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Abstract: When solving the inverse scattering problem for a discrete Sturm–Liouville
operator with a rapidly decreasing potential, one gets reflection coefficientss± and
invertible operatorsI +Hs± , whereHs± is the Hankel operator related to the symbol
s±. The Marchenko–Faddeev theorem [8] (in the continuous case, for the discrete case
see [4, 6]), guarantees the uniqueness of the solution of the inverse scattering problem.
In this article we ask the following natural question – can one find a precise condition
guaranteeing that the inverse scattering problem is uniquely solvable and that operators
I +Hs± are invertible? Can one claim that uniqueness implies invertibility or vise versa?

Moreover, we are interested here not only in the case of decreasing potential but
also in the case of asymptotically almost periodic potentials. So we merge here two
mostly developed cases of the inverse problem for Sturm–Liouville operators: the inverse
problem with (almost) periodic potential and the inverse problem with the fast decreasing
potential.

Main Results

The asymptotics of polynomials orthogonal on a homogeneous set, which we described
earlier [10], indicated strongly that there should be a scattering theory for Jacobi ma-
trices with an almost periodic background as it exists in the classical case of a constant
background. Note that in this case left and right asymptotics are not necessarily the same
almost periodic coefficient sequences, but they are of the same spectral class. In this work,
we present all principal ingredients of such a theory: reflection/transmission coefficients,
Gelfand–Levitan–Marchenko transformation operators, a Riemann–Hilbert problem re-
lated to the inverse scattering problem. Now we can say finally that the reflectionless
Jacobi matrices with homogeneous spectrum are those whose reflection coefficient is
zero.



568 A. Volberg, P. Yuditskii

Moreover, we extend the theory in depth and show that a reflection coefficient de-
termines uniquely a Jacobi matrix of the Szegö class, and both transformation operators
are invertible if and only if the spectral density satisfies the matrixA2 condition [13].

Concerning theA2 condition in the inverse scattering, we have to mention, at least
as indirect references, [9, Chapter 2, Sect. 4] and [2]. Generally references to stationary
scattering and inverse scattering problems in connection with spatial asymptotics can
be found in [5], where explicit expressions of reflection and transmission coefficients in
terms of Weyl functions and phases, asymptotic wave functions were given. Reference
[12] gives a complete introduction to Jacobi operators, their spectral and perturbation
theories.

Let J be a Jacobi matrix defining a bounded self–adjoint operator onl2(Z):

Jen = pnen−1+ qnen + pn+1en+1, n ∈ Z, (0.1)

where{en} is the standard basis inl2(Z), pn > 0. The resolvent matrix-function is
defined by the relation

R(z) = R(z, J ) = E∗(J − z)−1E, (0.2)

whereE : C2 → l2(Z) in such a way that

E
[
c−1
c0

]
= e−1c−1+ e0c0.

This matrix-function possesses an integral representation

R(z) =
∫

dσ

x − z (0.3)

with a 2× 2 matrix-measure having compact support onR. J is unitary equivalent to
the operator multiplication by an independent variable on

L2
dσ =

{
f =

[
f−1(x)

f0(x)

]
:
∫
f ∗ dσ f <∞

}
.

The spectrum ofJ is called absolutely continuous if the measuredσ is absolutely
continuous with respect to the Lebesgue measure on the real axis,

dσ(x) = ρ(x) dx. (0.4)

Let J0 be a Jacobi matrix with constant coefficients,pn = 1, qn = 0 (the so-called
Chebyshev matrix). It has the following functional representation, besides the general
one mentioned above. Note that the resolvent set ofJ0 is the domainC̄ \ [−2,2]. Let
z(ζ ) : D → C̄ \ [−2,2] be a uniformization of this domain,z(ζ ) = 1/ζ + ζ . With
respect to the standard basis{tn}n∈Z in

L2 =
{
f (t) :

∫
T

|f |2 dm
}
,

the matrix of the operator of multiplication byz(t), t ∈ T, is the Jacobi matrixJ0, since
z(t)tn = tn−1+ tn+1.

