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Abstract: We study a class of systems of functional equations closely related to various
kinds of integrable statistical and quantum mechanical models. We call them the finite
and infiniteQ-systems according to the number of functions and equations. The finiteQ-
systems appear as the thermal equilibrium conditions (the Sutherland–Wu equation) for
certain statistical mechanical systems. Some infiniteQ-systems appear as the relations
of the normalized characters of the KR modules of theYangians and the quantum affine
algebras. We give two types of power series formulae for the unique solution (resp. the
unique canonical solution) for a finite (resp. infinite)Q-system. As an application, we
reformulate the Kirillov–Reshetikhin conjecture on the multiplicities formula of the KR
modules in terms of the canonical solutions ofQ-systems.

1. Introduction

In the series of works [K1,K2,KR], Kirillov and Reshetikhin studied the formal counting
problem (theformal completeness) of the Bethe vectors of theXXX-type integrable spin
chains, and they empirically reached a remarkable conjectural formula on the characters
of a certain family of finite-dimensional modules of the YangianY (g). Let us formulate
it in the following way.

Conjecture 1.1. Let g be a complex simple Lie algebra of rankn. We sety = (ya)
n
a=1,

ya = e−αa for the simple rootsαa of g. Let Q(a)
m (y) be the normalizedg-character of

the KR moduleW(a)
m (u) (a = 1, . . . , n;m = 1,2, . . . ; u ∈ C) of theYangianY (g); and
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Qν(y) := ∏
(a,m)(Q(a)

m (y))
ν
(a)
m . Then, the formula

Qν(y)
∏
α∈�+

(1− e−α) =
∑

N=(N(a)m )

∏
(a,m)

(
P
(a)
m (ν,N)+N(a)m

N
(a)
m

)
(ya)

mN
(a)
m , (1.1)

P (a)m (ν,N) =
∞∑
k=1

ν
(a)
k min(k,m)−

∑
(b,k)

N
(b)
k daAab min

(
m

db
,
k

da

)
(1.2)

holds. Here,A = (Aab) is the Cartan matrix ofg, da are coprime positive integers
such that(daAab) is symmetric,�+ is the set of all the positive roots ofg, and

(
a
b

) =
Γ (a + 1)/Γ (a − b + 1)Γ (b + 1).

Remark 1.2. Due to the Weyl character formula, the series in the RHS of (1.1) should
be apolynomial of y, and its coefficients are identified with the multiplicities of the

g-irreducible components of the tensor product
⊗
(a,m) W

(a)
m (u

(a)
m )

⊗ν(a)m , whereu(a)m are
arbitrary.

Remark 1.3. There are actually two versions of Conjecture 1.1. The above one is the
version in [HKOTY] which followed [K1,K2]. In the version in [KR], the binomial
coefficients

(
a
b

)
are set to be 0 ifa < b; furthermore, the equality is claimed, not for the

entire series in both sides of (1.1), but only for their coefficients of the powersyM “in
the fundamental Weyl chamber”; namely,M = (Ma)

n
a=1 satisfies

∑
(a,m)

ν(a)m m�a −
n∑
a=1

Maαa ∈ P+, (1.3)

where�a are the fundamental weights andP+ is the set of the dominant integral weights
of g. So far, it is not proved that the two conjectures are equivalent. Both conjectures
are naturally translated into ones for the untwisted quantum affine algebras, which are
extendable to the twisted quantum affine algebras [HKOTT]. In this paper, we refer to
all these conjectures as the Kirillov–Reshetikhin conjecture. More comments and the
current status of the conjecture will be given in Sect. 5.7.

In [KR,K3], it was claimed that theQ(a)
m (y)’s satisfy a system of equations

(Q(a)
m (y))

2 = Q(a)
m−1(y)Q(a)

m+1(y)

+ (ya)m(Q(a)
m (y))

2
∏
(b,k)

(Q(b)
k (y))

Gam,bk . (1.4)

Here,Q(a)
0 (y) = 1, andGam,bk are the integers defined as

Gam,bk =



−Aba(δm,2k−1 + 2δm,2k + δm,2k+1) db/da = 2,
−Aba(δm,3k−2 + 2δm,3k−1 + 3δm,3k db/da = 3,

+2δm,3k+1 + δm,3k+2)

−Aabδdam,dbk otherwise.

(1.5)

See (4.22) for the original form of (1.4) in [KR,K3]. The relations (1.4) and (4.22) are
often called theQ-system. The importance of the role of theQ-system to the formula
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(1.1) was recognized in [K1,K2,KR], and more explicitly exhibited in [HKOTY,KN2].
In this paper we proceed one step further in this direction; we study Eq. (1.4) in a more
general point of view, and give a characterization of the special power series solution
in (1.1). For this purpose, we introducefinite and infinite Q-systems, where the former
(resp. the latter) is a finite (resp. infinite) system of equations for a finite (resp. infinite)
family of power series of the variable with finite (resp. infinite) components. Equation
(1.4), which is an infinite system of equations with the variable with finite components, is
regarded as an infiniteQ-system with the specialization of the variable (aspecializedQ-
system). We show that every finiteQ-system has a unique solution which has the same
type of power series formula as (1.1) (Theorem 2.4). In contrast, infiniteQ-systems
and their specializations, in general, admit more than one solution. However, every
infiniteQ-system, or its specialization, has a uniquecanonical solution (Theorems 3.7
and 4.2), whose definition is given in Definition 3.5. The formula (1.1) turns out to be
exactly the power series formula for the canonical solution of (1.4) (Theorem 4.3 and
Proposition 4.9). Therefore, one can rephrase Conjecture 1.1 in a more intrinsic way as
follows (Conjecture 5.5):The family (Q(a)

m (y)) of the normalized g-characters of the KR
modules is characterized as the canonical solution of (1.4). This is the main statement
of the paper.

Interestingly, the finiteQ-systems also appear in other types of integrable statistical
mechanical systems. Namely, they appear as the thermal equilibrium condition (the
Sutherland-Wu equation) for the Calogero-Sutherland model [S], as well as the one
for the ideal gas of the Haldane exclusion statistics [W]. The property of the solution
of the finiteQ-systems are studied in [A,AI, IA] from the point of view of the quasi-
hypergeometric functions. We expect that the study of theQ-system and its variations
and extensions will be useful for the representation theory of the quantum groups, and
for the understanding of the nature of the integrable models as well.

2. Finite Q-Systems

A considerable part of the results in this section can be found in the work by Aomoto
and Iguchi [A, IA]. We present here a more direct approach. More detailed remarks will
be given in Sect. 2.4.

2.1. Finite Q-systems. Throughout Sect. 2, letH denote a finite index set. Letw =
(wi)i∈H andv = (vi)i∈H be complex multivariables, and letG = (Gij )i,j∈H be a
given complex square matrix of size|H |. We consider a holomorphic mapD → C

H ,
v 
→ w(v) with

wi(v) = vi
∏
j∈H

(1− vj )−Gij , (2.1)

whereD is some neighborhood ofv = 0 in C
H . The Jacobian(∂w/∂v)(v) is 1 atv = 0,

so that the mapw(v) is bijective aroundv = w = 0. Letv(w) be the inverse map around
v = w = 0. Inverting (2.1), we obtain the following functional equation forvi(w)’s:

vi(w) = wi
∏
j∈H

(1− vj (w))Gij . (2.2)
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By introducing new functions

Qi(w) = 1− vi(w), (2.3)

Eq. (2.2) is written as

Qi(w)+ wi
∏
j∈H

(Qj (w))
Gij = 1. (2.4)

From now on, we regard (2.4) as a system of equations for a family(Qi (w))i∈H of
power series ofw = (wi)i∈H with the unit constant terms (i.e., the constant terms are 1).
Here, for any power seriesf (w) with the unit constant term and any complex number
α, we mean by(f (w))α ∈ C[[w]] theαth power off (w) with the unit constant term.
We can easily reverse the procedure from (2.1) to (2.4), and we have

Proposition 2.1.The power series expansion of Qi(w) in (2.3) gives the unique family
(Qi(w))i∈H of power series of w with the unit constant terms which satisfies (2.4).

Definition 2.2. The following system of equations for a family (Qi(w))i∈H of power
series of w with the unit constant terms is called a (finite) Q-system: For each i ∈ H ,

∏
j∈H

(Qj (w))
Dij + wi

∏
j∈H

(Qj (w))
Gij = 1, (2.5)

where D = (Dij )i,j∈H and G = (Gij )i,j∈H are arbitrary complex matrices with
detD 
= 0. Equation (2.4), which is the special case of (2.5) withD = I (I : the identity
matrix), is called a standardQ-system.

It is easy to see that there is a one-to-one correspondence between the solutions of
theQ-system (2.5) and the solutions of the standardQ-system

Q′
i (w)+ wi

∏
j∈H

(Q′
j (w))

G′
ij = 1, G′ = GD−1, (2.6)

where the correspondence is given by

Q′
i (w) =

∏
j∈H

(Qj (w))
Dij , (2.7)

Qi(w) =
∏
j∈H

(Q′
j (w))

(D−1)ij . (2.8)

Therefore, from Proposition 2.1, we immediately have

Theorem 2.3.There exists a unique solution of the Q-system (2.5), which is given by
(2.8), where (Q′

i (w))i∈H is the unique solution of the standard Q-system (2.6).



Canonical Solutions of theQ-Systems 159

2.2. Power series formulae. In what follows, we use the binomial coefficient in the
following sense: Fora ∈ C andb ∈ Z≥0,(

a

b

)
= Γ (a + 1)

Γ (a − b + 1)Γ (b + 1)
, (2.9)

where the RHS means the limit value for the singularities. We setN := (Z≥0)
H . For

D,G in (2.5) andν = (νi)i∈H ∈ C
H , we define two power series ofw,

KνD,G(w) =
∑
N∈N

K(D,G; ν,N)wN, wN =
∏
i∈H

w
Ni
i , (2.10)

RνD,G(w) =
∑
N∈N

R(D,G; ν,N)wN (2.11)

with the coefficients

K(D,G; ν,N) =
∏

i∈H(N)

(
Pi +Ni
Ni

)
, (2.12)

R(D,G; ν,N) =
(

det
H(N)

Fij

) ∏
i∈H(N)

1

Ni

(
Pi +Ni − 1

Ni − 1

)
, (2.13)

where we setH(N) = { i ∈ H | Ni 
= 0 } for eachN ∈ N ,

Pi = Pi(D,G; ν,N) := −
∑
j∈H

νj (D
−1)ji −

∑
j∈H

Nj (GD
−1)ji , (2.14)

Fij = Fij (D,G; ν,N) := δijPj + (GD−1)ijNj , (2.15)

and detH(N) is a shorthand notation for deti,j∈H(N). In (2.12) and (2.13), det∅ and∏
∅ mean 1; namely,KνD,G(w) andRνD,G(w) are power series with the unit constant

terms. It is easy to check that both series converge for|wi | < |γ γii /(γi + 1)γi+1|, where
γi = −(GD−1)ii andzz = exp(z logz) with the principal branch−π < Im(logz) ≤ π
chosen.

