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Abstract: When solving the inverse scattering problem for a discrete Sturm—Liouville
operator with a rapidly decreasing potential, one gets reflection coefficignénd
invertible operatord + H,_, where?#,, is the Hankel operator related to the symbol
s+. The Marchenko—Faddeev theorem [8] (in the continuous case, for the discrete case
see [4, 6]), guarantees the uniqueness of the solution of the inverse scattering problem.
In this article we ask the following natural question — can one find a precise condition
guaranteeing that the inverse scattering problem is uniquely solvable and that operators
I + H,, areinvertible? Can one claim that uniqueness implies invertibility or vise versa?
Moreover, we are interested here not only in the case of decreasing potential but
also in the case of asymptotically almost periodic potentials. So we merge here two
mostly developed cases of the inverse problem for Sturm—Liouville operators: the inverse
problem with (almost) periodic potential and the inverse problem with the fast decreasing
potential.

Main Results

The asymptotics of polynomials orthogonal on a homogeneous set, which we described
earlier [10], indicated strongly that there should be a scattering theory for Jacobi ma-
trices with an almost periodic background as it exists in the classical case of a constant
background. Note that in this case left and right asymptotics are not necessarily the same
almost periodic coefficient sequences, butthey are of the same spectral class. In this work,
we present all principal ingredients of such a theory: reflection/transmission coefficients,
Gelfand-Levitan—Marchenko transformation operators, a Riemann—Hilbert problem re-
lated to the inverse scattering problem. Now we can say finally that the reflectionless
Jacobi matrices with homogeneous spectrum are those whose reflection coefficient is
zero.
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Moreover, we extend the theory in depth and show that a reflection coefficient de-
termines uniquely a Jacobi matrix of the Szeg6 class, and both transformation operators
are invertible if and only if the spectral density satisfies the matgixxondition [13].

Concerning thed, condition in the inverse scattering, we have to mention, at least
as indirect references, [9, Chapter 2, Sect. 4] and [2]. Generally references to stationary
scattering and inverse scattering problems in connection with spatial asymptotics can
be found in [5], where explicit expressions of reflection and transmission coefficients in
terms of Weyl functions and phases, asymptotic wave functions were given. Reference
[12] gives a complete introduction to Jacobi operators, their spectral and perturbation
theories.

Let J be a Jacobi matrix defining a bounded self—adjoint operatéf @:

Jew = pnen—1+ qnen + pn+ien+1, n€Z, (0.1

where{e,} is the standard basis i#(Z), pn > 0. The resolvent matrix-function is
defined by the relation

R() =Rz, J) =& —2)7t€, (0.2)

where€ : C2 — [%(Z) in such a way that
& |:Ccol] = e_1c—1 + egco.

This matrix-function possesses an integral representation

R@z) = / do (0.3)

X —Z

with a 2 x 2 matrix-measure having compact supportRn/ is unitary equivalent to
the operator multiplication by an independent variable on

2 _ _ f-1(x) . s
Ld”_{f_lifo(x)}' /f daf<oo}.
The spectrum of/ is called absolutely continuous if the measuke is absolutely
continuous with respect to the Lebesgue measure on the real axis,

do(x) = p(x)dx. (0.4)

Let Jo be a Jacobi matrix with constant coefficiengs,= 1, ¢, = 0 (the so-called
Chebyshev matrix). It has the following functional representation, besides the general
one mentioned above. Note that the resolvent seba$ the domairC \ [—-2, 2]. Let
z(Z) : D — C\ [—2, 2] be a uniformization of this domain(¢) = 1/¢ + ¢. With
respect to the standard ba&i%},, <7 in

2 _ : 2,
L {f(r) /Tlfl m}

the matrix of the operator of multiplication kyr), ¢ € T, is the Jacobi matri¥p, since
21" =" L

The famous Bernstein—Szeg6 theorem implies the following proposition (for a matrix
modification of the Szeg6 condition, see [1]).



Inverse Scattering Problem for Jacobi Matrices 569

Proposition 0.1. Let J be a Jacobi matrix whose spectrum is an interval [—2, 2]. As-
sume that the spectrumis absolutely continuous and the density of the spectral measure
satisfies the condition

log detp(z(¢)) € L. (0.5)
Then
pn—>1, g, >0, n— too. (0.6)
Moreover, there exist generalized eigenvectors

pnet(n—1,1) + quet (n, 1) + pprret (n+ 1,1) = z(t)e" (n, 1),

0.7
pne” (—n,t) + gne (—n — 1, 1) + ppp1e” (—n — 2,1) = z(t)e” (—n — L, 1), 01
such that the following asymptotics hold true:
+ n
se (n,t) =s()t" +0o(l), n— +oo,
(e~ (n, 1) =s(t) (€] 0.8)

s(etfm, 1) =" + 520" o), n— —oo
inL2.

To clarify the meaning of the words “generalized eigenvectors”, we need some defi-
nitions and notation.
The matrix

S@)z[i‘;}a> (0.9)

is called the scattering matrix-function. It is a unitary-valued matrix-function with the
following symmetry property:

S*(t) = S(1), (0.10)
and analytic property:
s(t) is boundary values of an outer function. (0.11)

We still denote bw(z), ¢ € D, the values of the function inside the disk, and subse-
guently, we assume thatmeets the normalization conditiaig0) > 0.

In fact, this means that each of the entries(the so-called reflection coefficient)
determines the matrig(¢) in a unique way. Indeed, since

Is(1) % + s£()]? = 1, (0.12)

using (0.11), we have
5(6) = e Jr £ loalls= P} dm

Then, we can solve for: the relation

Sys+5s_ =0. (0.13)
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With the functions+ we associate the metric

-3 T )
= 2\[sx() 1 1 fO) ] [1f @)

= (f() + s+ /)D), (1), fel?

Note that the conditions (0.11), (0.12) guarantee that,, = 0 implies f = 0. We
denote bnylm’si orLfi (for shortness) the closure bf with respect to this new metric.

The following relation sets a unitary map frobf, to L2 :

s~ =if @) +s:@O) @),

moreover, in this case,

1
LFEIZ, = 1A = SHIs IR + s 712,
and the inverse map is of the form
sOFT @) =1f7@O +s- ) f ).

We say that a Jacobi matrikwith the spectruni—2, 2] is of Szego class if its spectral
measurelo satisfies (0.4), (0.5).

Theorem 0.1. Let J be a Jacobi matrix of Szeg6 class with the spectrum E = [—-2, 2].
Then J possessesthe scattering representation, i.e.: there exists a unique unitary-valued
matrix-function S(¢) of the form (0.9) with the properties: (0.10), (0.11), and a unique
pair of Fourier transforms
FEAZ) — L2, (FEIf)@0) = 20)(F= )0, (0.14)
determining each other by the relations
sO(FE)@0) = 1(FF ) + s (O (FT )0, (0.15)
and having the following analytic properties
sFX(1%(Zy)) C H?, (0.16)
and asymptotic properties
ei(n, H=t"+0(l) in Lfi, n — 400, (0.17)

where
et(n, 1) = (Fre)t), e (n,1)=(F e_p_1)().

(Asbefore, {e,} isthe standard basisin [%(Z)).
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Remark 0.1. Show that (0.17) is equivalent to (0.8). Due to

[Sli Sf } - [|SC|JZ g} + [Sf } [s= 1], (0.18)

(0.17) is equivalent tan{ — +00)
s(Hetn, 1) =s®" +o(1) inL?
se(Det(n, 1) +fet(n, 1) =se(Ot" + 7"+ 0(1) in L2
Using (0.15), we rewrite the second relation into the form
seF(—n—1,0) =t " T+ s5.(O" +0(1) inL%
Substitutingz := —n — 1, we get the second relation of (0.8).

Afundamental question is howto recover the Jacobi matrix from the scattering matrix,
in fact, from the reflection coefficient. (or s_)? When can this be done? Do we have
a uniqueness theorem?

We show that for an arbitrary function (z) satisfying

s (D) =sy(r) and lodl— |sy(1)|%} € LY, (0.19)

there exists a Jacobi matrikof Szego class such that (z) is its reflection coefficient
in the scattering representation. However we can construct a matrix with this property,
at least, in two different ways.

First, consider the space

2 _
H? =

2
cIosL§+H ,
and introduce the Hankel operatHs, : H? - H?,

Hy, f = Pii(sy f)@), f € H?,

wherzePJr is the Riesz projection fromi? onto H2. This operator determines the metric
in He :
S+
IFI2, = (F(0) + i+ D). f(©)
= (I +H)f f) VfeH”

Lemma 0.1. Under the assumptions (0.19), the space Hsz+ is a space of holomorphic

functions with a reproducing kernel. Moreover, sf € H? for any f € HSZ+ , and the
reproducing vector ki, :

(fiks,) = f(0), VfeH,

is of the form

ks, = (I +Hs )P HL = |in3+(e+1+HS+)*11 inL? . (0.20)
€—>

PUtK, (1) = ks (1) /\/ks,.(0).
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Theorem 0.2. Let s (7) satisfy (0.19). Then the system of functions {t" K, ,2: (t)}nez
forms an orthonormal basisin Lf . With respect to this basis, operator multiplication
by z(z) is a Jacobi matrix J of Szeg6 class. Moreover, the initial function s (¢) isthe
reflection coefficient of the scattering matrix-function S(z), associated to J by Theorem
0.1, and

et (n, 1) ="K, 20 (D).

