗)generated
by functions of the formp �→ ξ(h(p + k)) with ξ ∈ Cc(R) andk ∈ X∗. By the Stone–
Weierstrass theorem,B is dense inC0(X

∗). Hence, since the set ofψ ∈ C0(X
∗) such

thatϕ(Q)ψ(P ) ∈ C is norm closed and containsB, we finally obtainϕ(Q)ψ(P ) ∈ C
for all ϕ ∈ A , ψ ∈ C0(X

∗). )*

5. Bumps Algebras

5.1. The algebra of classical interactions. In this section we will consider algebras of
interactions determined by setsL ⊂ X by the following rule: the interaction tends to a
constant when the distance toL tends to infinity.

ForL ⊂ X closed and) ⊂ X compact, setL) ≡ L+) = {x+y | x ∈ L, y ∈ )}
andLc

) = X \ L). For example, ifX is equipped with an invariant metric and) is the
closed ball of radiusr, thenLc

) is the set of points at distance> r from L. Note that
) ⊂ )′ ⇒ L) ⊂ L)′ , in particularLc

)1∪)2
⊂ Lc

)1
∩ Lc

)2
. Moreover, for eachx ∈ X

we havex + Lc
) = Lc

x+).
If L has the propertyL) �= X if ) is compact, then the family of open sets{Lc

) |
) ⊂ Xcompact} is the base of a filterFL which, by the preceding remarks, is translation
invariant and finer than the Fréchet filter. Thus we are in the general framework described
in Sect. 1.4 and we can introduce the algebraCFL

(X).We recall it, with notations adapted
to the present situation.

We denote byL-lim ϕ the limit along the filterFL. Thus, ifϕ : X → C thenL-lim ϕ

exists if and only if there is a complex numberc ≡ L-lim ϕ with the property: for each
ε > 0 one can find a compact set) ⊂ X such that|ϕ(x)− c| < ε if x /∈ L).

Let CL(X) be the translation invariantC∗-subalgebra ofCu
b(X) defined by

CL(X) = {ϕ ∈ Cu
b(X) | L-lim ϕ exists},

and let us point out the following subalgebras:

CL,0(X) = {ϕ ∈ Cu
b(X) | L-lim ϕ = 0},

CL,c(X) = {ϕ ∈ Cu
b(X) | ∃) ⊂ X compact such that suppϕ ⊂ L)}.
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ClearlyCL,0 is an ideal ofCL and one hasCL = C+ CL,0, soCL is the unital algebra
associated withCL,0. SinceC0 ⊂ CL,0, we have

CL

/
C0

∼= C+ CL,0
/
C0

, (5.1)

i.e.CL /C0 is the unital algebra associated withCL,0 /C0. We want to apply the general
theory from Sects. 3 and 4 to the algebraA = CL(X) = CL(X) � X, hence we have
to give an explicit description of the quotient algebraCL(X)/C0(X). By the preceding
remarks, we are reduced to the problem of computingCL,0(X)/C0(X). However, this
is not an easy task if no further conditions are put onL.

For this reasonwe shall assume from now on that L is sparse, in the following sense:
L is locally finite and for each compact) of X there is a finite setF ⊂ L such that if
l ∈ M = L \ F andl′ ∈ L \ {l} then(l +)) ∩ (l′ +)) = ∅.

If the topology ofX is given by an invariant metricd, we can restate the definition
of sparsity as follows. Letδ : L → R be defined byδ(l) = inf l′∈L\{l} d(l, l′). Then
L is sparse if and only ifδ(l) > 0 for all l andδ(l) → ∞ when l → ∞. Such a set
is much more rarefied than the uniformly discrete sets usually considered in the theory
of quasicrystals. Note also that the Delone sets considered in [28] have the property
L+) = X if ) is a sufficiently large compact, hence are quite different from the kind
of setsL studied here.

We begin by describing some properties of the spaceCL,c. We recall the Ascoli
theorem for the case of a locally compact spaceX: a bounded subset K of C0(X) is
relatively compact in C0(X) if and only if K is an equicontinuous family of functions
and for each ε > 0 there is a compact set ) ⊂ X such that |ϕ(x)| < ε for all ϕ ∈ K
and x ∈ X \).

If ) is a compact subset ofX we shall denote byCc()) the set of continuous functions
onX with support included in).

Lemma 5.1. (i) CL,c is a dense self-adjoint ideal in CL,0.
(ii) A function ϕ belongs to CL,c if and only if there is a compact set ) ⊂ X and

an equicontinuous bounded family {ϕl}l∈L of elements of Cc()) such that ϕ =∑
l∈L τlϕl .

(iii) The linear subspace generated by functions of the form
∑

l∈M τlϕ, where M is a
subset of L and ϕ ∈ Cc(X), is dense in CL,0.

Proof. (i) Clearly CL,c is a self-adjoint (non-closed) ideal inCL. We shall prove its
density inCL,0. Let) be a compact neighborhood of 0 inX and letθ ∈ Cc()) such that
0 ≤ θ ≤ 1 andθ = 1 on a neighborhood)0 of zero. Denoten the maximal number of
setsl +), with l ∈ L, which have a non-empty intersection. SinceL is a sparse subset
of X the numbern is finite. ThenK(x) =∑

l∈L θ(x− l) is well defined, 0≤ K(x) ≤ n,
and

|K(x)−K(y)| ≤ n sup
l∈L
|θ(x − l)− θ(y − l)| ≤ n‖τy−xθ − θ‖,

where‖ · ‖ is the sup norm. SoK is uniformly continuous andK ∈ CL,c.
Let ϕ ∈ CL,0 andε > 0. Then there is a compact neighborhood) of zero inX such

that |ϕ(x)| < ε if x /∈ L + ). ChooseF ⊂ L finite such that(l + )) ∩ (l′ + )) = ∅
if l ∈ M ≡ L \ F and l′ ∈ L, l′ �= l, and denoteK the compact set

⋃
l∈F [l + )].

Observe that ifx /∈ K andθ is as above thenK(x) =∑
l∈M θ(x − l) and the supports

of the functionsτlθ are disjoint if l ∈ M; in particular 0≤ K(x) ≤ 1. Let η be a



Crossed Products ofC∗-Algebras and Spectral Analysis of Quantum Hamiltonians 545

continuous function such that 0≤ η ≤ 1, η = 0 on a neighborhood ofK andη = 1 on
a neighborhood of infinity. If we denoteηϕ = ψ we have

ϕ − (1− η)ϕ −Kψ = ψ −Kψ.

If x ∈ K then the r.h.s. above takes the value zero inx. If x /∈ K andx ∈ L + )0
then there is a uniquel ∈ M such thatx ∈ l + )0, henceK(x) = θ(x − l) = 1 and
ψ(x)−K(x)ψ(x) = 0. If x /∈ K andx /∈ L+)0 then|ψ(x)| < ε and 0≤ K(x) ≤ 1,
so|ψ(x)−K(x)ψ(x)| < ε. Thus we have

‖ϕ − (1− η)ϕ −Kψ‖ ≤ ε.