Now we state our main results in this section.

Theorem 2.4 (Power series formulae). Let (Qi(w))i∈H be the unique solution of (2.5).
For ν ∈ C

H , let QνD,G(w) :=
∏
i∈H (Qi(w))νi . Then,

QνD,G(w) = KνD,G(w)/K0
D,G(w), (2.16)

QνD,G(w) = RνD,G(w). (2.17)

The power series formulae forQi(w) are obtained as special cases of (2.16) and
(2.17) by settingν = (νj )j∈H asνj = δij .

One may recognize that the first formula (2.16) is analogous to the formula (1.1),
where the denominatorK0

D,G(w) in (2.16) corresponds to the Weyl denominator in the
LHS of (1.1). As mentioned in Sect. 1, the formula (1.1) is interpreted as the formal
completeness of theXXX-type Bethe vectors. In the same sense, the second formula
(2.17) is analogous to the formal completeness of theXXZ-type Bethe vectors in [KN1,
KN2]. See Sect. 2.4 for more remarks.
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Example 2.5. Let |H | = 1. Then, (2.5) is an equation for a single power seriesQ(w),

(Q(w))D + w(Q(w))G = 1, (2.18)

whereD 
= 0 andG are complex numbers, and the series (2.11) reads as

RνD,G(w) =
ν

D

∞∑
N=0

Γ ((ν +NG)/D)(−w)N
Γ ((ν +NG)/D −N + 1)N ! . (2.19)

Equation (2.18) and the power series formula (2.19) are well known and have a very
long history since Lambert (e.g. [B, pp. 306–307]).

Example 2.6. Consider the caseG = O in (2.5),∏
j∈H

(Qj (w))
Dij + wi = 1. (2.20)

This is easily solved as

Qi(w) =
∏
j∈H

(1− wj)(D−1)ij , (2.21)

and, therefore,

QνD,O(w) =
∏
i∈H
(1− wi)

∑
j∈H νj (D−1)ji =

∏
i∈H
(1− wi)−Pi(D,O;ν,N), (2.22)

whereN ∈ N is arbitrary. Using the binomial theorem

(1− x)−β−1 =
∞∑
N=0

(
β +N
N

)
xN, (2.23)

one can directly check that

QνD,O(w) =
∑
N∈N

∏
i∈H(N)

(
Pi − 1+Ni

Ni

)
w
Ni
i = RνD,O(w), (2.24)

QνD,O(w) =
∏
j∈H (1− wi)

∑
j∈H νj (D−1)ji−1∏

j∈H (1− wi)−1 = KνD,O(w)

K0
D,O(w)

. (2.25)

2.3. Proof of Theorem 2.4 and basic formulae. Theorem 2.4 is regarded as a particularly
nice example of the multivariable Lagrange inversion formula (e.g. [G]) where all the
explicit calculations can be carried through. Here, we present the most direct calculation
based on the multivariable residue formula (theJacobi formula in [G, Theorem 3]).

We first remark that

Lemma 2.7.LetG′ = GD−1. For eachν ∈ C
H , letν′ ∈ C

H withν′i =
∑
j∈H νj (D−1)ji .

Then,

QνD,G(w) = Qν
′
I,G′(w), (2.26)

KνD,G(w) = Kν
′
I,G′(w), RνD,G(w) = Rν

′
I,G′(w). (2.27)
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Proof. The equality (2.26) is due to Theorem 2.3. The ones (2.27) follow from the fact
Pi(D,G; ν,N) = Pi(I,G′; ν′, N).

By Lemma 2.7, we have only to prove Theorem 2.4 for the standard caseD = I .
Recall that (Proposition 2.1)QνI,G(w) =

∏
i∈H (1− vi(w))νi , wherev = v(w) is the

inverse map of (2.1). Thus, Theorem 2.4 follows from

Proposition 2.8 (Basic formulae). Let v = v(w) be the inverse map of (2.1). Then, the
power series expansions

det
H

(wj
vi

∂vi

∂wj
(w)

) ∏
i∈H
(1− vi(w))νi−1 = KνI,G(w), (2.28)

∏
i∈H
(1− vi(w))νi = RνI,G(w) (2.29)

hold around w = 0.

Proof. The first formula (2.28). We evaluate the coefficient forwN in the LHS of (2.28)
as follows:

Res
w=0

∂v

∂w
(w)

∏
i∈H

{
(1− vi(w))νi−1(vi(w))

−1(wi)
1−Ni−1

}
dw

= Res
v=0

∏
i∈H

{
(1− vi)νi−1(vi)

−1
(
vi

∏
j∈H

(1− vj )−Gij
)−Ni}

dv

= Res
v=0

∏
i∈H

{
(1− vi)−Pi(I,G;ν,N)−1(vi)

−Ni−1
}
dv

=
∏
i∈H

(
Pi(I,G; ν,N)+Ni

Ni

)
= K(I,G; ν,N),

where we used (2.23) to get the last line. Thus, (2.28) is proved.

The second formula (2.29). By a simple calculation, we have

det
H

( vj
wi

∂wi

∂vj
(v)

) ∏
i∈H
(1− vi) = det

H

(
δij + (−δij +Gij )vi

)

=
∑
J⊂H

dJ
∏
i∈J
vi,

(2.30)

wheredJ := detJ (−δij + Gij ), and the sum is taken over all the subsetsJ of H .
Therefore, the LHS of (2.29) is written as (θ(true) = 1 andθ(false) = 0)

det
H

(wj
vi

∂vi

∂wj
(w)

) ∑
J⊂H

dJ
∏
i∈H

{
(1− vi(w))νi−1vi(w)

θ(i∈J )}. (2.31)
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By a similar residue calculation as above, the coefficient forwN of (2.31) is evaluated
as∑
J⊂H

dJ Res
v=0

∏
i∈H

{
(1− vi)−Pi(I,G;ν,N)−1(vi)

−Ni+θ(i∈J )−1
}
dv

=
∑

J⊂H(N)
dJ

∏
i∈H(N)

(
Pi(I,G; ν,N)+Ni − θ(i ∈ J )

Ni − θ(i ∈ J )
)

=
( ∑
J⊂H(N)

dJ
∏
i∈J
Ni

∏
i∈H(N)\J

(Pi +Ni)
) ∏
i∈H(N)

1

Ni

(
Pi +Ni − 1

Ni − 1

)

= det
H(N)

(
δij (Pj +Nj)+ (−δij +Gij )Nj

) ∏
i∈H(N)

1

Ni

(
Pi +Ni − 1

Ni − 1

)

=R(I,G; ν,N).
Thus, (2.29) is proved. ��

This completes the proof of Theorem 2.4.

Example 2.9. We say that the mapw(v) in (2.1) islower-triangular if the matrixGij is
strictly lower-triangular with respect to a certain total order≺ in H (i.e., Gij = 0 for
i � j ). Letw(v) be a lower-triangular map. Then,

det
H

( vj
wi

∂wi

∂vj
(v)

)
= det

H

(
δij + Gijvj

1− vj
)
= 1. (2.32)

Thus, the formula (2.28) is simplified as∏
i∈H
(1− vi(w))νi−1 = KνI,G(w). (2.33)

This type of formulae has appeared in [K1,K2,HKOTY].

Let us isolate the caseν = 0 from (2.28), together with the formula (2.30), for later
use:

Corollary 2.10 (Denominator formulae).

K0
I,G(w) = det

H

(wj
vi

∂vi

∂wj
(w)

) ∏
i∈H
(1− vi(w))−1, (2.34)

K0
I,G(w) =

{
det
H

(
δij (1− vi(w))+Gijvi(w)

)}−1
. (2.35)

From (2.35) and the first formula of Theorem 2.4, we obtain

Corollary 2.11.

QνI,G(w) =
∑
J⊂H

gJK
ν+δJ
I,G (w), (2.36)

gJ :=
∑
J ′⊂H
|J ′|=|J |

sgn

(
JJ

J ′J ′

)
det

i∈J,j∈J ′
(
δij −Gij

)
det

i∈J ,j∈J ′
Gij , (2.37)

where δJ = (θi)i∈H , θi = 1 if i ∈ J and 0 otherwise, and J = H \ J .
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From Corollary 2.11, one can easily reproduce the second formula of Theorem 2.4.
We leave it as an exercise for the reader.

2.4. Remarks on related works. i) The formal completeness of the Bethe vectors. In [K1,
K2,HKOTY,KN1,KN2,KNT], the formal completeness of theXXX/XXZ-type Bethe
vectors are studied. In the course of their analysis, several power series formulae in
this section appeared in specialized/implicit forms. For example, Lemma 1 in [K1] is
a special case of (2.33), Theorem 4.7 in [KN2] is a special case of Proposition 2.8,
etc. From the current point of view, however, the relation between these power series
formulae and the underlyingfinite Q-systems was not clearly recognized therein. As a
result, these power series formulae and theinfinite Q-systems were somewhat abruptly
combined in the limiting procedure to obtain the power series formula for theinfiniteQ-
systems. We are going to straighten out this logical entanglement, and make the logical
structure more transparent by Theorem 2.4 and the forthcoming Theorems 3.10, 4.3,
Proposition 4.9, and Conjecture 5.5.

ii) The ideal gas with Haldane statistics and the Sutherland–Wu equation. The series
KνD,G(w) has an interpretation of the grand partition function of the ideal gas with the
Haldane exclusion statistics [W]. The finiteQ-system appeared in [W] as the thermal
equilibrium condition for the distribution functions of the same system. See also [IA] for
another interpretation. The one variable case (2.18) also appeared in [S] as the thermal
equilibrium condition for the distribution function of the Calogero–Sutherland model.
As an application of our second formula in Theorem 2.4, we can quickly reproduce the
“cluster expansion formula” in [I, Eq. (129)], which was originally calculated by the
Lagrange inversion formula, as follows:

logQi(w) =
[ ∂
∂νi
RνI,G(w)

]
ν=0

=
∑
N∈N

det
H(N)
j,k 
=i

Fjk(I,G;0, N)
∏

j∈H(N)

1

Nj

(
Pj (I,G;0, N)+Nj − 1

Nj − 1

)
wN,

(2.38)

where {Qi(w)}i∈H is the solution of (2.4). The Sutherland-Wu equation also plays
an important role for the conformal field theory spectra. (See [BS] and the references
therein.)

iii) Quasi-hypergeometric functions. The seriesKνD,G(w) is a special example of
the quasi-hypergeometric functions by Aomoto and Iguchi [AI]; whenG′

ij are all inte-
gers, it reduces to a general hypergeometric function of Barnes–Mellin type. A quasi-
hypergeometric function satisfies a system of fractional differential equations and a
system of difference-differential equations [AI]. It also admits an integral representation
[A]. In particular, the integral representation forKνI,G(w) reduces to a simple form ([A,
Eq. (2.30)], [IA, Eq. (89)]); in our notation,

KνI,G(w) =
1

(2π
√−1)|H |

∫ {∏
i∈H

t
νi−1
i fi(w, t)

−1
}
dt, (2.39)

fi(w, t) := ti − 1+ wi
∏
j∈H

t
Gij
j , (2.40)
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where the integration is along a circle aroundti = 1 starting fromti = 0 for eachti .
We see thatfi(w, t) = 0 is the standardQ-system (2.4). The integral (2.39) is easily
evaluated by the Cauchy theorem as [A, Eq. (2.32)]

KνI,G(w) = QνI,G(w)/det
H
(δijQi(w)+Gij (1−Qj(w))), (2.41)

where{Qi(w)}i∈H is the solution of (2.4). The formula (2.41) reproduces a version of
the Lagrange inversion formula (the Good formula [G, Theorem 2]), and it is equivalent
to the formulae (2.16), (2.30), and (2.34).