The famous Bernstein–Szegö theorem implies the following proposition (for a matrix
modification of the Szegö condition, see [1]).
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Proposition 0.1. Let J be a Jacobi matrix whose spectrum is an interval [−2,2]. As-
sume that the spectrum is absolutely continuous and the density of the spectral measure
satisfies the condition

log detρ(z(t)) ∈ L1. (0.5)

Then

pn→ 1, qn→ 0, n→±∞. (0.6)

Moreover, there exist generalized eigenvectors

pne
+(n− 1, t)+ qne+(n, t)+ pn+1e

+(n+ 1, t) = z(t)e+(n, t),
pne

−(−n, t)+ qne−(−n− 1, t)+ pn+1e
−(−n− 2, t) = z(t)e−(−n− 1, t),

(0.7)

such that the following asymptotics hold true:

s(t)e±(n, t) =s(t)tn + o(1), n→+∞,
s(t)e±(n, t) =tn + s∓(t)t−n−1+ o(1), n→−∞ (0.8)

in L2.

To clarify the meaning of the words “generalized eigenvectors”, we need some defi-
nitions and notation.

The matrix

S(t) =
[
s− s

s s+

]
(t) (0.9)

is called the scattering matrix-function. It is a unitary-valued matrix-function with the
following symmetry property:

S∗(t̄) = S(t), (0.10)

and analytic property:

s(t) is boundary values of an outer function. (0.11)

We still denote bys(ζ ), ζ ∈ D, the values of the function inside the disk, and subse-
quently, we assume thats meets the normalization conditions(0) > 0.

In fact, this means that each of the entriess± (the so-called reflection coefficient)
determines the matrixS(t) in a unique way. Indeed, since

|s(t)|2+ |s±(t)|2 = 1, (0.12)

using (0.11), we have

s(ζ ) = e 1
2

∫
T

t+ζ
t−ζ log{1−|s±(t)|2} dm.

Then, we can solve fors∓ the relation

s̄+s + s̄s− = 0. (0.13)
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With the functions± we associate the metric

||f ||2s± =
1

2

〈[
1 s±(t)

s±(t) 1

] [
f (t)

t̄f (t̄)

]
,

[
f (t)

t̄f (t̄)

]〉
= 〈f (t)+ t̄ (s±f )(t̄), f (t)〉, f ∈ L2.

Note that the conditions (0.11), (0.12) guarantee that||f ||s± = 0 impliesf = 0. We
denote byL2

dm,s± orL2
s± (for shortness) the closure ofL2 with respect to this new metric.

The following relation sets a unitary map fromL2
s+ toL2

s− :

s(t)f−(t) = t̄f+(t̄)+ s+(t)f+(t),

moreover, in this case,

||f+||2s+ = ||f−||2s− =
1

2
{||sf+||2+ ||sf−||2},

and the inverse map is of the form

s(t)f+(t) = t̄f−(t̄)+ s−(t)f−(t).

We say that a Jacobi matrixJ with the spectrum[−2,2] is of Szegö class if its spectral
measuredσ satisfies (0.4), (0.5).

Theorem 0.1. Let J be a Jacobi matrix of Szegö class with the spectrum E = [−2,2].
Then J possesses the scattering representation, i.e.: there exists a unique unitary-valued
matrix-function S(t) of the form (0.9) with the properties: (0.10), (0.11), and a unique
pair of Fourier transforms

F± : l2(Z)→ L2
s± , (F±Jf )(t) = z(t)(F±f )(t), (0.14)

determining each other by the relations

s(t)(F±f )(t) = t̄ (F∓f )(t̄)+ s∓(t)(F∓f )(t), (0.15)

and having the following analytic properties

sF±(l2(Z±)) ⊂ H 2, (0.16)

and asymptotic properties

e±(n, t) = tn + o(1) in L2
s± , n→+∞, (0.17)

where

e+(n, t) = (F+en)(t), e−(n, t) = (F−e−n−1)(t).

(As before, {en} is the standard basis in l2(Z)).
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Remark 0.1. Show that (0.17) is equivalent to (0.8). Due to[
1 s̄±
s± 1

]
=
[|s|2 0

0 0

]
+
[
s̄±
1

] [
s± 1

]
, (0.18)

(0.17) is equivalent to (n→+∞)

s(t)e±(n, t) = s(t)tn + o(1) in L2,

s±(t)e±(n, t)+ t̄ e±(n, t̄) = s±(t)tn + t̄ n+1+ o(1) in L2.

Using (0.15), we rewrite the second relation into the form

s(t)e∓(−n− 1, t) = t−n−1+ s±(t)tn + o(1) in L2.