On the other hand, the system of functidnsK; ,2:(¢)},cz forms an orthonormal
basis inL? , and we are able to define a Jacobi maitily the relation

20ET(n, 1) = puet(n—1,0) + Gué "t (n, 1) + ppp1et(n 4+ 1,10,
where{e™ (n, 1)} is the dual system to the systdniK, ,2. ()} (see (0.15)), i.e.:

s@et(—n —1,1) ="K 20 (D) + 5_ ()" K, 2 (1).

Even the invertibility condition for the operatotg + 7{,,) does not guarantee that

operators/ and.J are the same (see tiixample at the end of Sect. 2). But if = J,
then the uniqueness theorem takes place.

Theorem 0.3. Let s satisfy(0.19). Thenthereflection coefficient s, determinesa Jacobi
matrix J of Szeg6 classin a unique way if and only if the following relations take place

(0K, (0K, 2(0) = 1. (0.21)

Corollary 0.1. Let J be a Jacobi matrix of Szegd class with the spectrum [—2, 2] and
let p bethe density of its spectral measure. If

2
/ p_l(x) dx < o0,
-2

then there is no other Jacobi matrix of Szegd class with the same scattering matrix—
function S(z).

It is important to know when the operatais + ., ), playing a central role in the
inverse scattering problem, are invertible in the proper sense of the word.

Theorem 0.4. Let J be a Jacobi matrix of Szegd class with the spectrum [—2, 2]. Let
o be the density of its spectral measure and let s, be the reflection coefficient of its
scattering matrix-function. Then the following statements are equivalent.

1. The spectral density p satisfies condition A».
2. The reflection coefficient s determines a Jacobi matrix of Szeg6 class uniquely and
both operators (I + H,, ) areinvertible.

To extend these results to the case when a spedirisra finite system of intervals
or a standard Cantor set of positive measure [15], see also [3], we need only to introduce
a counterpart of the Hardy space. B

Letz(¢) : D — Q be a uniformization of the domaifa = C \ E. Thus there exists
a discrete subgroup of the groupSU (1, 1) consisting of elements of the form

11 Y12
y:[y v

. Y11= V22, Y12 =721, dety =1,
Vo1 sz] Y11 = Y22, Y12 = Y21 Y



Inverse Scattering Problem for Jacobi Matrices 573

such that(¢) is automorphic with respect 0, i.e.,z(y (¢)) = z(¢), Yy € T, and any
two preimages ofg € Q2 are'—equivalent, i.e.,

72(81) =z2(&2) = Iy el &1 =y(2).

We normalizez(¢) by the conditiong (0) = oo, (¢2)(0) > 0.
A character ofl” is a complex—valued functiosm : I' — T, satisfying

a(yriy2) = a(yva(y2), yi,y2€l.

The characters form an Abelian compact group denoteld*by
For a given character € I'*, as usual let us define

H¥[,a) ={f € H®: f(y(©)=ay)f(), Yy €T}

Generally, a grouf is said to be ofMdom type if for any o« € I'* the spaced*°(T", «)
is not trivial (contains a non-constant function).

A group of Widom type acts dissipatively dh with respect tadm, that is there
exists a measurable (fundamental) Eetvhich does not contain any twid-equivalent
points, and the uniow, cry (E) is a set of full measure. We can chods@ossessing
the symmetry property: € E = ¢ € E. For the space of square summable functions on
E (with respect to the Lebesgue measure), we use the nomﬁ%@.

Let f be an analytic function i, y € I andk € N. Then we put

1)
Fllrle = (v21¢ + y22)k

Notice thatf|[y]2 = f Vy € I means that the fornf (¢)d¢ is invariant with respect
to the substitutiong — v (¢) (f(¢)d¢ is an Abelian integral o/ I'). Analogically,
fllyl = a(y) f V¥ € I’ means that the formyf(¢)|2 |d¢| is invariant with respect to
these substitutions.

We recall that a functiorf (¢) is of Smirnov class, if it can be represented as a ratio
of two functions fromH *° with an outer denominator.

Definition. Let I be a group of Widom type. The space A%(F, a) (A%(F, a)) isformed
by functions f, which are analytic on D and satisfy the following three conditions

1) f isof Smirnov class,
2 fliyl=aW)f (fllylz=a)f) VyeTl,

3) /|f|2dm<oo (/ | fldm < 00).
E E

A%(F, «) is a Hilbert space with the reproducing kerk&l¢, £o), moreover
0 < inf k%(%o, %0) < supk® (%o, %) < oo. W)
ael™* ael'*

Put
k(&)
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We need one more special function. The Blaschke product

l—[ y(©Q) —¢ [y

b(¢) = S
©r=¢ 1—y©0y¢ v

yely#lp

is called theGreen’sfunction of I" with respect to the origin. It is a character-automorphic
function, i.e., there exista € I'* such thath € H*° (T, u). Note, if G(z) = G(z, 00)
denotes the Green’s function of the dom&inthen

G(z(5)) = —log[b(2)|.

Theorem ([7]). Let T" be a group of Widom type. The following statements are eguiva-
lent:

(1) Thefunction K¢ (0) is continuous on I'*.
(2) sudlfOI: fe H°T, o), [ fIl =1} > 1 a— 1ps.
(3) The Direct Cauchy Theorem holds:

/ L2 = —<0) Vf e AXT, . (DCT)

(4) Let tAXT, Yy = (g =1f : f € AXT,a1)}. Then

Li,e=tA20C.a ) @ A{(l @) Va el™

(5) Every invariant subspace M C A? 1T, a) (i.e. oM C M Yo € H*(I")) is of the
form
M = AAZ(T, B~ 1)

for some character-automorphic inner function A € H*°(8).
Definition ([3]). A measurable set E is homogeneousif thereisan n > 0 such that
[(x =8, x+38)NE|>ns forall0<§ <1 andall x € E. ©

A standard Cantor set of positive length is an example of a homogeneous set [3], see
also [10]. LetE be a homogeneous set, then the donfaia- C \ E (respectively the
groupl’) is of Widom type and the Direct Cauchy Theorem holds.

Recall that a sequence of real numbgpg} € [°°(Z) is called uniformly almost
periodic if the set of sequencéy, 1}, [ € Z} is a precompact iff°(Z). The general
way to produce a sequence of this type looks as follows5 Ibe a compact Abelian
group, and letf (g) be a continuous function af, then

Pn = f(go+ng1), go,81€G,

is an almost periodic sequence. A Jacobi matrix is almost periodic if the coefficient
sequences are almost periodic. We denotd ) the class of almost periodic Jacobi
matrices with absolutely continuous homogeneous speckuin fact, if E = [—2, 2]
thenJ(E) = {Jo}. In what follows the clasg (E) will substitute the Chebyshev matrix

in the case when the spectruiris not an interval but a general homogeneous set. First
of all this class can be described as follows.
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Theorem ([11]). Let E be a homogeneous set. Let z : D — C \ E be a uniformizing
mapping. Then the systems of functions {b" K“* " },cz, and {b"K** "},cz form an
orthonormal basisin AZ(T", @) andin L3, ., respectively, for any o € I'*. With respect
to this basis, the operator multiplication by z(z) is a three-diagonal almost periodic
Jacobi matrix J(«). Moreover,

JE)={J(a) : a €T},
and J (@) isa continuous function on I'*.

We say that a Jacobi matrik with the spectrunk is of Szeg0 class if its spectral
measure is absolutely continuods;(x) = p(x) dx, andp(z(¢)) satisfies (0.5).

Theorem 0.5. Let J bea Jacobi matrix of Szegd classwith a homogeneous spectrum E.
Then J possessesthe scattering representation, i.e.: there existsa unique unitary-valued
matrix-function S(¢) of the form (0.9) with the properties (0.10), (0.11), and a unique
pair of Fourier transforms

FEX L) > Ligs,. (FEI@) = 20)(FE )0, (0.22)
determining each other by the relations
sOFEL@) = HFF @) +s:OFT @), (0.23)

and having the following analytic properties:

sFE(I2(Ze)) C AL, a3h), (0.24)
and asymptotic properties
et ) ="K (1) + o) InLI,p .. n— +oo, (0.25)
where
et )= (Fre)®), e (n,1)=(F e_n_1)),
and LﬁmlEsi isthe closure of the functions from ngzmuE with respect to the metric

2 _ [ 1 ][ fO] [f®© 2
7 ”&—§<[si(r> q ][ff(f)]’[ff(f)p’ S € Lame:

Theorems 0.2—-0.4 also have their closely parallel counterparts in the case when the
spectrum is a homogeneous set, see Theorems 1.1, 2.1 and 3.1 in combination with
Theorem 4.1.