3. Infinite Q-Systems

3.1. Infinite Q-systems. Throughout Sect. 3, letH be a countable index set. We fix an
increasing sequence offinite subsets ofH ,H1 ⊂ H2 ⊂ · · · ⊂ H such that lim−→HL = H .
The result below does not depend on the choice of the sequence{HL}∞L=1. A natural
choice isH = N andHL = {1, . . . , L }. However, we introduce this generality to
accommodate the situation we encounter in Sect. 4 (cf. (4.1)).

Let w = (wi)i∈H be a multivariable with infinitely many components. For each
L ∈ N, letwL = (wi)i∈HL be the submultivariable ofw. The fieldC[[wL]] of the power
series ofwL overC is equipped with the standardXL-adic topology, whereXL is the
ideal ofC[[wL]] generated bywi ’s (i ∈ HL). ForL < L′, there is a natural projection
pLL′ : C[[wL′ ]] → C[[wL]] such thatpLL′(wi) = wi if i ∈ HL and 0 ifi ∈ HL′ \HL.
A power series f (w) of w is an element of the projective limitC[[w]] = lim←−C[[wL]]
of the projective system

C[[w1]] ← C[[w2]] ← C[[w3]] ← · · · (3.1)

with the induced topology. LetpL be the canonical projectionpL : C[[w]] → C[[wL]],
and fL(wL) be theLth projection image off (w) ∈ C[[w]]; namely,fL(wL) =
pL(f (w)) andf (w) = (fL(wL))∞L=1.

Here are some basic properties of power series which we use below:
(i) We also present a power seriesf (w) as a formal sum

f (w) =
∑
N∈N

aNw
N, aN ∈ C, (3.2)

N = {N = (Ni)i∈H | Ni ∈ Z≥0, all but finitely manyNi are zero}, (3.3)

(the definition ofN is reset here for the infinite index setH ) whoseLth projection image
is

fL(wL) =
∑
N∈NL

aNw
N, (3.4)

NL = {N ∈ N | Ni = 0 for i /∈ HL }. (3.5)

(ii) For any power seriesf (w) with the unit constant term and any complex number
α, theαth power(f (w))α := ((fL(wL))

α)∞L=1 ∈ C[[w]] is uniquely defined and has
the unit constant term again.

(iii) Let fi(w) (i ∈ H ) be a family of power series andfi,L(wL) be theirLth

projections. If their infinite product exists irrespective of the order of the product, we
write it as

∏
i∈H fi(w).

∏
i∈H fi(w) exists if and only if

∏
i∈H fi,L(wL) exists for each

L; furthermore, if they exist, the latter is theLth projection of the former.
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Definition 3.1. The following system of equations for a family (Qi(w))i∈H of power
series of w with the unit constant terms is called an (infinite) Q-system: For each
i ∈ H , ∏

j∈H
(Qj (w))

Dij + wi
∏
j∈H

(Qj (w))
Gij = 1. (3.6)

Here,D = (Dij )i,j∈H andG = (Gij )i,j∈H are arbitrary infinite-size complex matrices
satisfying the following two conditions:

(D) The matrix D is invertible, i.e., there exists a matrix D−1 such that DD−1 =
D−1D = I .

(G’) The matrix product G′ = GD−1 is well-defined.

When D = I , Eq. (3.6) is called a standardQ-system.

Remark 3.2. The condition (G’) is rephrased as “for eachi andk, all but finitely many
Gij (D

−1)jk (j ∈ H ) are zero”. Similarly, the condition (D) implies that, for eachi and
k, all but finitely manyDij (D−1)jk, (D−1)ijDjk (j ∈ H ) are zero. For the standard
case, (D) is trivially satisfied, and (G’) is satisfied for any complex matrixG.

Unlike the finiteQ-systems, the uniqueness of the solution does not hold for the
infinite Q-systems, in general. For instance, the following example admits infinitely
many solutions.

Example 3.3. LetH = Z, and consider aQ-system,

Qi−1(w)Qi+1(w)

(Qi(w))2
+ wi = 1, (3.7)

whereQ0(w) = 1. This can be easily solved as

Qi(w) = (Q1(w))
i
i−1∏
j=1

(1− wj)i−j , (3.8)

whereQ1(w) is an arbitrary series ofw with the unit constant term.

3.2. Canonical solution.

3.2.1. Solution of standard Q-system. First, we consider the standard case

Qi(w)+ wi
∏
j∈H

(Qj (w))
Gij = 1. (3.9)

Let Qi,L(wL) := pL(Qi(w)) be theLth projection image ofQi(w). Then, (3.9) is
equivalent to a series of equations (L = 1, 2,. . . ),

Qi,L(wL)+ pL(wi)
∏
j∈H

(Qj,L(wL))
Gij = 1, (3.10)
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which are further equivalent to

Qi,L(wL) = 1 i /∈ HL, (3.11)

Qi,L(wL)+ wi
∏
j∈HL

(Qj,L(wL))
Gij = 1 i ∈ HL. (3.12)

Namely, a standard infiniteQ-system is an infinite family of standard finiteQ-systems
which is compatible with the projections (3.1). By Proposition 2.1, (3.12) uniquely
determinesQi,L(wL) for i ∈ HL. Furthermore, so determined(Qi,L(wL))∞L=1 belongs
to C[[w]], again because of the uniqueness of the solution of (3.12). Therefore,

Proposition 3.4.There exists a unique solution (Qi(w))i∈H of the standard Q-system
(3.9), whose Lth projections Qi,L(wL) := pL(Qi(w)) are determined by (3.11) and
(3.12).

3.2.2. Canonical solution. As we have seen in Example 3.3, the uniqueness property
does not hold for a general infiniteQ-system (3.6). This is because, unlike the standard
case, theLth projection of (3.6) is not necessarily a finiteQ-system. The non-uniqueness
property also implies that, unlike the finite case, (3.6) does not always reduce to the
standard one,

Q′
i (w)+ wi

∏
j∈H

(Q′
j (w))

G′
ij = 1, G′ = GD−1. (3.13)

In fact, the relations (2.7) and (2.8) are no longer equivalent due to the infinite products
therein. However, the construction of a solution of a generalQ-system from a standard
one in Theorem 2.3 still works. We call the so obtained solution ascanonical solution.
Let us give a more intrinsic definition, however.

Definition 3.5. We say that a solution (Qi(w))i∈H of theQ-system (3.6) is canonicalif
it satisfies the following condition:

(Inversion property): For any i ∈ H ,

∏
j∈H

{∏
k∈H

(Qk(w))
(D−1)ijDjk

}
= Qi(w). (3.14)

Remark 3.6. The condition (3.14) is not trivial, because, in general, one cannot freely
exchange the order of the infinite double product therein.

Theorem 3.7.There exists a unique canonical solution of the Q-system (3.6), which is
given by

Qi(w) =
∏
j∈H

(Q′
j (w))

(D−1)ij , (3.15)

where (Q′
i (w))i∈H is the unique solution of the standard Q-system (3.13).
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Proof. First, we remark that the infinite product (3.15) exists, because itsLth projection
image reduces to the finite product

Qi,L(wL) =
∏
j∈HL

(Q′
j,L(wL))

(D−1)ij (3.16)

due to (3.11). Let us show that the family(Qi(w))i∈H in (3.15) is a solution of the
Q-system (3.6). With the substitution of (3.16), theLth projection image of the first term
in the LHS of (3.6) is∏

j∈H
(Qj,L(wL))

Dij =
∏
j∈H

{ ∏
k∈HL

(Q′
k,L(wL))

Dij (D
−1)jk

}

=
{
Q′
i,L(wL) i ∈ HL

1= Q′
i,L(wL) i /∈ HL.

(3.17)

In the second equality above, we exchanged the order of the products. It is allowed
because the double product is a finite one (cf. Remark 3.2). The second term in the LHS
of (3.6) can be calculated in a similar way as follows:

∏
j∈H

(Qj,L(wL))
Gij =

∏
j∈H

{ ∏
k∈HL

(Q′
k,L(wL))

Gij (D
−1)jk

}

=
∏
k∈HL

(Q′
k,L(wL))

G′
ik .

(3.18)

From (3.17) and (3.18), we conclude that (3.6) reduces to (3.13). Furthermore, by (3.17),
we have ∏

j∈H
(Qj (w))

Dij = Q′
i (w). (3.19)

Then, substituting (3.19) in (3.15), we obtain (3.14). Therefore,(Qi(w))i∈H is a canon-
ical solution of (3.6). Next, we show the uniqueness. Suppose that(Qi(w))i∈H is a
canonical solution of (3.6). We defineQ′

i (w) as

Q′
i (w) =

∏
j∈H

(Qj (w))
Dij . (3.20)

Then, by the inversion property (3.14), we have

Qi(w) =
∏
j∈H

(Q′
j (w))

(D−1)ij . (3.21)

Also, by (3.6),

Q′
i,L(wL) = 1, i /∈ HL. (3.22)

With (3.21) and (3.22), the same calculation as (3.18) shows that(Q′
i (w))i∈H is the

(unique) solution of (3.13). Therefore, by (3.21),Qi(w) is unique. ��
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Example 3.8. Let us find the canonical solution of theQ-system (3.7) in Example 3.3.
We have

Dij = −2δij + δi,j−1 + δi,j+1, (D−1)ij = −min(i, j). (3.23)

Let HL = {1, . . . , L}. By (3.20) and (3.22), theLth projection of the LHS of (3.14)
equals

L∏
j=1

{ j+1∏
k=j−1

(Qk,L(wL))
(D−1)ijDjk

}

=
( L∏
k=1

{ k+1∏
j=k−1

(Qk,L(wL))
(D−1)ijDjk

})

× (QL+1,L(wL))
(D−1)iLDL,L+1(QL,L(wL))

−(D−1)i,L+1DL+1,L

=
( L∏
k=1

(Qk,L(wL))
δik

)
(QL+1,L(wL))

−min(i,L)(QL,L(wL))
min(i,L+1).

