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Abstract: We study a class of systems of functional equations closely related to various
kinds of integrable statistical and quantum mechanical models. We call them the finite
and infiniteQ-systems according to the number of functions and equations. The@inite
systems appear as the thermal equilibrium conditions (the Sutherland—Wu equation) for
certain statistical mechanical systems. Some infi@iteystems appear as the relations

of the normalized characters of the KR modules of the Yangians and the quantum affine
algebras. We give two types of power series formulae for the unique solution (resp. the
unique canonical solution) for a finite (resp. infinig@}system. As an application, we
reformulate the Kirillov—Reshetikhin conjecture on the multiplicities formula of the KR
modules in terms of the canonical solutionsg®fsystems.

1. Introduction

Inthe series of works [K1, K2, KR], Kirillov and Reshetikhin studied the formal counting
problem (theformal compl eteness) of the Bethe vectors of thEX X -type integrable spin
chains, and they empirically reached a remarkable conjectural formula on the characters
of a certain family of finite-dimensional modules of the Yangi&ly). Let us formulate

it in the following way.

Conjecture 1.1. Let g be a complex simple Lie algebra of rankWe sety = (y4))_4,
ya = e~ % for the simple roots, of g. Let Q,(,‘f)(y) be the normalizeg-character of
the KR moduleW, ¥ ) (@ =1,...,n;m = 1,2, ...;u € C) of the Yangian¥ (g); and
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Q") = [Tiam (Q%) (). Then, the formula

Py (v, N) + N,

ey [[a-en= Y ]"[( V@ )(m)’"”fé”, (1.2)

aeA; N=(N,(,,”)) (a,m)
ad m k
POW, Ny =Y v@ mintk,m) — > N dyAqp min (d—, d-) (1.2)
k=1 o) b Ga

holds. Here,A = (A,p) is the Cartan matrix ofj, d, are coprime positive integers
such that(d, Aqp) is symmetric, A is the set of all the positive roots gf and(j;) =
F'a+1)/Ta—b+1)IC b+ 1).

Remark 1.2. Due to the Weyl character formula, the series in the RHS of (1.1) should
be apolynomial of y, and its coefficients are identified with the multiplicities of the
g-irreducible components of the tensor prod@}a’m) W,q(l“)(u,(,f))@”r(f), whereuf,‘f) are

arbitrary.

Remark 1.3. There are actually two versions of Conjecture 1.1. The above one is the
version in [HKOTY] which followed [K1,K2]. In the version in [KR], the binomial
coefficients(Z) are setto be 0 i < b; furthermore, the equality is claimed, not for the

entire series in both sides of (1.1), but only for their coefficients of the powérén
the fundamental Weyl chamber”; named, = (M,)"_, satisfies

n
Z v,gf)mAa — ZMaOta € Py, (1.3)
a=1

(a,m)

whereA, are the fundamental weights aRd is the set of the dominant integral weights

of g. So far, it is not proved that the two conjectures are equivalent. Both conjectures

are naturally translated into ones for the untwisted quantum affine algebras, which are
extendable to the twisted quantum affine algebras [HKOTT]. In this paper, we refer to

all these conjectures as the Kirillov—Reshetikhin conjecture. More comments and the
current status of the conjecture will be given in Sect. 5.7.

In [KR, K3], it was claimed that th@y;’ (y)'s satisfy a system of equations

Q) = 1 (MO ()
+ 0" (W ()2 [T (@ (v Gem. (1.4)
(b.k)

Here,Qé“)(y) = 1, andG, »; are the integers defined as

—Apa(Sm,2k—1+ 28m 2k + Smok+1)  dp/da = 2,
—Apa(Om,3k—2 + 28m3k-1+ 30m3c  dp/da =3,
+26,3c+1 + Om,3k+2)

—AabBa,m.dyk otherwise

Gam,bk = (15)

See (4.22) for the original form of (1.4) in [KR, K3]. The relations (1.4) and (4.22) are
often called theQ-system. The importance of the role of th@-system to the formula
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(1.1) was recognized in [K1,K2,KR], and more explicitly exhibited in [HKOTY, KN2].

In this paper we proceed one step further in this direction; we study Eq. (1.4) in a more
general point of view, and give a characterization of the special power series solution
in (1.1). For this purpose, we introdufisite and infinite Q-systems, where the former
(resp. the latter) is a finite (resp. infinite) system of equations for a finite (resp. infinite)
family of power series of the variable with finite (resp. infinite) components. Equation
(1.4), which is an infinite system of equations with the variable with finite components, is
regarded as an infinit@-system with the specialization of the variableecialized Q-
system). We show that every finit@-system has a unique solution which has the same
type of power series formula as (1.1) (Theorem 2.4). In contrast, infirtystems

and their specializations, in general, admit more than one solution. However, every
infinite Q-system, or its specialization, has a unigaaonical solution (Theorems 3.7

and 4.2), whose definition is given in Definition 3.5. The formula (1.1) turns out to be
exactly the power series formula for the canonical solution of (1.4) (Theorem 4.3 and
Proposition 4.9). Therefore, one can rephrase Conjecture 1.1 in a more intrinsic way as

follows (Conjecture 5.5)Thefamily (Q,(,?) (y)) of the normalized g-characters of the KR
modules is characterized as the canonical solution of (1.4). This is the main statement
of the paper.

Interestingly, the finiteD-systems also appear in other types of integrable statistical
mechanical systems. Namely, they appear as the thermal equilibrium condition (the
Sutherland-Wu equation) for the Calogero-Sutherland model [S], as well as the one
for the ideal gas of the Haldane exclusion statistics [W]. The property of the solution
of the finite Q-systems are studied in [A,Al,IA] from the point of view of the quasi-
hypergeometric functions. We expect that the study of@hgystem and its variations
and extensions will be useful for the representation theory of the quantum groups, and
for the understanding of the nature of the integrable models as well.

2. Finite Q-Systems

A considerable part of the results in this section can be found in the work by Aomoto
and lguchi [A, IA]. We present here a more direct approach. More detailed remarks will
be given in Sect. 2.4.

2.1. Finite Q-systems. Throughout Sect. 2, lekl denote a finite index set. Let =
(wi)ieg andv = (v;);ey be complex multivariables, and 1& = (G;;); jen be a
given complex square matrix of siz&|. We consider a holomorphic m&p — C#,
v = w(v) with

wi() =v; [[@—v)~%, 2.1)
jeH

whereD is some neighborhood of= 0 in C# . The Jacobiagdw/dv)(v)is 1 atv = 0,
so that the magp (v) is bijective around = w = 0. Letv(w) be the inverse map around
v = w = 0. Inverting (2.1), we obtain the following functional equation #pfw)’s:

viw) =w; [ [@—v;w)%. (2.2)

jeH
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By introducing new functions
Qi(w) =1-v;(w), (2.3)

Eq. (2.2) is written as

Qi(w) +w; [ [(Qjw)%i =1, (2.4)

jeH

From now on, we regard (2.4) as a system of equations for a fa@jlw));cy of
power series ofv = (w;);cy With the unit constant terms (i.e., the constant terms are 1).
Here, for any power series(w) with the unit constant term and any complex number
o, we mean by f(w))* € C[[w]] thea™ power of f(w) with the unit constant term.
We can easily reverse the procedure from (2.1) to (2.4), and we have

Proposition 2.1.The power series expansion of Q;(w) in (2.3) givesthe unique family
(Q;(w));cy of power series of w with the unit constant terms which satisfies (2.4).

Definition 2.2. The following system of equations for a family (Q; (w));cy of power
series of w with the unit constant termsis called a (finite) Q-system For eachi € H,

[T@j@n?i +wi [T@;@n% =1, (2.5)

jeH jeH

where D = (D;j); jen and G = (G;j)i, jen are arbitrary complex matrices with
detD # 0. Equation (2.4), which isthe special case of (2.5) with D = I (I: theidentity
matrix), is called a standard Q-system.

It is easy to see that there is a one-to-one correspondence between the solutions of
the 0-system (2.5) and the solutions of the stand@rdystem

i) +w; [T@j@n® =1, ¢ =D, (2:6)
jeH

where the correspondence is given by

Qi(w) = [@;wn®, (2.7)
jeH

Qi (w) = [](Q)wy® i, (2.8)
jeH

Therefore, from Proposition 2.1, we immediately have

Theorem 2.3.There exists a unique solution of the Q-system (2.5), which is given by
(2.8), where (Q’(w));en isthe unique solution of the standard Q-system (2.6).
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2.2. Power series formulae. In what follows, we use the binomial coefficient in the
following sense: For € C andb € Zx,

<a> _ I'a+1 (2.9)

b 'a-b+1DI'®+1)

where the RHS means the limit value for the singularities. We\éet= (Z-o)" . For
D, G in (2.5) andv = (v;);en € CH, we define two power series of,

Khow) =Y KMD.Gv,Nw", w"=]]w", (2.10)
NeN icH

Rp gw)= Y R(D,G:v, Nyw" (2.11)
NeN

with the coefficients

P; + N;
KD, Gv,N)= [] <'+_ ) (2.12)
icH(N) L
1/P+N;—-1
R(D.Giv,N)=(det F;;) [] —< ) (2.13)
(H(N) )ieH(N) N; N; —1

where we seH/ (N) = {i € H | N; # 0} for eachN € N,

Pi=Pi(D.Giv,N):=— Y vj(D7Y;; = Y Ni(GD™Y i, (2.14)
JjeH jeH
Fij = F;j(D, G; v, N) := 8 Pj + (GD™ ) N;, (2.15)

and def;(v) is a shorthand notation for dgtx(v). In (2.12) and (2.13), dgtand
[y mean 1, namerK,”)’G(w) and RB,G(’U) are power series with the unit constant

terms. Itis easy to check that both series converggufgr< |y,.”"/(yl- + 1%+1| where
= —(GD™Y);; andz? = exp(z log z) with the principal branch-r < Im(logz) < 7
chosen.
Now we state our main results in this section.