Since(1 − η)ϕ ∈ Cc(X) andKψ ∈ CL,c, we proved that for eachε > 0 there is
ϕε ∈ CL,c such that‖ϕ − ϕε‖ < ε. HenceCL,c is dense inCL,0.
(ii) If ϕ ∈ CL,c then there is a compact) ⊂ X such that suppϕ ⊂ L + ). SinceL
is sparse one can writeL + ) = K ∪⋃

l∈M(l + )), where the compact setK ⊂ X

andM are chosen such that the sets which appear in the preceding union are pairwise
disjoint. Forl ∈ M we defineϕl by ϕl(x) := ϕ(x + l) if x ∈ ) andϕl = 0 otherwise.
If l ∈ L \M the definition ofϕl is to a large extent arbitrary, e.g. we may takeϕl = 0
for all but onel ≡ l0 and choose convenientlyϕl0; this is possible ifK is large enough.
Conversely, it suffices to notice that the equicontinuity of the family{ϕl}l∈L implies the
uniform continuity ofϕ.
(iii) Because of the first part of the lemma it suffices to prove that for eachϕ as in
(ii) and for eachε > 0 there is a partition{L1, . . . , Lk} of L and there are functions
φ1, . . . , φk ∈ Cc()) such that‖ϕ −∑k

i=1
∑

l∈Li
τlφi‖ < ε. By the Ascoli theorem,

{ϕl | l ∈ L} is a relatively compact subset ofCc()), hence there is a finite number of
functionsφ1 := ϕl1, . . . , φk := ϕlk and there is a partition{L1, . . . , Lk} of L such that
‖ϕl − φi‖ < ε/n for l ∈ Li , wheren is the maximal number of sets of the forml +)

which have non-empty intersection. Then, for eachx,

|ϕ(x)−
k∑

i=1

∑
l∈Li

τlφi(x)| =
∣∣∣∣

k∑
i=1

∑
l∈Li

τl(ϕl − φi)(x)

∣∣∣∣
≤ n sup

i=1,...,k
sup
l∈Li

‖τl(ϕl − φi)‖ ≤ ε. )*

We are now ready to compute the quotientCL,0/C0. We recall the notation
C0(X)〈L〉 ≡ C0(X)[L]/C0(X)(L) (see Sect. 2.3) and denote byπ the canonical mor-
phismC0(X)[L] → C0(X)〈L〉.
Theorem 5.1. There is a unique morphism J : CL,0(X)→ C0(X)〈L〉 such that J (ϕ) =
π [(ϕl)l∈L] if ϕ =∑

l∈L τlϕl , with {ϕl}l∈L an equicontinuous bounded family in C0())

for some compact ) ⊂ X. The morphism J is surjective and kerJ = C0(X). In
particular, J induces a canonical isomorphism:

CL,0(X)
/
C0(X)

∼= C0(X)[L]
/
C0(X)(L) ≡ C0(X)〈L〉. (5.2)

Remark. As a consequence of Lemma 5.1 and of the identifications (2.6),J is the unique
morphismCL,0 → C

〈L〉
0 such that for each subsetM of L and each functionϕ ∈ Cc(X)

one hasJ (
∑

l∈M τlϕ) = π(χM ⊗ ϕ), whereχM is the characteristic function of the
setM. There is another description ofJ based on the identification (2.8), but we shall
make it explicit only in the case of the algebraCL,0 � X.
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Proof. The uniqueness ofJ is a consequence of (i) from Lemma 5.1. The surjectivity of
J is also easy to prove: since the range of a morphism is closed, it suffices to show that
the set of elements of the form(ϕl)l∈L, where the family{ϕl}l∈L is as in the statement
of the theorem, is dense inC[L]0 . But this is a straightforward consequence of the Ascoli

theorem, becauseC[L]0 consists of relatively compact families of elements ofC0 (see
Definition (2.5)).

We prove the existence ofJ . Note first that for a givenϕ ∈ CL,c a family {ϕl}l∈L
which verifiesϕ =∑

l∈L τlϕl is not unique. However,L being a sparse set, the functions
ϕl which correspond to large enoughl are uniquely defined. In particular, the image of
{ϕl}l∈L in the quotientC[L]0 /C

(L)
0 depends only onϕ. ThusJ is well defined onCL,c

and it is clearly a morphism with‖J ‖ ≤ 1. This allows us to extend it by continuity to
all CL,0.

It remains to prove that the kernel ofJ is C0. We first make a preliminary general
remark.Let A be a C∗-algebra and let S = (Sl)l∈L ∈ A [L] such that ‖Ŝ ‖ < ε for
some ε > 0, where Ŝ is the image of S in A 〈L〉 ≡ A [L]/A (L). Then there is a finite set
F ⊂ L such that ‖Sl‖ < 2ε if l /∈ F . Indeed,

‖Ŝ ‖ = inf {‖(Sl − Tl)l∈L‖ | T ≡ (Tl)l∈L ∈ A (L)}
so there isT ∈ A (L) such that‖(Sl − Tl)l∈L‖ = supl∈L ‖Sl − Tl‖ < 3ε/2. Then
‖Sl‖ < ‖Tl‖ + 3ε/2 and‖Tl‖ → 0 asl →∞. So there is a finite setF ⊂ L such that
‖Tl‖ < ε/2 if l /∈ F , which proves the remark.

Letϕ ∈ CL,0 be such thatJ (ϕ) = 0 and letε > 0. Then there isψ ∈ CL,c such that
‖ϕ−ψ‖ < ε and‖J (ψ)‖ < ε. Choose a compact) ⊂ X and a bounded equicontinuous
family {ψl}l∈L in C0()) such thatψ = ∑

l∈L τlψl . Then (ψl)l∈L ∈ C0())[L] and
‖π [(ψl)l∈L]‖ = ‖J (ψ)‖ < ε hence, by the preceding remark, there is a finite set
F ⊂ L such that‖ψl‖ < 2ε if l /∈ F . But ψ(x) = ∑

l∈L ψl(x − l) and if x is outside
some compact then at most one term in the sum is non-zero, so|ψ(x)| < ε for x in
some neighborhood of infinity. Then|ϕ(x)| ≤ |ϕ(x) − ψ(x)| + |ψ(x)| < 3ε for such
x. Sinceε is arbitrary, this showsϕ ∈ C0. )*
Corollary 5.1. The quotient algebra CL(X)/C0(X) is canonically isomorphic to the
unital C∗-algebra associated with C0(X)〈L〉. In particular, there is a natural embedding:

CL(X)
/
C0(X)

↪→ C∞(X)[L]
/
C0(X)(L). (5.3)

Proof. The first assertion follows from (5.1).To get (5.3) we use the canonical embedding
C+C0(X)[L] ↪→ C∞(X)[L], which associates toλ+ (ϕl)l∈L the element(λ+ ϕl)l∈L.
)*

Note that we have a simple description of the range of the embedding (5.3): this
is the quotient of the space of the elements of the form(λ + ϕl)l∈L with λ ∈ C and
(ϕl)l∈L ∈ C0(X)[L].

Remark. We have considered a generalization of the class of sparse sets. We do not give
the details because it does not involve essentially new ideas; we shall, however, describe
it here succinctly. LetL be the union of a familyB of pairwise disjoint compact sets such
that for each compact)ofX there is a finite setB) ⊂ B such that(B+))∩(B ′+)) = ∅
if B /∈ B) andB ′ �= B. Then we say thatL is adispersed set. If there is a compact set
K such that eachB ∈ B is a subset of a translate ofK (i.e.L is “uniformly” dispersed),
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thenL is equivalent to a sparse set, in the sense thatFL coincides toFL0 for some sparse
setL0. Indeed, it suffices to replace each compact setB ∈ B by a point sitting inside it.
In the case of a sparse set the main role in the computation of the quotient is played by
the algebraC0(X)[L] consisting of relatively compact families{ϕl}l∈L of elements of
C0(X). For a general dispersed set this has to be replaced with the algebra

∏X
l∈L C0(X)

(see Sect. 3.3 for the notations) consisting of equicontinuous such families (compare
with the statement of the Ascoli theorem in Sect. 5.1).