(3.24)

Therefore, condition (3.14) reads

Qi,L(wL) =
{
Qi,L(wL)(QL,L(wL)/QL+1,L(wL))

i i ≤ L
QL,L(wL)(QL,L(wL)/QL+1,L(wL))

L i ≥ L+ 1.
(3.25)

This is equivalent to

Qi,L(wL) = QL,L(wL), i ≥ L+ 1. (3.26)

Using (3.8) and (3.26), one can easily obtain

Q1(w) =
∞∏
j=1

(1− wj)−1. (3.27)

Therefore, the canonical solution of (3.7) is given by

Qi(w) =
∞∏
j=1

(1− wj)−min(i,j). (3.28)

3.3. Power series formula. Let (Qi(w))i∈H be the canonical solution of (3.6), and
(Q′

i (w))i∈H be the unique solution of the standardQ-system (3.13). For the matrix
D in (3.6), letν(D) be the set of allν = (νi)i∈H such thatνi ∈ C and, for eachi, the
sum

∑
j∈H νj (D−1)ji exists (i.e., all but finitely manyνj (D−1)ji (j ∈ H ) are zero).

For eachν ∈ ν(D), we define

QνD,G(w) :=
∏
i∈H
(Qi(w))

νi =
∏
i∈H

{∏
j∈H

(Q′
j (w))

νi (D
−1)ij

}
. (3.29)
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The last infinite product exists, because itsLth projection image reduces to a finite
product due to (3.11) and the definition ofν(D). For eachν ∈ ν(D), letν′ = (ν′i ) ∈ ν(I ),
ν′i =

∑
j∈H νj (D−1)ji . Then, by (3.29), we have

QνD,G(w) = Qν
′
I,G′(w), G′ = GD−1. (3.30)

It follows from (3.11) and (3.30) that

Lemma 3.9.

pL(Q
ν
D,G(w)) = Qν

′
L

IL,G
′
L

(wL), (3.31)

where the RHS is for the solution of the finiteQ-system with the finite index setHL, and
IL = (δij )i,j∈HL , G′

L = (G′
ij )i,j∈HL , ν′L = (ν′i )i∈HL are the HL-truncations of I , G′,

ν′, respectively.

ForD,G in (3.6) andν ∈ ν(D), we define the power seriesKνD,G(w) andRνD,G(w)
by the superficially identical formulae (2.10)–(2.15) withD,G, ν,N , etc., therein being
replaced by the ones for the infinite index setH .

Theorem 3.10 (Power series formulae). For the canonical solution (Qi(w))i∈H of (3.6)
and ν ∈ ν(D), let QνD,G(w) be the series in (3.29). Then,

QνD,G(w) = KνD,G(w)/K0
D,G(w) = RνD,G(w). (3.32)

Proof. By Theorem 2.4 and Lemma 3.9, it is enough to show that

pL(K
ν
D,G(w)) = Kν

′
L

IL,G
′
L

(wL), pL(R
ν
D,G(w)) = Rν

′
L

IL,G
′
L

(wL). (3.33)

By (3.2)–(3.5), (3.33) further reduces to the following equality:

Pi(D,G; ν,N) = Pi(IL,G′
L; ν′L,NL), N ∈ NL, i ∈ HL, (3.34)

whereNL = (Ni)i∈HL is theHL-truncation ofN . ��

4. Q-Systems of KR Type

In this section, we introduce a class of infiniteQ-systems which we call theQ-systems
of KR type. This is a preliminary step towards the reformulation of Conjecture 1.1.

4.1. SpecializedQ-systems. Throughout the section, we take the countable index set as

H = {1, . . . , n} × N (4.1)

for a given natural numbern. We choose the increasing sequenceH1 ⊂ H2 ⊂ · · · ⊂ H
with lim−→HL = H asHL = {1, . . . , n}×{1, . . . , L}. Lety = (ya)na=1 be a multivariable
with n components.
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Definition 4.1. The following system of equations for a family (Q(a)
m (y))(a,m)∈H of power

series of y with the unit constant terms is called a specialized (infinite)Q-system: For
each (a,m) ∈ H ,

∏
(b,k)∈H

(Q(b)
k (y))

Dam,bk + (ya)m
∏

(b,k)∈H
(Q(b)

k (y))
Gam,bk = 1, (4.2)

where the infinite-size complex matrices D = (Dam,bk)(a,m),(b,k)∈H and G =
(Gam,bk)(a,m),(b,k)∈H satisfy the same conditions (D) and (G’) as in Definition 3.1.
A solution of (4.2) is called canonicalif it satisfies the condition

∏
(b,k)∈H

{ ∏
(c,j)∈H

(Q(c)
j (y))

(D−1)am,bkDbk,cj
}
= Q(a)

m (y). (4.3)

Let C[[y]] be the field of power series ofy with the standard topology,JL be the
ideal of C[[y]] generated by(ya)L+1’s (a = 1, . . . , n), andC[[y]]L be the quotient
C[[y]]/JL. We can identifyC[[y]] with the projective limit of the projective system,

C[[y]]1 ← C[[y]]2 ← C[[y]]3 ← · · · . (4.4)

Letw = (w(a)m )(a,m)∈H be a multivariable, and letw(y) be the map with

w(a)m (y) = (ya)m. (4.5)

The map (4.5) induces the mapsψL andψ such that

C[[wL]] ← C[[w]]
ψL ↓ ψ ↓
C[[y]]L ← C[[y]].

(4.6)

We call the imageψ(f (w)) ∈ C[[y]] thespecialization off (w), and write it asf (w(y)).
Explicitly, for f (w) in (3.2),

f (w(y)) =
∞∑

M1,...,Mn=0

( ∑
N∈N∑∞

m=1mN
(a)
m =Ma

aN

) n∏
a=1

(ya)
Ma . (4.7)

Theorem 4.2.There exists a unique canonical solution of the specializedQ-system (4.2),
which is given by the specialization Q(a)

m (y) = Q
(a)
m (w(y)) of the canonical solution

(Q
(a)
m (w))(a,m)∈H of the following Q-system:

∏
(b,k)∈H

(Q
(b)
k (w))

Dam,bk + w(a)m
∏

(b,k)∈H
(Q

(b)
k (w))

Gam,bk = 1. (4.8)

Proof. Since the mapψ is continuous, it preserves the infinite product. Therefore, the
specialization of the canonical solution of (4.8) gives a canonical solution of (4.2). Let
us show the uniqueness. By repeating the same proof for Theorem 3.7, the uniqueness
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is reduced to the one for the standard caseD = I . Let us write (4.2) forD = I as
(L = 1,2, . . . )

Q(a)
m (y) ≡1 modJL (a,m) /∈ HL, (4.9)

Q(a)
m (y)+ (ya)m

∏
(b,k)∈HL

(Q(b)
k (y))

Gam,bk ≡1 modJL (a,m) ∈ HL. (4.10)

These equations uniquely determineQ(a)
m (y) modJL. SinceL is arbitrary,Q(a)

m (y) is
unique. ��

By the specialization of Theorem 3.10, we immediately obtain

Theorem 4.3 (Power series formulae). Let (Q(a)
m (y))(a,m)∈H be the canonical solution

of the Q-system (4.2). Let Qν
D,G(y) =

∏
(a,m)∈H (Q(a)

m (w))
ν
(a)
m , ν ∈ ν(D). Then,

Qν
D,G(y) = KνD,G(y)/K0

D,G(y) = Rν
D,G(y), (4.11)

where the series KνD,G(y) = KνD,G(w(y)) and Rν
D,G(y) = RνD,G(w(y)) are the spe-

cializations of the series in Theorem 3.10.

4.2. Convergence property. Let us consider the special case of the specializedQ-system
(4.2) where the matrixD and its inverseD−1 are given by

Dam,bk = −δab(2δmk − δm,k+1 − δm,k−1), (4.12)

(D−1)am,bk = −δab min(m, k). (4.13)

Then, (4.2) is written in the form (Q(a)
0 (y) = 1)

(Q(a)
m (y))

2 = Q(a)
m−1(y)Q(a)

m+1(y)

+ (ya)m(Q(a)
m (y))

2
∏

(b,k)∈H
(Q(b)

k (y))
Gam,bk . (4.14)

Proposition 4.4.A solution (Q(a)
m (y)) of the specialized Q-system (4.14) is canonical

if and only if it satisfies the following condition:
(Convergence property):

For each a, the limit lim
m→∞Q(a)

m (y) exists in C[[y]]. (4.15)

Proof. Let (Q(a)
m (y))(a,m)∈H be a solution of (4.14). The same calculation as (3.24) in

Example 3.8 shows that (4.3) is equivalent to the following equality for eachL (cf.
(3.26)):

Q(a)
m (y) ≡ Q(a)

L (y) mod JL, m ≥ L+ 1. (4.16)

Clearly, condition (4.15) follows from condition (4.16). Conversely, assume condition
(4.15). By (4.14), we have

Q(a)
m (y)/Q(a)

m−1(y) ≡ Q(a)
m+1(y)/Q(a)

m (y) mod JL, (m ≥ L+ 1). (4.17)

Because of (4.15), both sides of (4.17) are 1 modJL. Thus, we haveQ(a)
m (y) ≡ Q(a)

m−1(y)

mod JL (m ≥ L+ 1). Therefore, (4.16) holds.
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4.3. Q-system of KR type and denominator formula.

Definition 4.5. A specialized Q-system (4.2) is called a Q-system of KR (Kirillov–
Reshetikhin) typeif the matrices D and G further satisfy the following conditions:

(KR-I) The matrix D and its inverse D−1 are given by (4.12) and (4.13).
(KR-II) There exists a well-order ≺ in H such that G′ = GD−1 has the form

G′
am,bk = gabm for (a,m) � (b, k), (4.18)

where gab (a, b = 1, . . . , n) are integers with det1≤a,b≤n gab 
= 0.

Example 4.6. Let ta > 0 andhab (a, b = 1, . . . , n) be real numbers such thatgab :=
habtb are integers and dethab 
= 0. We define a well-order≺ in H as follows:(a,m) ≺
(b, k) if tbm < tak, or if tbm = tak anda < b. Then,

G′
am,bk = hab min(tbm, tak) (4.19)

satisfies the condition (KR-II) withgab = habtb.
Let x = (xa)na=1 be a multivariable withn components, andy(x) be the map

ya(x) =
n∏
b=1

(xb)
−gab , (4.20)

wheregab are the integers in (4.18). We set

Q(a)
m (x) := (xa)mQ(a)

m (y(x)), (4.21)

which are Laurent series ofx.