We finish this paper with a remark on a connection between this new type inverse
scattering problem and a Riemann—Hilbert problem.
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1. IntheModel Space

Let E be a homogeneous set. lgt) : D/ T ~ C \ E be a uniformization anél(¢) be
the Green’s function. Throughout the paper we assumebbatO) = 1. LetE C T be
a symmetric fundamental set¢ E = 7 € E).

With a functions,.(t) € Lgfn”E such that

sy (D =54 and 1—|s1()|? > 0 a.e.orE, (1.1)

we associate the metric

iz =] 1 s @l so ] o
2\ L [ rf@] [t f (@)
= (fO) + sy D, D), f € Loy

Condition (1.1) guarantee thtf||;, = O implies f = 0. We denote b¢§m|1E,s+ or

Lf,+ (for shortness) the closure ﬂ%mﬂE with respect to this metric.

Lemma 1.1. The operator multiplication by z(¢) in Li is unitary equivalent to the

operator multiplication by z(r) in Lﬁm‘E.

Proof. Let us put
—1/2
gy _ | 1 sp(0) f@) 2
[fg(f)] - |:s+(t) +1 } [ff(f)]’ f € L
In this casd| f||s, = |lgll- The system of identities
L SOP[eno] [ 1 wo]”,,[f0
s¢(@) 1 1(zf)(1) se(t) 1 tf(1)

_ g®) | _ | @)@
=z20) |:fg(f):| = [;(Zg)(;)}

finishes the proof. O
Letay € ['*. Further, we assume that € L>(T', ;%) and
log(1 — |54 (1)) € L. (1.2)
We define an outer functian s(0) > 0, by the relation
ls)P =1—[s; )% teT.

It is a character-automorphic function such thTit) = s(¢). It is convenient to denote
its character by 'a~t, ie.,s € H®(T, o talh.

Let us discuss some properties of the space

HE (o) = clos.z. AS(T, ay).
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First of all, we define “a Hankel operatot,, : A2(I", ) — A3(T, ay),
Hs f = Pp2a, i (s+1)@).

Note that this operator, indeed, does not depend on “an analytical part” of its symbol,
more precisely,

His,te) = sy, Ve € H(T, a7?).
Besides, in the classical caBe= [-2, 2], " = {15}, E = T, with a function
si(f) = Zant”
nez

is associated the operattf;;, : H2 — H? having the representation

ai1a-2a_3...
ara_3 ...
a-sz...

H‘Y‘F =

with respect to the standard ba§i%},cz, in H 2,
The operatof{,, determines the metric iHSZ+ (04):

A2 = (f(6) + (s D), f(©)
=(U+Hs)f f), fe AN, ap).

Lemma 1.2. Under theassumptions(l.Z),thespacelﬁlf+ (a4 ) isaspace of holomorphic
functionswith a reproducing kernel. Moreover, sf € AE(F, a” 1 for any f € HSZ+ (o),
and the reproducing vector k?‘j :

(f k) = £(0), VfeHZ (),

is of the form

k= (14 Hy )Tk = lim (e +1+ M) e inL2 . (1.3)
€E—>

Proof. From the inequality

1 5:(1) Is)2 0] _ [ls+ ()% s4(0)
|:s+(t) b ‘[ 0 0i|_|:s:_(t) g ]20’ (2.4)

it follows that
IsfIP <21 fI2, VfelLl.
Thus, if a sequencgf, ), f € AL(T", ay), converges inHZ (o), then the sequence
{sf.} converges imi(r, a~1). In the same way we have boundedness of the functional
f— 1O,
1
s(0)|?

2

2 ot
o /18K O,

1f(0)]? < 1(s£)(0)]% <
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Let us prove (1.3). Lat > 0, then for the norm of the difference we have an estimate

Ik — (e + 1+ He) |2,
= k§F(0) — 2{(e + I +H,,) "k }1(0)
(T + Hy )€+ T+ H )T, (e + 1+ Hy, ) 7HK)
< KO = (e + 1+ M)k )(0). (1.5)

Therefore,
{(e + 1 +Hs )Tk }0) < k57 (0), (1.6)
Besides, (1.5) implies that (1.3) follows from the relation
lim (e + 1 + Hy, )"k 1(0) = k57 (0). (1.7)
Let us prove (1.7). Since the function
{(e + 1 +Hy )7HO}(0) = ((e + 1 + Hy, ) k%, ko)
decreases with and it is bounded by (1.6), there exists a limit

lim (e + 1 +Hs, )T H0) < kST (0). (1.8)

On the other hand, forang < A%(F, ay) ande > 0 the following inequalities hold:

[FOF < (e + 1+ He) TR k) (e + 1+ Hs ) . f)
< (M (e + 1+ Hs ) TR KN+ T+ Hs ) )

that is
FOF < (M (e + 1+ Mo )% K ONIFIE,-

Putting f = ks;", we have
ke (0) < lim (e + 1+ H, ) Lk kOT).
Comparing this inequality with (1.8), we get (1.7), thus (1.3) is provedl.
We defines_ € L*°(T, ajz) by
s—(1) = =51 (s (O /5 (0).

In this case
S = [Ss‘ o ] )

is a unitary-valued matrix function possessing properties (0.10), (0.11).
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Lemma 1.3. The following relation sets a unitary map from L§+ to L2 :

SO f~@) =1fT@D) + 51 (0 fT@).
In this case,
UFHIR, = 17718 = SUlss 1P+ llsf 1),
and the inverse map is of the form

s O =170 +s- () ).
Moreover, this unitary map intertwines the operator multiplication by z(z) in Lfi.

Proof. The first statement follows from the identities

l§+ _ E+ 1 l/g 0 157 1/S 0 S+ 1
s 171 sy 0 1/s||s— 1 0 1/s(| 154+

and (0.18).
Sincez(t) = z(7), t € D, the last statement is evidento

Lemma1.4. Let Ki\" (1) = k. (1) /K, (0). Thesystemoffunctlons{b"(t)K‘”“ o

forms an orthonormal basisin H2+(oz+) when {n € Z,} andin L2 when {n € Z} With
respect to this basis the operator multiplication by z(¢) isa Jacobl matrix.

Proof. First, we note that
(f: feH (@), fO=0={(f=bf: feH (anh)

Therefore,
HY, (@) = (K57 Oy @ bH? (i),

Iterating this relation, we get thab”(t)K“”‘ ’(t)}nez+ is an orthonormal basis in
H? (a1), sinceNyez, b"HZ 5, (@rp™) = {0}-

Then, we note that an arbitrary functigne L§+ can be approximated with the given
accuracy by a functiorf; from Ld E This function, in its turn, can be approximated
by a functionfs € b"AZ(F a4+~ ") with a suitablen. Therefore, linear combinations

a+/4 -

of functions from{p" (t)K (1)} are dense mL2 Since this system of functions is

orthonormal, it forms a ba5|s inZ .
Sincebz € H*°(T', ), we have

2 b"HE (™) = U THHE oy (oY),

For this reason, in the bas{b"(t)[(“*“ (t)}ngz, the matrix of the operator multiplica-

tion by z(¢) has only one non-zero entry over diagonal in each column. But the operator
is self-adjoint, therefore, the matrix is a three-diagonal Jacobi matrix.
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Lemma15. Lete*(n,1) = b" (K, (1), n € Z. Define

s(e (n,t) =teT(—n — 1, 1) + s (t)et (—n — 1, 1).

Then {e~(n, t)} isan orthonormal basisin L? ,

s(the (n,1) € AX(T,alY), neZy, (1.9)
and
e~ (0,0)(be™)(—1,0) = b (0). (1.10)
s(0)

Proof. Lemma 1.3 and Lemmal.4 |mply immediately that (n, 1)} is an orthonormal
basis inL2 Moreover,s(t)e (n,t) € Ldm|]E To prove (1.9) consider a scalar product

(f € A%(F, ay))
£ 1 sy()|[et(n, 1)
Ef @, s@®e” (1) §<[ff<f>}’[s+<r) 1 [feﬂn,f)p
1

[f(t)} [ 1 _s+(t)] (b*”*lKj‘*b“z,, ()
tf(r) s4(1) 1 l‘(b n— 1Ka+p, )(I)

b2”2

— (B"HLf KO >S+,,72n72 =0, Vn=>0.