Theorem 2.4 Power series formuldelet (Q; (w));cy bethe unique solution of (2.5).
Forv e C¥, let 0}, ;(w) :=[T;cy (Qi(w)". Then,

Q) ¢ (w) = K} gw)/KD (w), (2.16)
0p.c(w) = Rp g(w). (2.17)

The power series formulae fa@p; (w) are obtained as special cases of (2.16) and
(2.17) by setting = (v,),eH asv; = §;;

One may recognize that the first formula (2.16) is analogous to the formula (1.1),
where the denomlnatd(g (W) in (2.16) corresponds to the Weyl denominator in the
LHS of (1.1). As mentioned in Sect. 1, the formula (1.1) is interpreted as the formal
completeness of th&XX-type Bethe vectors. In the same sense, the second formula
(2.17) is analogous to the formal completeness ofti& -type Bethe vectors in [KN1,
KN2]. See Sect. 2.4 for more remarks.
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Example 2.5. Let |H| = 1. Then, (2.5) is an equation for a single power sefi¢s),

(QW)” +w(@w)? =1, (2.18)
whereD # 0 andG are complex numbers, and the series (2.11) reads as

e ¢]

r((v+NG)/D)(—w)"

RD,G(w) = BNZ:() I'((v+NG)/D— N+ 1N

(2.19)

Equation (2.18) and the power series formula (2.19) are well known and have a very
long history since Lambert (e.g. [B, pp. 306—307]).

Example 2.6. Consider the casé = O in (2.5),

[0 @n? +w =1 (2.20)
JEH
This is easily solved as
0iw) = [T@—wp® i, (2.22)
jeH
and, therefore,
QUD,O(w) _ l_[(l _ wi)ZjEH vj(D*l)ji — 1_[(1 _ wi)—P[(D,O;v,N), (222)
ieH ieH

whereN € N is arbitrary. Using the binomial theorem

o0
N

Q-0 F 1=} (’3; )xN, (2.23)

N=0
one can directly check that
v P, —1+ N; ; v
0how =Y ] ( v )wfv’ = R} o(w), (2.24)
NeN ieH(N) !

HjEH(l - wi)z'fEH Uj(Dil)ji_l KB,O(w)
[jen@—w)t KD ,w)’

0% o (w) = (2.25)

2.3. Proof of Theorem2.4 and basic formulae. Theorem 2.4 is regarded as a particularly
nice example of the multivariable Lagrange inversion formula (e.g. [G]) where all the
explicit calculations can be carried through. Here, we present the most direct calculation
based on the multivariable residue formula (#aeobi formulain [G, Theorem 3]).

We first remark that

Lemma 2.7.LetG' = GD 1. Foreachv e C# letv’ € CHwithv) =Y, v; (D).
Then,

0} ¢(w) = QY g/(w), (2.26)
Kb gw) =K} W), RYsw) =R} gw). (2.27)
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Proof. The equality (2.26) is due to Theorem 2.3. The ones (2.27) follow from the fact
P;(D,G;v,N) = P;(I,G"; V', N).

By Lemma 2.7, we have only to prove Theorem 2.4 for the standardRasel.
Recall that (Proposition 2.10} ,(w) = [[;cy (1 — vi(w))", wherev = v(w) is the
inverse map of (2.1). Thus, Theorem 2.4 follows from

Proposition 2.8 Basic formulag Let v = v(w) be the inverse map of (2.1). Then, the
power series expansions

de (7_( )> 11;11(1 — v w)" L = K} g (w), (2.28)
[T@-viw)” =R} zw) (2.29)
ieH

hold around w = 0.

Proof. Thefirst formula (2.28). We evaluate the coefficient far™ in the LHS of (2.28)
as follows:

av . ) o
5f§ﬁ(w)il;[1{(1—v,~(w))z v (w)) ") N 1}dw

= Res[ ] |- vi>”"‘l<vi>‘1(v,~ [Ta—vy %) " Jav

ieH jeH
—Resl_[{(l —P;(I1,G;v,N)— 1(v) Ni— 1}dv
ieH
P (I,G;v,N N;
=1 (7 G TN C ki v,
N;i

ieH

where we used (2.23) to get the last line. Thus, (2.28) is proved.
The second formula (2.29). By a simple calculation, we have

de t(”f 8“’1( )) ]‘[(1— v) = det(s; + (~8; + Gijvi)

= dr[]w

JCH ieJ

(2.30)

whered; := det;(=§;; + G;j), and the sum is taken over all the subsétsf H.
Therefore, the LHS of (2.29) is written a&({frue) = 1 andd (false) = 0)

de 5 g () 2 d [T{@-u@)tuw ) @3y

JCH ieH
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By a similar residue calculation as above, the coefficienif8rof (2.31) is evaluated
as

Z d Resl—[ {(1 _ vi)—P,-(I,G;v,N)—l(vi)—N,-+9(ieJ)—1}dv
v=0 -
JCH icH

_ Pi(I,G;v,N)+ N; —0(@{ € J)
=2 4l ( N —6G € J) )

JCH(N) ieH(N)

1/P+N;—-1
:( Z dj‘l_[Ni' 1_[ (Pi“rNi))'l_[ ﬁz( Ni—1 )
JCH(N) ie]  ieH(N)\J ieH(N)
1
:Igg})(&’j(Pj+Nj)+(_8ij+Gij)Nj) I ﬁ,(

P + N; — 1)
icH(N)

N; -1
=R(I,G; v, N).
Thus, (2.29) is proved. O
This completes the proof of Theorem 2.4.

Example 2.9. We say that the ma(v) in (2.1) islower-triangular if the matrixG;; is
strictly lower-triangular with respect to a certain total ordein H (i.e., G;; = 0 for
i < j).Letw(v) be a lower-triangular map. Then,

Jw; Gijv;
de t(——( )) - det(B,J + vj) —1 (2.32)
Thus, the formula (2.28) is simplified as
[T@—viw) =K} sw). (2.33)
ieH

This type of formulae has appeared in [K1,K2,HKOTY].

Let us isolate the case= 0 from (2.28), together with the formula (2.30), for later
use:

Corollary 2.10 (Denominator formula)e

K (w) = det( ( )) 1"[(1 —vi(w) Y, (2.34)

KD (w) = [dlgt(sij(l — vi(w)) + Gij vi(w))} g (2.35)

From (2.35) and the first formula of Theorem 2.4, we obtain
Corollary 2.11.

Q\I)’G(w) — Z gIKVJ’_SJ (w) (236)
JCH
- s .~ Gij) det_Gi, 2.37
87 Z gr(J/J/>zeJ]eJ’ K U)ie7,j67 Y ( :
UI \J\

where8; = (0;)icn, 0; = 1ifi € J and 0 otherwise,and J = H \ J.
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From Corollary 2.11, one can easily reproduce the second formula of Theorem 2.4.
We leave it as an exercise for the reader.

2.4. Remarksonrelated works. i) Theformal completeness of the Bethe vectors. In [K1,
K2,HKOTY,KN1,KN2,KNT], the formal completeness of tHeXX/XXZ-type Bethe
vectors are studied. In the course of their analysis, several power series formulae in
this section appeared in specialized/implicit forms. For example, Lemma 1 in [K1] is
a special case of (2.33), Theorem 4.7 in [KN2] is a special case of Proposition 2.8,
etc. From the current point of view, however, the relation between these power series
formulae and the underlyininite O-systems was not clearly recognized therein. As a
result, these power series formulae anditffimite Q-systems were somewhat abruptly
combined in the limiting procedure to obtain the power series formula fanfimite O-
systems. We are going to straighten out this logical entanglement, and make the logical
structure more transparent by Theorem 2.4 and the forthcoming Theorems 3.10, 4.3,
Proposition 4.9, and Conjecture 5.5.

ii) Theideal gaswith Haldane statistics and the Sutherland—\Wu equation. The series
K} ¢(w) has an interpretation of the grand partition function of the ideal gas with the
Haldane exclusion statistics [W]. The fini@-system appeared in [W] as the thermal
equilibrium condition for the distribution functions of the same system. See also [IA] for
another interpretation. The one variable case (2.18) also appeared in [S] as the thermal
equilibrium condition for the distribution function of the Calogero—Sutherland model.
As an application of our second formula in Theorem 2.4, we can quickly reproduce the
“cluster expansion formula” in [l, Eq. (129)], which was originally calculated by the
Lagrange inversion formula, as follows:

109 0 (w) =[5 Ri g w)]

Pj(I,G;0,N)+N; —1 (2.38)
- Z det Fie(I1.G:0,N) [] ( ( _ )1+ )wN,
e/\/]k#, jenan Vi Ny =

where{Q;(w)}icy is the solution of (2.4). The Sutherland-Wu equation also plays
an important role for the conformal field theory spectra. (See [BS] and the references
therein.)

iii) Quasi-hypergeometric functions. The seriesk}, ;(w) is a special example of
the quasi-hypergeometric functions by Aomoto and Iguchi [Al]; Wm:J‘[P are all inte-
gers, it reduces to a general hypergeometric function of Barnes—Mellin type. A quasi-
hypergeometric function satisfies a system of fractional differential equations and a
system of difference-differential equations [Al]. It also admits an integral representation
[A]. In particular, the integral representation &y ; (w) reduces to a simple form ([A,
Eqg. (2.30)], [IA, Eq. (89)]); in our notation,

v _ 1 vi—1 -1
Kjgw) = W[[g £ fi(w, 1) ]dt, (2.39)
fiwon) =6 —1+w; ], (2.40)

jeH
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where the integration is along a circle aroupd= 1 starting fromz; = 0 for eachy;.
We see thatf; (w, t) = 0 is the standar@-system (2.4). The integral (2.39) is easily
evaluated by the Cauchy theorem as [A, Eq. (2.32)]

K] gw) = Qj g(w)/ dl_?t(fsij Oi(w)+Gij(1- Q;(w))), (2.41)

where{Q; (w)};ecx is the solution of (2.4). The formula (2.41) reproduces a version of
the Lagrange inversion formula (the Good formula [G, Theorem 2]), and it is equivalent
to the formulae (2.16), (2.30), and (2.34).