Substitutingn := −n− 1, we get the second relation of (0.8).

A fundamental question is how to recover the Jacobi matrix from the scattering matrix,
in fact, from the reflection coefficients+ (or s−)? When can this be done? Do we have
a uniqueness theorem?

We show that for an arbitrary functions+(t) satisfying

s+(t̄) = s+(t) and log{1− |s+(t)|2} ∈ L1, (0.19)

there exists a Jacobi matrixJ of Szegö class such thats+(t) is its reflection coefficient
in the scattering representation. However we can construct a matrix with this property,
at least, in two different ways.

First, consider the space
H 2
s+ = closL2

s+
H 2,

and introduce the Hankel operatorHs+ : H 2 → H 2,

Hs+f = P+ t̄ (s+f )(t̄), f ∈ H 2,

whereP+ is the Riesz projection fromL2 ontoH 2. This operator determines the metric
in H 2

s+ :

||f ||2s+ = 〈f (t)+ t̄ (s+f )(t̄), f (t)〉
= 〈(I +Hs+)f, f 〉, ∀f ∈ H 2.

Lemma 0.1. Under the assumptions (0.19), the space H 2
s+ is a space of holomorphic

functions with a reproducing kernel. Moreover, sf ∈ H 2 for any f ∈ H 2
s+ , and the

reproducing vector ks+ :

〈f, ks+〉 = f (0), ∀f ∈ H 2
s+ ,

is of the form

ks+ = (I +Hs+)
[−1]1 := lim

ε→0+
(ε + I +Hs+)

−11 in L2
s+ . (0.20)

PutKs+(t) = ks+(t)/
√
ks+(0).
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Theorem 0.2. Let s+(t) satisfy (0.19). Then the system of functions {tnKs+t2n(t)}n∈Z

forms an orthonormal basis in L2
s+ . With respect to this basis, operator multiplication

by z(t) is a Jacobi matrix J of Szegö class. Moreover, the initial function s+(t) is the
reflection coefficient of the scattering matrix-function S(t), associated to J by Theorem
0.1, and

e+(n, t) = tnKs+t2n(t).
On the other hand, the system of functions{tnKs−t2n(t)}n∈Z forms an orthonormal

basis inL2
s− , and we are able to define a Jacobi matrixJ̃ by the relation

z(t)ẽ+(n, t) = p̃nẽ+(n− 1, t)+ q̃nẽ+(n, t)+ p̃n+1ẽ
+(n+ 1, t),

where{ẽ+(n, t)} is the dual system to the system{tnKs−t2n(t)} (see (0.15)), i.e.:

s(t)ẽ+(−n− 1, t) = t̄ n+1Ks−t2n(t̄)+ s−(t)tnKs−t2n(t).
Even the invertibility condition for the operators(I + Hs±) does not guarantee that
operatorsJ andJ̃ are the same (see theExample at the end of Sect. 2). But ifJ = J̃ ,
then the uniqueness theorem takes place.

Theorem 0.3. Let s+ satisfy (0.19). Then the reflection coefficient s+ determines a Jacobi
matrix J of Szegö class in a unique way if and only if the following relations take place

s(0)Ks±(0)Ks∓t−2(0) = 1. (0.21)

Corollary 0.1. Let J be a Jacobi matrix of Szegö class with the spectrum [−2,2] and
let ρ be the density of its spectral measure. If∫ 2

−2
ρ−1(x) dx <∞,

then there is no other Jacobi matrix of Szegö class with the same scattering matrix–
function S(t).

It is important to know when the operators(I +Hs±), playing a central role in the
inverse scattering problem, are invertible in the proper sense of the word.

Theorem 0.4. Let J be a Jacobi matrix of Szegö class with the spectrum [−2,2]. Let
ρ be the density of its spectral measure and let s+ be the reflection coefficient of its
scattering matrix-function. Then the following statements are equivalent.

1. The spectral density ρ satisfies condition A2.
2. The reflection coefficient s+ determines a Jacobi matrix of Szegö class uniquely and

both operators (I +Hs±) are invertible.

To extend these results to the case when a spectrumE is a finite system of intervals
or a standard Cantor set of positive measure [15], see also [3], we need only to introduce
a counterpart of the Hardy space.