5.2. Hamiltonians of type CL(X). We are now ready to introduce theC∗-algebra of
energy observables corresponding to quantum systems with interactions having sparse
supports. For this we take the crossed product ofCL(X) by the action of translations on
the locally compact groupX. Note that the second equality below is a consequence of
Theorem 4.1.

Definition 5.1. CL(X) := CL(X) � X = [[CL(X) · C0(X
∗)]].

In the same manner we may define the smallerC∗-algebra,

CL,0(X) := CL,0(X) � X = [[CL,0(X) · C0(X
∗)]]. (5.4)

Then, by (3.5) we can writeCL(X) as a linear direct sum,

CL(X) = C0(X
∗)+ CL,0(X). (5.5)

The algebraCL,0 is an ideal ofCL andCL → C0(X
∗) is a surjective morphism which

gives the pure kinetic energy part, andCL/CL,0 ∼= C0(X
∗). On the other hand,C0(X)

being a stable ideal ofCL, the crossed product subalgebraC0(X) � X is an ideal of
CL(X). We recall thatC0(X) � X = K (X).

The general theory exposed in Sect. 3 allows us to give a complete characterization
both of the quotient algebrasCL,0(X)/K (X) andCL(X)/K (X) in terms of much
simpler objects involving only the compact operator algebraK (X) and the two-body
algebra:

Theorem 5.2. The quotient algebra CL,0(X)/K (X) is canonically isomorphic to the
L-asymptotic algebra K (X)〈L〉. One has a natural embedding:

CL(X)
/

K (X)
↪→ T (X)[L]

/
K (X)(L). (5.6)

Proof. The first assertion follows from Proposition 3.4 because of (5.2). In order to prove
the second assertion we start with the embedding (5.3) and use (3.4), Proposition 3.1
and (3.7) to get

CL

/
K (X)

≡ (CL � X)
/
(C0(X) � X)

= CL

/
C0(X)

� X

↪→ C∞(X)[L]/
C0(X)(L) � X = (C∞(X)[L] � X)

/
(C0(X)(L) � X)

= (C∞(X) � X)[L]/
(C0(X) � X)(L) = T (X)[L]/

K (X)(L) . )*



548 V. Georgescu, A. Iftimovici

Remarks. (i) As in the abelian case, we have a precise description of the range of
the embedding (5.6): it is the quotient with respect toK (X)(L) of the subspace of
T (X)[L] consisting of sequences of the form(ψ(P ) + Kl)l∈L for someψ ∈ C0(X

∗)
and(Kl)l∈L ∈ K (X)[L].
(ii) The algebraT (X)[L] has an obvious faithful representation on the Hilbert space
H =⊕

L L2(X). In this representation we haveK (X)(L) = T (X)[L]
⋂

K(H ).

Theorem 5.2 is the main result of this section: it allows, via Theorem 2.2, to compute
the essential spectrum of a hamiltonian affiliated to the algebra of energy observables
CL in terms of spectra of hamiltonians affiliated to the two-body algebra. The details are
as follows.

If H is an observable affiliated toCL and if Ĥ is its image through the canonical
morphismCL → CL/K (X), then there is a family(Hl)l∈L of observables affiliated to
the two-body algebraT (X) such that the quotient of

∏
l∈L Hl with respect to the ideal

K (X)(L) is equal to the image of̂H through the embedding (5.6). Such a family(Hl)l∈L
will be called arepresentative of H . By the discussion above we have

∏
l∈L(Hl−z)−1 ∈

T (X)[L] and the component of(Hl−z)−1 inC0(X
∗) is independent ofl ∈ L, soσess(Hl)

is independent ofl. Thus the next result is a consequence of Theorem 2.2.

Theorem 5.3. If H is an observable affiliated to CL(X) and {Hl}l∈L is a representative
of H , then

σess(H) =
⋂
F⊂L
F finite

⋃
l∈L\F

σ(Hl).

It is quite easy to give examples of a self-adjoint operator affiliated toCL with a
nontrivial essential spectrum. Leth : X∗ → R be a continuous divergent function (by
“divergent” we mean limκ→∞ h(κ) = ∞). ThenH0 = h(P ) is a self-adjoint operator
strictly affiliated toCL, hence ifV is a self-adjoint operator in the multiplier algebra
of CL thenH = H0 + V is also strictly affiliated toCL and we may apply to it the
Theorems 5.3 and 5.6. More explicitly, we may takeV =∑

l∈L τlϕl(Q), where{ϕl} is
as in (ii) of Lemma 5.1, in which case the operatorsHl of Theorem 5.3 are given by
Hl = h(P ) + ϕl(Q). Much more singular perturbations are, however, allowed, as we
shall show later on.

We close this paragraph by pointing out the interesting particular case when there
is only a finite number oftypes of bumps. Let L be a finite partition ofL consisting
of infinite setsM and letCL(X)L be the space ofS ∈ CL(X) such that the limit
s -liml∈M,l→∞ UlSU

∗
l := SM exists for eachM ∈ L. This is clearly aC∗-subalgebra

of CL(X) which containsK (X). CL(X)L is the set ofS ∈ CL(X) such that for each
M ∈ L and each ultrafilter, ∈ L̃ with M ∈ , the limit S, is independent of,. By
using the remarks made in the last part of Sect. 2.3 one can prove that

CL(X)L
/

K (X)
↪→

⊕
M∈L

T (X). (5.7)

If H is an observable affiliated toCL(X)L then s -liml∈M,l→∞ UlHU∗l := HM exists
in the strong resolvent sense for eachM ∈ L and

σess(H) =
⋃
M∈L

σ(HM). (5.8)
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5.3. Dense subalgebras. We shall describe here a class of elements of the algebraCL,0.
This will give us a version of Theorem 5.2 independent of the constructions from the
abelian case.

Proposition 5.1. Let {Kl}l∈L be a relatively compact family of compact operators on
H . Assume that there is a compact set ) ⊂ X such that Kl = χ

)(Q)Kl
χ

)(Q) for all
l ∈ L. Then the series

∑
l∈L U∗l Kl Ul converges in the strong operator topology and its

sum belongs to CL,0. The set of operators of the preceding form is dense in CL,0. More
precisely, the linear subspace generated by the operators

∑
l∈M U∗l KUl , where M is a

subset of L and K ∈ K (X) has the property K = χ
)(Q)K χ

)(Q) for some compact
set ) ⊂ X, is dense in CL,0.

For the proof we need the following noncommutative version of the Ascoli theorem
(which follows from the Riesz–Kolmogorov compacity criterion, see [21]):
a bounded subset K ⊂ B(X) is a relatively compact set of compact operators if
and only if it satisfies the following equivalent conditions:

(i) lim
x→0

sup
T ∈K

‖(Ux − 1)T (∗)‖ = 0 and lim
k→0

sup
T ∈K

‖(Vk − 1)T (∗)‖ = 0.

(ii) For each ε > 0 there are ϕ ∈ Cc(X) and ψ ∈ Cc(X
∗) such that

‖ϕ(Q)⊥T (∗)‖ + ‖ψ(P )⊥T (∗)‖ < ε f or all T ∈ K .

