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Abstract: It is shown how the relations of the renormalized squared white noise de-
fined by Accardi, Lu, and Volovich [ALV99] can be realized as factorizable current
representations or Lévy processes on the real Lie alggprahis allows to obtain its

It6 table, which turns out to be infinite-dimensional. The linear white noise without or
with number operator is shown to be a Lévy process on the Heisenberg—\Weyl Lie algebra
or the oscillator Lie algebra. Furthermore, a joint realization of the linear and quadratic
white noise relations is constructed, but it is proved that no such realizations exist with a
vacuum that is an eigenvector of the central element and the annihilator. Classical Lévy
processes are shown to arise as components of Lévy processes on real Lie algebras an
their distributions are characterized. In particular the square of white noise analogue of
the quantum Poisson process is shown to hgyegrobability density and the analogue

of the field operators to have a density proportionar‘td’“’zﬂ) 12, whereTl is the usual
I'-function andng a real parameter.

1. Introduction

The stochastic limit of quantum theory [ALV0OOb] shows that stochastic equations (both
classical and quantum) are equivalent to white noise Hamiltonian equations. This sug-
gests a natural extension of stochastic calculus to higher powers of white noise. The
program to develop such an extension was formulated in [ALV95] where it was also
shown that it requires some kind of renormalization. As a first step towards the realiza-
tion of this program a new type of renormalization was introduced in [ALV99] which
led to a closed set of algebraic relations for the renormalized square of white noise
(SWN) and to the construction of a Hilbert space representation for these relations. This
construction was extended Byiady [Sni00] to a family of processes including non Bo-

son noises and simplified in [AS00a] who also showed that the interacting Fock space
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constructed in [ALV99] was in fact canonically isomorphic to the Boson Fock space
of the finite difference algebra, introduced by Feinsilver [Fei89] and Boukas [Bou88,
Bou91]. Commenting upon this result U. Franz, and independently a few months later K.
R. Parthasarathy, (private communications) pointed out that the commutation relations
of the SWN define a Lévy process on the Lie algebra bf2, R) or, equivalently, a
representation of a current algebra over this Lie algebra, and suggested that the theory of
representations of current algebras, developed in the early seventies by Araki, Streater,
Parthasarathy, Schmidt, Guichardet, (see [PS72,Gui72] and the references therein)
might be used to produce a more direct construction of the Fock representation of the
SWN as well as different ones. In the present paper we prove that this is indeed the case.
As a by-product we reduce the stochastic integration with respect to the SWN to the
usual stochastic integration in the sense of Hudson and Parthasarathy [Par92] and this
also allows to write down their corresponding It6 tables (see Eg. (2.2)).

After the renormalization procedure (which we shall not discuss here, simply taking
its output as our starting point) the algebraic relations, defining the SWN are:

boby, — bbs =y (p, V) +ng,, (1.1)
neby —byng = _waf’ (1.1b)
ngby,, —byng =2by,, (1.1c)
(be)* =by,  (ng)* =ng, (1.1d)

wherey is a fixed strictly positive real parameter (coming from the renormalization)
and

n
¢V eTR)={p=) ¢l €Cosi <ti eRy,neN)
i=1

the algebra of step functions d&; with bounded support and finitely many values.
Furthermoreb™ andn are linear and is anti-linear in the test functions.

We want to find a Hilbert space representation of these relations, i.e. we want to
construct an Hilbert spack, a dense subspad2 € # and three maps, b+, n from
¥ (Ry) to L(D), the algebra of adjointable linear operatorsionsuch that the above
relations are satisfied.

The simple current algebed of a real Lie algebrg over a measure spacg, 7, 1)
is defined as the space of simple functionslTowith values ing,

n

o' =1X=) Xily:Xieg. M eT.n GN}.
i=1

This is a real Lie algebra with the Lie bracket and the involution defined pointwise. The

SWN relations (1.1) imply that any realization of SWN on a pre-Hilbert sgadefines

a representation of the current algebrd§+ of the real Lie algebral, overR . (with
the Borelo-algebra and the Lebesgue measurePoloy

B_lb-’[[ = b]_[“[, B+1[s,z[ = bik[m[, Ml[s,l[ = ]/(l‘ — S) + N
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wheresl; is the three-dimensional real Lie algebra spanne@isy, B—, M}, with the
commutation relations

[B~,BT]=M, [M,B*]=+2B%,

and the involution B~)* = B*, M* = M. The converse is obviously also true, every

representation of the current aIgebI%* defines arealization ofthe SWN relations (1.1).
Looking only at indicator functions of intervals we get a familysefepresentations
(Jst)o<s<: on D of the Lie algebraly,

Jst (X) = (X110, forall X € sly.

By the universal property theserepresentations extend terepresentations of the
universal enveloping algebté(s(y) of sl5. If there exists a vecta® in £(D) such that
the representations corresponding to disjoint intervals are independent (in the sense of
Definition 2.1, Condition 2), i.e. if they commute and their expectations in the state
®() = (R, Q) factorize, then(jy;)o<s<, IS a Lévy process oal; (in the sense of
Definition 2.1). This condition is satisfied in the constructions in [ALV99, AS@0&)0].
They are of ‘Fock type’ and have a fixed special vector, the so-called vacuum, and the
corresponding vector state has the desired factorization property.

On the other hand, given a Lévy processstpnon a pre-Hilbert spac®, we can
construct a realization of the SWN relations (1.1)nSimply set

by =y ijsi(B), by =Y ¢ijsi(BT), ng = i(jsi.c. (M)—y (t;—s)idp),

i=1 i=1 i=1

forg =311 ¢ills.n € Z(Ry).

We see that in order to construct realizations of the SWN relations we can construct
Lévy processes osl,. Furthermore, all realizations that have a vacuum vector in which
the expectations factorize, will arise in this way.

In this paper we show how to classify the Lévy processespand how to construct
realizations of these Lévy processes acting on (a dense subspace of) the symmetric Fock
space ovelL2(R,, H) for some Hilbert spacéf. Given thegenerator L of a Lévy
process, we immediately can write down a realization of the process; see Eq. (2.1).
The theory of Lévy processes has been developed for arbitrary involutive bialgebras, cf.
[ASW88, Sch93], but here it will be sufficient to consider enveloping algebras of Lie
algebras. This allows some simplification, in particular we do not need to make explicit
use of the coproduct. The construction of this sub-class of Lévy process is based on
the theory of “factorizable unitary representation of current algebras” and the abelian
subprocesses of these processes are the stationary independent increment processes
classical probability (cf. Sect. 4 below).

As already specified, the SWN naturally leads to the real Lie alggpraut we shall
also consider several other real Lie algebras, including the Heisenberg—\Weyl Lie algebra
hto, the oscillator Lie algebrasc, and the finite-difference Lie algebfa.

This paper is organized as follows. In Sect. 2, we recall the definitition of Lévy
processes on real Lie algebras and present their fundamental properties. We also outline
how the Lévy processes on a given real Lie algebra can be characterized and constructed
as a linear combination of the four basic processes of Hudson—Parthasarathy quantum
stochastic calculus: number, creation, annihilation and time.

In Sect. 3, we list all Gaussian Lévy processes or Lévy processes associated to inte-
grable unitary irreducible representations for several real Lie algebras in terms of their
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generators or Schurmann triples (see Definition 2.2). We also give explicit realizations
on aboson Fock space for several examples. These examples include the processes on the
finite-difference Lie algebra defined by Boukas [Bou88,Bou91] and by Parthasarathy
and Sinha [PS91] as well as a processsbnthat has been considered previously by
Feinsilver and Schott [FS93, Sect. 5.1V]. See also [VGG73] for factorizable current
representations of current groups o$er(2, R).

Finally, in Sect. 4, we show that the restriction of a Lévy process to one single
hermitian element of the real Lie algebra always gives rise to a classical Lévy process.
We give a characterization of this process in terms of its Fourier transform. For several
examples we also explicitly compute its Lévy measure or its marginal distribution. It turns
out that the densities of self-adjoint linear combinations of the SWN operbiQrs

bf{s T in the realization considered in [ALV99,AS0@&ni00] are the measures of
orthogonality of the Laguerre, Meixner, and Meixner—Pollaczek polynomials.

2. Lévy Processes on Real Lie Algebras

In this section we give the basic definitions and properties of Lévy processes on real Lie
algebras. This is a special case of the theory of Lévy processes on involutive bialgebras,
for more detailed accounts on these processes see [Sch93],[Mey95, Chapter VII],[FS99].
For a list of references on factorizable representations of current groups and algebras
and a historical survey, we refer to [Str00, Sect. 5].

By a real Lie algebra we will mean a pai = (g, *) consisting of a Lie algebra
over the field of complex numbe@sand an involution: : g — g. These pairs are in one-
to-one correspondence with the Lie algebras over the field of real nuib®&secover
a Lie algebrgyp overR from a pair(g, x), simply take the anti-hermitian elements, i.e.
setgo = {X € g|X* = —X}. Note that it is not possible to take the hermitian elements,
because the commutator of two hermitian elements in not again hermitian. Given a Lie
algebragg over R, the involution on its complexificatiog = go @ igo is defined by
X+iY)*=-X+iYforX,Y € go.