Let z(ζ ) : D → % be a uniformization of the domain% = C̄ \ E. Thus there exists
a discrete subgroup& of the groupSU(1,1) consisting of elements of the form

γ =
[
γ11 γ12
γ21 γ22

]
, γ11 = γ22, γ12 = γ21, detγ = 1,
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such thatz(ζ ) is automorphic with respect to&, i.e.,z(γ (ζ )) = z(ζ ), ∀γ ∈ &, and any
two preimages ofz0 ∈ % are&–equivalent, i.e.,

z(ζ1) = z(ζ2) ⇒ ∃γ ∈ & : ζ1 = γ (ζ2).
We normalizez(ζ ) by the conditionsz(0) = ∞, (ζ z)(0) > 0.

A character of& is a complex–valued functionα : &→ T, satisfying

α(γ1γ2) = α(γ1)α(γ2), γ1, γ2 ∈ &.
The characters form an Abelian compact group denoted by&∗.

For a given characterα ∈ &∗, as usual let us define

H∞(&, α) = {f ∈ H∞ : f (γ (ζ )) = α(γ )f (ζ ), ∀γ ∈ &}.
Generally, a group& is said to be ofWidom type if for any α ∈ &∗ the spaceH∞(&, α)
is not trivial (contains a non-constant function).

A group of Widom type acts dissipatively onT with respect todm, that is there
exists a measurable (fundamental) setE, which does not contain any two&-equivalent
points, and the union∪γ∈&γ (E) is a set of full measure. We can chooseE possessing
the symmetry property:t ∈ E ⇒ t̄ ∈ E. For the space of square summable functions on
E (with respect to the Lebesgue measure), we use the notationL2

dm|E.
Let f be an analytic function inD, γ ∈ & andk ∈ N. Then we put

f |[γ ]k = f (γ (ζ ))

(γ21ζ + γ22)k
.

Notice thatf |[γ ]2 = f ∀γ ∈ & means that the formf (ζ )dζ is invariant with respect
to the substitutionsζ → γ (ζ ) (f (ζ )dζ is an Abelian integral onD/&). Analogically,
f |[γ ] = α(γ )f ∀γ ∈ & means that the form|f (ζ )|2 |dζ | is invariant with respect to
these substitutions.

We recall that a functionf (ζ ) is of Smirnov class, if it can be represented as a ratio
of two functions fromH∞ with an outer denominator.

Definition. Let & be a group of Widom type. The space A2
1(&, α) (A1

2(&, α)) is formed
by functions f , which are analytic on D and satisfy the following three conditions

1) f is of Smirnov class,

2) f |[γ ] = α(γ )f (f |[γ ]2 = α(γ )f ) ∀γ ∈ &,
3)

∫
E

|f |2 dm <∞ (

∫
E

|f | dm <∞).

A2
1(&, α) is a Hilbert space with the reproducing kernelkα(ζ, ζ0), moreover

0< inf
α∈&∗ k

α(ζ0, ζ0) ≤ sup
α∈&∗

kα(ζ0, ζ0) <∞. (W)

Put

kα(ζ ) = kα(ζ,0) and Kα(ζ ) = kα(ζ )√
kα(0)

.
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We need one more special function. The Blaschke product

b(ζ ) = ζ
∏

γ∈&,γ �=12

γ (0)− ζ
1− γ (0)ζ

|γ (0)|
γ (0)

is called theGreen’s function of&with respect to the origin. It is a character-automorphic
function, i.e., there existsµ ∈ &∗ such thatb ∈ H∞(&, µ). Note, ifG(z) = G(z,∞)
denotes the Green’s function of the domain%, then

G(z(ζ )) = − log |b(ζ )|.
Theorem ([7]). Let & be a group of Widom type. The following statements are equiva-
lent:

(1) The function Kα(0) is continuous on &∗.
(2) sup{|f (0)| : f ∈ H∞(&, α), ‖f ‖ ≤ 1} → 1, α→ 1&∗ .
(3) The Direct Cauchy Theorem holds:∫

E

f

b
(t)

dt

2πi
= f

b′
(0), ∀f ∈ A1

2(&, µ). (DCT)

(4) Let tA2
1(&, α

−1) = {g = tf : f ∈ A2
1(&, α

−1)}. Then

L2
dm|E = tA2

1(&, α
−1)⊕ A2

1(&, α) ∀α ∈ &∗.