Thus, a family{Kl}l∈L satisfyingKl = χ
)(Q)Kl

χ
)(Q) is relatively compact if and

only if

lim
x→0

sup
l∈L
‖(Ux − 1)K(∗)

l ‖ = 0. (5.9)

Proof. Notice first that finite sums
∑

l∈F U∗l Kl Ul are compact operators, so belong to
CL,0. Hence we just have to prove the first part of the theorem under the assumption
(l +)) ∩ (l′ +)) = ∅ if Kl �= 0, Kl′ �= 0. The seriesT =∑

l∈L U∗l Kl Ul converges
strongly because the operatorsU∗l Kl Ul are pairwise orthogonal for largel. The family
{Kl}l∈L being relatively compact, for eachε > 0 there is a finite subsetI of L such that
L decomposes into a disjoint union

⊔
i∈I Li and for eachi ∈ I we have‖Kl −Ki‖ < ε

for all l ∈ Li . Let thenTε ≡∑
i∈I

∑
l∈Li

U∗l Ki Ul and estimate for eachf ∈H :

‖(T − Tε)f ‖2 = ‖∑i∈I
∑

l∈Li
χ

)(Q− l)U∗l (Kl −Ki)Ul
χ

)(Q− l)f ‖2

=∑
i∈I

∑
l∈Li

‖χ)(Q− l) U∗l (Kl −Ki)Ul
χ

)(Q− l)f ‖2

≤ ε2∑
l∈L‖χ)(Q− l) f ‖2 = ε2‖∑l∈Lχ)+l (Q) f ‖2 ≤ ε2‖f ‖2.

Thus it suffices to show thatTε ∈ CL,0 which actually means that it suffices to prove the
proposition for the case whenKl ≡ K is independent ofl. Note that in the arguments
below one can substitute toL any subset of it.

So let K be a compact operator and) a compact subset ofX such thatK =
χ

)(Q)Kχ
)(Q). We shall prove that̃K ≡ ∑

l∈L U∗l K Ul ∈ CL,0 (the series being
strongly convergent by the same argument as above). The set ofψ ∈ C0(X

∗) such that
ψ = η̂ for someη ∈ Cc(X) is dense inC0(X

∗) (see (4.13) in [18]). By using also
Corollary 4.1, we see that for eachε > 0 there are functionsϕ1, . . . , ϕn, η1, . . . , ηn in
Cc(X) such that‖K − S‖ < ε, whereS = ∑n

i=1 ϕi(Q)η̂ i(P ). Since(η̂ (P )f )(x) =
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∫
X
η(x − y)f (y)dy we have(Sf )(x) = ∫

X

(∑
i ϕi(x)ηi(x − y)

)
f (y)dy. Let > be a

compact set such that the supports of the functionsϕi, ηi are included in> and letN be
the compact set) ∪ > ∪ (> − >). If χ

N ≡ χ
N(Q) thenK = χ

NKχ
N, S = χ

NSχN.
This shows in particular that the series

∑
l∈L U∗l SUl is strongly convergent (L being

sparse) and its sum̃S can be computed:

S̃ =∑
i

∑
lU
∗
l ϕi(Q)η̃ i(P ) =∑

i[
∑

lϕi(Q− l)]η̃ i (P ) ≡∑
iφi(Q)η̂ i(P ).

The functionsφi belong toCL,0 by Lemma 5.1, sõS ∈ CL,0. We haveK̃ − S̃ =∑
l
χ

l+NU∗l (K − S)Ul
χ

l+N and there is a finite setF ⊂ L such that, ifl, l′ ∈ M ≡
L \ F, l �= l′, then(l +N) ∩ (l′ +N) = ∅. Then∥∥K̃ f − S̃ f −∑

l∈FU∗l (K − S)Ulf
∥∥2 = ∥∥∑

l∈Mχ
l+NU∗l (K − S)Ul

χ
l+Nf

∥∥2

=∑
l∈M

∥∥χ
l+NU∗l (K − S)Ul

χ
l+Nf

∥∥2 ≤ ε2∑
l∈M‖χl+Nf ‖2 ≤ ε2‖f ‖2.

Thus for eachε > 0 there is an operatorT = S̃ −∑
l∈F U∗l (K − S)Ul ∈ CL,0 such

that‖k̃ − T ‖ ≤ ε. HenceK̃ ∈ CL,0.
The fact that the linear subspace generated by the operator sums∑
l∈M U∗l ϕ(Q)η̂ (P )Ul , with M ⊂ L andϕ, η ∈ Cc(X), is dense inCL,0 follows

from Theorem 4.1, Lemma 5.1 and the preceding arguments (whereL can be replaced
by M). )*

The next result, a more explicit version of Theorem 5.2, is a straightforward conse-
quence of Proposition 5.1 and Theorem 5.2 (see also (2.6)).

Theorem 5.4. There is a unique morphism CL → T (X)[L]/K (X)(L) such that the im-
age of an element of the form ψ(P ) + ∑

l∈M U∗l KUl , where
ψ ∈ C0(X

∗), M ⊂ L, and K ∈ K (X) is such that K = χ
)(Q)K χ

)(Q) for some
compact set ) ⊂ X, is the quotient of the element χM ⊗ (ψ(P )+K) ∈ T (X)[L] with
respect to the ideal K (X)(L). The kernel of this morphism is K (X) and its restriction to
CL,0 induces the canonical isomorphism of CL,0/K (X) with the L-asymptotic algebra
of compact operators K (X)〈L〉.

5.4. Another description of the quotient. Let us give now a second description of the
quotient algebraCL(X)/K (X), based on the formalism exposed in Sect. 2.3.According
to the notations introduced there, we shall denote byL̃ the set of ultrafilters onL finer
than the Fréchet filter;̃L is a compact topological space. We denote liml,, the limit over
l along a filter,.

Theorem 5.5. If S ∈ CL and , ∈ L̃ the limit s -liml,, UlSU
∗
l = S, exists in the strong

operator topology and belongs to T (X). The component of S, in C0(X
∗) is equal to

that of S in C0(X
∗). The map S �→ (S,),∈L̃ is a morphism CL → C(L̃ ;T (X)) with

kernel K (X) and range equal to the set of (S,),∈L̃ such that the component of S, in
C0(X

∗) is independent of ,.

Proof. One has a unique decomposition ofS into a sumT + S′ with T ∈ C0(X
∗)

andS′ ∈ CL,0. SinceUlT U∗l = T , it suffices to considerT = 0. Then by (iii) of
Lemma 5.1 and (5.4) it suffices to takeS = ϕ(Q)ψ(P ) with ϕ = ∑

m∈M τmϕ0 for
some subsetM ⊂ L and someϕ0 ∈ C0()), ) ⊂ X compact, and withψ ∈ C0(X

∗).
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SinceUlSU
∗
l = (τ−lϕ)(Q)ψ(P ), it suffices to show that liml,, τ−lϕ exists uniformly

on compacts onX. There are only two possibilities: eitherM ∈ ,, or L \ M ∈ ,;
in the first case we shall prove that liml,, τ−lϕ = ϕ0 and in the second one that
lim l,, τ−lϕ = 0. Indeed, letK ⊂ X be a compact set and letx ∈ K. Thenτ−lϕ(x) =∑

m∈M ϕ0(x + l − m). If ϕ0(x + l − m) �= 0 thenl ∈ m + () − K) and) − K is a
compact set. So ifl is large enough thenϕ0(x + l − m) �= 0 only if l = m (L being
sparse). So for largel one has eitherτ−lϕ(x) = ϕ0(x) or τ−lϕ(x) = 0 (independently
of x ∈ K).