3. Infinite Q-Systems

3.1. Infinite Q-systems. Throughout Sect. 3, |l be a countable index set. We fix an
increasing sequence ffite subsets o, Hy € H> C --- C H such thatj)mHL =H.
The result below does not depend on the choice of the seqyéngg® ;. A natural
choice isH = NandH; = {1,...,L}. However, we introduce this generality to
accommodate the situation we encounter in Sect. 4 (cf. (4.1)).

Let w = (w;);ey be a multivariable with infinitely many components. For each
L € N, letwy = (w;);en, be the submultivariable ab. The fieldC[[w ]] of the power
series ofwy, overC is equipped with the standaff; -adic topology, wherét;, is the
ideal of C[[w.]] generated by;’s (i € Hy). ForL < L', there is a natural projection
pPLL - Cl[[wy/11 = C[[w]] such thaIpLL/(wi) =w; ifi e Hand Qifi € Hy, \ Hr.
A power series f(w) of w is an element of the projective limit[[w]] = le Cllwr1
of the projective system

Cllw1]] < Cl{wz]] <= C[[ws]] < --- 3.1

with the induced topology. Legi; be the canonical projectigpy, : C[[w]] — C[[w.]],
and fr(wr) be the Lt projection image off(w) € C[[w]]; namely, fr(wr) =
pL(f(w)) and f(w) = (fL(wL)) 7,

Here are some basic properties of power series which we use below:

(i) We also present a power seriggw) as a formal sum

f)y=>Y"ayw", ayeC, (3.2)
NeN
N ={N = (Ny)ier | Ni € Z>o, all but finitely manyn; are zerd, (3.3)

(the definition of\ is reset here for the infinite index sé#) whoseL ™ projection image
is

frwp) = Y ayw®, (3.4)
NeNp
NL={NeN|N;=0fori ¢ H}. (3.5)

(i) For any power serieg (w) with the unit constant term and any complex number
a, thea™ power (f(w))® = ((frwp)9L, € C[[w]] is uniquely defined and has
the unit constant term again.

(iii) Let fi(w) (i € H) be a family of power series angl ;. (w;) be their L1
projections. If their infinite product exists irrespective of the order of the product, we
write itas] [,y fi(w). [[;cy fi(w) existsifand only iff [, fi,z (w) exists for each
L; furthermore, if they exist, the latter is tHé" projection of the former.
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Definition 3.1. The following system of equations for a family (Q;(w));cn of power
series of w with the unit constant terms is called an (infinite) Q-system For each
ieH,

[TQi@nPi +wi [T@;@)n% =1 (3.6)
jeH jeH
Here, D = (D;j)i jen and G = (G;);, jen arearbitrary infinite-size complex matrices
satisfying the following two conditions:

(D) The matrix D is invertible, i.e., there exists a matrix D~ such that DD~ =
D™D =1.
(G') Thematrix product G’ = G D~ iswell-defined.

When D = I, Eq. (3.6) is called a standard Q-system.
Remark 3.2. The condition (G’) is rephrased as “for eachndk, all but finitely many
G,»j(Dfl)jk (j € H) are zero”. Similarly, the condition (D) implies that, for eacind

k, all but finitely manyD;;(D~1) jx, (D™Y);;Djx (j € H) are zero. For the standard
case, (D) is trivially satisfied, and (G’) is satisfied for any complex magirix

Unlike the finite O-systems, the uniqueness of the solution does not hold for the
infinite Q-systems, in general. For instance, the following example admits infinitely
many solutions.

Example 3.3. Let H = Z, and consider @-system,

Qi—1(w) Qi+1(w)
(Qi(w))?

whereQo(w) = 1. This can be easily solved as

+w; =1, 3.7)

i—1
Qi(w) = (Q1(w))' [J@—wp'~/, (3.8)

j=1

whereQ1(w) is an arbitrary series ab with the unit constant term.

3.2. Canonical solution.

3.2.1. Solution of standard Q-system. First, we consider the standard case

Qi(w) +w; [ @)% =1. (3.9)
jeH
Let Q; r(wr) := pr(Q;(w)) be the L™ projection image ofQ; (w). Then, (3.9) is
equivalent to a series of equatiods£ 1, 2,... ),

QiL(wr) + prw) [ [(Qj.L(wr)% =1, (3.10)

jeH
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which are further equivalent to

Qir(wrp)=1 i¢Hp, (3.11)

Qi r(wr) + w; l_[ (Qj 1w ) =1 ieH. (3.12)
JEHL

Namely, a standard infinit@-system is an infinite family of standard fini@-systems
which is compatible with the projections (3.1). By Proposition 2.1, (3.12) uniquely
determines); ; (wy) fori € Hy. Furthermore, so determingd; ; (w.))7° ; belongs

to C[[w]], again because of the uniqueness of the solution of (3.12). Therefore,

Proposition 3.4. There exists a unique solution (Q; (w));cy Of the standard Q-system
(3.9), whose Lth projections Q; r(wr) := pr(Q;(w)) are determined by (3.11) and
(3.12).

3.2.2. Canonical solution. As we have seen in Example 3.3, the uniqueness property
does not hold for a general infini@-system (3.6). This is because, unlike the standard
case, the. " projection of (3.6) is not necessarily a finifesystem. The non-uniqueness
property also implies that, unlike the finite case, (3.6) does not always reduce to the
standard one,

0jw) +w; [J(Q;wn% =1, G =GDp7% (3.13)
jeH
In fact, the relations (2.7) and (2.8) are no longer equivalent due to the infinite products
therein. However, the construction of a solution of a gen@ralystem from a standard

one in Theorem 2.3 still works. We call the so obtained solutiocaasnical solution.
Let us give a more intrinsic definition, however.

Definition 3.5. We say that a solution (Q; (w));cg of the O-system (3.6) is canonicalif
it satisfies the following condition:
(Inversion property): For anyi € H,

[T{TTQun® P} = 0;w). (3.14)

jeH keH

Remark 3.6. The condition (3.14) is not trivial, because, in general, one cannot freely
exchange the order of the infinite double product therein.

Theorem 3.7.There exists a unique canonical solution of the Q-system (3.6), which is
given by

Qi (w) = [] (@)@ i, (3.15)

jeH

where (Q’(w));en isthe unique solution of the standard Q-system (3.13).
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Proof. First, we remark that the infinite product (3.15) exists, becaudé'itsrojection
image reduces to the finite product

QiLwr) = [ (@), wr)® Vi (3.16)

JjeHL

due to (3.11). Let us show that the famil@; (w));cy in (3.15) is a solution of the
Q-system (3.6). With the substitution of (3.16), th® projection image of the first term
in the LHS of (3.6) is

H(Qj’L(wL))DU - l_[{ 1—[ (Q;c,L(WL))Dij(D_l)jk}
Jef jeH keH

_ (3.17)
_ {Q;,L(wL) ieH

1=0;,(wy) i¢HL.

In the second equality above, we exchanged the order of the products. It is allowed
because the double product is a finite one (cf. Remark 3.2). The second term in the LHS
of (3.6) can be calculated in a similar way as follows:

H(Qj’L(wL))Gij - l_[{ l—[ (Q;g,L(wL))Gij(D_l)jk}
jeH jeH keHp

= [ Q.. (w) .

keHy,

(3.18)

From (3.17) and (3.18), we conclude that (3.6) reduces to (3.13). Furthermore, by (3.17),
we have

[J@jwn?i = gjw). (3.19)

jeH

Then, substituting (3.19) in (3.15), we obtain (3.14). Therefa@e(w));cx IS a canon-
ical solution of (3.6). Next, we show the uniqueness. Suppose(dtw));cy is a
canonical solution of (3.6). We defin@; (w) as

Qi(w) = [@;wn®. (3.20)

jeH

Then, by the inversion property (3.14), we have

0i(w) = [T(@)w)® Vi, (3.21)
jeH
Also, by (3.6),
Qi (w)=1 i¢H].. (3.22)

With (3.21) and (3.22), the same calculation as (3.18) shows(atw));cx is the
(unique) solution of (3.13). Therefore, by (3.20);(w) is unique. O
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Example 3.8. Let us find the canonical solution of th@-system (3.7) in Example 3.3.
We have

Dij = —28;; + 8 j—1+ 8 j+1, (D™H;; = —min(, j). (3.23)