(5) Every invariant subspace M ⊂ A2
1(&, α) (i.e. φM ⊂ M ∀φ ∈ H∞(&)) is of the

form
M = 2A2

1(&, β
−1α)

for some character-automorphic inner function 2 ∈ H∞(β).
Definition ([3]). A measurable set E is homogeneous if there is an η > 0 such that

|(x − δ, x + δ) ∩ E| ≥ ηδ for all 0< δ < 1 and all x ∈ E. (C)

A standard Cantor set of positive length is an example of a homogeneous set [3], see
also [10]. LetE be a homogeneous set, then the domain% = C̄ \ E (respectively the
group&) is of Widom type and the Direct Cauchy Theorem holds.

Recall that a sequence of real numbers{pn} ∈ l∞(Z) is called uniformly almost
periodic if the set of sequences{{pn+l}, l ∈ Z} is a precompact inl∞(Z). The general
way to produce a sequence of this type looks as follows: letG be a compact Abelian
group, and letf (g) be a continuous function onG, then

pn := f (g0 + ng1), g0, g1 ∈ G,
is an almost periodic sequence. A Jacobi matrix is almost periodic if the coefficient
sequences are almost periodic. We denote byJ (E) the class of almost periodic Jacobi
matrices with absolutely continuous homogeneous spectrumE. In fact, ifE = [−2,2]
thenJ (E) = {J0}. In what follows the classJ (E) will substitute the Chebyshev matrix
in the case when the spectrumE is not an interval but a general homogeneous set. First
of all this class can be described as follows.
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Theorem ([11]). Let E be a homogeneous set. Let z : D → C̄ \ E be a uniformizing
mapping. Then the systems of functions {bnKαµ−n}n∈Z+ and {bnKαµ−n}n∈Z form an
orthonormal basis in A2

1(&, α) and in L2
dm|E, respectively, for any α ∈ &∗. With respect

to this basis, the operator multiplication by z(t) is a three–diagonal almost periodic
Jacobi matrix J (α). Moreover,

J (E) = {J (α) : α ∈ &∗},

and J (α) is a continuous function on &∗.

We say that a Jacobi matrixJ with the spectrumE is of Szegö class if its spectral
measure is absolutely continuous,dσ(x) = ρ(x) dx, andρ(z(t)) satisfies (0.5).

Theorem 0.5. Let J be a Jacobi matrix of Szegö class with a homogeneous spectrumE.
Then J possesses the scattering representation, i.e.: there exists a unique unitary-valued
matrix-function S(t) of the form (0.9) with the properties (0.10), (0.11), and a unique
pair of Fourier transforms

F± : l2(Z)→ L2
dm|E,s± , (F±Jf )(t) = z(t)(F±f )(t), (0.22)

determining each other by the relations

s(t)(F±f )(t) = t̄ (F∓f )(t̄)+ s∓(t)(F∓f )(t), (0.23)

and having the following analytic properties:

sF±(l2(Z±)) ⊂ A2
1(&, α

−1∓ ), (0.24)

and asymptotic properties

e±(n, t) = bn(t)Kα±µ−n(t)+ o(1) in L2
dm|E,s± , n→+∞, (0.25)

where

e+(n, t) = (F+en)(t), e−(n, t) = (F−e−n−1)(t),

and L2
dm|E,s± is the closure of the functions from L2

dm|E with respect to the metric

||f ||2s± =
1

2

〈[
1 s±(t)

s±(t) 1

] [
f (t)

t̄f (t̄)

]
,

[
f (t)

t̄f (t̄)

]〉
, f ∈ L2

dm|E.

Theorems 0.2–0.4 also have their closely parallel counterparts in the case when the
spectrum is a homogeneous set, see Theorems 1.1, 2.1 and 3.1 in combination with
Theorem 4.1.

We finish this paper with a remark on a connection between this new type inverse
scattering problem and a Riemann–Hilbert problem.
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1. In the Model Space

LetE be a homogeneous set. Letz(ζ ) : D/& ∼ C̄ \E be a uniformization andb(ζ ) be
the Green’s function. Throughout the paper we assume that(bz)(0) = 1. LetE ⊂ T be
a symmetric fundamental set (t ∈ E ⇒ t̄ ∈ E).