Proposition 4.7.The family (Q(a)
m (x))(a,m)∈H satisfies a system of equations (Q(a)

0 (x) =
1),

(Q(a)
m (x))

2 = Q(a)
m−1(x)Q

(a)
m+1(x)+ (Q(a)

m (x))
2

∏
(b,k)∈H

(Q(b)
k (x))

Gam,bk . (4.22)

Proof. By comparing (4.14) and (4.22), it is enough to prove the equality

∞∑
k=1

Gam,bk(−k) = gabm. (4.23)

Due to the condition (KR-II), for given(a,m) andb, there is some numberL such that
G′
am,bk = gabm holds for anyk ≥ L. Then, fork > L, we have

Gam,bk =
∞∑
j=1

G′
am,bjDbj,bk = gabm(−2+ 1+ 1) = 0. (4.24)

Therefore, the LHS of (4.23) is evaluated as

L∑
k=1

∞∑
j=1

G′
am,bjDbj,bk(−k) = (L+ 1)G′

am,bL − LG′
am,bL+1 = gabm. (4.25)

��
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Remark 4.8. The relation (4.22) is the original form of theQ-system in [K2,K3,KR],
where the matrixG is taken as (1.5). See also (5.14) and (5.16). Note that, in the second
term of the RHS in (4.22), the factor(Q(a)

m (y))
2 is cancelled by the factor in the product

for (b, k) = (a,m), becauseGam,am = −2.

Proposition 4.9 (Denominator formula).Let (Q(a)
m (y))(a,m)∈H be the canonical solution

of theQ-system of KR type (4.14). Let K 0
D,G(x) := K0

D,G(y(x)), where K0
D,G(y) is the

power series in (4.11). Then, the formula

K 0
D,G(x) = det

1≤a,b≤n

(∂Q(a)
1

∂xb
(x)

)
(4.26)

holds.

A proof of Proposition 4.9 is given in Appendix A. In Conjecture 5.7, Proposition 4.9
will be used to identifyK 0

D,G(x) for someG with theWeyl denominators of the simple
Lie algebras.

5. Q-Systems and the Kirillov–Reshetikhin Conjecture

In this section, we reformulate Conjecture 1.1 in terms of the canonical solutions of
certainQ-systems of KR type (Conjecture 5.5). Then, we present several character
formulae,all of which are equivalent to Conjecture 5.5.

5.1. Quantum affine algebras. We formulate Conjecture 1.1 in the following setting:
Firstly, we translate the conjecture for the KR modules of the(untwisted) quantum affine
algebra Uq(X

(1)
n ), based on the widely-believed correspondence between the finite-

dimensional modules ofY (Xn) andUq(X
(1)
n ) (for the simply-laced case, see [V]). Sec-

ondly, we also include thetwisted quantum affine algebra case, following [HKOTT].
First, we introduce some notations. Letg = XN be a complex simple Lie algebra of

rankN . We fix a Dynkin diagram automorphismσ of g with r = ordσ . Let g0 be the
σ -invariant subalgebra ofg; namely,

g Xn A2n A2n−1 Dn+1 E6 D4
r 1 2 2 2 2 3
g0 Xn Bn Cn Bn F4 G2

(5.1)

See Fig. 1. LetA′ = (A′ij ) (i, j ∈ I ) andA = (Aij ) (i, j ∈ Iσ ) be the Cartan matrices
of g andg0, respectively, whereIσ is the set of theσ -orbits onI . We define the numbers
d ′i , di , ε′i , εi (i ∈ I ) as follows:d ′i (i ∈ I ) are coprime positive integers such that(d ′iA′ij )
is symmetric;di (i ∈ Iσ ) are coprime positive integers such that(diAij ) is symmetric,
and we setdi = dπ(i) (i ∈ I ), whereπ : I → Iσ is the canonical projection;ε′i = r if
σ(i) = i, and 1 otherwise;εi = 2 if A′iσ (i) < 0, and 1 otherwise. It immediately follows

thatd ′i = di andε′i = 1 if r = 1; d ′i = 1 if r > 1; εi = 1 if X(r)N 
= A
(2)
2n . It is easy to

check the following relations: Setκ0 = 2 if X(r)N = A(2)2n , and 1 otherwise. Then,

κ0d
′
i

r∑
s=1

A′iσ s (j) = diAπ(i)π(j), (5.2)

κ0ε
′
id
′
i = εidi . (5.3)
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(XN , r) g0

(A2n,2)
❞ ❞ � � ❞ ❞

Bn
❞ ❞ ❞ �>

(A2n−1,2)
� � ❞ � �

Cn
� � � ❞<

(Dn+1,2)
❞ ❞ ❞ �

�

Bn
❞ ❞ ❞ �>

(E6,2)
� � ❞ � �

❞

F4
❞ ❞ � �>

(D4,3)
� ❞ �

�

G2
❞ �>

Fig. 1.The Dynkin diagrams ofXN andg0 for r > 1. The filled circles inXN correspond to the ones ing0
which are short roots ofg0

Forq ∈ C
×, we setq ′i = qκ0d

′
i , qi = qdi , and[n]q = (qn − q−n)/(q − q−1).

We use the “second realization” of the quantum affine algebraUq = Uq(X
(r)
N ) [D2,

J] with the generatorsX±
ik (i ∈ I, k ∈ Z),Hik (i ∈ I, k ∈ Z \ {0}),K±1

i (i ∈ I ), and the
central elementsc±1/2. As far as finite-dimensionalUq -modules are concerned, we can
setc±1/2 = 1. Some of the defining relations in the quotient (thequantum loop algebra)
Uq/(c

±1/2 − 1) are presented below to fix notations (here we follow the convention in
[CP2,CP3]):

X±
σ(i)k = ωkX±

ik, Hσ(i)k = ωkHik, K±1
σ(i)k = K±1

ik , (5.4)

KiX
±
jkK

−1
i = q±κ0d

′
i

∑r
s=1A

′
iσ s (j)X±

jk, (5.5)

[Hik,X±
j l] = ±1

k

( r∑
s=1

[kκ0d
′
iA

′
iσ s (j)]qωsk

)
X±
j,k+l , (5.6)

[X+
ik, X

−
j l] =

( r∑
s=1

δσ s(i),jω
sl

)
H+
i,k+l −H−

i,k+l
qi − q−1

i

, (5.7)

whereω = exp(2πi/r), andH±
ik (i ∈ I, k ∈ Z) are defined by

∞∑
k=0

H±
i,±ku

k = K±1
i exp

(
±(qi − q−1

i )

∞∑
l=1

Hi,±lul
)

(5.8)

with H±
ik = 0 (±k < 0).

Remark 5.1. In [CP3], there are some misprints which are relevant here. Namely, the
relation [Hik,X±

j l] should read (5.6) here; in Proposition 2.2 and Theorem 3.1 (ii),q

should readqi for suchi thatσ(i) 
= i andaiσ(i) 
= 0 therein. We thank V. Chari for the
correspondence concerning these points.
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LetV (ψ±) denote the irreducibleUq -module with a highest weight vectorv and the
highest weightψ± = (ψ±

ik ), namely,

X+
ikv = 0, (5.9)

H±
ikv = ψ±

ikv, ψ±
ik ∈ C. (5.10)

The following theorem gives the classification of the finite-dimensionalUq -modules:

Theorem 5.2 (Theorem 3.3 [CP2], Theorem 3.1 [CP3]). The Uq(X
(r)
N )-module V (ψ±)

is finite-dimensional if and only if there existN -tuple of polynomials (Pi(u))i∈I with the
unit constant terms such that

∞∑
k=0

ψ+
iku

k =
∞∑
k=0

ψ−
i,−ku

−k = q ′i ε
′
i degPi

Pi(q
′
i
−2ε′i uε

′
i )

Pi(u
ε′i )

, (5.11)

where the first two terms are the Laurent expansions of the third term about u = 0 and
u = ∞, respectively.

The polynomials(Pi(u))i∈I are called theDrinfeld polynomials ofV (ψ±). It follows
from (5.3), (5.10), and (5.11) that

K±1
i v = q ′i±ε

′
i degPi v = q±εi degPi

i v. (5.12)

5.2. The KR modules. We take an inclusionι : Iσ ↪→ I such thatπ ◦ ι = id, and regard
Iσ as a subset ofI . Let us label the setIσ with {1, . . . , n}. The Drinfeld polynomials
(5.11) satisfy the relationPσ(i)(u) = Pi(ωu) (σ(i) 
= i) by (5.4) and (5.8). Therefore,
it is enough to specify the polynomialsPi(u) only for thosei ∈ {1, . . . , n} ⊂ I .

We setH = {1, . . . , n} × N as in (4.1).

Definition 5.3. For each (a,m) ∈ H and ζ ∈ C
×, letW(a)

m (ζ ) be the finite-dimensional
irreducible Uq -module whose Drinfeld polynomials Pb(u) (b = 1, . . . , n) are specified
as follows: Pb(u) = 1 for b 
= a, and

Pa(u) =
m∏
k=1

(1− ζq ′aε
′
a(m+2−2k)u). (5.13)

We call W(a)
m (ζ ) a KR (Kirillov–Reshetikhin) module .

By (5.2) and (5.5), we see thatX±
a0 andK±1

a (a = 1, . . . , n) generate the subalgebra

Uq(g0). It is well known that allW(a)
m (ζ ) (ζ ∈ C

×) share the sameUq(g0)-module

structure. If we setK±1
a = q±Haa and take the limitq → 1,X±

a0 andHa (a = 1, . . . , n)

generate the Lie algebrag0.Accordingly,W(a)
m (ζ ) is equipped with theg0-module struc-

ture. We call itsg0-character theg0-character of W(a)
m (ζ ). The g0-highest weight of

W
(a)
m (ζ ), in the same sense as above, ismεa�a by (5.12) and (5.13).



176 A. Kuniba, T. Nakanishi, Z. Tsuboi

5.3. The Kirillov–Reshetikhin conjecture. We define the matrixG′ = (G′
am,bk)(a,m),(b,k)∈H

with the entry

G′
am,bk =

r∑
s=1

d ′b
ε′b
A′bσ s(a) min

(m
d ′b
,
k

d ′a

)
(5.14)

=
{
dbAba min( m

db
, k
da
) r = 1

1
εb
Aba min(m, k) r > 1.

(5.15)

It follows from (5.15) and Example 4.6 thatG′ satisfies the condition (KR-II) in Defi-
nition 4.5 withgab = Aba/εb. Below, we consider theQ-system of KR type with the
matrixG := G′D, whereD is the matrix in (4.12). By using (A.6) of [KN2]), the entry
of G is explicitly written as

Gam,bk =




− 1
εb
Abaδm,k r > 1

−Aba(δm,2k−1 + 2δm,2k + δm,2k+1) db/da = 2
−Aba(δm,3k−2 + 2δm,3k−1 + 3δm,3k db/da = 3

+2δm,3k+1 + δm,3k+2)

−Aabδdam,dbk otherwise.