Let H, = {1,..., L}. By (3.20) and (3.22), th&™ projection of the LHS of (3.14)
equals

Jj+1

L
H{ [1 (Q"~L(wL))(D_1>iijk}

j k=j—1
k+1

j=1
= (TT{ TT (QuLuin® Py

k=1 j=k—1 (3.24)
X (QL_HLL(wL))(D_l)iLDL,L+1(QL’L(wL))—(D_l)i.L+lDL+1,L
L
= (1_[<Qk,L(wL>>5fk)(QLH,L(wL)r”“”““(QL,L<wL)>mi”<’>L+l>.
k=1

Therefore, condition (3.14) reads

0: 20z = {Q,-,L(wL)(QL,L<wL>/QL+1,L(wL>>fL 1:5 L (3.25)
Or(wr)(Qr.r(wr)/Or+1,0(wr))* i >L+1

This is equivalent to

Qir(wr)=0r,.(wr), i>L+1 (3.26)

Using (3.8) and (3.26), one can easily obtain
o
O1(w) =@ -wp~t (3.27)
j=1

Therefore, the canonical solution of (3.7) is given by

o]

Qi(w) = [J@—wj~mneD, (3.28)

j=1

3.3. Power series formula. Let (Q;(w));cy be the canonical solution of (3.6), and
(Q;(w))ien be the unique solution of the standagdsystem (3.13). For the matrix
D in (3.6), letv(D) be the set of alb = (v;);cy such that; € C and, for each, the
sumy" ., v (D71 exists (e, all but finitely manyv;(D~1);; (j € H) are zero).
For eachv € v(D), we define

05 ) = [Ty = [[{[T@;@y® ™| (329

ieH ieH jeH
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The last infinite product exists, because if§ projection image reduces to a finite
productdue to (3.11) and the definitioni@iD). For eachy € v(D), letv’ = (v)) € v(I),

v/ =3y vj(D7Y i Then, by (3.29), we have

0} c(w) = QY 5 (w), G =GD™™ (3.30)
It follows from (3.11) and (3.30) that

Lemma 3.9.
PLQh 6 (w) = O)F . (wp), (3.31)

where the RHSisfor the solution of the finite Q-systemwith the finite index set Hy,, and
I = (51']')1"]'6]-]1‘, G/L = (G;j)i,jeHLa vl = (‘)z‘/)iEHL are the Hy -truncations of 1, G/,
V', respectively.

For D, G in (3.6) andv € v(D), we define the power serléSD c¢(w) andR;} D.c(W)
by the superficially identical formulae (2.10)—(2.15) withG, v, N, etc., thereln being
replaced by the ones for the infinite index gkt

Theorem 3.10 Power series formuldeFor the canonical solution (Q; (w));c g of (3.6)
andv € v(D), let QB,G(U’) be the seriesin (3.29). Then,

0% (W) = K} g(w)/KY 5(w) = R} (w). (3.32)

Proof. By Theorem 2.4 and Lemma 3.9, it is enough to show that

/

pL(Kp ) = K" o (we). pL(R) g(w) = R," o (wp). (3.33)
By (3.2)—(3.5), (3.33) further reduces to the following equality:
P;(D,G;v,N) = P;(I,G7;v;,NL), NeN., i€HL, (3.34)

whereNy, = (N;)ien, is the Hy -truncation ofN. O

4. Q-Systems of KR Type

In this section, we introduce a class of infinesystems which we call th@-systems
of KR type. This is a preliminary step towards the reformulation of Conjecture 1.1.

4.1. Secialized Q-systems. Throughout the section, we take the countable index set as
={1,...,n} xN (4.1)

for a given natural number. We choose the increasing sequefbec H, C --- C H
with I|m Hp =HasH, ={1,...,n}x{1,..., L}. Lety = (y,),_, be amultivariable
with n components
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Definition 4.1. Thefollowing systemof equationsfor afamily(Qf,‘f)(y))(a’m)eﬂ of power
series of y with the unit constant termsis called a specialized (infinite) O-system For
each (a,m) € H,

b ' b
[T @ opPems oo™ T (@ ) Fm =1, (4.2)

(b,k)eH (b,k)eH
where the infinite-size complex matrices D = (Dgm.bk)@,m).(b.o)e aNd G =

(Gam,bk)@,m), b ken Satisfy the same conditions (D) and (G') as in Definition 3.1.
A solution of (4.2) is called canonicalif it satisfies the condition

[T { IT @2un® ool = o). (4.3)

(b,k)yeH (c,j)eH
Let C[[y]] be the field of power series gf with the standard topologyj; be the

ideal of C[[y]] generated byy,)“*tYs (@ = 1,...,n), andC[[y]]. be the quotient
Clly1l/JL- We can identifyC[[y]] with the projective limit of the projective system,

Cliyll1 < Cllyll2 < Cllylls < - - - . (4.4)
Letw = (w,(?f))(a,m)eH be a multivariable, and lat(y) be the map with
wi () = (ya)"- (4.5)
The map (4.5) induces the mapg and such that
Cllwe]l < Clw]]
VLl v (4.6)
CllyllL < CllIy1l.

We call the image) (f (w)) € C[[y]]thespecializationof f(w), and write itasf (w(y)).
Explicitly, for f(w) in (3.2),

fam= > (X a)[loa™. 4.7)
M, ..., My=0 NeN a=1

Yo mNy =M,

Theorem 4.2.Thereexistsa unigue canonical solution of thespecialized Q-system(4.2),
which is given by the specialization Qf,‘f) (y) = Q,(f,‘)(w(y)) of the canonical solution
(Q,S?)(w))(a,m)eﬂ of the following Q-system:

1_[ (Q](Cb)(w))Dam’bk + w’(;ll) 1_[ (Q](Cb)(w))Gam,bk — 1 (48)

(b,k)eH (bk)yeH

Proof. Since the map/ is continuous, it preserves the infinite product. Therefore, the
specialization of the canonical solution of (4.8) gives a canonical solution of (4.2). Let
us show the uniqueness. By repeating the same proof for Theorem 3.7, the uniqueness
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is reduced to the one for the standard c&se= I. Let us write (4.2) forD = I as
(L=12...)

0W(y)=1 modJ. (a,m)¢ Hp, (4.9)
QWM+ ™ ] (@)% =1 modJ, (a,m)eHy.  (4.10)

(b,k)eH|,

These equations uniquely determi@é?)(y) mod J; . SinceL is arbitrary, Qﬁ,‘])(y) is
unique. O

By the specialization of Theorem 3.10, we immediately obtain

Theorem 4.3 Power series formuldelL et (Q(“) (9))(a,m)en be the canonical solution
of the Q-system (4.2). Let @ () = [Ty mers (O @)™, v € v(D). Then,

Q) =K} c(0M/KS () =Ry 6O, (4.11)

where the series Ky)G(y) = K} g(w(y)) and R; D) = R}, cw(y)) are the spe-
cializations of the seriesin Theorem 3.10.

4.2. Convergenceproperty. Letus consider the special case of the special@2exystem
(4.2) where the matrixD and its inverseD—1 are given by

Dam.pk = —8ab(28mk — Sm.k+1 — Sm.k—1)s (4.12)
(D™ Yam.pk = —8ap Min(m, k). (4.13)
Then, (4.2) is written in the fom‘g(“)(y) =1)

QW ()2 =0 (»QY,(»
+ "L N2 ] (@ () Fem. (4.14)

(b,k)yeH

Proposition 4.4.A solution (Q,(ﬁ)(y)) of the specialized Q-system (4.14) is canonical
if and only if it satisfies the following condition:
(Convergence property):

For each a, thelimit lim Q'“(y) existsin C[[y]]. (4.15)
m— o0
Proof. Let (fo)(y))(a,m)eﬂ be a solution of (4.14). The same calculation as (3.24) in

Example 3.8 shows that (4.3) is equivalent to the following equality for dagbf.
(3.26)):

0W(y)=0W(y) modJ,, m>L+1 (4.16)

Clearly, condition (4.15) follows from condition (4.16). Conversely, assume condition
(4.15). By (4.14), we have

QW (y)/QW 1 (») = QW (»/QW(y) modJy, (m=L+1). (4.17)

Because of (4.15), both sides of (4.17) are 1 mipdThus, we have\s’ (v) = Q' ()
mod J; (m > L + 1). Therefore, (4.16) holds.
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4.3. Q-system of KR type and denominator formula.

Definition 4.5. A specialized Q-system (4.2) is called a Q-system of KR (Kirillov—
Reshetikhin) typeif the matrices D and G further satisfy the following conditions:
(KR-1) The matrix D and itsinverse D~ are given by (4.12) and (4.13).
(KR-Il) There exists a well-order < in H such that G’ = G D~ hasthe form

Gk = gabm  for (a,m) < (b, k), (4.18)
where g, (@, b =1, ..., n) areintegerswith deti<, p<n gap # 0.

Example4.6. Letr, > 0 andh,, (a,b = 1, ..., n) be real numbers such thgt, :=
haptp are integers and dét,, # 0. We define a well-ordek in H as follows:(a, m) <
(b, k) if tpm < t.k, orif m = t,k anda < b. Then,

am,bk = hap MiN(tpm, t5k) (4.19)

satisfies the condition (KR-II) witg., = haptp.