With a functions+(t) ∈ L∞dm|E such that

s+(t̄) = s+(t) and 1− |s+(t)|2 > 0 a.e. onE, (1.1)

we associate the metric

||f ||2s+ =
1

2

〈[
1 s+(t)

s+(t) 1

] [
f (t)

t̄f (t̄)

]
,

[
f (t)

t̄f (t̄)

]〉
= 〈f (t)+ t̄ (s+f )(t̄), f (t)〉, f ∈ L2

dm|E.

Condition (1.1) guarantee that||f ||s+ = 0 impliesf = 0. We denote byL2
dm|E,s+ or

L2
s+ (for shortness) the closure ofL2

dm|E with respect to this metric.

Lemma 1.1. The operator multiplication by z(t) in L2
s+ is unitary equivalent to the

operator multiplication by z(t) in L2
dm|E.

Proof. Let us put[
g(t)

t̄g(t̄)

]
=
[

1 s+(t)
s+(t) 1

]1/2 [
f (t)

t̄f (t̄)

]
, f ∈ L2

dm|E.

In this case||f ||s+ = ||g||. The system of identities[
1 s+(t)

s+(t) 1

]1/2 [
(zf )(t)

t̄(zf )(t̄)

]
=
[

1 s+(t)
s+(t) 1

]1/2

z(t)

[
f (t)

t̄f (t̄)

]
= z(t)

[
g(t)

t̄g(t̄)

]
=
[
(zg)(t)

t̄(zg)(t̄)

]
finishes the proof. $%

Let α+ ∈ &∗. Further, we assume thats+ ∈ L∞(&, α−2+ ) and

log(1− |s+(t)|2) ∈ L1. (1.2)

We define an outer functions, s(0) > 0, by the relation

|s(t)|2 = 1− |s+(t)|2, t ∈ T.

It is a character-automorphic function such thats(t̄) = s(t). It is convenient to denote
its character byα−1+ α−1− , i.e.,s ∈ H∞(&, α−1+ α−1− ).

Let us discuss some properties of the space

H 2
s+(α+) := closL2

s+
A2

1(&, α+).
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First of all, we define “a Hankel operator”Hs+ : A2
1(&, α+)→ A2

1(&, α+),

Hs+f = PA2
1(&,α+)

t̄ (s+f )(t̄).

Note that this operator, indeed, does not depend on “an analytical part” of its symbol,
more precisely,

H(s++ε) = Hs+ , ∀ε ∈ H∞(&, α−2+ ).
Besides, in the classical caseE = [−2,2], & = {12}, E = T, with a function

s+(t) =
∑
n∈Z

ant
n

is associated the operatorHs+ : H 2 → H 2 having the representation

Hs+ =
a−1 a−2 a−3 . . .

a−2 a−3 . . .

a−3 . . .

. . .


with respect to the standard basis{tn}n∈Z+ in H 2.

The operatorHs+ determines the metric inH 2
s+(α+):

||f ||2s+ = 〈f (t)+ t̄ (s+f )(t̄), f (t)〉
= 〈(I +Hs+)f, f 〉, f ∈ A2

1(&, α+).

Lemma 1.2. Under the assumptions (1.2), the spaceH 2
s+(α+) is a space of holomorphic

functions with a reproducing kernel. Moreover, sf ∈ A2
1(&, α

−1− ) for any f ∈ H 2
s+(α+),

and the reproducing vector kα+s+ :

〈f, kα+s+ 〉 = f (0), ∀f ∈ H 2
s+(α+),

is of the form

k
α+
s+ = (I +Hs+)

[−1]kα+ := lim
ε→0+

(ε + I +Hs+)
−1kα+ in L2

s+ . (1.3)

Proof. From the inequality[
1 s+(t)

s+(t) 1

]
−
[|s(t)|2 0

0 0

]
=
[|s+(t)|2 s+(t)
s+(t) 1

]
≥ 0, (1.4)

it follows that
||sf ||2 ≤ 2||f ||2s+ ∀f ∈ L2

s+ .