(5.16)

Let αa and�a (a = 1, . . . , n) be the simple roots and the fundamental weights of
g0. We set

xa = eεa�a , ya = e−αa . (5.17)

Then, they satisfy the relation (4.20) for the abovegab; namely,

ya =
n∏
b=1

x
−Aba/εb
b . (5.18)

Definition 5.4. Let Q(a)
m (x) be the Laurent polynomial of x = (xa)

n
a=1 representing

the g0-character of the KR module W(a)
m (ζ ). Then, Q(a)

m (y) := (xa)
−mQ(a)

m (x)|x=x(y),
where x(y) is the inverse map of (5.18), is a polynomial of y = (ya)

n
a=1 with the unit

constant term. We call Q(a)
m (y) the normalized g0-character of W(a)

m (ζ ).

Now we present a reformulation of Conjecture 1.1. This is the main statement of the
paper.

Conjecture 5.5. Let Q(a)
m (y) be the normalizedg0-character of the KR moduleW(a)

m (ζ )

ofUq(X
(r)
N ). Then, the family(Q(a)

m (y))(a,m)∈H is characterized as the canonical solution
of theQ-system of KR type (4.14) withG given in (5.16).

Let Qν(y) = ∏
(a,m)(Q(a)

m (y))
ν
(a)
m for ν ∈ ν(D). By Theorem 4.3, Conjecture 5.5 is

equivalent to

Conjecture 5.6 ([KN2] ). The formulae

Qν(y) = KνD,G(y)/K0
D,G(y) = Rν

D,G(y) (5.19)

hold, whereKνD,G(y) andRν
D,G(y) are the power series in (4.11) withD in (4.12) and

G in (5.16). Therefore,Rν
D,G(y) is apolynomial of y, and its coefficients are identified

with theg0-weight multiplicities of the tensor product
⊗
(a,m)∈H W

(a)
m (ζ

(a)
m )⊗ν

(a)
m , where

ζ
(a)
m are arbitrary.
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5.4. Equivalence to Conjecture 1.1. Let�g
+ denote the set of all the positive roots ofg.

Originally, Conjecture 5.5 is formulated forX(r)N 
= A(2)2n as follows (cf. Conjecture 1.1):

Conjecture 5.7 ([K1,K2,HKOTY,HKOTT]). ForX(r)N 
= A(2)2n , the formula

Qν(y) = KνD,G(y)∏
α∈�g0+

(1− e−α)
(5.20)

holds, whereKνD,G(y) is the power series in (4.11) withD in (4.12) andG in (5.16).
Therefore,KνD,G(y) is apolynomial of y, and its coefficients are identified with the multi-

plicities of theg0-irreducible components of the tensor product
⊗
(a,m)∈H W

(a)
m (ζ

(a)
m )⊗ν

(a)
m ,

whereζ (a)m are arbitrary.

Proof of the equivalence between Conjectures 5.6 and 5.7 forX(r)N 
= A(2)2n . Suppose that
Conjecture 5.7 holds. Then, settingν = 0 in (5.20), we have

K0
D,G(y) =

∏
α∈�g0+

(1− e−α). (5.21)

Therefore,Qν(y) = KνD,G(y)/K0
D,G(y) holds. Conversely, suppose that the family of

the normalizedg0-characters(Q(a)
m (y))(a,m)∈H is the canonical solution of (4.14). Then,

the equality (5.21) follows from Proposition 4.9 and the lemma below.��

Lemma 5.8.Let g be a complex simple Lie algebra of rank n, and αa and �a be the
simple roots and the fundamental weights of g. We set xa = e�a , ya = e−αa/ka , where
ka (a = 1, . . . , n) are 1 or 2. Suppose that fa(y) (a = 1, . . . , n) are polynomials of
y with the unit constant terms such that fa(x) = xafa(y(x)) are invariant under the
action of the Weyl group of g. Then,

det
1≤a,b≤n

( ∂fa
∂xb

(x)
)
=

∏
α∈�g

+

(1− e−α). (5.22)

Proof. The proof is the same as the one for Lemma 8.6 in [HKOTY].��

In the caseA(2)2n , (5.21) does not hold under Conjecture 5.6, because the assumption

in Lemma 5.8 is not satisfied by (5.17). We treat the caseA
(2)
2n separately below.
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❞ ❞ ❞ ❞> >

0 1 n−1 n

n n−1 1 0

Fig. 2.The Dynkin diagram ofA(2)2n . The upper and lower labels respect the subalgebraBn andCn, respectively

5.5. The A(2)2n case.

5.5.1. The Bn-character. ForA(2)2n , g0 = Bn. Let {1, . . . , n} labelIσ as the upper label
in Fig. 2. Accordingly,εa = 1 for a = 1, . . . , n−1, and 2 fora = n. We continue to set
ya = e−αa as in Sect. 5.3. We will show later, in (5.34) and (5.36), that under Conjecture
5.5 the following formula holds instead of the formula (5.21):

K0
D,G(y) =

n∏
a=1

(
1+

n∏
k=a

yk

) ∏
α∈�Bn+

(1− e−α). (5.23)

Therefore, Conjecture 5.5 forX(r)N = A(2)2n is equivalent to

Conjecture 5.9. ForX(r)N = A(2)2n , the formula

Qν(y) = KνD,G(y)
∏n
a=1

(
1+∏n

k=a yk
)−1∏

α∈�Bn+
(1− e−α)

(5.24)

holds for the normalizedBn-characters of the KR-modules.

5.5.2. TheCn-character. As is well-known,Uq(A
(2)
2n )has a realization with the “Cheval-

ley generators”X±
a andK±1

a (a = 0, . . . , n) (e.g. [CP3, Proposition 1.1]). Among them,
X±
a andK±1

a (a = 1, . . . , n) are identified withX±
a0, K±1

a in (5.4)–(5.8), and generate
the subalgebraUq(Bn). On the other hand,X±

a andK±1
a (a = 0, . . . , n − 1) generate

the subalgebraUq2(Cn). See Fig. 2. If we setKa = q
Ha
a (a = 0, . . . , n − 1), where

q0 = qd0, d0 = 4, thenX±
a andHa (a = 0, . . . , n − 1) generate the Lie algebraCn

in the limit q → 1. This providesW(a)
m (ζ ) with theCn-module structure, by which the

Cn-character of W(a)
m (ζ ) is defined.

Let α̇a and �̇a (a = 1, . . . , n) be the simple roots and the fundamental weights
labeled with the lower label in Fig. 2. By looking at the sameUq -module asBn and
Cn-modules as above, a linear bijectionφ : h∗ → ḣ∗ is induced, whereh∗ andḣ∗ are
the duals of the Cartan subalgebras ofBn andCn, respectively.

Lemma 5.10.Under the bijection φ, we have the correspondence (�̇0 = 0):

εa�a 
→ �̇n−a − �̇n, (5.25)

αa 
→
{
α̇n−a a = 1, . . . , n− 1
−(α̇1 + · · · + α̇n−1 + 1

2α̇n) a = n. (5.26)
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Proof. It is obtained from the relations amongHi andαi for A(2)2n [Kac]:

0 = c =
n∑
i=0

a∨i Hi, 0 = δ =
n∑
i=0

aiαi, (5.27)

where(a∨0 , . . . , a∨n ) = (2, . . . ,2,1) and (a0, . . . , an) = (1,2, . . . ,2) for the upper
label in Fig. 2. ��

Let W(Xn) denote the Weyl group ofXn.

Lemma 5.11.There is an element s ∈ W(Cn) which acts on ḣ∗ as follows:

φ(εa�a) 
→ �̇a (a = 1, . . . , n), (5.28)

φ(αa) 
→ 1

εa
α̇a (a = 1, . . . , n). (5.29)

Proof. We take the standard orthonormal basisεa of ḣ∗. Let s be the element such that
s : εa 
→ −εn−a+1. Then,

�̇n−a − �̇n = −(εn−a+1 + · · · + εn) 
→ ε1 + · · · + εa = �̇a, (5.30)

α̇n−a = εn−a − εn−a+1 
→ εa − εa+1 = α̇a (a = 1, . . . , n− 1), (5.31)

− (α̇1 + · · · + α̇n−1 + 1

2
α̇n) = −ε1 
→ εn = 1

2
α̇n. (5.32)

According to (5.30)–(5.32), we set

xa = e�̇a , ya = e−α̇a/εa . (5.33)

Then, the relation (5.18) is preserved, sinceφ ands above are linear. Lemma 5.11 assures
that the following definition is well-defined.

Definition 5.12.Let Q(a)
m (x) be the Laurent polynomial of x = (xa)na=1 representing the

Cn-character of the KR module W(a)
m (ζ ). Then, Q(a)

m (y) := (xa)
−mQ(a)

m (x)|x=x(y) is a

polynomial of y = (ya)na=1 with the unit constant term. We call Q(a)
m (y) the normalized

Cn-character of W(a)
m (ζ ).

Moreover, by Lemma 5.11 and theW(Cn)-invariance of theCn-character ofW(a)
m (ζ ),

we have

Proposition 5.13.The normalized Bn-character and the normalized Cn-character of
W
(a)
m (ζ ) of Uq(A

(2)
2n ) coincide as polynomials of y.

Thus, Conjecture 5.5 for the normalizedBn-characters ofA(2)2n is applied for the
normalizedCn-characters as well. Furthermore, in contrast to theBn case, Lemma 5.8
is now applicable for (5.33). Therefore, under Conjecture 5.5, we have

K0
D,G(y) =

∏
α∈�Cn+

(1− e−α). (5.34)

Hence, we conclude that Conjecture 5.5 forX
(r)
N = A(2)2n is also equivalent to
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Conjecture 5.14 ([HKOTT]). ForX(r)N = A(2)2n , the formula

Qν(y) = KνD,G(y)∏
α∈�Cn+

(1− e−α)
(5.35)

holds for the normalizedCn-characters of the KR-modules, wherey is specified as
(5.33).

The following relation is easily derived from the explicit expressions of the Weyl
denominators ofBn andCn (e.g. [FH]):

∏
α∈�Cn+

(1− e−α) =
n∏
a=1

(
1+

n∏
k=a

yk

) ∏
α∈�Bn+

(1− e−α), (5.36)

where the equality holds under the following identifications:ya = e−α̇a/εa for the LHS
andya = e−αa for the RHS under the label in Fig. 2. From (5.34) and (5.36), we obtain
(5.23).

5.6. Characters for the rank n subalgebras. The procedure to deduce theCn-characters
from theBn-characters forA(2)2n in Sect. 5.5 is also applicable to theġ-characters for any

rankn subalgebrȧg 
= g0 of X(r)N . (The characters of the lower rank subalgebras are
obtained by their specializations.) Let us demonstrate how it works in two examples:

Case I. X(r)N = B(1)n , g0 = Bn, ġ = Dn.
Case II. X(r)N = A(2)2n−1, g0 = Cn, ġ = Dn.