Letx = (x4)}_, be a multivariable withn components, angl(x) be the map

Ya(x) = [ JCen) 8, (4.20)
b=1

whereg,;, are the integers in (4.18). We set

QW (x) 1= (x)™ QW (y(x)), (4.21)
which are Laurent series af

Proposition 4.7.Thefami|y(Q,(f,’)(x))(a,m)eH satisfiesa systemof equations(Qg‘)(x) =
1)7

Q) (0)? = QuLy QL) + QW )7 [T @ nSem. 4 5o
(b,k)eH

Proof. By comparing (4.14) and (4.22), it is enough to prove the equality

00
Z Gam,bk(_k) = ZabM. (423)
k=1

Due to the condition (KR-I1), for giveria, m) andb, there is some numbér such that
G, ok = 8avm holds for anyk > L. Then, fork > L, we have

am,b

o
Gamvk =) _ Gl p; Dbjibk = gapm(—2+1+1) =0. (4.24)
j=1

Therefore, the LHS of (4.23) is evaluated as

L o
> Gl Pojsk (=) = (L + DGl — LGl 11 = Sabm- (4.25)
k=1j=1
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Remark 4.8. The relation (4.22) is the original form of th@-system in [K2,K3,KR],
where the matridG is taken as (1.5). See also (5.14) and (5.16). Note that, in the second
term of the RHS in (4.22), the f:’;\Ct()fQﬁ,‘,‘)(y))2 is cancelled by the factor in the product

for (b, k) = (a, m), because&s ,;; am = —2.

Proposition 4.9 Penominator formula Let (Q,(,?) (9))(a,m)en bethecanonical solution
of the Q0-system of KRtype (4.14). Let K9, ; (x) := K9, ;(y(x)), where K9, ;(y) isthe
power seriesin (4.11). Then, the formula

Q"
0xp

K.(x) = det (

<a,b<n

@ﬁ (4.26)

holds.

A proof of Propaosition 4.9 is given in Appendix A. In Conjecture 5.7, Proposition 4.9
will be used to identifyjk %’G(x) for someG with theWeyl denominators of the simple
Lie algebras.

5. 0-Systems and the Kirillov—Reshetikhin Conjecture

In this section, we reformulate Conjecture 1.1 in terms of the canonical solutions of
certain Q-systems of KR type (Conjecture 5.5). Then, we present several character
formulae,all of which are equivalent to Conjecture 5.5.

5.1. Quantum affine algebras. We formulate Conjecture 1.1 in the following setting:
Firstly, we translate the conjecture for the KR modules of timtwisted) quantum affine

algebra Uq(X,il)), based on the widely-believed correspondence between the finite-

dimensional modules df (X,,) anqu(X,(,l)) (for the simply-laced case, see [V]). Sec-
ondly, we also include thivisted quantum affine algebra case, following [HKOTT].

First, we introduce some notations. lget X be a complex simple Lie algebra of
rank N. We fix a Dynkin diagram automorphismof g with » = ordo. Let gg be the
o-invariant subalgebra af; namely,

g | X» A2y A2i1 Dpya Eg Dy
rl1 2 2 2 2 3 (5.1)
do ‘ Xn Bn Cn Bn F4 G2

See Fig. 1. Le’ = (Agj) (1, j e I)andA = (4;) (i, j € I,) be the Cartan matrices
of g andgo, respectively, wheré; is the set of the -orbits on/. We define the numbers
d,di, €, € (i € I)asfollowsd! (i € I)are coprime positive integers such thaftA; )

is symmetricyd; (i € I,) are coprime positive integers such tigtd;;) is symmetric,
and we setl; = dr(; (i € I), whererr : I — I, is the canonical projectior; = r if

o (i) = i,and 1 otherwiseg; = 2 if A;U(l.) < 0, and 1 otherwise. It immediately follows

thatd = d; ande] = 1ifr = 1;d] = 1ifr > 1;¢ = 11if X,(\? # Ag). Itis easy to
check the following relations: Sep = 2 if X = A;?, and 1 otherwise. Then,

,
kod; Z A;as(j) =di An(i)n(j)» (5.2)

s=1
KOG;dl-/ = €;d;. (5.3)
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(XN, 1) 90
(A2, 2) O0—0O--—0--0—0 B, O—O—------ _o—e
(A2n-1,2) oo O----- *—o Cy o —o— - — =0
(Dpy1,2) OO B, O—O—-—-—0=9

(Eg, 2) Q—Q—E—Q—Q Fy O—C—=—=—0—=0
(Dg4, 3) Q—I—Q Go =0

Fig. 1. The Dynkin diagrams oK 5 andgg for r > 1. The filled circles inX 5 correspond to the ones g
which are short roots afg

Forq € C*, we setg] = g%, g; = ¢, andn], = (¢" —¢™")/(q —q ™).

We use the “second realization” of the quantum affine algéhra= Uq(Xx)) [D2,
J] with the generatorX % (i € I,k € Z), Hy (i € I,k € Z\ {0})), K (i € 1), and the
central elements*Y/2. As far as finite-dimensiondl,-modules are concerned, we can

setc*1/2 = 1. Some of the defining relations in the quotient @aantumloop algebra)
Uq/(cﬂ/2 — 1) are presented below to fix notations (here we follow the convention in
[CP2,CP3)):

X::(i)k = "X, Hean = o Ha, K;:(%)k =K. (5.4)
o1 FKod Y1 Al sy ok
KiX3K ™ =q Lot X5 (5.5)
1 r
[Hix, X571 = % (Z[kmd{ Alos( j>]qwsk>xfk+l, (5.6)
s=1
4 G LIJ‘Jrk l_lp‘_k 1
(X% X1 = (Z Sasm,jw”)”*—_’l’*, (5.7)
s=1 qi — 4;

wherew = exp(2ri/r), and\IJf,EC (i € 1,k € Z) are defined by

o o
dowh =k exp(:l:(q,- - HY. H,-,ﬂL/) (5.8)
k=0 =1

with W = 0 (£k < 0).

Remark 5.1. In [CP3], there are some misprints which are relevant here. Namely, the
relation[Hjy, inl] should read (5.6) here; in Proposition 2.2 and Theorem 3.14(ii),
should read;; for suchi thato (i) # i anda;s () # 0 therein. We thank V. Chari for the
correspondence concerning these points.
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Let V (y*) denote the irreducibl&, -module with a highest weight vectorand the
highest weighty* = (y;i), namely,
Xftv=0, (5.9)
Wiv=1yv, ¥;eC. (5.10)
The following theorem gives the classification of the finite-dimensiofainodules:
Theorem 5.2 Theorem 3.3 [CP2], Theorem 3.1 [CR3The U, (X /))-module V (v +)

isfinite-dimensional if and only if there exist N-tuple of polynomials (P; (u));<; with the
unit constant terms such that

> Pi(q]%uc)
b =3 "y = gji9eon — (5.11)
> i = 2w "

where the first two terms are the Laurent expansions of the third term about « = 0 and
u = 0o, respectively.

The polynomial§ P; (1));<; are called th®rinfeld polynomialsof V (y*). It follows
from (5.3), (5.10), and (5.11) that

K:I:lv _ q/:l:e degP; , qiie,- degPiv. (5.12)

5.2. TheKRmodules. We take an inclusion: I, — I such thatr o« = id, and regard

I, as a subset of. Let us label the sek, with {1, ..., n}. The Drinfeld polynomials

(5.11) satisfy the relatio®, (1) = Pi(wu) (o (@) # i) by (5.4) and (5.8). Therefore,

it is enough to specify the polynomials(u) only for thosei € {1,...,n} C I.
WesetH ={1,...,n} x Nasin (4.1).

Definition 5.3. For each (a, m) € H and¢ € C*, let W\ (¢) bethefinite-dimensional
irreducible U, -module whose Drinfeld polynomials P, (u) (b = 1, ..., n) are specified
asfollows. Py,(u) = 1for b # a, and

m

Pa(u) = [ = ¢q a2, (5.13)
k=1

Wecall W% (¢) a KR (Kirillov—Reshetikhin) module .

By (5.2) and (5.5), we see that;, andk ** (a = 1, ..., n) generate the subalgebra
U,(go). It is well known that aIIW,,(,“)(g) (¢ e CX) share the sam&,(go)-module
structure. If we seKjEl = q;tH“ and take the limity — 1, Xjfo andH, (a=1,...,n)
generate the Lie algebga. Accordingly,W,S,“)(g) is equipped with thgo-module struc-
ture. We call itsgo-character theyo-character of W,ﬁ,“)(;). The go-highest weight of

W,}{”(;), in the same sense as abovenis, A, by (5.12) and (5.13).
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5.3. TheKirillov—Reshetikhinconjecture. We define the matrig’ = (G;m,bk)(a-,m)xb,k)eH
with the entry

k
am bk — Z Ab(f S(a) mm<d/ ’ d/ ) (5-14)

{dbAbamln(d Ly r=1

5.15
o Apq Min(m, k) r>1 ( )

It follows from (5.15) and Example 4.6 that’ satisfies the condition (KR-I1) in Defi-
nition 4.5 withg,, = Ap,/€p. Below, we consider th@-system of KR type with the
matrix G := G’ D, whereD is the matrix in (4.12). By using (A.6) of [KNZ2]), the entry
of G is explicitly written as

_éAhaSm,k r>1
—Apa(Sm,2k—1 + 20m,2k + Om2kv1)  dp/dy =2
Gampk = | —Apa(Om,3k—2 + 28m 361+ 3Bdm3k  dp/da =3 (5.16)
+28m.3k+1 + Om.3k+2)
—AabBd,m,dyk otherwise
Leta, andA, (@ = 1, ..., n) be the simple roots and the fundamental weights of
go. We set
xg = e“la y, = e7%, (5.17)
Then, they satisfy the relation (4.20) for the abgyg; namely,
n
va= ], . (5.18)

Definition 5.4. Let Q,(,’f)(x) be the Laurent polynomial of x = (x,)7_; representing
the go-character of the KR module W,ﬁ,“)(g). Then, Q,(,i‘)(y) = (xa)—’"Qf,?) () lx=x()>
where x(y) is the inverse map of (5.18), is a polynomial of y = (y,)"_, with the unit
constant term. We call Q,(ﬁ) () the normalized go-character of W,i,”) (£).