We denote by/(g) the universal enveloping algebragénd byl{o(g) the non-unital
subalgebra off generated by. If X1, ..., X, is a basis ofj, then

(X1t X n1, ... ,ngeNynp+ -+ +ng > 1}

is a basis otfy(g). Furthermore, we extend the involution gras an anti-linear anti-
homomorphism té/(g) andify(g).

Definition 2.1. Let D be a pre-Hilbert space and 2 € D a unit vector. We call a family
( Jst s U(g) — ,C(D))oq< . of unital *-representations of /(g) a Lévy processon gr
over D (with respect to €2), if the following conditions are satisfied.

1. (Increment property) We have
Jst (X)) + jru(X) = jsu(X)
forall0<s <rtr<wuandal X € g.
2. (Boson independence) We have [ j; (X), jyr(Y)] =0foral X,Y € g,0<s <t <
s’ <t and
(2, Jsarr W) -+ Jsn, n)S2) = (82, Jogay (1)€2) -+ - (2, sz, (02)2)

foralln e N,0<s1<t1 <sp<---<ty,U1,...,U, €U@).
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3. (Stationarity) The functional ¢, : U(g) — C defined by
wst(u) = (K2, Jsr (u)€2), u €U(g),

depends only on the differencer — s.
4. (Weak continuity) We have lim s (€2, ji; (u)$2) = Ofor all u € Up(g).

If (jst)o<s<: iS @ Lévy process ogg, then the functionalg; = (2, jo, (1)) :
U(g) — C are actually states. Furthermore, they are differentiable wartd

1
L) = lim =
(u) tl\mo tfﬂz(u), u € Uo(g),

defines a positive hermitian linear functional &(g). In fact one can prove that the
family (¢,) is a convolution semigroup gk whose generator i5. The functionall is
also called thgenerator of the process.

(1 . ~
Let (js,) : U(g) > LIDD)),_ _, and(j? : U(g) — LIDP)),_, _, be two Lévy
processes ogr With respect to the state vectof&? and @, resp. We call them
equivalent, if all their moments agree, i.e. if
.(1 .(1 .(2 .(2
(@, jgn ) - i ) QP) = QP i ) - 5 ) Q®),

foralln e N,O<s1 <11 <s2<---<ty,u1,...,u, €U(g).
By a GNS-type construction, one can associate to every generator a Schirmann triple.

Definition 2.2. ASchirmann triple ongg isatriple (o, n, L), where p isa x-represen-
tation of Up(g) onsomepre-Hilbertspace D, n : Up(g) — D isasurjective p-1-cocycle,
i.e. it satisfies

nuv) = p)n(v),

for all u,v € Up(g), and L : Up(g) — C is a hermitian linear functional such that
the bilinear map (u, v) — —(n*), n(v)) is the 2-coboundary of L (w.r.t. the trivial
representation), i.e.

L(uv) = (n(u*), n(v))
for all u, v € Up(g).

Let(p, n, L) bea Schirmanntriple aik, acting on a pre-Hilbert spade We can de-
fine aLévy process onthe symmetric Fock sgage?(R+, D)) = P53 g LRy, D)"
by setting

Jst(X) = Mgt (0(X)) + A5, (n(X)) + Ase (n(X™)) + LX) — 9)id, (2.1)

for X € g, whereAy,, A¥,, A; denote the conservation, creation, and annihilation

st

processes oﬁ(Lz(R+, D)), cf. [Par92,Mey95]. It is straightforward to check that we
have

[Jsr X, jse (D] = jsr(IX, YT),  and  jr (X)* = jgr (X

forall0 <s <t, X, Y € g. By the universal property, the family

(js, g — C(F(LZ(R+, D))))OS

S<t
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extends to a unique familyjs;)o<s<; Of unital x-representations d¥(g), and it is
not difficult to verify that this family is a Lévy process with generafoon gr over
I'(L?(R4, D)) with respect to the Fock vacuufh

The following theorem shows that the correspondence between (equivalence classes
of) Lévy processes and Schiirmann triples is one-to-one and that the representation (2.1)
is universal.

Theorem 2.1.[Sch93] Two Lévy processes on gr are equivalent if and only if their
Schirmann triples are unitarily equivalent. A Lévy process (ks;)o<s<; With generator L
and Schurmann triple (o, n, L) is equivalent to the Lévy process (js;)o<s<: associated
to (p, n, L) defined in Eq. (2.1).

Remark 2.1. Since we know the 1t6 table for the four H-P integrators,

. dA*(w) dA(F) dA®u) dr
dA* (v) 0 0 0 O
dA(G) | dA*(Gu) dA(GF) 0 0
dA() | (v,u)dr dA(F*v) O 0O

dr 0 0 0 O

forall F,G € L(D), u,v € D, we can deduce the It6 tables for the Lévy processes
on gr. The map @ associating elemenis of the universal enveloping algebra to the
corresponding quantum stochastic differentiagls defined by

dru = dA(p(w)) + dA* (n(w)) + dA(n(™)) + L(u)dr, (2.2)

is ax-homomorphism frorfp(g) to the 1td algebra ove®, see [FS99, Proposition 4.4.2].

It follows that the dimension of the 1td algebra generateddyX; X € g} is at least

the dimension oD (sincen is supposed surjective) and not bigger thieim D + 1)2.

If D is infinite-dimensional, then its dimension is also infinite. Note that it depends on
the choice of the Lévy process.

Due to Theorem 2.1, the problem of characterizing and constructing all Lévy pro-
cesses on a given real Lie algebra can be decomposed into the following steps. First,
classify all«-representations df(g) (modulo unitary equivalence), this will give the
possible choices for the representatjoin the Schirmann triple. Next determine all
surjectivep-1-cocycles. We distinguish between trivial cocycles, i.e. cocycles which are
of the form

nu) = puw, u € Uop(g)

for some vectow € D in the representation space @f and non-trivial cocycles, i.e.
cocycles, which can not be written in this form. We will denote the space of all cocycles
of a givenx-representatiop on some pre-Hilbert spac® by Z1(Uo(g), p, D), that

of trivial ones byBY(Uo(g), p, D). The quotientd X (Uo(g), p, D) = ZXUo(g), p, D)/
BY(Uo(g), p. D) is called the first cohomology group pf In the last step we determine

all generatord. that turn a paiKp, n) into a Schirmann tripléo, n, L). This can again
also be viewed as a cohomological problem i$ a p-1-cocycle, then the bilinear map
(u,v) — —(n*), n(v)) is a 2-cocycle for the trivial representation, i.e. it satisfies
—(n(@v)*), n(w)) + (n*), n(vw)) = 0 for all u, v, w € Up(g). For L we can take

any hermitian functional that has the map v) — —(n(*), n(v)) as coboundary, i.e.
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L has to satisfyL.(u*) = L(u) andL(uv) = (n(u*), n(v)) for all u, v € Up(g). If n

is trivial, then such a functional always exists, we can thke) = (w, p(u)w). For a
given pair(p, n), L is determined only up to a hermitian 0-1-cocycle, i.e. a hermitian
functionalf that satisfieg(uv) = O for all u, v € Up(g).

Remark 2.2. A linear x-maprx : g — L(D) is called a projective-representation af,
if there exists a bilinear map: g x g — C, such that

[7(X), 7(V)] =7 ([X. Y]) + «(X, V)id,

forall X, Y € g. Every projectives-representation defineserepresentation of a central
extensiorg of g. As a vector spacg is defined ag = g @ C. The Lie bracket and the
involution are defined by

[(X, 1), (Y, M)] = ([X, Y], a(X, Y)), (X, )" = (X* %)
for (X, 1), (Y, u) € g. Itis not hard to check that
7((X, %) =7n(X) + Aid

defines ax-representation df. If the cocyclex is trivial, i.e. if there exists a (hermitian)
linear functionalg such thaix (X, Y) = 8([X, Y]) for all X, Y € g, then the central
extension is trivial, i.eg is isomorphic to the direct sum @fwith the (abelian) one-
dimensional Lie algebr&. Such an isomorphism is given ly® C > (X, u) —
(X, B(X) + ) € g. This implies that in this case

mp(X) = 7((X, B(X))) = 7(X) + B(X)id

defines ax-representation af.
For a pain(p, n) consisting of a-representatiop and go-1-cocyclen we can always
define a family of projective-representation,,)o<s<; Of g by setting

kst (X) = Ase (0(X)) + A5 (1(X)) + Ase (n(X)),

for X € g, 0 < s < r. Using the commutation relations of the creation, annihilation, and
conservation operators, one finds that the 2-coaydtegiven by(X, Y) — a(X,Y) =
(n(X*), n(¥)) — (n(Y*), n(X)). If it is trivial, then (ks )o<s<; Can be used to define a
Lévy process og. More precisely, if there exists a hermitian functiogtabnifp(g) such
thaty (uv) = (n(*), n(v)) holds for allu, v € Up(g), then(p, n, ¥) is a Schirmann
triple on g and therefore defines a Lévy processgrBut even if such a hermitian
functionalyr does not exist, we can define a Lévy proces§ by setting

kot (X, ) = Agt (0 (X)) + A*(n(X)) + A(n(X*)) + (t — s)rid,
for(X,A) eg,0<s <rt.