Ab2"

To prove (1.10), we write

$(0)e™(0,0) = (s(t)e™ (0, 1),k (1)). (1.11)
Due to the Direct Cauchy Theorem, the reproducing ketfiglossesses the following
property:
b'(0) k¥+H(r)
ke+#(Q)  b(t)
Substituting (1.12) in (1.11), we obtain

_ ) 1 si@|[ef—Lo] [ e %m )
S(O)e (0, O) = —Zk‘”/‘(o_) <|:s+(l‘) +1 i| |:t_€+(—1, f)] ’ |:t_(b_lka+“)(t_)

b'(0) K "
= o) Ko (), KD, 2

Using (1.3), we have
b'(0)
kaw(O)K"“f” (o) eﬁo
b (0)
k“+#(O)K°‘+" (0) Ho
B b
k°‘+“(0)K“+” ©

e () =

(1.12)

s(0)e(0,0) =

M (€ + 1 + Hy, p2) O K1) o

M (I + H,, p2)(e+T+H,, p2) kO ko)

{k*+1*(0) — |im06((G—i-[—i—'HSerfz)*lka-;—M’ k%),
e—
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Since the limit (1.7) exists, finally, we get

_ b'(0) b'(0)
5(0)e”(0,0) = —; = .
KZL0  (be)(=1,0)
The lemma is proved. O
Lemma1.6. Let ||sy|| < 1. Then
b'(0)
s axn —
Ky, (O)KS;b,Z(O) =50

Proof. Note that operatore + H,_ ) are invertible.
We use the notation of Lemma 1.5. As we knaw,)e= (0, t) € A%(F, a;l). But,
in the case under consideratiory,sle H* (', a;a_). Hence, the functior™ (0, 1)
itself belongs tmf(r, a_). Therefore, we can project each term om%n“, a_)inthe
relation
t(se™)(—=1,7) = e (0, 1) + 1(s—e™) (O, 7).

On the right-hand side we get
PA%(r,af){e_(O, N+ t(s—e )0, )} = +Hs )e (0,1).
To evaluate the left-hand side, using (1.10), we write

ko= (1)
b(1)ke="1(0)
b/(o) kOl:1/L (1)

= , AT, a”h.
e=(0,0) b(t)k“:l“(O) +e). g Al o)

s(tet(=1,1) = s(0)(be*)(=1,0) +8()

Using (1.12), we get

k(1)

PAi(r’a_){t_(se_l—)(_l’ N} = (0,0

= +Hs_ )e (0, 1).
Thus,
e (0,1)e™(0,0) = (I + H, ) k.
In particular,e (0, 0) = Ky~ (0), and (1.10) becomes the statement of the lemna.

Lemma 1.7. Assume that for some Jacobi matrix J there exists a pair of unitary trans-
forms
FEAZ) — L2, (FRIN@) =z20(F ),

S+

determining each other by the relations
SO(F= 1)) = HFF ) + s:OFT )0),
such that

sFE(I(Z1)) C AL, D). (1.13)
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As before, we put
et(n, 1) = (Fte,)(t), e (n,t) = (F e_pn_1)(1). (1.14)

Then e*(n, 1) has at the origin zero (poles) of multiplicity n, n > 0 (—n, n < 0).
Furthermore, 7+ (12(Z+)) D H? («+), and, hence,

¢*(0,0) > K;£(0). (1.15)
The equality in (1.15) takes place if and only if e*(0, 1) = K¢ ().

Proof. Let us show that the annihilator of the linear spacel’, ) C LSZ+ contains
FHIZ(Z_)). For f € A3(T', &%) ande™ (—n — 1,1), n > 0, we have

@) e (—n—1,1))s, = %<[,J}(f,))} , [sf(,) ‘”1(’)} [Z—i((__'ff_ll’,%h
= (f(),e"(—n — 1, 1) +ts ()t (—n — 1, 1))
= (f(),1(se7)(n,1)).
By (1.13) and (DCT), the last scalar product equals zero. Therefore,
HZ (ay) = clos;z A2, at) C{(FHPEZo)Y = FTa2(zy)).
Now, from the three-term recurrent relation

zO)set (n, 1) = pps)et (n — 1L, 1) + gus@et (n, 1) + ppras@et(n + 1, 1),
(1.16)

and (1.13) it follows that™ (n, 1), n > 0, has in the origin zero, at least of multiplicity
n.
Sincer‘: (1) € FT(%(Z,)), it possesses the decomposition

K@) =) ane’ (1),

nely
Sincee™ (n,0) = 0,n > 0,
K7 (0)
ag =
et (0,0)

in this decomposition. But,
laol® <) " lanl® = [IK{F DI, = 1.
Thus, (1.15) and the lemma are proved

Lemma 1.8 ([10]). Let f € L®(a~2). Then
Paairan TV KD >0, 0 +oo,

where P,z -, isthe orthogonal projection from L7, ;; onto AZ(T", ).
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Proof. Let us denote byA? (r) an extremal function of the problem

AP (0) = supi$(0) : ¢ € HX(T, B), lIgll < 1.

Using properties (1), (2) of a group of Widom type with (DCT), Theorem [7], and
compactness df*, for anye > 0, we can find a finite covering af*,

l(€)
r* = U{,B : dist(B, B;) < n(e)}

j=1
such that
K|

B /3 H .
2‘1 AP0 o < €SB ) < ).

It means that
KPi(0) 2

BB Bj B2 g1p
A KFiy— K <1+1-2A"% "(0)——— < €%,

dist(8, B;) < n(e).
For fixeds one can findig such that
1Py 2 21, (F KDY DI < €, ¥n > no.
Therefore, there exisig such that

1Py a2 a2t FKPDDI < € V> no, 1< j < 1(e).

Now, letn > ng = no(e) and letg; : dist(8;, apn™) < n(e). Forh € A%, a), we
write

(T(fB"K** ") (D), h)

—n

= (0" IR — AT KB @), by + @00 RPN @), B).

Then
—n —-np-1 -
[E@" FIKOR " — A "PiTKPIYY (@), h)|
—n —ng=1_ g,
< IFIIAN K" = AP kP < el £11 A1,
and

@A FRB @), by = |G KB @), b AT ()|
i(LKPH@ IR < €llhll.

= ” nAZ([‘ ‘12}3_1#07’1)

Therefore,
(Preray [T KDY 1 < @+ 11D

Puttingh = Pzr. o, {7(F6" K=" )(D) |, we get

1P 30y T KD < @ 111D,

The lemma is proved. O
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Proposition 1.1. Assume that for some Jacobi matrix J there exists a pair of unitary
transforms

FE2(T) — L2, (FEIf)1) = z20)(FENH)(),

sS40

determining each other by the relations

SOFE 1)) = HFT ) + s:OFT)(0), (1.17)
such that (1.13) holds. Then the following relations are equivalent:
et(n,) ="K " +o(1) inLZ, (1.18)
tpafetm, et —11) —et(n—1, et (n, 1)} = 7 (1), (1.19)
5(0)e™ (0, 0)(be™)(—1,0) = b'(0), (1.20)

where {e* (n, 1)} is defined by (1.14).

Proof. (1.18)= (1.19). It follows from two remarks. First, the form on the left in (1.19)
does not depend on(it is the Wronskian of the recurrence relation (0.7)). Second, the
identity
PO k) (K ) ) — (K b)) = 2 (1)
Ko (0) -
holds for anyx € I'*.

(1.19)= (1.20). Let us introduce the matrix

_|le7(=11t) —e (0,1)
Po= [—6’*(0, et (-1, t)i| : (1.21)

Then (1.17) implies
D7) = —SH)P ().
In particular, with the help of (1.19), we get
f= _t_e+(0, Het(=1,7) —eT(—1,1)et (0, 1)
SO = T e (L 1) — (0. )er (0. 1)
_ —Z/(1)
"~ pole (=1, t)et(=1,t) —e(0,1)et(0, 1)}’

(1.22)

Sinceb(t)e* (-1, 1) are holomorphic functions (in fact, of Smirnov class)

b'(0)

SO = e )L OB )(—L0)

Now, we only have to mention thai(be™)(—1, 0) = (0, 0).

(1.20)= (1.18). This is non—trivial part of the proposition. The main step is to prove
that

—n _+
im L0

2 (1.23)
n—+oo KoA+U (O)
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By Lemma (1.7) we have an estimate from below,

b7"eH)(n,0) = KI5 (0) = {(e + 1 + My, po0) k" 12(0)

1
= Nivws ‘ﬁ"b 5, (0). (1.24)

To get an estimate from above we use (1.20).
Let us note that due to the recurrence relation, the form

pulet (=10 (—n—1,1) —et(n,1)e” (—n, 1)}
also does not depend @nThus, a relation like (1.20) holds for adl

(b~"et)(n, 0) (" ie ) (—n — 1,0) = pu(b~"ieT)(n — 1, 0) (B ie ) (—n — 1, 0)
= ¢7(0,0)(be”)(—1,0) = b'(0)/5(0).
Therefore,
b'(0) 1
s(0) (b*tle)(—n —1,0)
_ PO 1
- S(O) K"‘ M’le(o)
PRAY 1
T 50 {(e + I +H,_p22) k- #"/2(0)
VO Vi+e
S(O) K"‘ urtl (0)’

_p—2n-2

b e, 0) =

(1.25)

wheres. _ :=s_/(1+¢).
With the functions,, o let us associate the functiors s, and the character,

(note thats, 4 is not — s+, buts. + = —5¢ —(s¢/5¢)). It is important thats. (0) and
o + depend contlnuously on
By Lemma 1.6,
b0
© G(O)Ka”“ 0. (1.26)

Ka Mn+1 B (O)