Now we present a reformulation of Conjecture 1.1. This is the main statement of the
paper.
Conjecture 5.5. Let Q,(,?)(y) be the normalizegg-character of the KR modulw,,(f‘)(g)

of U, (Xx)). Then, the famil;(Qﬁ,f) (»)@,meH is characterized as the canonical solution
of the Q-system of KR type (4.14) witli given in (5.16).

LetQ"(y) = ]_[(a m)(Q(“)(y))”'(:) forv € v(D). By Theorem 4.3, Conjecture 5.5 is
equivalent to

Conjecture 5.6 ([KN2]). The formulae

Q' (») =K} ¢(M/KD () =R} () (5.19)
hold, whereX’;, . (y) andR}, ;(v) are the power series in (4.11) within (4.12) and
G in (5.16). ThereforeRj, ;(y) is apolynomial of y, and its coefficients are identified

. . T (a)
with thego-weight multiplicities of the tensor produ@ ., ,,,,c i W@ (¢\)®vn where

(a)

Ly are arbitrary.
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5.4. Equivalenceto Conjecture 1.1. Let A% denote the set of all the positive rootsgof
Originally, Conjecture 5.5 is formulated fmj‘;) * A(zi) as follows (cf. Conjecture 1.1):

Conjecture 5.7 ([K1,K2, HKOTY,HKOTT]). For X’ A2, the formula

Kb e
Q'(y) = —1_[ ?16 - (5.20)
— e
aeA?

holds, whereCy, ;(y) is the power series in (4.11) witb in (4.12) andG in (5.16).
ThereforeC}, ; () is apolynomial of y, and its coefficients are identified with the multi-
plicities of thego-irreducible components of the tensor prodgt, ., i Wn(f) (§,f1“))®"'("") ,
wherez, are arbitrary.

Proof of the equivalence between Conjectures 5.6 and 5.7 for X x) # A(zi). Suppose that
Conjecture 5.7 holds. Then, setting= 0 in (5.20), we have

Ko =[] @a-e. (5.21)

90
aeAl

Therefore,Q"(y) = IC”D,G(y)/IC%,G(y) holds. Conversely, suppose that the family of

the normalized;o—charactemQ,(”“)(y))(a,m)eH is the canonical solution of (4.14). Then,
the equality (5.21) follows from Proposition 4.9 and the lemma belaw.

Lemma 5.8.Let g be a complex simple Lie algebra of rank n, and «, and A, be the
simple roots and the fundamental weights of g. We set x, = e’«, y, = e %/% where
kg (@ =1,...,n)arelor 2. Quppose that f,(y) (@ = 1,...,n) are polynomials of
y with the unit constant terms such that f,(x) = x, f,(y(x)) are invariant under the
action of the Weyl group of g. Then,

ot »
15932’1(@(@) - gg(l—e ). (5.22)
acay

Proof. The proof is the same as the one for Lemma 8.6 in [HKOT Y.

In the caseé\(zi), (5.21) does not hold under Conjecture 5.6, because the assumption

in Lemma 5.8 is not satisfied by (5.17). We treat the o@%éseparately below.
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0o 1 n—1 n
O==0—+----—0==0
n n—1 1 0

Fig. 2.The Dynkin diagram oﬁgf;) . The upper and lower labels respect the subalgBh@ndC,,, respectively

5.5. The A(Zi) case

5.5.1. The B, -character. ForA(Zi), go = B,. Let{1,...,n}labell, as the upper label

in Fig. 2. Accordinglye, = 1fora =1,...,n—1, and 2 fora = n. We continue to set

vo = e % asin Sect. 5.3. We will show later, in (5.34) and (5.36), that under Conjecture
5.5 the following formula holds instead of the formula (5.21):

K6 = ]_[(1+ ]_[ yk) ]—[ 1—e®). (5.23)
aeA
Therefore, Conjecture 5.5 fdf(’) A(z) is equivalent to

Conjecture 5.9. For X = A%, the formula

Ky " (1
Qv(y)z D,G(y)l_[ ( +1_[k ayk) (524)

[T a-e™

Bn
aeAY

holds for the normalize®,,-characters of the KR-modules.

5.5.2. TheC,-character. Asiswell-knownU,, (A(z)) has arealization with the “Cheval-
ley generatorsXf andk* (a = 0,...,n) (e.g. [CP3 Proposition 1.1]). Among them,
X*andkK*l (@ =1,...,n)are |dent|f|ed withx %, K1 in (5.4)-(5.8), and generate
the subalgebra/, (B,). On the other handy:* and Kﬂt1 (@ =0,...,n—1) generate
the subalgebrd/,2(C,). See Fig. 2. If we seK, = qu (@ = 0 — 1), where
g0 = q%, dy = 4, thenX* andH, (@ = O,...,n — 1) generate the Lie algeb@,

in the limitg — 1. This providegv,,(f)(g“) with the C,-module structure, by which the
C,-character of W% (¢) is defined.

Letd, andA, (¢ = 1,...,n) be the simple roots and the fundamental weights
labeled with the lower label in Fig. 2. By looking at the safigmodule asB, and

C,-modules as above, a linear bijectipn h* — h* is induced, wherg* andh* are
the duals of the Cartan subalgebrasBpfandC,,, respectively.

Lemma 5.10.Under the bijection ¢, we have the correspondence (Ag = 0):

eaAa = An—a - Ans (525)

oy an_'a ‘ L a=1...,n—-1 (5.26)
—(1+ -+ o1+ 50,) a=n.
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Proof. Itis obtained from the relations amortfy ande; for A(zi) [Kac]:
n n
O=C=ZaivHi, O:S:Za,-ai, (5.27)
i=0 i=0
where(ag,...,a;)) = (2,...,2,1) and(ao, ...,a,) = (1,2,...,2) for the upper
label in Fig. 2. O
Let W(X,,) denote the Weyl group of,,.
Lemma5.11.Thereisan element s € W(C,) which actson b* as follows:
d(eah) > Ay (a=1,...,n), (5.28)

¢ (ag) — ;du (a=1,...,n). (5.29)

a

Proof. We take the standard orthonormal basi®f [j* Lets be the element such that
§ 1&g > —€n_qy1. Then,

An—a - An = _(871—a+l +---+ 8n) =>ée1+--+é& = Aav (530)

Upg = Ep—q — En—ailt> g —Eqr1 =0y (@=1,...,n—1), (5.31)
1 1

— (0 + -+ 01+ Ean) =—g1 g = Ean (5.32)

According to (5.30)—(5.32), we set

xg = el y, = e Yl (5.33)
Then, therelation (5.18) is preserved, sip@nds above are linear. Lemma5.11 assures
that the following definition is well-defined.
Definition 5.12. Let Q,(,‘,’)(x) bethe Laurent polynomial of x = (x,)”_ representing the
C,,-character of the KR module W,,(f)({). Then, Q,(,;‘)(y) = (xa)*”‘Q,(,‘f) () |lx=x(y) iS@
polynomial of y = (y,)”_, with the unit constant term. e call Q,(ﬁ)(y) thenormalized
C,-character of W% (¢).

Moreover, by Lemma 5.11 and th&'(C,,)-invariance of theC,,-character OWV,,({‘)(Q“),
we have

Proposition 5.13.The normalized B, -character and the normalized C,-character of
Wn(f') (¢) of U, (Agl)) coincide as polynomials of y.

Thus, Conjecture 5.5 for the normalizét}-characters om(zi) is applied for the
normalizedC, -characters as well. Furthermore, in contrast toBhease, Lemma 5.8
is now applicable for (5.33). Therefore, under Conjecture 5.5, we have

Ko = ] @—e™. (5.34)

Cn
aeA

Hence, we conclude that Conjecture 5.5 Xdf’ = Agl) is also equivalent to
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Conjecture 5.14 ((HKOTT]). For X\ = A%, the formula

Kb ()
Q'(y) = l—[’zl—cy_) (5.35)
—e
aEAC”

holds for the normalized’,-characters of the KR-modules, wheyes specified as
(5.33).

The following relation is easily derived from the explicit expressions of the Weyl
denominators oB, andC, (e.g. [FH]):

[Ta-en=TIa+[T») [T a-e=. (5.36)

Cn a=1 k=a Bn

aeAY aeA;

where the equality holds under the following identifications= ¢ %/ for the LHS
andy, = e~% for the RHS under the label in Fig. 2. From (5.34) and (5.36), we obtain
(5.23).

5.6. Charactersfor therank n subalgebras. The procedure to deduce thg-characters
from the B,,-characters foﬂgl) in Sect. 5.5 is also applicable to thecharacters for any
rankn subalgebray # go of X%). (The characters of the lower rank subalgebras are
obtained by their specializations.) Let us demonstrate how it works in two examples:
Casel. X\ = B", go= B, §=D
Casell. X = AP | go=C,, =D

Leta, andA, (resp.é, andA,) (@ = 1, ..., n) be the simple roots and the funda-
mental weights ofjg (resp.g) labeled with the upper (resp. lower) label in Fig. 3. As in

Sect. 5.5, a linear bijectiof : h* — h* is induced, wherg* andh* are the duals of
the Cartan subalgebras @f andg, respectively.