We close this section with two useful lemmata on cohomology groups.

Schirmann triplesp, n, L), where thex-representatiop is equal to the trivial rep-
resentation defined by Qfp(g) > u — 0 € L(D) are calledGaussian, as well as the
corresponding processes, cocycles, and generators (cf. Corollary 4.1 for a justification
of this definition). The following lemma completely classifies all Gaussian cocycles of
a given Lie algebra.
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Lemma 2.1.Let D beanarbitrary complex vector space, and O thetrivial representation
of g on D. We have

Z'Uo(g).0, D) = (g/lg, 0])".  B'(Uo(g). 0, D) = {0},
and therefore dim HY(Uy(g), 0, D) = dimg/[g. g].

Proof. Let ¢ be a linear functional og/[g, g], then we can extend it to a unique 0-1-
cocycle on the algebi#(g/[g, g]) (this is the free abelian algebra oygifg, g]), which
we denote by. Denote byr the canonical projection fromto g/[g, g], by the universal
property of the enveloping algebra it has a unique extensiol¥o(g) — Uo(g/lg, g])-
We can define a cocyclg, onlfo(g) by ng = ¢ o 7. Furthermore, since any 0-1-cocycle
on Up(g) has to vanish otig, g] (becausey = [X1, X>] impliesn(Y) = On(X2) —
On(X1) = 0), the mapp — ny is bijective. O

The following lemma shows that a representatio®d6§) can only have non-trivial
cocycles, if the center @fp(g) acts trivially.

Lemma 2.2.Let p be a representation of g on some vector space D and let C € Up(g)
be central. If p(C) isinvertible, then

HYUo(g), p, D) = {0}.

Proof. Letn be ap-cocycle oridy(g) andC € Up(g) such thalp (C) is invertible. Then
we get

p(Cn) = n(Cu) = nuC) = pu)n(C)

and therefore)(u) = p(u)p(C)~1n(C) for all u € Uo(g), i.e. n(u) = p(u)w, where
w = p(C)~1y(C). This shows that alb-cocycles are trivial. O

3. Examples

In this section we completely classify the Gaussian generators for several real Lie al-
gebras and determine the non-trivial cocycles for some or all of their integrable unitary
irreducible representations, i.e. those representations that arise by differentiating unitary
irreducible representations of the corresponding Lie group. Theseramesentations

of the enveloping algebid(g) on some pre-Hilbert spad@ for which the Lie algebra
elements are mapped to essentially self-adjoint operators. For some of the processes we
give explicit realizations on the boson Fock space.

3.1. White noise or Lévy processes on hto and osc. The Heisenberg—Weyl Lie algebra
bro is the three-dimensional Lie algebra with bgsis’, A~, E}, commutation relations

[A=,AT]=E, [A* E]1=0,

andinvolution(A™)* = A", E* = E. Adding a hermitian elemei with commutation
relations

[N, A¥] = A%, [N, E]=0,

we obtain the four-dimensional oscillator Lie algebsa.
We begin with the classification of all Gaussian generators on these two Lie algebras.
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Proposition 3.1.(a) Let v1, v2 € C2 be two vectors and z € C an arbitrary complex
number. Then
p(A*) = p(A7) = p(E) =0,
n(AT) =v1, (A7) =v2, n(E)=0,
LAY =z, LA =%, L(E)=|jvll* - [|v2ll%,
defines the Schirmann triple on D = span{v1, v2} of a Gaussian generator on

Up(hto). Furthermore, all Gaussian generators on L (hto) arise in this way.
(b) The Schiirmann triples of Gaussian generators on Up(osc) are all of the form

p(N) = p(A*) = p(A7) = p(E) =0,
n(N) =v, n(A")=n(A")=n(E)=0,
L(N)=b, LAY =L(A")=L(E)=0,
withv € C, b € R.

Proof. The form of the Gaussian cocycles@ htv) andii(osc) follows from Lemma
2.1. Then one checks that for all these cocycles there do indeed exist generators and
computes their general form.o

Therefore from (2.2) we get, for an arbitrary Gaussian Lévy procegsoon

d AT = dA*(v1) + dA(v2) + zdr,
dzA™ = dA™(v2) + dA(vy) + Zdr,
diE = (IJval1? — [Jv2l|?)dt,

and the It6 table

[ dLAJr d A~ d.E
dp AT | (vo, vi)dr  (v2, vo)dt 0
d.A™ | (v, v)de (v1,v2)dr O
d.E 0 0 0

For ||v1]|2 = 1 andvy = 0, this is the usual 1td table for the creation and annihilation
process in Hudson-Parthasarathy calculus.

Any integrable unitary irreducible representatiorhaf is equivalent either to one of
the one-dimensional representations defined by

7, (AN =z, m(A7)=3z, m.(E)=0,
for somez € C, or to one of the infinite-dimensional representations defined by
pn(AN)en =+ Dhens1,  pn(A)en = Vihen1,  pu(Eden = hey, (3.1)
and
p-n(A)en =/ (n+ Dhensr,  p_n(AN)en = Vnhen1,  p_p(E)en = —he,

whereh > 0, and{eg, e1, ... } is aorthonormal basis &£. By Lemma 2.2, the represen-
tationspy, have no non-trivial cocycles. But by a simple computation using the defining
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relations ofhro we see that, for # 0, the representations of the formidp also have
only one trivial cocycle. Fromi™E = EA™T we get

(E) = n(ATE) = n(EA™) = m.(E)n(A*) =0,
and therefore)(E) = 0. BUutE = A=AT — AT A~ implies
0=n(E) = m(A)n(A") — m(AN)n(A7) =7n(A") — zn(A7),
and we see thaj is the coboundary o = z715(AT). Thus the integrable unitary
irreducible representations (except the trivial one)ofhave no non-trivial cocycles.
Let us now consider the oscillator Lie algeloxa. The element® andNE — AT A~
generate the center&f(osc). If we want an irreducible representatiorifosc), which
has non-trivial cocycles, they have to be represented by zero. But this implies that we

have alsgp(A™) = p(A™) = 0 (since we are only interestedsirrepresentations). Thus
we are lead to study the representatipnslefined by

pv(N) =vidp, py(A") = py(A7) = pu(E) =0,
with v € R\{0}. It is straightforward to determine all their cocycles and generators.
Proposition 3.2.For v € R, v ¢ {—1, 0, 1}, all cocycles of p, are of the form
n(N)=v, n(A")=n(A")=n(E)=0,

for somev € D and thustrivial (coboundaries of v = v=1v).
For v = 1 they are of the form

n(N)=v1, n(AT) =v2, n(A7)=n(E)=0,
and for v = —1 of theform

n(N)=v1, (A7) =v2, n(A*)=n(E)=0,
with some vectors vy, v2 € D. Therefore we get

dim HUo(osc), p+1, D) = 1, dim BYUp(osc), px1, D) = 1
and
dim HUo(0s¢), py, D) =0, dim BXUo(osc), py, D) = 1
for v e R\{-1,0, 1}.
Let nowv = 1, the cases = —1 is similar, sinceo; and p_1 are related by the

automorphismV +— —N, AT > A~, A~ > AT, E — —E. It turns out that for all

the cocycles given in the preceding proposition there exists a generator, and we obtain
the following result.
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Proposition 3.3.Let v1, vo € C2and b € R. Then p = p1,
n(N) =v1, n(AY) =vy, n(A7)=n(E)=0,
L(N)=b, L(E)=|lv2ll®, L(A")=L(A") = (v1.v2),

defines a Schirmann triple on osc acting on D = span{v1, v2}. The corresponding
guantum stochastic differentials are
diN = dA(id) + dA* (v1) + dA(v1) + bdz,
dr AT = dA*(v2) + (v1, v2)dt,
d A = dA(v2) + (v2, v1)dt,
dLE = [Jvalldr,

and they satisfy the following 1t6 table

° dLA+ d.N d,A- d.E
d.AT| 0 0 0 0
d.N | dgAY dN + (Jlval2=b)dt 0O 0
d,A= | d E d A~ 0 0
d.E 0 0 0 0

Note that for||v1||2 = b, this is the usual Itd table of the four fundamental noises of
Hudson—Parthasarathy calculus.

3.2. SWN or Lévy processesonslz. The Lie algebrail; is the three-dimensional simple
Lie algebra with basi$B™, B~, M}, commutation relations

[B~,BY1=M, [M,B*]=+2B*,
and involution(B™)* = BT, M* = M. Its center is generated by the Casimir element
C=MM—-2)—4BTB~ =M(M +2)— 4B~ B™.