Substituting (1.26) in (1.25), and combining the result with (1.24), we obtain

T ‘Lﬂ;zﬂ 0) < B "eMH(n,0)<VI+e 6((0)) ‘“f”‘ " (0). (1.27)

Lemma 1.8 implies that for any € L°°(T, ajrz) with || f]| < 1 we have

opp"
im e ©
n—+oo Ko+mn™" 0

Indeed,
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n

Ko () — K O)] = | (M ek (1 + M pyan) )|

—n

= [(T(H K@), b (1 + H o)~k

1Az T Y DIIID" (T +H o)~ k|
1
1—1Ifll

A

1Az, 0y (ECD KT DIIEHT ] = 0,

asn — +00.
Also, sincex, 1 depends continuously anand K “+ (0) is continuous on a compact
groupI'*, for anys > 0 we can choose so small that

K%+ (0
S ——— © <1454, Vn
Ko++"(0)
Thus, returning to (1.27), we obtain
b~"e*)(n,0 b~"et)(n,0 0
< lim inf% < lim sup(e—z,gn’)g 11 )(1+8).
Vi+te T nooo KarT(0) T on—ooo K17 (0) 5(0)

Sincee ands are arbitrary small, (1.23) is proved.
Now we are in a position to prove (1.18). Consider the norm of the difference

et (n, ) — B"K 2 = 1+ B K12 = 26eT(n, 1), BTKHT),

+ = +

Since
1K 12 = L (K F(sab" K@),

using Lemma 1.8, we conclude that
||anC(+:u7n||3+ —> :I_7 n — —+00.
Let us evaluate the scalar product

= (se (=n—1,0), [(" K ") (@))

= (se~(—n —1,1), b b LK H"

_ 50" e )(—n —1,0)

- Kallﬂnﬂ ()

_ K(0)
(b~ "et)(n, 0)

(et 0, " K%y

— 1, n — +o0o.

The proposition is proved. O

The following theorem shows that an arbitrary functign possessing (1.1), (1.2),
is the reflection coefficient of a Jacobi matrix of Szeg6 class.
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Theorem 1.1. Letafunctionsy € L®(T, a;?), |Is+|| < 1,51 () = 51 (t), besuchthat

that log(1 — |s4|%) € L. Let an outer function s, s(0) > 0, and s_ be associated to s
by the relations
Is]?=1—|s % s_ = —35.5/5.

Then the system of functions

+ "
e (n,t)=> Ks+b2”

forms an orthonormal basisin L§+. The dual system, defined by
se (mn,t) =tet (—n —1,0) + sy (et (—n — 1, 1),

forms an orthonormal basis in L2 . The subspaces of Lszi, that formed by functions
with vanishing negative Fourier coefficients with respect to these bases, are spaces of
holomor phic character-automor phic forms; moreover,

sfE e AT, ol if f* e cIongispar{ei(n, 1) : n>0}.

Further,
eT(n, 1) ="K " + o(1) in L2

sS4
and with respect to these bases the operator multiplication by z(¢) is a Jacobi matrix J
of Szego class.

Proof. All statements, besides the last one, only summarize results of Lemmas 1.4, 1.5
and Proposition 1.1. To prove thdtis of Szegd class we evaluate its spectral density
p(x).

Using the definition of the resolvent matrix—function, we get
R — (@) =27t (—L 1), e (-1, D), (@) = )7t (0, 1), et (1, D),
@ =110 - let (-1, et 0.0) (@) -2 et @1, 0.0 |

S4 S+

Note that if f* € Lfi are related by (1) f~(t) =1 £ () + s (t) fT(¢) then

( fr@ )‘ f@

—z) -z

Therefore, using Lemma 1.3, we have
R( )_}f et(=1,1) et(0,1) T [et(=L1) e*(0,1) ] Is®)|?dm
DE2 el e e (L] | e @0 e (L] Zza)—z°
and, substituting () from (1.22), we obtain
et(=1,1) et(0,1) 1" [et(=1,1) et (0,1)
R( )_}/ e (0.0) e (=1Ln] [ e (0.0) e (=LD]|Z®)*dm
U2 e Pl (CL et (L) — e~ (0.0eT 0. NZ 20—z

1 f OB ()dL(1) I2/(0)1? |d1]
E

T2 2t -z 27 p2

’
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where
ioy:ﬁéiéggﬁﬁig] (1.28)
Thus,
2np3p(z(1) = S~ H )11 (1)), (1.29)
and
det2rponzin) = — 2O _ e,

p3| detd(1)|2
The theorem is proved.o

Let us note, by the way, thdi(r) (see (1.21)) and(r) are related byp(7) = ®*(r)
and, besides (1.28),

2npdp(z(t) = d L) d ()| (1)) (1.30)

2. Existence and Uniqueness

We start this section with a remark that the spectral meagurdetermines a Jacobi
matrix uniquely, but it is not an arbitrary 2 2 matrix-measure, or, say, a real-valued
(all entries are real) 2 2 matrix—-measure.

Indeed, one can represehtss a two dimensional perturbation of an orthogonal sum
of a pair of one—sided Jacobi matrices, i.e.:

J_ 0
J = + po{ . e-1)eo + po( , eo)e—1,
0 J,

whereJ: = Py, J|I?(Z+). This formula implies that

-1 -1
© [ po rit@] (2.1)
where
r@)=rJo) = (- =) eg e) = f =,
xX—z
d
r(2) =1z, J4) = {(J3 = 9o, co) = _/ %(xz)

Thus, the real-valued matrix-measute is determined by two scalar measurks,
(with the normalizationy” do+ = 1) and a constanto.

In what follows £ (x) € wa denotes the image of € [2(Z) in the spectral repre-

sentation. Recall that
A 1 . 0
e-1= gl =4

THx) = xf(x).

and
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Let {P(z)} be the orthonormal polynomials with respect to the (scalar) measure
doy and . .
PE(x) — PE(2)
0, (2) = / (—Z(dai(x)

X —
(so-called polynomials of the second kind). In these terms

_ +
é\n(x) = |: 1;9+Q(’;C)(x)i| , n=0,

] P (x)
eonaln) = [—poQ;(X)

Now, we prove Theorem 0.5.

(2.2)
] , n>0.

Proof of Theorem 0.5, the uniqueness part. The functione®(0, ¢)/e*(-1,¢) is I'-
automorphic, thus it defines a meromorphic functiofiR E,

e*(0,¢)
Poei(—l, é‘) .

The recurrence relations imply that (z) possesses the same decomposition into a
continued fraction asy. (z). Therefore,

r+(z(¢)) == —

e*(0,7)
poei(_lv C) ’

By Proposition 1.1 the asymptotic (1.18) implies the identity (1.19). Using this identity,
wegetfeT)

r+(z(8)) = — (2.3)

et (0, e (=1, 1) — e (=1, 1)ex (0, 1)
|poet(—1,1)|2

re(z(t) — re(z(t)) = —po
_ —t7/(t)
" |poer(=1,1)2°

This means that an outer part of the functiefi(—1, ¢) is determined uniquely. But
then (2.3) means that an outer part«f(0, ¢) is determined uniquely, and since
b(v)e* (-1, ¢) ande* (0, ¢) are of Smirnov class, these functions are determined up
to a common inner factot . (¢), i.e.,

e=(0,¢) = AL ()E*(0,¢) ande™ (—1,¢) = AL(£)éE (-1, ¢), (2.9)

where the inner parts (0, ¢), é*(—1, ¢) are relatively prime.
To show thatA(¢) = 1, we use (0.23), (0.24). Since

s)eT(0,1) = te™ (1, 1) + s+ (et (—1, 1),
oL L (2.5)
s(t)eT(=1,1) =1e¥(0,1) + 5+(1)e™ (0, 1),

we have

sH{eT (=1, et (=1, 1) — €T (0, 1)e® (0, 1)}
= i{eT (0, e (=1, 1) — eT (=1, D)e™ (0, 1)}.



590 A. Volberg, P. Yuditskii

Substituting (2.4) and using the symmetry
0,1 =5 (0.1), & (-Ln =& (-1,
we obtain
s(Ob2(1){eT (=1, et (=1, 1) — T (0, 1)é* (0, 1)}
= IAL(D?(1){eF(0, N&* (=1, 1) — (=1, 1)é™ (0, 1)}
= —b* ()7 ({poAr=D) "

Since the first expression here is a function of Smirnov clas#%iis an outer function,
we conclude thaf\ 4 (¢) is a constant.
Since

fo @) = —S(H) D) (2.6)

with ®(¢) defined by (1.21)5(z) is also determined in a unique way. At last, by the
recurrence relations we get the same conclusion with respect to all funtioms ¢)},
notonly forn = —-1,0. O

Proof of Theorem 0.5, the existence part. The key instrument is the following theo-
rem [11]: if r(z) is a meromorphic function i€ \ E such that Im(z)/Imz > 0 and
poles ofr(z(¢)) satisfy the Blaschke condition, thexz(¢)) is a function of bounded
characteristic ifD without a singular component in the multiplicative representation.
Let us show that poles of. (z(¢)) satisfy the Blaschke condition. Diagonal entries
R_1,_1(z) andRg,0(z) of the resolvent matrix—functioR(z) are holomorphicirC \ E.
By the theorem mentioned above they are functions of bounded characteristic. Using
the force of (2.1),
~1/R_11() = —1/r-(2) + p§rs @),
—1/Ro0(z) = =1/r4(2) + pgr-(2).
This means that poles of are subsets of poles of R_1 _1 and I/ Ro 0. Thusr+(z(£))

are functions of bounded characteristic.
Now, let us use the Szegé condition log detRtx(r)) € L1. Since

detimR™2(z(1)) = | detR~1(z(r))|2 det ImR(z(1)),
using again (2.1), we have
logIm r=%(z(1)) + logIm r;(z(1)) = logdetImR~1(z(1)) € L.