0 0
n 2 n-1 n " 2 n—1 n
ffffff —0O=0 - —(O=0
) 1 0 -2 1 0
n—1 n—1
1 2
B," A5y

Fig. 3. The Dynkin diagrams oB,(ll)

g, respectively

andA(zi)il. The upper and lower labels respect the subalggpend
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Doing a similar calculation to Lemmas 5.10 and 5.11, we have

Lemma 5.15.Under the bijection ¢, we have the correspondence (Ag = 0):
Casel.

Apa—A, a=1n
A . ! 5.37
“'_){A”—zA,, a=2....n—1 (6.37)

Cn—u a=1...,n-1
o > ' ] ) ) 5.38
“ {—%(20[14‘"‘+2an—2+an—l+an) a=n. (539)

An—l_An a=1
A . : 5.39
“'_){An_a—zAn a=2.....n, (5.39)

Uy_g a=1...,n—-1
oy > 5.40
“ {—(2d1+---+2an_2+dn_1+ozn) a=n. (5.40)

Lemma 5.16.Thereisan element s € W(D,,) which acts on h* as follows:
Casel.

Aa a=1....n—2,n
A : . 5.41
o a)H{Anl“‘An a=n—1, ( )
g a=1....n—-1
Qg) = . . 5.42
P (@) {%(_anlw) - (5.42)
Casell.
Aa a:l,...,n—2
¢(Aa) > {3 Ap_1+ A, a=n—1 (5.43)
2An a=n,
o a=1...,n—-1
P(aa) =y . . (5.44)
—0p—1+ o, a=n.
Accordingly, we set
Case I
Xq = eAa (a — ]_7 N — 2’n)’ eAn—l+An (a =n— 1)’ (5_45)
Va=e % (a=1,...,n—1), e n-1=@n)/2 (g — p), (5.46)
Case Il
Xg = eha (@a=1,...,n—-2), ehn-1tAn (a=n-1), 2 (a =n), (5.47)
Yo = e Y (a=1,...,n—-1), gln—1=n (a =n). (5.48)

Then, therelation (5.18) is preserved. Definegtuharacters oWn(l“) (¢) inthe same way
as Definition 5.12. Then, the normalizgg-character and the normalizgecharacter
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of W,E,“)(g“) coincide as polynomials of. Thus, Conjecture 5.5 for the normalizggt
characters is applied for the normalizgatharacters as well. So far, the situation is

parallel to theC, case forA(zi). From now on, the situation is parallel to tig case

for A(zi). The following relations are easily derived from the explicit expressions of the
Weyl denominators foB,,, C,,, D,,:

n n

[T a-eo= ]‘[(1 -T1 yk) [T @-e. (5.49)
OlEAf_" a:l k=a OlEAi)”

[Ta-eo=T1(z-»*T1%) I1 a-e™. (5.50)
OIGAE_H a:l k=a O{EAE”

where the equalities hold under the following identifications: (5.17) for the LHSs, (5.46)
for the RHS of (5.49), (5.48) for the RHS of (5.50) under the label in Fig. 3. We conclude

that Conjecture 5.5 foB\"” andAgl)_1 is equivalent to
Conjecture 5.17. (i) For B,gl), the formula

K:UD,G(y) HZ:l(l - HZ:a yk)il

Q'(y) = — (5.51)
[] a-e™
aeAf”
holds for theD,,-characters of the KR-modules, wherés specified as (5.46).
(ii) For A, the formula
cv () Z* 1— -1 nia 2y—1
Q"(y) = D,cY [1 _1( Yo [ li= Yk) (5.52)

[T a-e

aeA_[:"
holds for theD,,-characters of the KR-modules, wherés specified as (5.48).

The manifest polynomial expressions of the numerators in the RHSs of (5.24), (5.51),
and (5.52) forQﬁ,‘,’)(y) are available in [HKOTT] with some other examples.

5.7. Related works. Below we list the related works on Conjectures 1.1 and 5.5-5.7
mostly chronologically. However, the list is by no means complete. The g€figs(y)

in (5.20) admits a naturagl-analogue called thiermionic formula. This is another fas-
cinating subject, but we do not cover it here. See [BS,HKOTY,HKOTT] and references
therein. It is convenient to refer to the formula (5.20) with the binomial coefficient (2.9)
astype I, and the ones with the binomial coefficient in Remark 1.3yps II. (In the
context of theXXX-type integrable spin chainy,* and P{" represent the numbers of

m-strings andm-holes of color a, respectively. Therefore one must dema‘n(ﬁ) >0,
which implies that the relevant formulae are necessarily of type 1l.) The manifest ex-

pression of the decomposition @Efl‘) such as

QP = x(A2) + x(As) (5.53)
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is referred to agypelll, wherey (1) is the character of the irreduciblg,-moduleV (1)
with highest weight.. Since there is no essential distinction between these conjectured

formulae forY (X,) andU, (X,(,l)), we simply refer to both cases &5 below. At this
moment, however, the proofs should be separately given for the nonsimply-laced case

0 [Be]. Bethe solved th&(XX spin chain of lengthV by inventing what is later
known as the Bethe ansatz and the string hypothesis. As a check of the completeness of
his eigenvectors for th&XX Hamiltonian, he proved, in our terminology, the type I

formula of @V (y) with v,(,,l) = N§,,1 for A1. See [F,FT] for a readable exposition in the
framework of the quantum inverse scattering method.

1[K1,K2].Kirillov proposed and proved the type | formula of the irreducible modules
V(mA,) for A1 [K1] and A, [K2]. The idea of the use of the generating function and
the O-system, which is extended in the present paper, originates in this work.

2 [KKR]. Kerov et al. proposed and proved the type Il formula #y by the combi-
natorial method, where the bijection between the Littlewood-Richardson tableaux and
the rigged configurations was constructed.

3 [D1]. Drinfeld claimed that/ (mA,) can be lifted to & (X,)-module, if the Kac
label fora, in X,(,l) is 1. These modules are often called thaluation modules, and

identified with some KR-modules. A method of proof is given in [C] MJ(Xf,l)).

Therefore, the type Il formul@f,?) = x(mA,) holds for those:. Some of the corre-

spondingR-matrices for the classical algebras, = A,, B,, C,, D,, were obtained
earlier in [KRS, R] by theeproduction scheme (also known as th&usion procedure) in
the context of the algebraic Bethe ansatz method.

4 [OW]. Ogievetsky and Wiegmann proposed the type Ill formul@ﬁﬁ’ for some
a for the exceptional algebras from the reproduction scheme.

5 [KR, K3]. Kirillov and Reshetikhin formulated the type Il formula for any simple
Lie algebraX,,. For that purpose, they vaguely introduced a family 6X,,)-modules,
which we identify with the KR modules here. They proposed the type Il formula for any
X,, and theQ-system and the type Ill formula fof, = B,, C,, D,,. The Q-system for
exceptional algebraX,, was also proposed in [K3]. Due to the long-term absence of the
proofs of the announced results by the authors, we regard these statements as conjecture
at our discretion in this paper. See Remark 5.18 for the further remark.

Remark 5.18. Let X,, = B,, C,, D,. Let Qf,i‘) and Qﬁ,‘f) be theX,-character and the
normalizedX,-character of the “KR module” proposed in [KR]. Then, one can organize
the conjectures in [KR] as follows:

@@ Al Qﬁf)’s are given by the type Ill formula in [KR].

(i) The family (Q,(ﬁ))(a,m)ey satisfies theD-system (4.22) fotx,,, andQ(l“)’s (a =
1,...,n) are given by the type Ill formula in [KR]. (Note that th@-system
(4.22), or equivalently (1.4), recursively determinesff’’s from the initial data
Q1)

(iii) Any power QV is given by the type Il formula.

As stated in [KR], one can certainly show the equivalence between (i) and (ii) with-

out referring of the KR-modules themselves. See [HKOTY]. One can also confirm the
equivalence between (i) and a weak version of (iii),

@iy All Q,(ff)’s are given by the type Il formula.
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See [KI] and Appendix A in [HKOTY]. The famiIXQ,(,;‘))(a’m)eH given by (i) satisfies
the convergence property (4.15). Thus, (i), (ii), and (iii’) are all equivalent to

(iv) The family(Q,(,?))(a,m)EH is the canonical solution of th@-system (1.4).
Therefore, as shown in Section 5.4 (also [KN2]), they are also equivalent to
(v) Any powerQV is given by the type | formula (1.1).

This is why we call Conjecture 1.1 the Kirillov-Reshetikhin conjecture. The equivalence
between (iii) and the others has not been proved yet as we mentioned in Remark 1.3.

6 [CP1,CP2]. Chari and Pressley proved the type Il formul@gﬁla in most cases

for Y (X,) [CP1], and foqu(X,Sl)) [CP2], where the list is complete except B and
Eg.

7 [Ku]. The type lll formula ofQ¥ was proposed for somefor the exceptional
algebras.

8 [KI]. Kleber analyzed a combinatorial structure of the type Il formula for the

simply-laced algebras. In particular, it was proved that the type llI formu(a,ﬁ‘(ffand
the corresponding type Il formula are equivalent fgrand D,,.