We have thus shown that the limit s -liml,, UlSU
∗
l := S, exists for each, ∈ L̃ . The

argument also gives the explicit form of the limit for a class of operatorsS which is dense
in CL. Namely, assume thatS is of the formψ0(P )+∑n

i=1 ϕi(Q)ψi(P ) ≡ T +S′, with

ψ1, . . . , ψn ∈ C0(X
∗) andϕi =∑ki

j=1

∑
l∈Lij

τlϕij , where, for eachi, {Li1, . . . , Liki }
is a partition ofL andϕij ∈ Cc(X). For eachi there is a uniquej (i) ∈ {1, . . . , ki} such
thatLij (i) ∈ ,. Then

S, = ψ0(P )+
n∑

i=1

ϕij (i)(Q)ψi(P ). (5.10)

ThusS, ∈ T (X) and its projection onC0(X
∗) is ψ0(P ), which is the component ofS

in C0(X
∗). This remains valid for allS by continuity and density.

Finally, consider the imagêS′ of S′ in K (X)〈L〉 given by Theorem 5.2 and identify
K (X)〈L〉 ∼= C(L̃ ;K (X)), cf. (2.8). Then̂S′ will be the family of operatorsS, defined
by (5.10), so the theorem is proved.)*

The following result is a straightforward consequence of Theorem 5.5.

Theorem 5.6. Let H be an observable affiliated to CL(X). Then s -liml,, UlHU∗l ≡ H,

exists in the strong resolvent sense for each , ∈ L̃ and

σess(H) =
⋃
,∈L̃

σ(H,).

If {Hl}l∈L is a representative of H , then for , ∈ L̃ one also has H, = u -liml,, Hl (limit
in the norm resolvent sense).

6. An Explicit Class of Hamiltonians

We shall construct here a large class of hamiltonians affiliated to the algebraCL(X). We
consider explicitly only the caseX = Rn in order to be able to use the standard theory
of Sobolev spaces. However, our arguments easily extend to other groups.

We begin with a remark concerning the definition of the hamiltonians. In the sequel
we use the abbreviation〈 · 〉 = (1 + | · |2)1/2. Let H s = H s(Rn) be the scale of
Sobolev spaces; heres ∈ R, H 0 = L2(Rn) ≡ H . Let s, t be real numbers such
that 0≤ t < s. LetH0 be a self-adjoint operator inH with D(|H0|1/2) ⊂ H s and let
V :H t →H −t be a symmetric operator. Then〈P 〉2s ≤ C(|H0|+1) for some constant
C and for eachε > 0 there is a constantc < ∞ such that±V ≤ ε〈P 〉2s + c. Thus
the form sumH0 + V defines a self-adjoint operatorH in H with form domain equal
to that ofH0. The self-adjoint operators from the next theorem should be interpreted in
this sense.
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Theorem 6.1. Let h : Rn → R be a continuous function such that

C−1|x|2s ≤ |h(x)| ≤ C|x|2s for |x| > R, (6.1)

for some constants s > 0, C > 0 and R < ∞; denote H0 = h(P ). Let t ∈ [0, s) real,
let L be a sparse subset of Rn, and let {Wl}l∈L be a family of symmetric operators in
B(H t ,H −t ) with the following property:t here is a number a > 2n such that

sup
l∈L
‖〈Q〉aWl‖B(H t ,H −t ) <∞. (6.2)

Then the series
∑

l∈L U∗l WlUl converges in the strong topology of
B(H t ,H −t ) and its sum is a symmetric operator W :H t →H −t . Let H = H0+W ,
Hl = H0 + Wl be the self-adjoint operators in H defined as form sums. Then H is
strictly affiliated to CL, Hl is strictly affiliated to T (X), and the family {Hl}l∈L is a
representative of H . In particular:

σess(H) =
⋂
F⊂L
F finite

⋃
l∈L\F

σ(Hl). (6.3)

If , is an ultrafilter on L finer than the Fréchet filter, then u -liml∈, Hl := H, exists in
the norm resolvent sense, one has H, = s -liml,, UlHU∗l in the strong resolvent sense,
and

σess(H) =
⋃
,∈L̃

σ(H,). (6.4)

Remarks. (i) If s ≤ n/2 andWl : Rn → R are Borel functions satisfying the condition∫
|y−x|<1 |Wl(y)| · |y − x|−n+2s−λ dy ≤ c〈x〉−a ∀x ∈ Rn for some constantsc, λ > 0,

then the operatorsWl of multiplication by the functionsWl satisfy (6.2) for somet < s.
If s > n/2 then the simpler condition

∫
|y−x|<1 |Wl(y)|dy ≤ c〈x〉−a suffices. Ifs is an

integer andWl is a differential operator of order less than 2s, similar explicit conditions
on its coefficients can be stated.

(ii) The conditiona > 2n is not natural and should be improved toa > n, but the version
of the Cotlar-Stein lemma that we use in the proof does not allow us to get such a result.
However, the assumption ona may be relaxed in terms of the “degree of rarefaction” of
L: the greatest lower bound fora is actually inversely proportional to it, see Lemma 6.2.

(iii) As explained in Sect. 1.1, we can replace the Hilbert spaceL2(X) of physical states
by L2(X;E) where E is a finite dimensional Hilbert space. This allows us to treat,
for example, Dirac hamiltoniansH0 perturbed by the same class of potentialsW . The
condition (6.1) is satisfied withs = 1/2, |h(x)| being interpreted as[h(x)2]1/2 (h(x) is
a self-adjoint operator in E). Note thatH0 is not semibounded in this case. Theorems
5.3 and 5.6 remain valid without any change in this context.

(iv) The assumptiont < s is not essential and can be improved tot = s, which allows one
to treat perturbations of the same order asH0. But then one must add other conditions
in order to give a sense to the sumsH0 + Wl andH0 + W as self-adjoint operators.
This question is of some importance if one wants to treat Dirac operators with Coulomb
potentials or second order perturbations of the Laplace operator, but is outside the main
scope of this paper.

(v) Assume thath is bounded from below, so that its range is of the formJ = [µ,∞) for
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some realµ. Then the spectrum of the operatorHl is of the formσ(Hl) = J ∪Dl , where
Dl is a discrete subset of(−∞, µ). From (6.3) it follows that theessential spectrum ofH
is of the formJ ∪D, whereD ⊂ (−∞, µ) could have a quite complicated structure. The
spectrum insideJ is probably also of a rather complex nature: singularly continuous,
absolutely continuous, and pure point spectrum could coexist. The methods used in this
paper do not allow us to study such fine properties ofH (we do not expect thatH
admits conjugate operators locally insideJ ). However, in the preprint version [22] of
this article we proved that the wave operators corresponding to the elastic channel exist
in rather general situations (the difficulty appears when theWl are of the same order of
magnitude, e.g. do not depend onl). Our results extend those from [25] and are valid in
any dimensionn ≥ 2. In particular, the absolutely continuous spectrum ofH is often
equal toJ . On the other hand, ifn = 1, taking into account the results from [33], we
are tempted to think that the wave operators do not exist and there is no absolutely
continuous spectrum ifWl is independent ofl.

We begin now the proof of the theorem and first recall the Cotlar-Stein lemma:

Lemma 6.1. Let {Bl}l∈L be a family of operators in B(H1,H2) for some Hilbert spaces
H1, H2. Assume that

sup
l∈L

∑
m∈L

max
{
‖BlB

∗
m‖1/2

B(H2)
, ‖B∗l Bm‖1/2

B(H1)

}
= b <∞.