Therefore, each of the functions log im(z(r)) belongs toL. Thus we can represent
r+(z) (uniquely) in the form

e*(0,¢)
POei(_L é‘) ’

wheree® (0, ¢) andb(¢)e* (-1, ¢) are functions of Smirnov class with coprime inner
parts (in fact, they are Blaschke products) such that

Tpofe (0, et (=1, 7) — et (=1, 1)e*(0,7)} = 7 (1), (2.7)

r+(z(¢)) = —
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ande® (0, 0) > 0, (be*)(—1, 0) > 0. Note that

e*(0,0)

PO= et (—1.0)°

As soon as the functionst (0, ¢) ande® (-1, ¢) have been constructed we are able
to introduceS(r) andF* in their terms.
First, let us write down an expression for the resolvent matrix-function:

e~ (=10 -1

—DP0—= po
R(z(¢) = OO
pPo —P0F0.0)

= —(po®) W = —¥(pod) T,

(2.8)

where® and® are as in (1.21) and (1.28) respectively, and

vo =30 =00 .0 |

Therefore,
PIRGE(D) — R* ()} = =17 ()@ ()@ ™H(1) = —1Z S (D H1), (2.9)
since (see (2.7))
PolWd* — dU*} = po{d* T — ¥* P} =17,
From (2.9) andd*(r) = ®(7) we get immediately that the matrix—functigfiz)
defined by (2.6) is unitary—valued. Let us show that its elem@ntis an outer function.

In fact, we have to show that the functibf(¢ ) detd (¢) is an outer function (see (1.22)).
To this end let us use the representation for the diagonal entrie&pf{see (2.8))

€+(—1, ;)e_(ov é‘)

R_1,-1(z(0)) = — podet®(s)
e (=L 0et(0.9)
R0,0(Z@‘)) - Po det‘D(C) .

Let A be an inner part ab2(¢) det® (7). SinceRp,0(z(¢)) is of Smirnov classA is
a divisor ofe™ (=1, ¢)e™ (0, ¢). If A is not trivial, then it has a non—trivial divisaxy
that is a divisor of one of these functions, say(—1, ¢). Sincee™ (-1, ¢) ande™ (0, )
are coprime (and\1 is a divisor ofb2(¢) detd(¢)), the A1 is a divisor ofe™ (0, ¢),
and, therefore, it is not a divisor ef" (—1, ¢). Thus,A1 is not a divisor of the product
et(—1,¢)e™ (0, ¢). Butthis means thak_1 _1(z(¢)) is not of Smirnov class. We arrive
at a contradiction, henc# is a constant.

We defineF* by the formulas

(FT @0 =[er(=11) et (0, 0] f(z(1)),

R (2.10)
F~H@ = [0, 1) e (=1,0] fz)).
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Evidently, (FXJf)(t) = z(t)(F* f)(t) and by (2.6), (0.23) are fulfilled. Using the
formula for the spectral densigy(x) = %Im R(x) and (2.9), we have

~ N 1 ~ - - N
/E [0 poydx f) =3 /E F* @) (po®)* L(po®) "1 f (z(0)) |12/ (1) 12dm (1).

Since
& L) — 1 |:e+(—1, 1) e+(0,t):|
detd@) L ¢ 0.0) e (=L 0]’
we obtain

N 1 _
A2 =11f1172 = SUSFT I +1IsF f117)
= IFFfI2, = IIF fI12.

ThusF is an isometry, and since this map is invertible,

FaGen] _ __po [ #et©0.D —e (©0,n0][e®
foz@) |~ @) [t (=L D et (=L | |1g® ]

whereg = F7 f, itis a unitary map.
Further, using (2.2), fot > 0 we have

+ [+ + _pOQI(Z(C))
Due to the well known properties of orthogonal polynomials these functions have no
singularity atthe origin and hence they are functions of Smirnov class. This easily implies
(0.24).
At last, our maps possess properties (1.19) (or (1.20)), in force of Proposition 1.1,
(0.25) holds. The theorem is provedo

Theorem 2.1. Lets; € L®(T, a2, |Is+1| < 1,54 (1) = s4.(1), satisfylog(1— |54 |?) €
L. Then the reflection coefficient s, determines a Jacobi matrix of Szegé class in a
unique way if and only if

s(0)Ky; (O)K“*“ (0) = b'(0). (2.11)

Proof. Assume on the contrary that

S(O)K (O)Ks s ",(0) # b'(0). (2.12)
We construct two Jacobi matrices. First, we consider the basis
et =b"OK Y, 0, (2.13)

and byJ we denote the operator multiplication by) in L2 with respect to this basis

(Lemma 1.4). Then, starting with the ba§tg (t)K (t)} in Lff, we introduce the
basis

s@®eéT(—n —1, 1 =i0"K; )(t)+s OG"K bz,l ). (2.14)
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By J we denote the operator multiplication bg) in L§+ with respecttde™ (n, 1)}. By
Lemma 1.5,
5(0)e*(0,0K.),(0) = b'(0).

Thus (see (2.12)k1(0,0) # T (0, 0). Due to the uniqueness part of Theorem 0.5,
J # J.The “only if” part is proved.

Now, let (2.11) hold, and lef be a Jacobi matrix of Szegd class afd be its
representations iﬁfi. By Lemma 1.7,

b (0) 1 _bo 1

ot + _
K (0) =e7(0,0) = 5(0) (beT)(=1,0) ~ 5(0) K.?fhliz(o).

Then (2.11) implies that, in face™ (0, 0) = K;.*(0) and (be™)(—1,0) = K.7",(0),
thus, due to a conclusion of Lemma 1.7, i

0,0 =KE@), eT(=10 =b"20) KT, (0).

—2
s¢b

Recall that these functions determine the functien&) and the coefficienpg (see
(2.3)), and they, in their turn, determide The theorem is proved.o

Corollary 2.1. Let J bea Jacobi matrix of Szegd classwith a homogeneous spectrum E.
Let p (x) bethedensity of its spectral measureand S(¢) beits scattering matrix-function.
If

/ p L(x)dx < oo, (2.15)
E

then there is no other Jacobi matrix of Szegd class with the same scattering matrix-
function S(z).

Proof. By virtue of (1.29), (2.15) is equivalent to
/ O(1)D*(t) dm < oo,
E
that ise® (0, ) ande® (—1, r) belong toLf]m“E. Then word by word repetition of argu-
ments in the proof of Lemma 1.6 gives us
(I + Hy,)e™ (0,1)e*(0,0) = k** (1),
(I +H,y, p-2)(be™)(—1, 1) (be™)(—1, 0) = k¥ (1).

Thus,e*(0, 0) = Ks; (0) and(be®)(—1,0) = Kj‘fh’fz(O). Since, generally,

5(0)e™(0, 0)(be™)(~1,0) = b'(0),
(2.11) holds, the corollary is proved

To finish this section we give an example of a scattering matrix-function, which does
not determine a Jacobi matrix of Szego class. Moreover, in this example, the associated
operatorg! + H,, ) are invertible.
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Example. Let v+ € H®(T), |lv+]|| < 1, v+(f) = v(), v+=(0) = 0. Define outer
functionsu, u4+ (0) > 0, by

lus|? + vel® = 1.
Then, we put
S:?: = —ﬁiui/ﬁi.

At last,

S_ S s2 0 u_ 0 v_ 0 ru_ o
so=5 0 =[5.8]+ [ 2)el-[o]et [0

where

andA is an inner function froni ("), A(f) = A(¢).
In this caseH,, = Hsi, since their symbols differ by functions frof>° (T, oef),
and thereforé/ + 7, ) are invertible. On the other hand, the coefficierst of the form

. usu_(1—A)/2
Sl v )A+A)/2+vv A’

and because of the factgt — A)/2, 1/s does not belong té7*° (T, ¢y« _).
The simplest choice of parameters:

E = [_29 2]’ U:t(t) = a:l:ta at € (Os 1)5
A(t) is a Blaschke product, dey > 1, gives us an example whe#e (—1, ¢), defined
by (2.14), does not belong & (this is direct calculation), at the same timie(—1, 1),
defined by (2.13), belongs .
3. A Weighted Hilbert Transform

By $ we denote the transform

g@)d

(ﬁg)(z)sz r. zeC\E. (3.1)

primarily defined on integrable 2D vector-functions.