Thus, if a sequence{fn}, fn ∈ A2
1(&, α+), converges inH 2

s+(α+), then the sequence

{sfn} converges inA2
1(&, α

−1− ). In the same way we have boundedness of the functional
f → f (0),

|f (0)|2 ≤ 1

|s(0)|2 |(sf )(0)|
2 ≤ 2

|s(0)|2 ||f ||
2
s+k

α−1− (0).
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Let us prove (1.3). Letε > 0, then for the norm of the difference we have an estimate

||kα+s+ − (ε + I +Hs+)
−1kα+||2s+

= kα+s+ (0)− 2{(ε + I +Hs+)
−1kα+}(0)

+ 〈(I +Hs+)(ε + I +Hs+)
−1kα+ , (ε + I +Hs+)

−1kα+〉
≤ kα+s+ (0)− {(ε + I +Hs+)

−1kα+}(0). (1.5)

Therefore,

{(ε + I +Hs+)
−1kα+}(0) ≤ kα+s+ (0). (1.6)

Besides, (1.5) implies that (1.3) follows from the relation

lim
ε→0
{(ε + I +Hs+)

−1kα+}(0) = kα+s+ (0). (1.7)

Let us prove (1.7). Since the function

{(ε + I +Hs+)
−1kα+}(0) = 〈(ε + I +Hs+)

−1kα+ , kα+〉
decreases withε and it is bounded by (1.6), there exists a limit

lim
ε→0
{(ε + I +Hs+)

−1kα+}(0) ≤ kα+s+ (0). (1.8)

On the other hand, for anyf ∈ A2
1(&, α+) andε > 0 the following inequalities hold:

|f (0)|2 ≤ 〈(ε + I +Hs+)
−1kα+ , kα+〉〈(ε + I +Hs+)f, f 〉

≤ { lim
ε→0
〈(ε + I +Hs+)

−1kα+ , kα+〉}〈(ε + I +Hs+)f, f 〉,

that is
|f (0)|2 ≤ { lim

ε→0
〈(ε + I +Hs+)

−1kα+ , kα+〉}||f ||2s+ .

Puttingf = kα+s+ , we have

k
α+
s+ (0) ≤ lim

ε→0
〈(ε + I +Hs+)

−1kα+ , kα+〉.

Comparing this inequality with (1.8), we get (1.7), thus (1.3) is proved.$%
We defines− ∈ L∞(&, α−2− ) by

s−(t) = −s+(t)s(t)/s(t).
In this case

S(t) =
[
s− s

s s+

]
(t)

is a unitary-valued matrix function possessing properties (0.10), (0.11).
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Lemma 1.3. The following relation sets a unitary map from L2
s+ to L2

s− :

s(t)f−(t) = t̄f+(t̄)+ s+(t)f+(t).
In this case,

||f+||2s+ = ||f−||2s− =
1

2
{||sf+||2+ ||sf−||2},

and the inverse map is of the form

s(t)f+(t) = t̄f−(t̄)+ s−(t)f−(t).
Moreover, this unitary map intertwines the operator multiplication by z(t) in L2

s± .

Proof. The first statement follows from the identities[
1 s̄+
s+ 1

]
=
[
s̄+ 1
1 s+

] [
1/s̄ 0
0 1/s

] [
1 s̄−
s− 1

] [
1/s 0
0 1/s̄

] [
s+ 1
1 s̄+

]
and (0.18).

Sincez(t) = z(t̄), t ∈ D, the last statement is evident.$%

Lemma 1.4. LetKα+s+ (t) = kα+s+ (t)/
√
k
α+
s+ (0). The system of functions {bn(t)Kα+µ−n

s+b2n (t)}
forms an orthonormal basis inH 2

s+(α+) when {n ∈ Z+} and in L2
s+ when {n ∈ Z}. With

respect to this basis the operator multiplication by z(t) is a Jacobi matrix.

Proof. First, we note that

{f : f ∈ H 2
s+(α+), f (0) = 0} = {f = bf̃ : f̃ ∈ H 2

s+b2(α+µ−1)}.
Therefore,

H 2
s+(α+) = {Kα+s+ (t)} ⊕ bH 2

s+b2(α+µ−1).

Iterating this relation, we get that{bn(t)Kα+µ−n
s+b2n (t)}n∈Z+ is an orthonormal basis in

H 2
s+(α+), since∩n∈Z+b

nH 2
s+b2n(α+µ−n) = {0}.