We have[sly, slo] = sl2, and sdAp(sl2) has no Gaussian cocycles, cf. Lemma 2.1,
and therefore no Gaussian generators either. Let us now determine all the non-trivial
cocycles for the integrable unitary irreducible representationgof

Itis known that, beyond the trivial representatjgithere are three families of equiv-
alence classes of integrable unitary irreducible representatidp (ffiven in Egs. (3.3),

(3.4), (3.5) below), see, e.g., [GLL90] and the references therein. We will consider them
separately. We begin to consider the lowest and highest weight representations. These
families of representations are parametrized by a real numbemnd are induced by
p(M)Q =meR, p(B7)Q =0, ando(M)Q = —moR2, p(BT)Q = 0, respectively. The
lowest weight representations are spanned by the vegtorsp (B1)" <, withn € N.

We get

p(B+)Un = Up+1,
1
p(B v, =p (B (BY)")Q=p (Z(M(M +2)— C)(B*)"l) Q

=n(n +mo—1p(B)"1Q =nmn +mo— Lv,_1,
p(M)v, = (21 + mo)vy.
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If we want to define an inner product on sgdap; n € N} such thap (M)* = p(M) and
p(B7)* = p(B™), then thev, have to be orthogonal and their norms have to satisfy the
recurrence relation

vntal1? = (p(BT ), vpy1) = (Vn, p(B )0ps1) = (n + D(n + mo)|val®. (3.2)
It follows there exists an inner product on sgajy; n € N} such that the lowest weight
representation withh (M)Q = moQ2, p(B~)Q2 = 0 is ax-representation, if and only if
the coefficientsn + 1)(n + mo) in Eq. (3.2) are non-negative for all=0, 1, ..., i.e.
if and only if mg > 0. Formg = 0 we get the trivial one-dimensional representation
po(BH2 = po(B7)Q2 = po(M)Q = 0 (sincel|v1]|? = 0), formg > 0 we get

o (BHen = v/(n + 1)(n + mo) en1, (3.3a)

P (M)en = (2n + mo)ey, (3.3b)

pnfO(B_)en =vnn+mog—1e,_1, (3.30)

where{eg, e1, ...} is an orthonormal basis @f. Note that the Casimir element acts
aSp,','l'o(C)en = mo(mo — 2)e,. Similarly we see that there existscaepresentation
containing a vectof2 such thap (BY)Q = 0, p(M)Q = —mR, ifand only ifmg > 0.
Formg = 0 this is the trivial representation, ferg > 0 it is of the form

Pmo(B)en =/ (n + 1)(n + mo) ent1, (3.4a)

Py (M)en = —(2n + mo)en, (3.4b)

Pmo(BN)en = /n(n +mo — 1) e,_1, (3.4c)

andp,, (C)e, = mo(mo — 2)e,. The integrable unitary irreducible representations of
slo, be(fonging to the third class, have no highest or lowest weight vector. They are
parametrized by two real numbens, c and are induced by(M)Q2 = mo2, p(C)Q2 =

¢2. Note that sinc& is central, the second relation implies actuagllyfC) = cid. The
vectors{vi, = p(B*)"Q; n € N} form a basis for the induced representation,

o(M)v, = (2n 4 mo)vy,

Up+1 |f n 2 0,
p(BMv, = { (ot 2n-+2) (mo+2n)—c
2

vpt1 1f n <0,

Vp—q1 ifn >0,
Up—1 if n <O.

(mo+2n—2)(mo+2n)—c
yi

p(B v, = {

We look again for an inner product that turns this representation igtepresentation.
Thev, have to be orthogonal for such an inner product and their norms have to satisfy
the recurrence relations

2n+2 2n) —
||vn+1||2=(mOJF * L(mOJF ") cllvnllz, forn > 0,

(mo + 2n — 2)(mg + 2n) —
4

2 c 2
[lvp—1ll© = [lvall5,  forn <O.
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Therefore we can define a positive definite inner product ongpan € Z}, if and only

if \(A +2) > cforall A € mg + 2Z. We can restrict ourselves g < [0, 2[, because

the representations induced Gy mo) and(c, mo + 2k), k € Z turn out to be unitarily
equivalent. We get the following family of integrable unitary irreducible representations
of U(sly):

1
Pemo(BT)en = E\/(mo + 21+ 2)(mo + 2n) — ¢ epy1, (3.5a)
pcmo(M)en = (2n + mo)e,, (35b)

-~ 1
Pemo(B7)en = 5/ (mo + 21 = 2)(mo +21) — ¢ en-a, (3.5¢)

where{e,; n € Z} is an orthonormal basis 68(Z), mg € [0, 2[, ¢ < mg(mg — 2).

Due to Lemma 2.2, we are interested in representations in whighmapped to
zero. There are, up to unitary equivalence, only three such representations, the trivial or
zero representation (which has no non-zero cocycles at all, by Lemma 2.1), and the two
representations® = pit on ¢2 defined by

pE(M)e, = +(2n + 2)ey,
pT(BNen =V (n+D(n+2) eni1,
pT (B )en = y/n(n+1) ey,
p~(BNey = v/n(n+1) ey,
P~ (B )ew = /(n + 1)(n + 2) eny1,

forn € N, where{eo, e1, . ..} is an orthonormal basis @f. The representationst and
o~ are not unitarily equivalent, but they are related by the automorpMsm — M,
BT+ B~, B~ — B™.Therefore it is sufficient to study™. Letn be ap*-1-cocycle.
Sincep™ (BT) is injective, we see thatis already uniquely determined hyB™), since
the relationgM, BT] = 2B+ and[B~, BT] = M imply

n(M) = pT (BN "HpT (M) — 2)n(BD),
n(B™) = pT(BH (o (B )n(BT) — n(M)).

In fact, we can choose any vector fg¢B™), the definitions above and the formula
nuv) = pTw)n) for u, v € Up(slz) will extend it to a uniquep™-1-cocycle. This
cocycle is a coboundary, if and only if the coefficiantin the expansiom(B*) =
322 o vnen Of n(BT) vanishes, and an arbitragy"-1-cocycle is a linear combination
of the non-trivial cocyle;; defined by

0 if n=0,

5,.06m0p (B Leg it n > 1, (3.6

1 ((BM)'M™(B7)") = {

and a coboundary. In particular, fowith n(B*) = Y72  v,e,, We gety = von1 + dw

P — o0 Un+1 i
withew =) (eI Thus we have shown the following.
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Proposition 3.4.\\e have
dim H'Uo(sl2), p*, €%) = 1

and dim H1(Uo(s12), p, £2) = Ofor all other integrable unitary irreducible representa-
tions of sl(>.

Sincelsly, slo] = slo, all elements affp(sl2) can be expressed as linear combinations
of products of elements éfp(sl2). Furthermore one checks that

L(u) = (n(uy), n(uz)), foru = uyuz, w1, uz € Up(slo)

is independent of the decompositionwointo a product and defines a hermitian linear
functional. Thus there exists a unique generator for every cocyaé&on

Example 3.1. We will now construct the Lévy process for the cocygledefined in
Eq. (3.6) and the corresponding generator. We get

L(M) = (m(BT), nm(BT)) — (m(B7),m(B7)) =1,
L(BY)Y=L(B™) =0,

and therefore

d.M = dA(p™ (M) + dt,
d. Bt = dA(pt(BT)) + dA*(eo), (3.7)
d. B~ = dA(p"(B7)) + dA(eo).

The It6 table is infinite-dimensional. This is the process that leads to the realization of
SWN that was constructed in the previous works [ALV99, AS@p&00].
For the Casimir element we get

d,C = —2d.

For this process we havg, (B7)Q =0andj;;(M)Q = (¢t —s)Qforall0 <s <.
From our previous considerations about the lowest weight representatgnveé can
now deduce that for fixed and: the representatiop, of sl restricted to the subspace
Jst(U(s12))Q is equivalent to the representatipfi , defined in Eg. (3.3).

Example 3.2. Let now p be one of the lowest weight representations defined in (3.3)
with mg > 0, and lety be the trivial cocycle defined by

n(u) = p,f(weo,

foru € Up(sl). There exists a unique generator for this cocycle, and the corresponding
Lévy process is defined by

d.M = dA (o, (M)) + modA*(eo) + modA(eo) + modt,
d. BT = dA(p,f,(B1)) + /modA*(e), (3.8)
d B~ = dA(p;f,(B7)) + /modA(er).

For the Casimir element we get

d.C = mo(mg — 2)(dA(id) + dA*(eg) + dA(eg) + dt).
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3.3. Whitenoiseand itssquare or Lévy processeson sl @, hro. We can define an action
«a of the Lie algebral, on hto by

AT — AT, At — 0, At — A™,
a(M): E ~ 0, (BT E — 0, «(B7): E ~ 0,
A" > —AT, A > —AT, A~ — 0.