Lemma3.1. Let J be of Szego class and F* give its scattering representation in the
model spaces L2, . Then

[flﬁ] (©) = Po®(©) (50 NHEE), (32)

for any finitevector f = f~ @ f+ € 12(Z) = 12(Z_) ® 12(Z.).
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Proof. LetP,(z) denote the™™ matrix orthonormal polynomial with respect the spectral
measurelo . Recall that

) _ _ +
Pu(2) = [é—n—l(z) én(Z)] = [_[fng(E)(Z) l;)%/;)(z)} s

and, analogically to the scalar case,

M:[Qm 0 ] (3.3)
Z

Qn(z) 3:/d0(x) . 0 Q+(Z) .

Based on (3.3), we have

,ﬁn(x) do(x)
(b d == q) n
Po (C)/ G(X)Z(g)_x Po (C){ 20— P (z(2))
- / dor ) PrEE) = Pa)
z(§) —x

= — po®(O)RE(E))Pu(z(£)) — po®(£) 0 (2(£)).

Using (2.8) and Definition (2.10), we get

dx = V() Pu(z(2)) — po®(£)On(2(2))

_|le(m, ) O
- 0 e

_[Fewn@) 0
0 (Fren®)]

p(x) [6-n-1(x) éx(x)]
po®
(C)f z2(8) —x

In fact, this finishes the proof.o

Theorem 3.1. Let p(x) be the spectral density of a Jacobi matrix J of Szegé class and
s+ (¢) bethe reflection coefficient. Then the following statements are equivalent:

1. Thereexist C < oo such that
/E (9" (x — i0)p™ 2 (x)(Hg)(x — i0) dx
+ / (9H2)*(x +i0)p 1 (x)(Hg)(x +i0) dx
E

= C/Eg*(X)p_l(x)g(x)dx. (3.4)

2. s4 determines J and the operators (I + H,, ) areinvertible.
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Proof. 1 = 2. Since (see (1.30))
WF IR+ IFT 2= / (900 HY @(0)) (po®)* (1) (po®@) () {H(p )} (z(1)) dm

d
/{ﬁ(pf)} (Z(t))_p_l(z(t)){ﬁ(pf)}(z(t))|Z (¢ )|| t|

1)\? . )
- <2_> / D NHY @ —i0p @) (H(pH}(x — i0)dx

T E

1)\? R )
* (E) / D NHY @ +i0p @) (H(p H}(x +i0) dx
A2, (3.5)

[ F*p() fx)dx =

= @2 (2n )2

we getF* f* € AX(T, ). Thus, F{12(Z1)} = H? (+). By Lemma 1.7 and The-
orem 2.1 we come to the conclusion thatdetermines/. Further, by (3.5)

WF~FTIP+IF FH1% < 2 )z{llf 12+ 11412

C
=—{IIF f~ FrFH2 ).
(zﬂ)z{ll FTIE +IFTFH12)
Using againF* f* € A%(I", 1), we can represent the last norms in the form
IF~foIP+1IFF 17

C
< W{«I FHNF L F ) AT +HOFIHFH D)L (3.6)

This proves the second statement in 2.
2 = 1. Recall thatH2 (a4) = cIost A{(F a4), but in the case under considera-

tion, the norm mH2 (x4) is equivalent to the norm mz(r o4),i.e.:
h e HZ (ax) = h € A3, o).

Further, since,. determines/, by Lemma 1.7, we hav&={1?(Z1)} = HZ (ax). So,
starting with (3.6) we obtain (3.4).0

4, Matrix A, on Homogeneous Sets

In this section our goal is to show that one can substitute (3.4) by sfeondition. We
do this in a bit more general setting than we need.

Let E be a homogeneous set. Throughout this sed®ipidenotes the orthoprojector
from the vector—valued2(C") onto H2(C") in the upper halfplane. We are interested
in the boundedness of the weighted transform

w¥2p, w2y L2(C") — xpL?(C"), 4.1)

whereW is a weight onE and g is the characteristic function of the sgt
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Here is an analog of the matrik, condition

1/2 —-1,1/2
sup [1(W),/% (WTHZ Il < oo, (4.2)
x€E,0<6<1 !
wherel(, 5 := (x — 8, x + §) and
1
(W) = W (t) dt.

|I(X,5)| I 5NE
This supremum will be calle@; £ (W).

Theorem 4.1. The operator (4.1) isbounded if and only if Q2 (W) < oo.
Proof of necessity. With an arbitraryo € C, we associate a subspakg, = H 2(CmHe
b, H?(C") of the Hardy spaceh,,(z) = % It is well known, that

Z
Pk, = P+ — by Piby,
and
(P, [ 8) 2@y = (P f)(20), (P48)(z0)cr-
Because of the first of these relations we have

[(WY2Pg, W Y21 8)l < 2011xe fII 1 xegll.
Now, using the second one we get

(P W2 £)(z0), (P WY28)(z0))| < 2011xE fIllIxEEI. (4.3)

Let us substitute
f= w25 g=w2__ £ yec
X —20 X =20
in (4.3). This gives us

WY, (Whaom| < 2011 (W1 228 (W) 221,

where(W)., denotes an average with the Poisson kernel,
1 Im zo
(W)= — / W——dx.
T lx — zol

Thus we proved an inequality with the Poisson averages

(W) <20(Ww™hH L (4.9

20
At last let us note that

Im zg c

— 20 > C . T =IResim o)
x —z02 = |1 (Rezo.Im z0)

with an absolute and positive constant herefore (4.4) implies (4.2).



598 A. Volberg, P. Yuditskii

Lemmad4.l. If I isacentered at the E interval and zg is the center of the square built
on /, then

We A2(E) = (W) = C(E, Q2 e(W)(W);. (4.5)
Proof. First we note that fok = 2/7,
M NE]=nlAl| = 21| = 2[I NE|

and therefor¢(Al \ I) N E| > |I N E|. Let us show that

2
S <1+ 2an) W(I) for W e An(E). (4.6)
Integrating the inequality
w1
" w]o

over(Al \ I) N E we get

W=\ D) (A \1)NE| -0
I(GINDNE| WQIND |=

Therefore

W=l |AI\D)NE| -0
(AIN\NDNE| WA — W) | =

or
W) — W) > [\ DNERWrony > 1 1nEPw=tan)
Using (4.2) we obtain

woan —way= LOEL won s 1
(D) =W = G WD =

w(I).

To prove (4.5), using

Im zo c 1 k
|x —Z0|2 = m Z )\Tkx)‘kl’ Al = I(Rezo,)»klm 20)?

we write the following chain of inequalities:
c 1 2k
(Whg < m > 5w WD
QZI I2
<
alldl Z

2 2
< <1+—ng2) 1wy

2 2 \ "k
Cﬁ% (1+ka2) (W),

= —wlokn)t
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Proof of sufficiency. We want to prove that (4.2) suffices fé/2P, W—1/2in (4.1) to
be bounded. Fi¥, g € xzL?(C"). We need to show

/@ (W2 7Y @), (P WH29) (@) en | Im 2dA) = CII gl
N
In other words, introducing a Stolz cofg and

S@) = /F (LW TH21) @), (P WH2g) @) | dAG)

one needs to prove that

/S(l)dtSCIIfIIIIgII- (4.7)

We follow closely the lines of the proof in [13]. Let us consider a nonnegative function
h(r) and

Shiny (1) = / (W22 1) @), (P WH20) (D))en | dA),
,h(1)

where
Ciney =T N {z: Imz < k(1))

Let us note that

fS(t) dt < C/Sh(t) dt (4.8)
if the function (¢) has the following property:
VICR |{tel: h(t)>|I}] >alll. (4.9)

Let us choosé to be maximal such that
Shiy () < BIM||£11P)YP=(6)(M||g11P)Y P+ (1), (4.10)

whereB, p, € (1, 2) will be chosen a bit later antff denotes the maximal function

1
(Mf)(x) =sup——— |f(D)]ds.
50 [T (x, 8| J1¢x.5)
If this i satisfies (4.9), then (4.8) and (4.10) imply what we need.
To chooseB, p, and to prove thak satisfies (4.9) we follow the algorithm below.
Let Ip be an arbitrary interval on the real axis. We will consider two caseshZ # ¢
and 2p N E = 0.