Then
∑

l∈L Bl ≡ B exists in the strong operator topology and ‖B‖B(H1,H2) ≤ b.

Theorem 6.1 will be a consequence of the next lemma. We denote by‖·‖u,v the norm
in B(H u,H v).

Lemma 6.2. Let L ⊂ Rn such that |l − m| ≥ const. > 0 if l, m are distinct points
of L, and let a > 2n. Then there is C > 0 such that, for each family of operators
Wl ∈ B(H u,H v) with Wl = 0 for all but a finite number of l, the following estimate
holds: ∥∥∑

l∈LU∗l WlUl

∥∥
u,v
≤ C sup

l∈L
max

{‖〈Q〉aWl‖u,v , ‖Wl〈Q〉a‖u,v
}
. (6.5)

Proof. Let us denoteBl ≡ U∗l 〈P 〉vWl〈P 〉−uUl and check that the hypotheses of the
Cotlar-Stein lemma are satisfied. For each couplel, m of points ofL we estimate:

‖BlB
∗
m‖ = ‖〈P 〉vWl〈P 〉−2uUl−mW ∗

m〈P 〉v‖
≤ ‖Wl〈Q〉a‖u,v · ‖〈P 〉u〈Q〉−a〈P 〉−2uUl−m〈Q〉−a〈P 〉u‖ · ‖〈Q〉aW ∗

m‖−v,−u.

We have‖Wm〈Q〉a‖u,v = ‖〈Q〉aW ∗
m‖−v,−u. By standard commutator estimates, there

is a bounded operatorS such that〈P 〉u〈Q〉−a〈P 〉−2u = S〈P 〉−u〈Q〉−a , thus the middle
norm in the last term of the above inequality may be majorated by‖S‖ times the quantity:

‖〈P 〉−u〈Q〉−aUl−m〈Q〉−aU∗l−m〈P 〉u‖ = ‖〈Q〉−a〈Q− (m− l)〉−a‖u,u.
Let us denote byC a generic positive finite constant. By interpolation between 0 and an
integerN > |u| the above quantity is dominated by

C ‖〈Q〉−a〈Q− (m− l)〉−a‖N,N ≤ C sup
x∈Rn

sup
|α|≤N

∣∣∣ϕ(α)
lm (x)

∣∣∣ ,
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whereϕlm(x) ≡ 〈x〉−a〈x − (m− l)〉−a . Furthermore, for eachα there is a constantcα
such that ∣∣∣ϕ(α)

lm (x)

∣∣∣ ≤ cα |ϕlm(x)| ≤ C 〈l −m〉−a.

Hence‖BlB
∗
m‖ ≤ C 〈l − m〉−a supl∈L ‖Wl〈Q〉a‖u,v. Similarly we obtain the estimate

‖B∗l Bm‖ ≤ C 〈l −m〉−a supl∈L ‖〈Q〉aWl‖u,v which finally yields

max
{‖BlB

∗
m‖ , ‖B∗l Bm‖

} ≤ C 〈l −m〉−a max
{‖〈Q〉aWl‖u,v , ‖Wl〈Q〉a‖u,v

}
.

The hypothesisa > 2n is then sufficient to ensure
∑

m∈L〈l − m〉−a/2 ≤ const. < ∞
independently ofl ∈ L, hence the hypotheses of Lemma 6.1 are verified.)*

If H0 is as in Theorem 6.1 then it is obviously affiliated toC0(X
∗) ⊂ CL. From

Theorem 4.1 it follows easily thatH0 is strictly affiliated toCL. Note that we can
assumeH0 ≥ 1. Then we write

H
−1/2
0 WH

−1/2
0 = H

−1/2
0 〈P 〉s · 〈P 〉−sW 〈P 〉−s · 〈P 〉sH−1/2

0 . (6.6)

Below we shall prove that

〈P 〉−sW 〈P 〉−s ∈ CL. (6.7)

From Theorem 4.1 it follows that the elements of the formθ1(P )T θ2(P ) with θk ∈
Cc(X

∗) are dense inCL. Then the relations (6.6) and (6.7) implyH−1/2
0 WH

−1/2
0 ∈ CL.

Finally, Theorem 6.1 is a consequence of the affiliation criterion Theorem 2.1.
We shall prove (6.7) by constructing a family of symmetric operators{Wε} in CL

which approximatesW in the norm ofB(H s ,H −s). Chooseθ ∈ C∞c (Rn) such that
0 ≤ θ ≤ 1 andθ(0) = 1, and setKε = θ(εQ)θ(εP ). LetWε =∑

l∈L U∗l Wl,εUl , where
Wl,ε = KεWlK

∗
ε . Observe first that, for eachε ∈ (0,1], {Wl,ε}l∈L is a relatively compact

family of compact symmetric operators onH . Hence, by Proposition 5.1,Wε belongs to
CL,0 for eachε > 0. It remains thus only to show the convergence‖Wε −W‖s,−s → 0
asε → 0. Let 2n < α < a, wherea is as in Theorem 6.1. We shall use Lemma 6.2 with
W replaced byWε −W , a by α, andu = s, v = −s. Then the first norm in the r.h.s. of
the corresponding inequality of type (6.5) is estimated as follows:

‖〈Q〉α(Wl,ε −Wl)‖s,−s ≤ ‖〈Q〉α(Kε − 1)WlK
∗
ε‖s,−s + ‖〈Q〉αWl(K

∗
ε − 1)‖s,−s

≤ ‖〈Q〉α(Kε − 1)〈Q〉−a‖−t,−s · ‖〈Q〉aWl‖t,−t · ‖K∗ε‖s,t
≤ ‖〈Q〉αWl〈Q〉a−α‖t,−s · ‖〈Q〉α−a(K∗ε − 1)‖s,t .

We shall use the scale of spacesH u
v defined by the norms‖〈P 〉u〈Q〉v ·‖. By hypothesis,

the family of operatorsWl is bounded inB(H t ,H −t
a ). By interpolation, and since

t < s, we get that it is also bounded inB(H t
α−a,H

−s
α ). So in order to show that

‖〈Q〉α(Wl,ε −Wl)‖s,−s → 0 if ε → 0 it suffices to prove the next two relations:

‖〈P 〉−s〈Q〉α(Kε − 1)〈Q〉−a〈P 〉t‖
= ‖〈P 〉−s〈Q〉α(Kε − 1)〈Q〉−α〈P 〉s · 〈P 〉−s〈Q〉α−a〈P 〉t‖ → 0,

‖〈P 〉−s(Kε − 1)〈Q〉α−a〈P 〉t‖
= ‖〈P 〉−s(Kε − 1)〈P 〉s · 〈P 〉−s〈Q〉α−a〈P 〉t‖ → 0.

The operator〈P 〉−s〈Q〉α−a〈P 〉t is compact, so it suffices to show thatKε → 1 strongly
in B(H u

v ) whenε → 0, for eachu, v ∈ R. But this is an easy consequence of the next
more precise lemma and its analog with the roles ofQ andP interchanged. Theorem 6.1
is proved. )*



Crossed Products ofC∗-Algebras and Spectral Analysis of Quantum Hamiltonians 555

Lemma 6.3. Let θ be in the Schwartz space S (Rn) and let u, v ∈ R. Then

lim
ε→0

‖[〈Q〉v, θ(εP )]〈Q〉−v‖B(H u) = 0.