Let αa and�a (resp.α̇a and�̇a) (a = 1, . . . , n) be the simple roots and the funda-
mental weights ofg0 (resp.ġ) labeled with the upper (resp. lower) label in Fig. 3. As in
Sect. 5.5, a linear bijectionφ : h∗ → ḣ∗ is induced, whereh∗ andḣ∗ are the duals of
the Cartan subalgebras ofg0 andġ, respectively.

❅❅

��

❞

❞

❞ ❞ ❞>
1

0

2 n−1 n

n−1

n

n−2 1 0

B
(1)
n

❅❅

��

❞

❞

❞ ❞ ❞<
1

0

2 n−1 n

n−1

n

n−2 1 0

A
(2)
2n−1

Fig. 3. The Dynkin diagrams ofB(1)n andA(2)2n−1. The upper and lower labels respect the subalgebrag0 and
ġ, respectively
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Doing a similar calculation to Lemmas 5.10 and 5.11, we have

Lemma 5.15.Under the bijection φ, we have the correspondence (�̇0 = 0):
Case I.

�a 
→
{
�̇n−a − �̇n a = 1, n
�̇n−a − 2�̇n a = 2, . . . , n− 1,

(5.37)

αa 
→
{
α̇n−a a = 1, . . . , n− 1
−1

2(2α̇1 + · · · + 2α̇n−2 + α̇n−1 + α̇n) a = n. (5.38)

Case II.

�a 
→
{
�̇n−1 − �̇n a = 1
�̇n−a − 2�̇n a = 2, . . . , n,

(5.39)

αa 
→
{
α̇n−a a = 1, . . . , n− 1
−(2α̇1 + · · · + 2α̇n−2 + α̇n−1 + α̇n) a = n. (5.40)

Lemma 5.16.There is an element s ∈ W(Dn) which acts on ḣ∗ as follows:
Case I.

φ(�a) 
→
{
�̇a a = 1, . . . , n− 2, n
�̇n−1 + �̇n a = n− 1,

(5.41)

φ(αa) 
→
{
α̇a a = 1, . . . , n− 1
1
2(−α̇n−1 + α̇n) a = n. (5.42)

Case II.

φ(�a) 
→



�̇a a = 1, . . . , n− 2
�̇n−1 + �̇n a = n− 1
2�̇n a = n,

(5.43)

φ(αa) 
→
{
α̇a a = 1, . . . , n− 1
−α̇n−1 + α̇n a = n. (5.44)

Accordingly, we set
Case I.

xa = e�̇a (a = 1, . . . , n− 2, n), e�̇n−1+�̇n (a = n− 1), (5.45)

ya = e−α̇a (a = 1, . . . , n− 1), e(α̇n−1−α̇n)/2 (a = n). (5.46)

Case II.

xa = e�̇a (a = 1, . . . , n− 2), e�̇n−1+�̇n (a = n− 1), e2�̇n (a = n), (5.47)

ya = e−α̇a (a = 1, . . . , n− 1), eα̇n−1−α̇n (a = n). (5.48)

Then, the relation (5.18) is preserved. Define theġ-characters ofW(a)
m (ζ ) in the same way

as Definition 5.12. Then, the normalizedg0-character and the normalizedġ-character
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of W(a)
m (ζ ) coincide as polynomials ofy. Thus, Conjecture 5.5 for the normalizedg0-

characters is applied for the normalizedġ-characters as well. So far, the situation is
parallel to theCn case forA(2)2n . From now on, the situation is parallel to theBn case

for A(2)2n . The following relations are easily derived from the explicit expressions of the
Weyl denominators forBn, Cn,Dn:

∏
α∈�Bn+

(1− e−α) =
n∏
a=1

(
1−

n∏
k=a

yk

) ∏
α∈�Dn+

(1− e−α), (5.49)

∏
α∈�Cn+

(1− e−α) =
n∏
a=1

(
1− y−1

n

n∏
k=a

y2
k

) ∏
α∈�Dn+

(1− e−α), (5.50)

where the equalities hold under the following identifications: (5.17) for the LHSs, (5.46)
for the RHS of (5.49), (5.48) for the RHS of (5.50) under the label in Fig. 3. We conclude
that Conjecture 5.5 forB(1)n andA(2)2n−1 is equivalent to

Conjecture 5.17. (i) ForB(1)n , the formula

Qν(y) = KνD,G(y)
∏n
a=1

(
1−∏n

k=a yk
)−1∏

α∈�Dn+
(1− e−α)

(5.51)

holds for theDn-characters of the KR-modules, wherey is specified as (5.46).
(ii) For A(2)2n−1, the formula

Qν(y) = KνD,G(y)
∏n
a=1

(
1− y−1

n

∏n
k=a y2

k

)−1∏
α∈�Dn+

(1− e−α)
(5.52)

holds for theDn-characters of the KR-modules, wherey is specified as (5.48).

The manifest polynomial expressions of the numerators in the RHSs of (5.24), (5.51),
and (5.52) forQ(a)

m (y) are available in [HKOTT] with some other examples.

5.7. Related works. Below we list the related works on Conjectures 1.1 and 5.5–5.7
mostly chronologically. However, the list is by no means complete. The seriesKνD,G(y)
in (5.20) admits a naturalq-analogue called thefermionic formula. This is another fas-
cinating subject, but we do not cover it here. See [BS,HKOTY,HKOTT] and references
therein. It is convenient to refer to the formula (5.20) with the binomial coefficient (2.9)
as type I, and the ones with the binomial coefficient in Remark 1.3 astype II. (In the
context of theXXX-type integrable spin chains,N(a)m andP (a)m represent the numbers of
m-strings andm-holes of color a, respectively. Therefore one must demandP (a)m ≥ 0,
which implies that the relevant formulae are necessarily of type II.) The manifest ex-
pression of the decomposition ofQ(a)

m such as

Q(2)
1 = χ(�2)+ χ(�5) (5.53)
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is referred to astype III, whereχ(λ) is the character of the irreducibleXn-moduleV (λ)
with highest weightλ. Since there is no essential distinction between these conjectured
formulae forY (Xn) andUq(X

(1)
n ), we simply refer to both cases asXn below. At this

moment, however, the proofs should be separately given for the nonsimply-laced case
[V].

0 [Be]. Bethe solved theXXX spin chain of lengthN by inventing what is later
known as the Bethe ansatz and the string hypothesis. As a check of the completeness of
his eigenvectors for theXXX Hamiltonian, he proved, in our terminology, the type II
formula ofQν(y) with ν(1)m = Nδm1 for A1. See [F,FT] for a readable exposition in the
framework of the quantum inverse scattering method.

1 [K1,K2]. Kirillov proposed and proved the type I formula of the irreducible modules
V (m�a) for A1 [K1] andAn [K2]. The idea of the use of the generating function and
theQ-system, which is extended in the present paper, originates in this work.

2 [KKR]. Kerov et al. proposed and proved the type II formula forAn by the combi-
natorial method, where the bijection between the Littlewood-Richardson tableaux and
the rigged configurations was constructed.

3 [D1]. Drinfeld claimed thatV (m�a) can be lifted to aY (Xn)-module, if the Kac
label forαa in X(1)n is 1. These modules are often called theevaluation modules, and
identified with some KR-modules. A method of proof is given in [C] forUq(X

(1)
n ).

Therefore, the type III formulaQ(a)
m = χ(m�a) holds for thosea. Some of the corre-

spondingR-matrices for the classical algebras,Xn = An, Bn, Cn, Dn, were obtained
earlier in [KRS,R] by thereproduction scheme (also known as thefusion procedure) in
the context of the algebraic Bethe ansatz method.

4 [OW]. Ogievetsky and Wiegmann proposed the type III formula ofQ(a)
1 for some

a for the exceptional algebras from the reproduction scheme.
5 [KR,K3]. Kirillov and Reshetikhin formulated the type II formula for any simple

Lie algebraXn. For that purpose, they vaguely introduced a family ofY (Xn)-modules,
which we identify with the KR modules here. They proposed the type II formula for any
Xn, and theQ-system and the type III formula forXn = Bn,Cn,Dn. TheQ-system for
exceptional algebrasXn was also proposed in [K3]. Due to the long-term absence of the
proofs of the announced results by the authors, we regard these statements as conjectures
at our discretion in this paper. See Remark 5.18 for the further remark.

Remark 5.18. Let Xn = Bn, Cn, Dn. Let Q(a)
m andQ(a)

m be theXn-character and the
normalizedXn-character of the “KR module” proposed in [KR]. Then, one can organize
the conjectures in [KR] as follows:

(i) All Q(a)
m ’s are given by the type III formula in [KR].

(ii) The family (Q(a)
m )(a,m)∈H satisfies theQ-system (4.22) forXn, andQ(a)

1 ’s (a =
1, . . . , n) are given by the type III formula in [KR]. (Note that theQ-system
(4.22), or equivalently (1.4), recursively determines allQ(a)

m ’s from the initial data
(Q(a)

1 )na=1.)
(iii) Any power Qν is given by the type II formula.

As stated in [KR], one can certainly show the equivalence between (i) and (ii) with-
out referring of the KR-modules themselves. See [HKOTY]. One can also confirm the
equivalence between (i) and a weak version of (iii),

(iii’) All Q(a)
m ’s are given by the type II formula.
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See [Kl] and Appendix A in [HKOTY]. The family(Q(a)
m )(a,m)∈H given by (i) satisfies

the convergence property (4.15). Thus, (i), (ii), and (iii’) are all equivalent to

(iv) The family (Q(a)
m )(a,m)∈H is the canonical solution of theQ-system (1.4).

Therefore, as shown in Section 5.4 (also [KN2]), they are also equivalent to

(v) Any powerQν is given by the type I formula (1.1).

This is why we call Conjecture 1.1 the Kirillov-Reshetikhin conjecture. The equivalence
between (iii) and the others has not been proved yet as we mentioned in Remark 1.3.

6 [CP1,CP2]. Chari and Pressley proved the type III formula ofQ(a)
1 in most cases

for Y (Xn) [CP1], and forUq(X
(1)
n ) [CP2], where the list is complete except forE7 and

E8.
7 [Ku]. The type III formula ofQ(a)

m was proposed for somea for the exceptional
algebras.

8 [Kl]. Kleber analyzed a combinatorial structure of the type II formula for the
simply-laced algebras. In particular, it was proved that the type III formula ofQ(a)

m and
the corresponding type II formula are equivalent forAn andDn.