In the first case we fix an intervdlcentered af¥ such thatlo C I and|I| < 3|Ip|.
1/2
Letfi=f-xa2r,81 =g xazr andfz2 = f — f1, g2 = g — g1. Denoted; = (W>/ :

Consider

1/2
tel, SA’(fi)(t)=</ II(P+A1W1/2ﬁ)/||2dA(z)> . i=12
IWRV]

1/2
1 -~ .
rel, SN (gi>(z>=</ ||<P+A,1W1/2gi)/||2dA(z>> . i=12
Te
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We will fix later o = oz(Qz,E(W), n) > 1. Now,

1 _ o
o fl (5% o) ar < £ . / 1A W20 di

C ’ - o
1?‘; & 8 <||g(r>||Z||W1/2(r>A,1e,-||> di

l
< 2 ([ g f”dr) - (/ W20 A 20 ar)

(4.11)

Here(2+¢)~1+ (2—¢€)~1 = 1. Notice that for every vectar € C” the scalar function
t — ||W()Y2x|| is uniformly in the scalari»(E). In particular, there exists such an
€o > 0 that we have the inverse Holder inequality for all such functions uniformly:

1
1 Treg
VI centered at € E (m/ [|W (1)1 2x| %<0 dt) °
1

1
1 3
<C (ITI / ||W(t)1/2x||2dt) . (4.12)
i
Let us choose = 9 (€ = Zi‘)éo), a=1+ ﬁ then we have
24+ e)a < 2+ ¢, (4.13)
2—-8a < 2. (4.14)

We use (4.13) and the inverse Holder inequality (4.12) in (4.11) to rewrite it as

1 a 1/
<| i / (s o) dr)
sC(a,n>(|I|f g1 @ €>“dr>( e <|1|/ IWY2(0) A7 e, | dr)2

2—5 1
§C1(a,n)<|1|/ ()] f”dr)( * <(W>;1/2<W)21(W>]1/2ei,ei>2

=1

M:

i

S

< Ca(en, Q2. (W) inf (Mllgll™) 7 ),
wherep, = (2 — é)a < 2. We used the doubling property &f: (W)I_l/z(W)ZI
(W),_l/2 < 2%, the inequality which can be proved in the same way as (4.6).

The last inequality ensures that for anyr < (0, 1), using Kolmogorov-type in-
equalities we can find a subsétz, Io) C Io, |E(t, Ip)| > |Io| — t%|I| > (1— 3t%)| 1|
such that

Ca(a,n, Q2 g(W))
T

feE( )= S (e < inf (Mllgl|™) 7 (). ()
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Similarly, for everyr there exists a séi(z, Ip), |E(z, Ip)| > (1—3t%)|lp| such that

Cla,n, Q2 (W)

teE(t.lo)= SM(f)) < mf (Mllfllp*)"* . (9

Here we use the same calculations and the fact that fof aeyntered af,

1/2

(W) AWy (W) )2 < 202,

Now let us work withfs, g2. Letc; be the center of the square built oh 2Jsing the
representation

/ 1 Aw12
<P+A1W_1/2f2> (2) = %/%d& Imz >0, (4.15)

clearly, we obtain for every e I,

1/2

(/F 1(Pearw=2p) @l dA(Z)) <cfﬁumIW‘”Zfz)(x)de.
|11

(4.16)

Therefore, using the inverse Holder inequality (4.12), we have again

1/2
( [ i(peaiweg) <z>||2dA(z>>
e

Im ¢y _
<CZ/ rpwrill Y24 eill 1] f2ll dx

1 1
Im ¢; _ 2+e Im ¢; - 7-¢
<012</ Pyl Y24 e ||2+€dx) (fmlllelz 6dx>

1

: 2, \\Z?
inf (MILF1275 @) ™ (4.17)

NI

< CZZ(WV)}/Z(W*HC,<W>}/2e,~, ei)
i=1

Here 2+ ¢ is close to 2€ < ¢g). Finally, using Lemma 4.1 we estimate the last sum by
a constant:

/ 1/2 A
(/ 1(Pra w22 p) (z)||2dA(z)> < Cn B, Q) inf (MU )
o n
That is

A
SY(F2)(0) = Cou E. Q) int (MIfIP )™, Vrel, )

the same foss47" (g2)(1).
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Combining all (*) inequalities we obtain that with a suitaldle= C(n, E, W),

Si(t) = f
Con

< SYNHOSAT (9)1) < C2(MIIFIP )7 (MIlglP*@)>  (4.18)

at least on a quarter dp. Of course Sy, (r) < S;(z).

In the case &y N E = @ we fix an intervall centered afE such thatly c I and
dist(lo, E) > |I|/6. Letc; be the center of the square built &nWe can use again a
representation of the form (4.15):

/ -1/2
(P+A1W_1/2f) (2) = %/%m, Imz > 0,

(PLWY2 Y (2), (P WY28) (2))on | dA(2)

to obtain an analog of (4.16),

1/2
/ Im ¢
/ 1(Pearw™Y27) @IPda@))  =C / AW )0l dx
Ft,l[\ |X - C[|
for all + € Ip. Continuing in this way we get

SA(f)(t) < C(n, E, Q))icr;fl (M||f||”*(x))"%« , Vtel.

The same fos47 " (¢)(¢). Thus

1 1
S1(t) < C(n, E, Q)2 (M| f11P=()) 7+ (M]|gl|P* (1)) 7= (4.19)

everywhere orp.
Let B be the largest constant in (4.18), (4.19). We have already chgsen2. Now
we introduce the following functioh(z):
1 1
h(t) = suplh : Sp(t) < B (M||f[|P*(@)) 7 (M]|g||P*(2)) 7 }.
What we proved can be summarized in:

if Ip: 2IpNE #@ then h(t) > |Ig] on aquarter of measure &f,
if Ip: 2IpNE =@ then h(t) > |Ip| Vt e Ip.
In any case,

1
3 | lepaw=22 ey w2y @

ImzdA(z
2 zdA(2)

<[ [ w2y, w2y @ dacdr
R r‘1,11(1)

< BA(MIIfIIP*(t))P% (MllglP ()7 dt

1 1
<B (/R (M1 £11P+(0)) 7 dr>2 (A (MllglP (1)) 7 dt)z
1 1
2 2 2 2
< BC(py) (f 1l (r)dr) (/ lell (z)dr)
R R
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becausepz—* > 1, and we can use the Hardy-Littlewood maximal theorem. The theorem
is proved. O

5. The Inver se Scattering Problem and a Riemann—Hilbert Problem

Reduction of an inverse scattering problem to Riemann—Hilbert Problem is, maybe,
the most popular approach (see, e.g. [14]). In this section, we show what kind of a
Riemann-Hilbert problem is associated with the problem under consideration.

Letus defina/—b2z/(¢) as the square root of an outer function suchtab?z’ (0) >
0. Put

/_b2 /
V=7(@©¢) = T&Z)@' (5.1)

In this casen/—7/(7) = /=2 (¢). LetE_ = {t € E : Ims < O}. Then—tz/(r) =
il ()], t € E_. Thus,

HV =2 ()Y = iV =2 (OV=7 @) = iV =7 (V=7 (), teE_,
or
iV —7/(F) = —in—7(t), teE_. (5.2)

Besides,
v=7|lyl =e(y)v-7(),

wheree e T'*, €2 = 1. But, in fact, the groud is defined up to a choice of a
half—periode € I'*. So, we may assume that

=2yl =+v-2(). (5.3)

Proposition 5.1. Let E = [bo, ao] \ Uj>1(a;, b;) be a homogeneous set. Then

M) = 8L
v =2'(¢)
is a holomorphic matrix function in C \ [bg, ao] satisfying the following RHP:
IT(x —i0) =|:a0’j “S,j] IM(x +i0), x € (a;, b)), (5.4)
M(x —i0) =—iT(x)I(x +i0), x€kE, (5.5)

where X (z(t)) := S(¢), t € E_, with the normalization at infinity:

1

14... —44..07— O

“<z>=[_e+... 11...““”5“” 1 ] (5.6)
Jas(0)

Z
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Proof. Equation (5.4) follows from Equation (5.3). (5.5) follows from (5.2) and (2.6).
To prove (5.6), we represenl(z) in the form

1+--- _%4_... 010
H(Z):|:_l_7+... 1_|_...i||:0c2j|'

Z

Then, we note that

. I .
c1c2 = detI(00) = < (=1 e’ ( 1’42 e (0,0)e (O,C)’ _ 1 7
—2(9) ¢=0 Pos(0)

(5.7)
and

acz _ber _ 2(§)e*(0,9)

= = no. 5.8
c1 c2 e*(=1,¢) [,—0 po 8

Solving together (5.7), (5.8), we get (5.6)a

We want to finish this section with the following discussion.
As an initial data for the inverse scattering problem in this paper we used a character
automorphic function; € L*°(T, af) and a character, € I'*. Infact, this set of data
can be defined uniquely by a functien. (x) on the spectral sef (o4 (z(¢)) = s4+(¢),
t € E_) and a system of unimodular multipliefs. ;}, each factor ; is associated
with a spectral gaga;, b;). In terms ofo (x) and{«. ;} one can define a2 2 matrix
function Z(x) over interval[bg, ag]. Then one has to solve a RHP (5.4), (5.5) with
a normalization condition (5.6) at infinity. The spectral dengity) (and therefore/
itself) is determined via a solution of the RHP by

ot = 2w abIT*1I.

However, when solving the RHP, one carefully has to specify a class of analytic functions
to which IT(z) belongs. Therefore, in any case, one has to introduce this or that analog
of the functional spacé?(T', ).
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