Thea(X) are derivations and satisfy(X)Y)" = —a(X*)Y* for all X € slp, ¥ € bro.
Therefore we can define a new Lie algebta ®, hrw as the semi-direct sum afy
andbr, it has the commutation relatiofigX1, Y1), (X2, Y2)| = ([X1, X2l, [Y1, Y2] +
a(X1)Yr — a(Xz)Yl) and the involution(X, Y)* = (X*, Y*). In terms of the basis
(B*, M, A*, E} the commutation relations are

[B~,BT]1=M [M, B¥]=+2B%,
[A=,AT1=E, [E,AT]1=0,
[B*, AT] = 5A*, [B*. A*]=0,
(M, A*] = +A*%, [E,B*1=0, [M,E]=0.

The actionx has been chosen in order to obtain these relations, which also follow from
the renormalization rule introduced in [ALVOODb].
In the following we identifyl/ (hr) andif (sl2) with the corresponding subalgebras
inU(slo g hiv).
Note that for any: € R, spafN = M +cE, A*, A~, E} forms a Lie subalgebra of
slp @y hro that is isomorphic tesc.
There exist no Gaussian Lévy processeslos, hiv, sincelslo @, hro, slo®, hro] =
sly By hro. But, like for every real Lie algebra, there exist non-trivialepresentations
of slo B, hro, and thus also Lévy processes, it is sufficient to take, e.g., a trivial cocycle.
The following result shows that the usual creation and annihilation calculus cannot
be extended to a joint calculus of creation and annihilation and their squares.

Proposition 3.5.Let (p, , L) be the Schirmann triple on hto defined in Proposition
3.1 a), and denote the corresponding Lévy process by (jss)o<s<:- There exists no Lévy
process (Js:)o<s<: ON sl @, hro such that

(jst|u(bm)) = (jst),
unless (jgr)o<s<; istrivial, i.e. jg (1) = 0for all u € Up(hto).

Proof. We will assume thatj,) exists and show that this implies1||2 = ||vo||2 =
22=0,i.e.L =0.

Let (g, 7, L) be the Schurmann triple @f/). If (s lu@w)) = (is), then we have
i|u0(hm) = L, and therefore the triple ofitv obtained by restriction of3, 7, L) is
equivalent to(p, n, L) and there exists an isometry frof = n(Uop(ht)) into D =
71(Uo(sl2 By b)), such that we have

Plumpmyxp =P, andnlyypw) =1,

if we identify D with its image inD.
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From[B*, A"l = —AT and[B~, A*] = A~, we get
—ii(A") = p(BTIN(AT) — p(AT)H(BT),
(A7) = p(B)n(AT) — 6(AT)R(B7).
Taking the inner product with(A™) = n(A™) = vy andij(A™) = n(A™) =y, resp.,

we get

—[JvalI? = (v1, p(BT)v2) — (v1, HAT)H(BT))
= (v1, p(BN)v2) — (p(AT)v1, H(BT)) = (v, p(BM)vp),
lv2]1? = (v2, p(B7)v1),

sincep(AY)|p = p(AT). Therefore

—v1ll? = (v1, p(BM)v2) = (v2, p(B )v1) = |[v2ll?,
and thug|v1]|2 = [|v2||? = 0. ButAT = —[B+, A~] and
L(AT) = L(AY) = (i(A1), i(B")) — (ii(B7), 71(A7))
= (v1, 1(BT)) — (7I(B7), v2)
which now implies that = L(A*) =0. O

Sniady Bni00] has posed the question, if it is possible to define a joint calculus for the
linear white noise and the square of white noise. Formulated in our context, his answer
to this question is that there exists no Lévy processlor,, hio such that

Jsi(E) = (t —s)id, and (A7) = ju(B7)Q2=0,

forall 0 < s < t. We are now able to show the same under apparently much weaker
hypotheses.

Corollary 3.1. Every Lévy process on sl @, hro such that the state vector 2 is an
eigenvector for ji,(E) and j;;(A™) for some pair s and ¢ with 0 < s < ¢ istrivial on
bro, i.e. it hasto satisfy js/ i) = Oforall 0 <s <1.

Proof. Assume that such a Lévy process exists. Then it would be equivalent to its re-
alization on a boson Fock space defined by Eq. (2.1). Therefore we see that the state
vector is an eigenvector gf,(E) and j;; (A7), if and only if the Schirmann triple of
(Jst)o<s<: satisfies)(E) = n(A~) = 0. If we show that the only Schirmann triples on
hw satisfying this condition are the Gaussian Schiirmann triples, then our result follows
from Proposition 3.5.

Let (p, n, L) be a Schirmann triple diro such thatyj(E) = n(A~) = 0. Then the
vectorn(A™) has to be cyclic fop. We get

p(E)n(AT) = p(AT)n(E) =0,
sinceE andA™ commute. FromA~, A*] = E, we get

P(AT)N(AT) = p(AT)n(A7) +n(E) = 0.
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But

oA AP = (n(AT), p(AT)p(ATn(A™))
= (A7), p(A)p(ATIN(A)) + (n(AT), p(E)n(A™T))
=0

shows thap (A™) also acts trivially om(A™) and therefore the restriction of the triple
(p,n, L) toU(hto) is Gaussian. O

The SWN calculus defined in Example 3.1 can only be extended in the trivial way,
i.e. by setting it equal to zero dnw, ji|pw = 0.

Proposition 3.6.Let (js;)o<s<: be the Lévy process on sl defined in (3.7). The only
Lévy process (jsr)o<s<: On slz @y hro such that

Ustlusi) = Use)

is the process defined by j;; = ji; o for 0 < s < ¢, where & is the canonical
homomorphism 7 : U(sl2 @y htv) — U((sl2 De hro)/hio) = U(slz).

Proof. We proceed asinthe proof of Proposition 3.5, we assumeéth#i<s < is such an
extension, and then we show that this necessarily impli@syw) = 0, i1l mw) = 0,

and i|u0(hm) = 0 for its Schiirmann tripléz, 77, L). We know that the restriction

of the Schiirmann triplés, 7, L) to the subalgebral, and the representation space
D = 7i(Uo(sl,)) has to be equivalent to the Schirmann tripte n, L) defined in
Example 3.1.

Ourmaintool are the following two facts, which can be deduced from our construction
of the irreduciblex-representations ofl in Subsect. 3.2. Letr be an arbitraryx-
representation ofl,. Thenz (B~ )v = 0 andwz (M)v = Av, with A < 0 impliesv = 0.
And if we have a vector # 0 that satisfies (B~ )v = 0 andwz (M)v = Av with A > 0,
thenr restricted tor (Z/{(stz))v is equivalent to the lowest weight representat,ixjrd
with mg = A.

First, we show in several steps tly@B ) is cyclic for o and exhibit several vectorsin
D= ﬁ(uo(g[z D hm)) which are lowest weight vectors fef,. Using this information

we can then prove that, 7, andL vanish onht (and therefore also diig(hrv)).

Step1:7(A7) = 0.
The relations[B~,A7] = 0 and[M,A"] = —A~ imply p(B7)n(A™) =
P(ATIN(B™) =0and—7(A7) = p(M)(A7) = p(A7)n(M) = p(M)i(A7).

Step 2: Ifug = p(A7)n(BT) = 7(A™) # 0, then it generates arip-representation
that is equivalent t;".
Sincefj(A™) = 0, the relationf[A=, BT] = AT implies 7(AT) = /(A7)
n(BY) — p(BHR(A™) = p(A7)n(BT). FurthermorgB—, A™] = A~ and
(M, A*] = A" yield 5(B7)ii(AT) = p(AN)n(B7) + (A7) = 0 and
PM)[(AT) = p(AT)n(M) + (A1) = 7(AT).

Step 3: Thel,-representation generated freag= 5(A™)7(AT) = 7(E) is equivalent
to the trivial one, i.ep(B)7(E) = p(M)7(E) = p(BMR(E) = 0.
We getp(B7)n(E) = p(M)n(E) = 0 from the relationgM, E] = 0 and
[B~, E] =0,ands(B")7(E) = 0follows from our basic facts osi,-represen-
tations.
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Step4:7(E) = 0 andwg = p(AT)[(AT) is the lowest weight vector of asl,-
representation equivalent tg (unlesswg = 0).
Applying twice the relationB—, At] = A~ and oncdA~, AT] = E, we get

ABAAT)NAT) = 5(AT)S(BT)HAT) + p(AT)H(AT)
= (AT (AT IN(BT) + p(AT)H(AT)
+ P(AT(AT) + i(E)
= 7(E).

We can use this relation to compute the norny@f),

I7(E)I1? = (H(E), 5(BAAD)I(AT)) = (5(BDF(E), 5(ADHAT)) =0,

sinces(BT)i(E) = 0.

Using twice the relatiofM, AT] = A™, one also obtaing(M)wg = 2wo.
Step 5: p(E) = 0.