Proof. We use the Fourier representationθ(εP ) = ∫
Uεxθ̂ (x)dx in order to compute

[〈Q〉v, θ(εP )]〈Q〉−v =
∫

Uεx(U
∗
εx〈Q〉vUεx〈Q〉−v − 1) θ̂ (x)dx

=
∫

Uεx(〈Q− εx〉v〈Q〉−v − 1) θ̂ (x)dx.

It is clear that‖〈Q − x〉v〈Q〉−v‖B(H u) ≤ C〈x〉r for some positive numbersC andr,
so we shall have‖[〈Q〉v, θ(εP )]〈Q〉−v‖B(H u) ≤ const. Then, by an easy interpolation
argument, it suffices to prove the lemma in the caseu = 0. Now the dominated con-
vergence theorem shows that it is enough to prove‖〈Q − x〉v〈Q〉−v − 1‖ → 0 when
x → 0. But this is a consequence of(1+ |x|)−1 ≤ 〈y − x〉〈y〉−1 ≤ (1+ |x|). )*

7. Appendix

In this appendix we shall prove Theorem 1.2. It clearly suffices to consider only the case
of T ∈ CL,0. We denote byA the set of operators verifying the conditions (i)-(iii) of
the theorem with̃T = 0. ClearlyA is aC∗-algebra.

We first show the easy inclusionCL,0 ⊂ A . By (5.4) it suffices to show that oper-
ators of the formϕ(Q)ψ(P ) with ϕ ∈ CL,c(X) andψ ∈ C0(X

∗) belong toA . Since
Uxϕ(Q)U∗x = ϕ(Q+ x), we have

‖(Ux − 1)ϕ(Q)ψ(P )‖ ≤ ‖ϕ(Q+ x)− ϕ(Q)‖ ‖ψ(P )‖ + ‖ϕ(Q)‖ ‖(Ux − 1)ψ(P )‖.
The functionϕ is uniformly continuous so the first term in the r.h.s. above tends to zero
asx → 0. Since

‖(Ux − 1)ψ(P )‖ = sup
k∈X∗

|k(x)− 1| |ψ(k)|

andψ(k) → 0 ask → ∞ in X∗ we see that this norm also tends to zero asx → 0.
Thus (i) is satisfied. Further, (ii) is an immediate consequence of the uniform continuity
of ψ because

Vkϕ(Q)ψ(P )V ∗k − ϕ(Q)ψ(P ) = ϕ(Q) [ψ(P + k)− ψ(P )].
Also, χLc

)
(Q)T = χ

Lc
)
(Q)ϕ(Q)ψ(P ) is zero if) is large enough, by the properties

of ϕ ∈ CL,c(X). In order to treat the termT χ
Lc

)
(Q) of (iii) we recall thatC0(X

∗) ·
CL,c(X) is dense inCL,0, so for eachε > 0 one may findψ1, . . . , ψn ∈ C0(X

∗) and
ϕ1, . . . , ϕn ∈ CL,c(X) such that‖T −∑n

1 ψi(P )ϕi(Q)‖ < ε. For) large enough we
haveϕi(Q)χLc

)
(Q) = 0 for all i, hence‖T χ

Lc
)
(Q)‖ < ε. This finishes the proof of

CL,0 ⊂ A . The reciprocal assertion is less elementary and we devote the rest of the
Appendix to its proof.

In what follows we shall need three groups of automorphisms ofB(H ), namely
{Ux}x∈X, {Vk}k∈X∗ and {Wξ }ξ∈X×X∗ , defined on everyT ∈ B(H ) by Ux[T ] :=
UxT U∗x , Vk[T ] := VkT V ∗k andW(x,k) := UxVk respectively. Notice that[Ux,Vk] = 0
for each couple(x, k) ∈ X×X∗. HenceWξ is a representation onB(H ) of the locally
compact groupP := X × X∗ equipped with the Haar measure dξ = dx ⊗ dk. This
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representation is continuous if we equipB(H ) with the strong operator topology but it
is not norm continuous. It is clear that

C0
u(P) :={T ∈ B(H ) |P / ξ �→Wξ [T ] ∈B(H ) is norm continuous} (7.1)

is aC∗-subalgebra ofB(H ).
If T ∈ B(H ) andu ∈ L1(X), v ∈ L1(X∗), we denote

Tu,v :=
∫
P

Wξ [T ] (u⊗ v)(ξ) dξ. (7.2)

This is related to the Wigner transform and Husimi quantization, see [19]. In the next
three lemmas we give properties of this object which show thatTu,v is a “regularization”
of T in a similar manner in which the convolution of a function is a smoothing of this
function. We mention that the regularization inx, realized byu, is not needed for the
proof of Theorem 1.2, but is useful in other contexts (see [23]).

Lemma 7.1. For each T ∈ B(H ) the following statements are equivalent:

(i) For each ε > 0 there are u ∈ L1(X) and v ∈ L1(X∗) such that
‖Tu,v − T ‖ < ε.

(ii) T ∈ C0
u(P).

(iii) lim x→0 ‖(Ux − 1)T ‖ = 0 and limk→0 ‖(Vk − 1)T ‖ = 0.

Moreover, if one of these conditions is satisfied, the functions u and v from (i) may be
chosen such that their Fourier transforms û , v̂ have compact support.

Proof. First, (ii) is equivalent to (iii), as a consequence of

‖W(x,k)[T ]−T ‖ = ‖Ux(Vk[T ]−T )+ (Ux[T ]−T )‖ ≤ ‖Vk[T ]−T ‖+‖Ux[T ]−T )‖.
We prove now the equivalence between (i) and (ii). For each couple(y, p) ∈ X × X∗
we have

W(y,p)[Tu,v] ≡ (UyVp)[Tu,v] =
∫
X

∫
X∗

(UxVk)[T ] u(x − y) v(k − p)dx dk.

Since the translations act continuously onL1 we see that the map(y, p) �→W(y,p)[Tu,v]
is norm continuous. SoTu,v ∈ C0

u(P) for eachT ∈ B(H ). Then if (i) holds we get (ii)
becauseC0

u(P) is a norm closed subspace ofB(H ). Conversely, assume that (iii) holds.
It can be shown that for every open set) �= ∅ofX and for everyε > 0 there isu ∈ L1(X)

such thatu ≥ 0,
∫
X
u = 1,

∫
X\) u ≤ ε andû ∈ Cc(X

∗) (putu = ψ̂ in Lemma 2.1 from

[21]). Similarly, for each neighborhood> of 0 in X∗ there isv ∈ L1(X∗) with v ≥ 0,∫
X∗ v = 1,

∫
X∗\> v ≤ ε andv̂ ∈ Cc(X). Then we have

‖Tu,v − T ‖ =
∥∥∥∥
∫
X×X∗

(W(x,k)[T ] − T ) u(x) v(k)dx dk

∥∥∥∥
≤

∫
X

‖(Ux − 1)T ‖ u(x)dx +
∫
X∗
‖(Vk − 1)T ‖ v(k)dk

≤ sup
x∈)

‖(Ux − 1)T ‖ + sup
k∈>
‖(Vk − 1)T ‖ + 4ε‖T ‖.

By choosing), > such that the first two terms in the last member above are small, we
see that (i) holds. Moreover, we also proved the last assertion of the lemma.)*
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Lemma 7.2. A ⊂ C0
u(P) and if T ∈ A and u ∈ L1(X), v ∈ L1(X∗) then Tu,v ∈ A .