9 [HKOTY,HKOTT]. Hatayamaet al. gave a characterization of the type I formula as
the solution of theQ-system which areC-linear combinations of theXn-characters with
the property equivalent to the convergence property (4.15). Using it, the equivalence of
the type III formula ofQ(a)

m and the type I formula ofQν(y) for the classical algebras
was shown [HKOTY]. In [HKOTT], the type I and type II formulae, and theQ-systems
for the twisted algebrasUq(X

(r)
N ) were proposed. The type III formula ofQ(a)

m for A(2)2n ,

A
(2)
2n−1, D(2)n+1, D(3)4 was also proposed, and the equivalence to the type I formula was

shown in a similar way to the untwisted case.
10 [KN1,KN2]. The second formula in Conjecture 5.6 was proposed and proved

for A1 [KN1] from the formal completeness of theXXZ-type Bethe vectors. The same
formula was proposed forXn, and the equivalence to the type I formula was proved
[KN2]. The type I formula is formulated in the form (5.19), and the characterization
of type I formula in [HKOTY] was simplified as the solution of theQ-system with the
convergence property (4.15).

11 [C]. Chari proved the type III formula ofQ(a)
m for Uq(X

(1)
n ) for any a for the

classical algebras, and for somea for the exceptional algebras.
12 [OSS]. Okadoet al. constructed bijections between the rigged configurations and

the crystals (resp. virtual crystals) corresponding toQν(y), with ν(a)m = 0 for m > 1,
for C(1)n andA(2)2n (resp.D(2)n+1). As a corollary, the type II formula of thoseQν(y) was

proved forC(1)n andA(2)2n .
Assembling all the above results and the indications to each other, let us summarize

the current status of the Kirillov-Reshetikhin conjectures into the following theorem.
Here, we mention the results only for the quantum affine algebraUq(X

(r)
N ) case. Also,

we exclude the isolated results only valid for smallm.

Theorem 5.19.(i) Conjecture 5.5 and the type I formula of Qν(y) are valid for A(1)n ,
B
(1)
n , C(1)n , D(1)n .
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(ii) The type II formula of Qν(y) is valid for A(1)n and valid for those ν with ν(a)m = 0
for m > 1 for C(1)n and A(2)2n . The type II formula of Q(a)

m (y) is valid for the following a

in [C]: any a for B(1)n , C(1)n , D(1)n ; a = 1,6 for E(1)6 ; a = 7 for E(1)7 .

(iii) The type III formula of Q(a)
m is valid for all a for A(1)n , B(1)n , C(1)n , D(1)n , and for

those a listed in [C] for E(1)6 , E(1)7 , E(1)8 , F (1)4 , G(1)2 . The formula is found in [C].

A. The Denominator Formulae

We give a proof of Proposition 4.9. The proof is divided into three steps.

A.1. Step 1. Reduction of the denominator formula. In Steps 1 and 2, we consider the
unspecialized infiniteQ-system (4.8), and we assume thatD andG satisfy the condition
(KR-II) in Definition 4.5.

For a given positive integerL, letHL = {1, . . . , n} × {1, . . . , L} be the finite subset
of H in Sect. 4.1. With multivariablesvL = (v

(a)
m )(a,m)∈HL , wL = (w

(a)
m )(a,m)∈HL ,

zL = (z(a)m )(a,m)∈HL , we define the bijectionvL 
→ wL aroundv = w = 0 (cf. (2.1)) by

w(a)m (vL) = v(a)m
∏

(b,k)∈HL
(1− v(b)k )−G

′
am,bk , (A.1)

and the bijectionvL 
→ zL aroundv = z = 0 by

z(a)m (vL) = w(a)m (vL)
∏

(b,k)∈HL
(1− v(b)k )gabm (A.2)

= v(a)m
∏

(b,k)∈HL
(1− v(b)k )−G

′
am,bk+gabm, (A.3)

wheregab is the one in (KR-II). Let us factorize the bijectionwL 
→ vL aswL 
→ zL 
→
vL. The mapwL 
→ zL is described as

z(a)m (wL) = w(a)m
n∏
b=1

(Qb(wL))
−gabm, Qb(wL) :=

L∏
k=1

(1− v(b)k (wL))−1. (A.4)

By the assumption (KR-II) and the expression (A.3), the mapvL 
→ zL is lower-
triangular in the sense of Example 2.9. Therefore, the following equality holds:

det
HL

(w(b)k
v
(a)
m

∂v
(a)
m

∂w
(b)
k

(wL)
)
= det

HL

(w(b)k
z
(a)
m

∂z
(a)
m

∂w
(b)
k

(wL)
)
, (A.5)

where detHL means the abbreviation of det(a,m),(b,k)∈HL .
We now simultaneously specialize the variableswL andzL with the variablesy =

(ya)
n
a=1 andu = (ua)na=1 as (cf. (4.5))

w(a)m = w(a)m (y) = (ya)m, z(a)m = z(a)m (u) = (ua)m. (A.6)

This specialization is compatible with (A.4) and the mapy 
→ u,

ua(y) = ya
n∏
b=1

(qb(y))
−gab , qb(y) := Qb(wL(y)). (A.7)
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Proposition A.1. Let G′
L = (G′

am,bk)(a,m),(b,k)∈HL be the HL-truncation of G′,
K0
IL,G

′
L

(wL) be the one in (2.34), and K0
IL,G

′
L

(y) := K0
IL,G

′
L

(wL(y)) be its special-

ization by (A.6). Then, the formula (2.34) reduces to

K0
IL,G

′
L
(y) = det

1≤a,b≤n

( yb
ua

∂ua

∂yb
(y)

) n∏
a=1

qa(y). (A.8)

Proof. Because of (A.5), it is enough to prove the equality

det
HL

(w(b)k
z
(a)
m

∂z
(a)
m

∂w
(b)
k

(wL(y))
)
= det

1≤a,b≤n

( yb
ua

∂ua

∂yb
(y)

)
. (A.9)

We remark that

ya
∂

∂ya
=

L∑
m=1

mw(a)m
∂

∂w
(a)
m

, (A.10)

det
HL
(δam,bk +mαabk) = det

1≤a,b≤n

(
δab +

L∑
k=1

kαabk

)
, (A.11)

whereαabk are arbitrary constants depending ona, b, k. Set

Fa(wL) =
n∏
b=1

(Qb(wL))
−gab .

Then, (A.9) is obtained as

(LHS)= det
HL

(
δam,bk +mw(b)k

∂

∂w
(b)
k

logFa(wL(y))
)

= det
1≤a,b≤n

(
δab +

L∑
k=1

kw
(b)
k

∂

∂w
(b)
k

logFa(wL(y))
)

= det
1≤a,b≤n

(
δab + yb ∂

∂yb
logFa(wL(y))

)

= det
1≤a,b≤n

( yb
ua

∂ua

∂yb
(y)

)
,

where we used (A.4), (A.11), (A.10), and (A.7).��

A.2. Step 2. Change of variables. We introduce the change of the variablesy andu in
(A.6) to x = (xa)na=1 andq = (qa)na=1 as

ya(x) =
n∏
b=1

(xb)
−gab , ua(q) =

n∏
b=1

(qb)−gab . (A.12)
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Thus, iff (y) is a power series ofy, thenf (y(x)) is a Laurent series ofx because of
the assumption in (KR-II) thatgab’s are integers. This specialization is compatible with
(A.7) and the mapx 
→ q,

qa(x) = xaqa(y(x)). (A.13)

Let us summarize all the maps and variables in a diagram:

v
(A.2)←→ z

(A.4)←→ w

(A.6)↑ ↑ (A.6)
u
(A.7)←→ y

(A.12)↑ ↑(A.12)

q
(A.13)←→ x

(A.14)

With these changes of variables, (A.8) becomes the Jacobian ofq(x):

Proposition A.2. Let K0
IL,G

′
L

(y) be the one in Proposition A.1, and let K 0
IL,G

′
L

(x) :=
K0
IL,G

′
L

(y(x)). Then, the formula

K 0
IL,G

′
L
(x) = det

1≤a,b≤n

(∂qa
∂xb

(x)
)

(A.15)

holds.

Proof. By (A.12), we have

det
1≤a,b≤n

(qb
ua

∂ua

∂qb

)
= det

1≤a,b≤n

(xb
ya

∂ya

∂xb

)
= det

1≤a,b≤n(−gab) 
= 0. (A.16)

Using Proposition A.1, (A.13), and (A.16), we obtain

K 0
IL,G

′
L
(x) = det

1≤a,b≤n

( yb
ua

∂ua

∂yb
(y(x))

) n∏
a=1

qa(y(x))

= det
1≤a,b≤n

( xb
qa

∂qa
∂xb

(x)
) n∏
a=1

qa(y(x)) = det
1≤a,b≤n

(∂qa
∂xb

(x)
)
.

(A.17)

��

A.3. Step 3. Denominator formula for theQ-systems for KR type. Now we are ready to
prove Proposition 4.9; namely,

Proposition A.3. Let K 0
D,G(x) := K0

D,G(y(x)), where K0
D,G(y) is the denominator in

(4.11) for the Q-system of KR type (4.14). Then, the formula

K 0
D,G(x) = det

1≤a,b≤n

(∂Q(a)
1

∂xb
(x)

)
(A.18)

holds, where we set Q(a)
1 (x) := xaQ(a)

1 (y(x)) for the canonical solution (Q(a)
m (y))(a,m)∈H

of (4.14).
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Proof. We recall the following four facts:
Fact 1: By (3.33) and (4.6), we have

K0
D,G(y) ≡ K0

IL,G
′
L
(y) mod JL. (A.19)

Fact 2: By Theorem 3.7 and the proof therein, the canonical solution(Q(a)
m (y))(a,m)∈H

of (4.14) and the solution(Q′(a)
m (y))(a,m)∈H of the corresponding standardQ-system

are related as

Q′(a)
m (y) = Q(a)

m+1(y)Q(a)
m−1(y)

(Q(a)
m (y))

2
. (A.20)

Fact 3: By Propositions 2.1, 3.4, and (4.6), the seriesqb(y) in (A.7) satisfies

qa(y) ≡
L∏
m=1

(Q′(a)
m (y))−1 mod JL, (A.21)

whereQ′(a)
m (y) is the one in Fact 2. Note thatqb(y) depends onL.

Fact 4: By the proof of Proposition 4.4, it holds that

Q(a)
L (y) ≡ Q(a)

L+1(y) mod JL. (A.22)

Combining Facts 2–4, we immediately haveqa(y) ≡ Q(a)
1 (y) mod JL. Thus,

limL→∞ qa(y) = Q(a)
1 (y) holds. Therefore, taking the limitL → ∞ of (A.8) with

the help of Fact 1, we obtain

K0
D,G(y) = det

1≤a,b≤n

( yb
Ua

∂Ua

∂yb
(y)

) n∏
a=1

Q(a)
1 (y), (A.23)

Ua(y) := ya
n∏
b=1

(Q(b)
1 (y))−gab . (A.24)

The equality (A.18) is obtained from (A.23) in the same way as the proof of Proposition
A.2.
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