The results of Steps 1, 2, and 4 and the surjectivityj ahply thatn(B™) is

cyclic for 5, i.e. any vectow € D can be written in the form = 5(u)n(B™)
for someu € U(sly @, hto). SinceE is central, we get

P(EY = p(E)pw)n(BY) = puB™)i(E) =0
forallv e D.
Step 6: wo = 0.
We can compute the norm g{ B wg = 5(BT)6(AT)7(AT) in two different
ways. SincedA™ and BT commute, we get

116(BMwoll? = 116(AT)2n(BHI12 = (n(BY), p(AT)26(AT)2n(B™))
= (B(A7)?n(B™), H(AT)n(BT))
= [|5(ADFADI? = |I7(E)||? = 0,

where we also used(E) = 0.
If wg # 0, theng restricted td (U (sl2) wo is equivalentt(pgr, soin particularthe
vectorsw, = 6(B™)",n > 0, must be an orthogonal family of non-zero vectors
with [Jw1]|? = 6]|wol||? by Eq. (3.2). But we have just showjw1||? = 0.

Step 7:uo = 0 andp|yw = 0.
We get

lluol [ = (5(A7)n(BT), 5(AT)N(BT)) = (n(BY), p(AT) (A7 )n(BT))
= (n(BY), p(ADA(AT)) = (n(BT), wo) = 0.

Therefore we havély, = 0 andD = D = span{n((BH¥)k=1,2,...}.
From this we can deducg(A")n((BM*) = s((BHY)A(AT) = 0, ie.
p(AT) =0 and therefore alsp(A™) = 5(AT)* = 0.

Step 8: L|pw = 0.
Finally, using, e.g., the relatioi$/, A*] = +A* andE = [A~, AT], one can
show that the generatdr also vanishes ohtv,

+L(AT) = (n(M), H(AT)) — (ii(AT), n(M)) = 0,
L(E) = |[i(ADI12 = |[i(AD)12=0. O
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But there do exist non-trivial Lévy processes such thatA " )Q2 = j,(B7)Q2 =0
for all 0 < s < ¢, as the following example shows:

Example 3.3. Let/s > 0 and leto,, be the Fock representationlagthio) defined in (3.1).
This extends to a representatioriifslo @, hio), if we set

pn(A1)? on(ATA™ + A7AY)

pn(A7)?
M) = _
T on(M) o7 ,

BT) =
pn(B™) o

pn(BT) =

The restriction of this representation 4& is a direct sum of the two lowest weight
representation;?;f/2 and p;/z, the respective lowest weight vectors ageande;. For

the cocycle we take the coboundary of the “lowest weight vectoe ¢2, i.e. we set
n(u) = pp(u)eo
foru € Up(sly B, hto), and for the generator
L(u) = (eo, pn(u)eo)

for u € Up(slz ® hw). This defines a Schirmann triple efy ©, hto over ¢2 and
therefore

iolA*(e )
«/E 2),

dzAY = dA(pn(AT)) + VhdA* (er),

d BT = %dA (ph(A+)2> +

1 1 1 1
M= —dA(pp(ATA™ + A" AT ZdA* Zda Zdr,
dy 54 (pn( + ) + 50dA™(eo) + SdA(eo) + St
dr E = hdA(id) + hdA*(eg) + hd(eg) + hdr,
dz A~ = dA(pr(A7)) + VhdA(ey),

1 1
d B~ = —dA (pn(A7)?) + —=dA(e),
LB = Z-dA (pa( ))+ﬁ (e2)
defines a Lévy process, @, htv, acting on the Fock space ovEf(R,, £2). The Itd
table of this process is infinite-dimensional. The restriction of this proces tis
equivalent to the process defined in Example 3.2 wigh= %
One can easily verify thaj,;(A~) and j;;(B~) annihilate the vacuum vector of
I(L%(R4, €2)).
We havep, (C) = —3id, and therefore

d.C = —%(dA(id) + dA*(eo) + dA(eo) + dr).

3.4. Higher order noises. Let us now consider the infinite-dimensional real Lie algebra
wn that is spanned byB,, ,,,; n, m € N} with the commutation relations obtained by
the natural extension, to higher powers of the white noise, of the renormalization rule
introduced in [ALV99], i.e.:
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naAmi m 'I’lz'
1. . k
B B = B _ _
[ ni,mai»s nz,mz] ; (ml—k)!(nz—k)!k!c ni+ny—k,mi+mo—k
niAm2 | |
- Z M2y Can +no—k,mi1+ma—k
(m2 — k)!(n1 — k)k! iz
k=1

for ny, np, m1, mo € N, and invqution(B,,,m)* = By, Wherec > 0 is some fixed
positive parameter. These relations can be obtained by taking the quotient of the universal
enveloping algebr&/ (hto) of hro with respect to the ideal generated By= c1. The
basis element8, ,, are the images afA )" (A~)™.

We can embedt andsl; &, hto into ron by

B1, _ Bo1
AT > =2 A"+ —=, E— Bgo,
NG Nz 0.0
n 1 _ 1 1 1
BT+~ —B2o0, B+ —Bo2, M —B11+ -Bopo.
2c ” 2c 7 c 7 2 7

There exist no Gaussian Lévy processesoansince[ton, on] = ron.
Let p. be the Fock representation defined in Eq. (3.1). Setting

P (Bum) = pe ((AT)"(AT"), n,m €N,

we get ax-representation dff (ron). If we setn(u) = p(u)ep and L (u) = (eg, p(u)eo)
for u € Up(ron), then we obtain a Schirmann triple mm. For this triple we get

dBym = dA (pc(AT)" pe(A7)™) + 8oV c"n! dA* (ep)
+ 8,0V c™m! dA(ey,) + 8,08m0dt,

for the differentials. Note that we hayg (B,,,,)2 = 0 forallm > 1 and 0< s < ¢ for
the associated Lévy process.

3.5. Other examples: Lévy processes on o and gl,. The goal of this subsection is to
explain the relation of the present paper to previous works by Boukas [Bou88,Bou91]
and Parthasarathy and Sinha [PS91].

We introduce the two real Lie algebrfisandgl,. The finite-difference Lie algebra
fo is the three-dimensional solvable real Lie algebra with b@jg, 7}, commutation
relations

[P, Ol=IT,Q]l=[P.T]=T,

and involutionP* = Q, T* = T, cf. [Fei87]. This Lie algebra is actually the direct sum
of the unigue non-abelian two-dimensional real Lie algebra and the one-dimensional
abelian Lie algebra, its center is spannediby P — Q.

The Lie algebragl, of the general linear grouw L(2; R) is the direct sum of
s[> with the one-dimensional abelian Lie algebra. As a basiglgfwe will choose
{B*,B~, M, I}, whereB™, B—, and M are a basis of the Lie subalgehia, and
is hermitian and central. Note th#@t — M + BT 4+ B~, P — (M — 1)/2+ B~
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Q — (M — I)/2 + B* defines an injective Lie algebra homomorphism frininto
glo, i.e. we can regarfb as a Lie subalgebra gf,.

Following ideas by Feinsilver [Fei89], Boukas [Bou88,Bou91] constructed a calculus
forfo,i.e. he constructed a Lévy process onitand defined stochastic integrals with respect
to it. He also derived the 1t6 formula for these processes and showed that their It table
is infinite-dimensional. His realization is not defined on the boson Fock space, but on
the so-called finite-difference Fock space especially constructed fdio laalculus.
Parthasarathy and Sinha constructed another Lévy procgssamting on a boson Fock
space, in [PS91]. They gave an explicit decomposition of the operators into conservation,
creation, annihilation, and time, thereby reducing its calculus to Hudson—Parthasarathy
calculus.

Accardi and Skeide [AS00a,AS00b] noted that they were able to recover Bgukas’
calculus from their SWN calculus. In fact, sing® is a direct sum ofl, and the one-
dimensional abelian Lie algebra, any Lévy procégs)o<s<: on slz can be extended
(in many different ways) to a Lévy procegk;)o<s<: 0n gl,. We will only consider the
extensions defined by

Jstlst, = jst, and - ji(I) = A(t — s)id, forO<s <1,

for A € R. Sincefo is a Lie subalgebra afl,, we also get a Lévy process ¢t by
restricting(Jss)o<s<: t0 U (f0).
If we take the Lévy process aity defined in Example 3.1 and= 1, then we get

d. P =dA(p"(M/2+ B7)) + dA(eo).
d. 0 =dA(pT(M/2+ BT)) + dA*(eo),
d. 7T =dA(p"(M + BT + B7)) 4+ dA™(ep) + dA(eo) + dr.

It can be checked that this Lévy process is equivalent to the one defined by Boukas.
If we take instead the Lévy process gin defined in Example 3.2, then we get

du P = dA (o (M/2-+ BO)) +dA" ("0e0) +da ("2e0 + ymoer) + 0l
— A
d.Q = dA(p,(M/2+ BT)) + dA™ (%eo + \/m_Oel) +dA (%eo) +m02 dr,

d. T = dA(p,, (M + BY + B7)) + dA*(moeo + /moe1)
+ dA(moeg + /moe1) + modt
=d, P +d. 0 + Adr.
Formo = A = 2, thisis exactly the Lévy process defined in [PS91]. Note that in that case
the repres;entatiopgr = p* and the Fock space agree with those of Boukas’ process, but
the cocycle and the generator are different. Therefore the construction of [PS91] leads

to the same algebra as Boukas’, but not to the same quantum preeefmctthat had
already been noticed by Accardi and Boukas [ABOO].