Proof. The condition (i) of Theorem 1.2 is stronger than limx→0 ‖(Ux−1)T ‖ = 0 from
(iii) of Lemma 7.1, hence eachT ∈ A verifies the statements (i)–(iii) of this lemma. It
remains to prove thatTu,v ∈ A , which obviously follows by dominated convergence if
Wξ [T ] ∈ A for anyξ ∈ X ×X∗.

Let, more generally,ψ be the Fourier transform of an integrable measure onX and
T ∈ A . We shall prove thatψ(P )T ∈ A . SinceUx = x(P ) the operatorψ(P )T

clearly satisfies condition (i) of Theorem 1.2. Then

[Vk, ψ(P )T ] = {Vkψ(P )V ∗k − ψ(P )}VkT + ψ(P )[Vk, T ].

SinceVkψ(P )V ∗k = ψ(P + k) andψ ∈ Cu
b(X

∗), condition (ii) of Theorem 1.2 is also
satisfied. Finally, to check (iii) we use the representationψ(P ) = ∫

X
Uxψ̂ (dx). If ) is

a compact subset ofX then

‖χLc
)
(Q)ψ(P )T ‖ ≤

∫
X

‖χLc
)
(Q)UxT ‖ |ψ̂ |(dx).

Let ε > 0. Sinceψ̂ is an integrable measure, there is a compact subsetK of X such that∫
X\K |ψ̂ |(dx) < ε/(2‖T ‖), hence

‖χLc
)
(Q)ψ(P )T ‖ ≤ ε

2
+
∫
K

‖χLc
)
(Q− x)T ‖ |ψ̂ |(dx).

SinceT ∈ A , there is a compact setM in X such that‖χLc
M
(Q)T ‖ ≤ ε[2|ψ̂ |(K)]−1.

If we take) = M − K then) is also a compact inX and for eachx ∈ K we have
M ⊂ x+), soLM ⊂ L)+x. ButχLc

)
(Q−x) = χ

(L)+x)c (Q) so‖χLc
)
(Q−x)T ‖ ≤

‖χLc
M
(Q)T ‖. With this choice of) we shall thus have‖χLc

)
(Q)ψ(P )T ‖ ≤ ε. )*

Lemma 7.3. Let Tu,v be given by (7.2) with v̂ of compact support. Then there is a
compact set ) in X such that for θ1, θ2 ∈ Cc(X) with

suppθ1
⋂

(suppθ2+)) = ∅

one has θ1(Q) Tu,v θ2(Q) = 0.

Proof. We have to prove

θ1(Q)

∫
X

∫
X∗

VkUxT U∗x V ∗k u(x) v(k) dx dk θ2(Q) = 0

for suppθ1 and suppθ2 sufficiently far away one from another and for allT ∈ B(H ).
By the weak density of the finite rank operators, it suffices to assumeT of rank one and,
by the polarization identity, we may takeT of the form|g〉〈g| for someg ∈ H . Then
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for anyf1, f2 ∈H one has

〈f1, θ1(Q)Tu,vθ2(Q)f2〉
=
∫∫

X×X∗
〈f1, θ1(Q)VkUxg〉 〈VkUxg, θ2(Q)f2〉 u(x) v(k) dx dk

=
∫∫

X×X∗
dx dk u(x) v(k)×

×
∫∫

X×X

f1(x1) θ1(x1) g(x1+ x) k(x1)k(x2) g(x2+ x) θ2(x2) f2(x2) dx1 dx2

=
∫∫∫

X×X×X

dx dx1 dx2 u(x) f1(x1) θ1(x1) g(x1+ x) g(x2+ x) θ2(x2) f2(x2)×

×
∫

X∗
k(x1− x2) v(k)dk.

The last integral overX∗ equals(F−1v)(x1− x2), thus the triple integral above will be
non zero only ifx1−x2 belongs to the compact set suppF−1v.Thenx1 = x2+(x1−x2) ∈
(suppθ2+ suppF−1v)

⋂
suppθ1 shows that it suffices to choose) = suppF−1v. )*

As a consequence of the previous results, for eachT ∈ A and eachε > 0 there
areu ∈ L1(X) andv ∈ L1(X∗) with v̂ compactly supported such thatTu,v ∈ A ,
‖Tu,v − T ‖ < ε and such that the conclusion of Lemma 7.3 be satisfied. Hence there is
(and we may fix it) a compact set) ⊂ X such that Lemma 7.3 is valid and for which
we have

‖χLc
)
(Q)Tu,v‖ + ‖Tu,v

χ
Lc

)
(Q)‖ < ε. (7.3)

Let nowθ ∈ Cc(X) with 0 ≤ θ ≤ 1 andθ = 1 on). For eachl ∈ L we denote simply
by θ l both the mapx �→ θ(x − l) and the operator of multiplication by this function (in
what follows we shall freely use the same condensed notation for other functions onX

too). Since the setL is sparse, we may find a subsetM ⊂ L with a finite complementary
such that

suppθ l ⋂ (suppθ l′ +)) = ∅ if l, l′ ∈ M andl �= l′.

Lemma 7.3 gives thenθ lTu,vθ
l′ = 0 for all the pairsl, l′ as above. Hence, setting

φ =∑
l∈M θl one obtains

φ Tu,v φ =
∑

l,l′∈M
θlTu,vθ

l′ =
∑
l∈M

θlTu,vθ
l .

On the other hand, since 0≤ φ ≤ 1 there is a bounded, compactly supported function
ϕ such that 1− φ = ϕ + (1− φ)χLc

)
. This gives the following decomposition ofTu,v:

Tu,v = φ Tu,v φ + (1− φ)Tu,v φ + Tu,v(1− φ)

=
∑
l∈M

θlTu,vθ
l + (ϕ Tu,v φ + Tu,v ϕ)+ ((1− φ)χLc

)
Tu,v φ + Tu,v

χ
Lc

)
(1− φ)).

Let us observe that for eachS ∈ A and each bounded function with compact support
ϕ onX the operatorsϕ(Q)S andSϕ(Q) are compact. Indeed, chooseφ ∈ Cc(X) such
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thatϕφ = ϕ. It suffices thus to show thatφ(Q)S is compact. The second member of the
estimate

‖(Ux − 1)φ(Q)S‖ ≤ ‖φ(Q)‖ ‖(Ux − 1)S‖ + ‖Uxφ(Q)U∗x − φ(Q)‖ ‖S‖,
tends to zero becauseS ∈ A andφ is uniformly continuous. This shows thatφ(Q)S

satisfies the hypothesis of the Riesz-Kolmogorov compacity criterion.
Soϕ Tu,v φ + Tu,v ϕ is a compact operatorK. Thus we may use (7.3) to get

‖Tu,v −
∑
l∈M

θlTu,vθ
l −K‖ < ε.

In this manner, we are reduced to the proof of the assertion∑
l∈M θlTu,vθ

l ∈ CL,0. This may be reformulated as
∑

l∈M U∗l Kl Ul ∈ CL,0 if we
take into account thatθ l ≡ θ(Q − l) = U∗l θ(Q)Ul and if we denote byKl the com-
pact operatorθ(Q)UlTu,vU

∗
l θ(Q). It is straightforward to check that the family of these

compacts verifies the hypotheses of Proposition 5.1 (see (5.9)). This finishes the proof
of the inclusionA ⊂ CL,0, hence that of Theorem 1.2.
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