9 [HKOTY,HKOTT]. Hatayamaet al. gave a characterization of the type | formula as
the solution of the?-system which ar€-linear combinations of th&,,-characters with
the property equivalent to the convergence property (4.15). Using it, the equivalence of
the type lll formula on,(,‘,’) and the type | formula o®"(y) for the classical algebras
was shown [HKOTY]. In [HKOTT], the type | and type Il formulae, and tQesystems

for the twisted algebraB, (Xx)) were proposed. The type Ill formula Q‘f,f) for A(zi),

A(Zi)fl’ D,(le D_f) was also propo_sed, and the equivalence to the type | formula was
shown in a similar way to the untwisted case.

10 [KN1,KN2]. The second formula in Conjecture 5.6 was proposed and proved
for A1 [KN1] from the formal completeness of théXZ-type Bethe vectors. The same
formula was proposed fak,,, and the equivalence to the type | formula was proved
[KN2]. The type | formula is formulated in the form (5.19), and the characterization
of type | formula in [HKOTY] was simplified as the solution of tiig-system with the

convergence property (4.15).

11 [C]. Chari proved the type Il formula cID,(,f) for Uq(X,(ll)) for any a for the
classical algebras, and for soméor the exceptional algebras.
12 [OSS]. Okadet al. constructed bijections between the rigged configurations and

the crystals (resp. virtual crystals) correspondin@tdy), with v,Sf) =0form > 1,

for C\" andAY (resp.D'?,). As a corollary, the type Il formula of thos@" (y) was

proved forC\? andAgl).

Assembling all the above results and the indications to each other, let us summarize
the current status of the Kirillov-Reshetikhin conjectures into the following theorem.
Here, we mention the results only for the quantum affine algefg(le(\;)) case. Also,
we exclude the isolated results only valid for small
Theorem 5.19.(i) Conjecture 5.5 and the type | formula of QV(y) are valid for Aﬁ,l),

B, ¢\, DyP.
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(ii) Thetype Il formula of Q" (y) isvalid for A,ﬁl) and valid for those v with v,ﬁf) =0
for m > 1for C,(ll) and Agi). Thetype |l formula of Q,(,‘f)(y) isvalid for the following a
in[C]: any a for B,(ll), C,(,l), D,(,l); a=16for Eél); a =7 for Egl).

(iii) The type 111 formula of Q¢ isvalid for all a for AY, BV, ¢V, &Y, and for
those a listed in [C] for ES, EXY, ESP, F{Y, G3P. The formulaisfound in [C].

A. The Denominator Formulae
We give a proof of Proposition 4.9. The proof is divided into three steps.

A.1l. Sep 1. Reduction of the denominator formula. In Steps 1 and 2, we consider the
unspecialized infinitg)-system (4.8), and we assume tleandG satisfy the condition
(KR-I1) in Definition 4.5.

For a given positive integdt, let Hy, = {1, ...,n} x {1, ..., L} be the finite subset

of H in Sect. 4.1. With multivariables; = (v,(,‘,’))(a,m)eHL, wp = (w,(,f’))(a,m)eHL,
7L = (zf,f))w,m)eHL, we define the bijection;, — w; aroundv = w = 0 (cf. (2.1)) by
w,(,‘f)(vL) = v,(,f’) 1_[ 1- v,ib))fG;mﬁk, (A.1)
(b.k)eH],
and the bijection;, — z; aroundv = z = 0 by

b
Zf:,l)(UL) — wr(r‘zl)(UL) 1_[ 1- U]E ))gabm (A.2)
(b,k)eH|,
— Ufyil) 1_[ (1 _ U]Eb))iG;nn,bk‘l»g"bm’ (A3)
(b,k)eH],

whereg,;, is the one in (KR-Il). Let us factorize the bijectian, — v; aswy +— z; +—
vy. The mapw, — z; is described as

n L
d@wr) = w@ [T @)™, 0pwr) = A - v )™t (A4)

b=1 k=1

By the assumption (KR-Il) and the expression (A.3), the nagp— zr is lower-
triangular in the sense of Example 2.9. Therefore, the following equality holds:

(b) (a) b) (@)
w,;’ 9 w,’ d
det(—(" ) —””(’b) (wL)) — det(—(k) L (wL)>, (A.5)
Hp \ )l dwy Hp \ 7@ dw,

where def;, means the abbreviation of dgt,, .k e, -
We now simultaneously specialize the variablgsandz; with the variablesy =
(Ya)i_q @andu = (u,)’,_, as (cf. (4.5))

wi =wi () = )", 2 =2 W) = W)™ (A.6)
This specialization is compatible with (A.4) and the map> u,

ua(y) = ya [ [N 75, qp(y) := Qp(wr(y)). (A7)

b=1
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PropositionA.l.Let G, = (G;m,bk)(a,m),(b,k)eHL be the H;-truncation of G’,

K? . (wy) betheonein (234), and K9 ., (v) := KD ., (wr(y)) be its special-
LGy LYy, L.Yp

ization by (A.6). Then, the formula (2.34) reduces to

K), () = det (yb )]_[qa(y) (A.8)

1<a,b<n

Proof. Because of (A.5), it is enough to prove the equality

(a)

Vb dug
det (— ) A9
HL‘( o (b)( wi(y) = det TSl (A.9)
We remark that
L
d d
_ (a)

Yaz— = Y mw : (A.10)

aaya mX::l m 311)5,?)

L
91(3t(3am,bk + magpk) = 1521%2” (5ab + kX:kotabk>, (A.11)

wherew,;; are arbitrary constants dependingarb, k. Set

Fa(wr) = [ [(Qp(wr)) 5.

b=1

Then, (A.9) is obtained as

d
_ )
(LHS) = (;i_]?t((sam,hk + muwy W |09 Fa(wL(y))>

L
_ (b)
= det (b0 + kz_jlk (b) I0g Fa(wr.(v)))

= det (&d;-i-)’b;log Fa(wL(Y))>

1<a,b<n

d
= det (& M“( ))
1<a,b<n\ug 0yp

where we used (A.4), (A.11), (A.10), and (A.7)C

A.2. Sep 2. Change of variables. We introduce the change of the variableandu in
(A.6)tox = (x,))_; andq = (Q,)"_; as

Yat) = [T ™8, ua(@) = [ J(ap) 5. (A.12)
b=1 b=1
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Thus, if f(y) is a power series of, then f(y(x)) is a Laurent series of because of
the assumption in (KR-II) thaf,;’s are integers. This specialization is compatible with
(A.7) and the map — q,

Qa(x) = Xaqa(y(x)). (A.13)
Let us summarize all the maps and variables in a diagram:
(A2 (A4
V<> 7 <—>

4.6t 1 (A.6)
u L0y (A.14)
(A.121 1(A.12
(A13
q<«— x
With these changes of variables, (A.8) becomes the Jacobx pf
Proposition A.2. Let IC .G, (y) be the one in Proposition A.1, and let K .G, x) =
K 5 (v(x)). Then, theformula
LY

994
0= o1, (00)
holds.
Proof. By (A.12), we have
Qp dug Xp 0ya
det (— = det (— = det ’ 0. A.16
1§a,%§n<uu aqb) 1§a,%§n(ya axb> l<a%<n( 8ab) 7 ( )
Using Proposition A.1, (A.13), and (A.16), we obtain
0 —
K9, g, (0 = det (2 o~ )]"[qa(y(x»
(A.17)
. Xp 00q Lop
= det (5 ())]‘[cm(y(x))-k et (50).
mi

A.3. Sep 3. Denominator formula for the Q-systemsfor KRtype. Now we are ready to
prove Proposition 4.9; namely,

Proposition A.3. Let K0 &) = K0 0. (V(x)), where K9 D.c(») is the denominator in
(4.11) for the Q-system of KR type (4 14). Then, the formula

(a)
9Q (x)) (A.18)

KO
G = 1<a, b<n( oxp

holds, whereweset Q(l")(x) = Q(la)(y(x)) for thecanonical solution (Qﬁ,?)(y))(a,m)ef,
of (4.14).



188 A. Kuniba, T. Nakanishi, Z. Tsuboi

Proof. We recall the following four facts:
Fact 1: By (3.33) and (4.6), we have
Kb.c() =K} ¢ (v) modJL. (A.19)

Fact 2: By Theorem 3.7 and the proof therein, the canonical solu@ﬁﬁ)(y))(a,m)ey

of (4.14) and the solutio(\Qﬁ,(,”)(y))(a,m)eH of the corresponding standag@-system
are related as

QM (MY ()

Qi (y) = i (A.20)
(Qm” ()
Fact 3: By Propositions 2.1, 3.4, and (4.6), the sekigéy) in (A.7) satisfies
L
g.(y) = [](@@ )~ mod Uy, (A21)
m=1

whereQﬁfl“)(y) is the one in Fact 2. Note that(y) depends ori.
Fact 4: By the proof of Proposition 4.4, it holds that

QW (y) = Q"1 (y) modJy. (A.22)

Combining Facts 2—4, we immediately hayg(y) = Q(la)(y) mod J;. Thus,

lim;— o0 qa(y) = O (y) holds. Therefore, taking the limit — oo of (A.8) with
the help of Fact 1, we obtain

0 _ b U, . ()
Kpc(y) = 159%t§n(U_a v ()’))EQl ), (A.23)
Ua) =ya [ [(Q ()75 (A.24)

b=1

The equality (A.18) is obtained from (A.23) in the same way as the proof of Proposition
A.2.
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