4. Classical Processes

Let (jis:)o<s<: be a Lévy process on a real Lie algelgraoverl” = F(LZ(]R+, D)), fix
a hermitian element, Y* =Y, of gg, and defineamap : X (R;+) — L(T") by

Yo=Y ki (¥),  fore ="l 4 € T(Ry).

k=1 k=1
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It is clear that the operatofgy; ¢ € X (R4 )} commute, since is the restriction of
g™ o ¢ = Yl ilnl = Yoreq Jsn (Wx) € L(I) to the abelian current
algebraCY®+ overCY. Furthermore, iy is real-valued, theny is hermitian, sincd’ is

hermitian. Therefore there exists a classical stochastic proEgsso whose moments
are given by

E(Yiy - ¥5) = (R, Yoo+ Yo - forallry, ..., 1, € Ry.

Since the expectations @f;)o<s<; factorize, we can choose?,),zo to be a Lévy
process. Ifj;; (Y) is even essentially self-adjoint, then the marginal distributic(rf,otzo
is uniquely determined.

We will now give a characterization Qi?,)tzo. First, we need two lemmas.

Lemmad4.l.Let X € L(D), u,v € D, and suppose furthermore that the series
Y0 o W and 3220 o X% convergein D for all w € D. Then we have

eA(X)A(v) —A (e—X*v> EA(X),
eA*(u)A(v) — (A(v) — (v, u))eA*(u)’
ATWAX) = (AX) — A*(Xu))er"®

on the algebraic boson Fock space over D.

Proof. This can be deduced from the formula for the adjoint actionse™d =
XYe X =Y +[X, Y]+ 3[X, X, Y]]+ - =Y. O

The following formula gives the normally ordered form of the generalized Weyl op-
erators and is a key tool to calculate the characteristic functions of classical subprocesses
of Lévy processes on real Lie algebras.

Lemma4.2.Let X € £(D) and u,v € D and suppose furthermore that the series
32 o 0y and 320 ) X%y convergein D for all w € D. Then we have

n!

exp(A(X) + A*(u) + A(v) + ) = exp(A* (@) exp(A(X)) exp(A(D)) exp@)

on the algebraic boson Fock space over D, where
xXn— 1 et X*)n 1 et
Z . Z voa=at) b

Proof. Letw € D and setw; (1) = expt(A(X) + A*(u) + A(v) + «)w and

n—2

wa (1) = exp(A*(ﬁ(t))) exp(rA(X)) exp(A(f)(t))) exp(a())w

for r € [0, 1], where

X nyn—1

ney*\yn—1
it =y u, ﬁ(t)—z%v a(t)—toz+2

n=1 ’ n=1 n=2

Xn2

u).
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Then we haven;(0) = w = w2(0). Using Lemma 4.1, we can also check that

%wl(t) = (AX) + A*(u) + A(v) + )w expt (A(X) + A* () + A(v) + @)

and

d di -
Ea)g(t) = A* (d—L:(t)> exp(A*(a(r) )exp tA(X)) exp( (v(t))) exp(a(n))w

+exp< (a(r) )A(X) exp(rA(X)) exp( (v(t))) exp(a(r))w
)

+ exp( exp(tA(X))A (d—l;(t)) exp(A(ﬁ(t))) exp(a(n))w

4G
+ exp(A*(ﬁ(t))) exp(tA(X)) exp(A(f)(t))) d_(:(t) exp(a())w
coincide for allr € [0, 1]. Therefore we have(1) = wo(1). O

Theorem 4.1.Let (js;)o<s<: beaLévy processonareal Liealgebra ggr with Schiirmann
triple (o, n, L). Then for any hermitian elemgnt Y of gr such that n(Y) isanalytic for
p(Y), the associated classical Lévy process (Y;),>0 has characteristic exponent

()"

W) =irL(Y) + Z (n(Y*), p(Yy"2n(¥)),

(p(Y)9 = id) for 2 in some neighborhood of zero.

Proof. The characteristic exponewt(r), 1 € R, is defined byE(e*11) = '¥® | so we
have to compute

E (em?,) —(Q, Mo Q)

for jor(Y) = A (p(Y)) + A, (n(Y)) + Aot (n(Y)) + L (Y). Using Lemma 4.2, we get
AN o[ e (V)" (V)2
E(e )_exp<ztAL(Y)+tr;2<n(Y ) (Y)>> 0

Remark 4.1. Note that¥ (1) is nothing else thad ", ; %L(Y”). Itis also possible to
give a more direct proof of the theorem, using the convolution of functionalg(gh
instead of the boson Fock space realizationjgf o<s<;-

We give two corollaries of this result, the first justifies our definition of Gaussian
generators.

Corollary 4.1. Let L be a Gaussian generator on gr with corresponding Lévy process
(Jst)o<s<t- Then for any hermitian element Y the associated classical Lévy process
(Y1)r>0 is Gaussian with mean and variance

E(Y,) =tL(Y), EF)=[nMI?*, fort=>0.
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We see that in this case we can ta(kka;(Y)HBt + L(Y)z) for ()7,),20, where
(B:)¢>0 is a standard Brownian motion.
The next corollary deals with the case wheéris the restriction té/(g) of a positive

functional onl/(g).

>0

Corollary 4.2. Let (p, n, L) be a Schirmann triple on gg whose cocycleistrivial, i.e.
there exists a vector w € D such that n(u) = p(u)w for all u € Up(g), and whose
generator isof theform L (1) = (w, p(u)w), for all u € Up(g). Suppose furthermorethat

the vector o is analytical for p(Y), i.e that e*Me 1= 3 ) %w converges for

sufficiently small u. Thenthe classi cal stochastic process (Y;),>0 associated to (jg;)o<s<s
and Y isa compound Poisson process with characteristic exponent

V() = <w, (ei”p(Y) - 1) a)>

Remark 4.2. If the operatorp (Y) is even (essentially) self-adjoint, then we get the Lévy
measure ofY;),>o by evaluating its spectral measure in the state vector

w(dr) = (o, dP;w),
wherep(Y) = [ AdP, is the spectral resolution of (the closure pf)Y).

Corollary 4.2 suggests to call a Lévy procesganith trivial cocyclen(u) = p(u)w
and generatok.(u) = (w, p(u)w) for u € Up(g) aPoisson processon g.

Example 4.1. Let (ji:)o<s<: be the Lévy process osiy defined in Example 3.2 and
letY = BT + B~ + BM with 8 € R. The operatoX = p,;jo(Y) is essentially self-

adjoint. We now want to characterize the classical Lévy procEgs. associated to

Y and(jsr)o<s<: in the manner described above. Corollary 4.2 tells us(tﬁ,alzzo isa
compound Poisson process with characteristic exponent

W(u) = <eo, <e”‘X — 1) eo>.

We want to determine the Lévy measuref}f),zo, i.e. we want to determine the measure
u onR, for which

W(u) = / (e”’x — l) w(dx).

This is the spectral measure fevaluated in the statyg, - ¢g). Note that the polyno-
mials p, € R[x] defined by the condition

en = pn(X)eo,
n=0,1,..., are orthogonal w.r.tu, since
/pn(x)Pm(x)M(dx) = (e0, pn(X) pm(X)eo) = (pu(X)eq, pm(X)eo) = 8um,

for n,m € N. Looking at the definition ofX, we can easily identify the three-term-
recurrence relation satisfied by thg. We get

Xey = (n+D(n+mo)epr1+ B(2n + moe, ++/n(n +mo — Dey 1,
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for n € N, and therefore
nm+1V)Pyy1+ 2Bn+ Bmo—x)P,+(n+mo—1)P,_1=0,

with initial condition P_; = 0, Py = 1, for the rescaled polynomials

n
n
Pnzl_[ Pn-
k:lv n—+ mo

According to the value o we have to distinguish three cases.

1. 8| = 1: In this case we have, up to rescaling, Laguerre polynomials, i.e.
Py(x) = (—B)" LY (Bx),

where the Laguerre polynomidké"‘) are defined as in [KS94, Eq. (1.11.1)]. The mea-
sureu can be obtained by normalizing the measure of orthogonality of the Laguerre
polynomials; it is equal to

o~

I'(mo)

u(dx) = eiﬁxlﬁ;Rerx.

If B = +1, then this measure is, up to a normalization parameter, the ygual
distribution (with parameterg) of probability theory. The operatdf is then positive
and therefore(?t)tzo is a subordinator, i.e. a Lévy process with value®ip, or,
equivalently, a Lévy process with non-decreasing sample paths.

2.|B| < 1: Inthis case we find the Meixner—Pollaczek polynomials after rescaling,

(mo/2) X
P,(x) =P, ———; T —arcco | .
n n (2 ,71 — ,32 )

For the definition of these polynomials see, e.g., [KS94, Eq. (1.7.1)]. For the measure
i we get

(mr — 2arccoy)x mo ix
dx)=C r{== 4+ —
p(dx) exp( N )‘ (2 +2 %1—,32>

whereC has to be chosen such thais a probability measure.
3. 8] > 1: In this case we get Meixner polynomials after rescaling,

2

(~1" [Ty 250, (i — imoi ) i B> +1,

Pu(x) =

c_{ﬂ—,/ﬁZ—l if B> +1,
| -B-VB2-11if B<—1
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The definition of these polynomials can be found, e.g., in [KS94, Eq. (1.9.1)]. The
densityu is again the measure of orthogonality of the polynomigl¢normalized to a
probability measure). We therefore get

(mo)
w=C Z ———8SGMB (e~ 1/c)(n+mo/2)

whereC™1 = Y% oy — (1 — ¢2)~m0_ Here (mp), denotes the Pochhammer

n!

symbol, (mo),, =mo(mo+1)---(mg+n—121).

Example 4.2. Let now(js;)o<s<: be the Lévy process aity defined in Example 3.1 and
letagainy = Bt + B~ + M with 8 € R. We already noted in Example 3.1 thyatis
equivalent tgo,"  for fixed s andz. Therefore the marginal distributions of the classical
Lévy process{ﬁ),zo are exactly the distributions of the operafothat we computed
in the previous example (witlhg = ).

For8 = 1, we recover [Bou91, Theorem 2.2]. The classical Lévy process associated
toT = BT + B~ + M is an exponential or Gamma process with Fourier transform

E (e"“?f) —Q—in)"

and marginal distributiom, (dx) = %e*xluhdx. This is a subordinator with Lévy

measurec—le—xl&dx, see, e.g., [Ber96].
For 8 > 1, we can write the Fourier transform of the marginal distributigres

iuYyy _ iu(c — 1/6) - f iun(c—1/c) _
E(e'™"") = expt (—2 +2; ” (e 1) .

n=

This shows that we can defirqé,),zo as a sum of Poisson processes with a drift, i.e. if

((N,("))t>o> L are independent Poisson processes (with intensity and jump size equal
20/,>

to one), then we can take

=(c—1/c) (Z nNC(g,,)t/n L) , fort > 0.

The marginal distributions of these processes for the different valugsnt their
relation to orthogonal polynomials are also discussed in [FS93, Chapter 5].

5. Conclusion

We have shown that the theories of factorizable current representations of Lie algebras

and Lévy processes anbialgebras provide an elegant and efficient formalism for defin-

ing and studying quantum stochastic calculi with respect to additive operator processes

satisfying Lie algebraic relations. The theory of Lévy processes-bialgebras can

also handle processes whose increments are not simply additive, but are composed by
more complicated formulas, the main restrictionis thatthey are independent (in the tensor

sense). This allows to answer questions that could not be handled by direct computational

methods, such as the computation of the SWN It6 table, the simultaneous realization of
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linear and squared white noise on the same Hilbert space, or the characterization of the
associated classical processes.

After the completion of the present article, Accardi, Hida, and Kuo [AHKO01] have
shown that using white noise calculus it is possible to obtain a closed Ité table for
the gquadratic covariations of the three basic square of white noise operators. But the
coefficients in their Itd table contain functions of the Hida derivative and its adjoint.

Acknowledgement. MS acknowledges support by the Deutsche Forschungsgemeinschaft. UF and MS are
grateful to Luigi Accardi for kind hospitality at the “Centro Vito Volterra” of the University Roma Il, where
the major part of these notes has been written.

We also wish to thank an anonymous referee for suggesting several improvements and informing us of a
fatal error in our first proof of Proposition 3.6.

References

[ABOO] Accardi, L., Boukas, A.: The square of white noise as a quantum semi-martingale. To appear

[AHKO1] Accardi, L., Hida, T., Kuo, H.-H.: The It6 table of the square of white noise. Inf. Dim. Anal.,
Quantum Prob., and Rel. Topid&), 267-275 (2001)

[ALV95]  Accardi, L., Lu, Y-G., Volovich, I.V.: Nonlinear extensions of classical and quantum stochastic
calculus and essentially infinite dimensional analysis. In: Probability Towards 2000. L. Accardi,
C. Heyde, (eds.), Springer LN in Statistit®8 Berlin—Heidelberg—New York: Springer, 1998,
pp. 1-33. Proceedings of the Symposium: Probability towards 2000, Columbia University, New
York, October 1995

[ALV99] Accardi, L., Lu, Y.G., Volovich, 1.V.: White noise approach to classical and quantum stochastic
calculi. Centro Vito Volterra, Universita di Roma “Tor Vergata” Preprint 375, 1999

[ALVOOa] Accardi, L., Lu, Y.G., Volovich, |.: A white-noise approach to stochastic calculus, Recent devel-
opments in infinite-dimensional analysis and quantum probability. Acta Appl. N6&tfil-3),
3-25 (2000)

[ALVOOb] Accardi, L., Lu, Y.G., Volovich, I.: Quantum Theory and its Stochastic Limit. Springer, Texts and
monographs in Physics (2000), to appear

[AS00a] Accardi, L., Skeide, M.: Realization of the square of white noise and the finite difference algebra
in a Hilbert module. Mat. Zametld8(6), 803—-818 (2000). Translation in Math. No®&& no.
5-6, 683-694 (2000)

[ASO0b]  Accardi, L., Skeide, M.: On the relation of the Square of White Noise and the Finite Difference
algebra. (Volterra Preprint N. 386, 1999) Inf. Dim. Anal., Quantum Prob., and Rel. T8pics
185-189 (2000)

[ASW88] Accardi, L., Schirmann, M., v. Waldenfels, W.: Quantum independent increment processes on
superalgebras. Math. 298 451-477 (1988)

[Ber96] Bertoin, J.:Lévy processes. Cambridge: Cambridge University Press, 1996

[Bou88]  Boukas, A.:Quantum stochastic analysis: A non-Brownian case. PhD thesis, Southern lllinois
University, 1988

[Bou91l] Boukas, A.: An example of a quantum exponential process. Monatsh. Ma&B), 209-215
(1991)

[Fei87] Feinsilver, P.: Discrete analogues of the Heisenberg—Weyl algebra. Monatsh1®a88-108
(1987)

[Fei89] Feinsilver, P.: Bernoulli fields. ImQuantum probability and applications, IV (Rome, 1987).
Berlin: Springer, 1989, pp. 158-181

[FS93] Feinsilver, P., Schott, RAlgebraic Sructures and Operator Calculus, Vol. |: Representations
and Probability Theory. Dordrecht: Kluwer Academic Publishers, 1993

[FS99] Franz, U., Schott, R.&ochastic Processes and Operator Calculus on Quantum Groups. Dor-
drecht: Kluwer Academic Publishers, 1999

[GLL90] Gruber, B., Lenczewski, R., Lorente, M.: On induced scalar products and unitarization. J. Math.
Phys.31(3), 587-593 (1990)

[Gui72]  Guichardet, A.:Symmetric Hilbert spaces and related topics. Lecture Notes in Math. VoR61
Berlin: Springer-Verlag, 1972

[KS94] Koekoek, R., Swarttouw, R.F: The Askey-scheme of hypergeometric orthogonal polynomials and
its g-analogue. Technical Report 94-05, Technical University of Delft, 1994. Also vailable as
Preprint math.CA/9602214



150 L. Accardi, U. Franz, M. Skeide

[Mey95]  Meyer, P.-A.:Quantum Probability for Probabilists. Lecture Notes in Math., Voll538 Berlin:
Springer-Verlag, 2nd edition, 1995

[Par92] Parthasarathy, K.RAn Introduction to Quantum Stochastic Calculus. Basel-Boston: Birkhauser,
1992

[PS72] Parthasarathy, K.R., Schmidt, Rositive definite kernels, continuoustensor products, and central
limit theorems of probability theory. Lecture Notes in Math., VoR72 Berlin: Springer-Verlag,
1972

[PS91] Parthasarathy, K.R., Sinha, K.B.: Unification of quantum noise processes in Fock spaces. In:
L. Accardi (ed.),Quantum probability & related topics. River Edge, NJ: World Sci. Publishing,
1991, pp. 371-384

[Sch93] Schirmann, MWhite Noise on Bialgebras. Lecture Notes in Math., VolL544 Berlin: Springer-

i Verlag, 1993

[Sni00] Sniady, P.: Quadratic bosonic and free white noises. Commun. Math. Phy§3), 615-628
(2000)

[Str00] Streater, R.F.: Classical and quantum probability. J. Math. Bhy§), 3556—-3603 (2000)

[VGG73] VerSik, A.M., Gel'fand, I.M., Graev, M.l.: Representations of the groupSIR), whereR is a
ring of functions. Uspehi Mat. NauR8 (5(173)), 83—128 (1973). English translation: Russian
Math. Survey£8, no. 5, 87-132 (1973)

Communicated by H. Araki