Then, we note that an arbitrary functionf ∈ L2
s+ can be approximated with the given

accuracy by a functionf1 from L2
dm|E. This function, in its turn, can be approximated

by a functionf2 ∈ bnA2
1(&, α+µ−n) with a suitablen. Therefore, linear combinations

of functions from{bn(t)Kα+µ−n
s+b2n (t)} are dense inL2

s+ . Since this system of functions is

orthonormal, it forms a basis inL2
s+ .

Sincebz ∈ H∞(&, µ), we have

z : bnH 2
s+b2n(α+µ−n)→ bn−1H 2

s+b2n−2(α+µ−n+1).

For this reason, in the basis{bn(t)Kα+µ−n
s+b2n (t)}n∈Z, the matrix of the operator multiplica-

tion byz(t) has only one non-zero entry over diagonal in each column. But the operator
is self-adjoint, therefore, the matrix is a three-diagonal Jacobi matrix.$%
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Lemma 1.5. Let e+(n, t) = bn(t)Kα+µ−n
s+b2n (t), n ∈ Z. Define

s(t)e−(n, t) = t̄ e+(−n− 1, t̄)+ s+(t)e+(−n− 1, t).

Then {e−(n, t)} is an orthonormal basis in L2
s− ,

s(t)e−(n, t) ∈ A2
1(&, α

−1+ ), n ∈ Z+, (1.9)

and

e−(0,0)(be+)(−1,0) = b′(0)
s(0)

. (1.10)

Proof. Lemma 1.3 and Lemma 1.4 imply immediately that{e−(n, t)} is an orthonormal
basis inL2

s− . Moreover,s(t)e−(n, t) ∈ L2
dm|E. To prove (1.9) consider a scalar product

(f ∈ A2
1(&, α+))

〈t̄f (t̄), s(t)e−(n, t)〉 =1

2

〈[
f (t)

t̄f (t̄)

]
,

[
1 s+(t)

s+(t) 1

] [
e+(n, t)
t̄e+(n, t̄)

]〉

= 1

2

〈[
f (t)

t̄f (t̄)

]
,

[
1 s+(t)

s+(t) 1

] (b−n−1K
α+µn+1

s+b−2n−2)(t)

t̄(b−n−1K
α+µn+1

s+b−2n−2)(t̄)

〉

= 〈bn+1f,K
α+µn+1

s+b−2n−2〉s+b−2n−2 = 0, ∀n ≥ 0.

To prove (1.10), we write

s(0)e−(0,0) = 〈s(t)e−(0, t), kα−1+ (t)〉. (1.11)

Due to the Direct Cauchy Theorem, the reproducing kernelkα possesses the following
property:

t̄kα
−1+ (t̄) = b′(0)

kα+µ(0)

kα+µ(t)

b(t)
. (1.12)

Substituting (1.12) in (1.11), we obtain

s(0)e−(0,0) = b′(0)
2kα+µ(0)

〈[
1 s+(t)

s+(t) 1

] [
e+(−1, t)
t̄e+(−1, t̄)

]
,

[
(b−1kα+µ)(t)
t̄(b−1kα+µ)(t̄)

]〉
= b′(0)
kα+µ(0)

〈Kα+µ
s+b−2(t), k

α+µ(t)〉s+b−2.

Using (1.3), we have

s(0)e−(0,0) = b′(0)
kα+µ(0)Kα+µ

s+b−2(0)
lim
ε→0
〈(ε + I +Hs+b−2)−1kα+µ, kα+µ〉s+b−2

= b′(0)
kα+µ(0)Kα+µ

s+b−2(0)
lim
ε→0
〈(I +Hs+b−2)(ε+I+Hs+b−2)−1kα+µ, kα+µ〉

= b′(0)
kα+µ(0)Kα+µ

s+b−2(0)
{kα+µ(0)− lim

ε→0
ε〈(ε+I+Hs+b−2)−1kα+µ, kα+µ〉}.
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Since the limit (1.7) exists, finally, we get

s(0)e−(0,0) = b′(0)
K
α+µ
s+b−2(0)

= b′(0)
(be+)(−1,0)

.

The lemma is proved. $%
Lemma 1.6. Let ||s+|| < 1. Then

K
α±
s± (0)K

α∓µ
s∓b−2(0) = b′(0)

s(0)
.

Proof. Note that operators(I +Hs±bn) are invertible.
We use the notation of Lemma 1.5. As we know,s(t)e−(0, t) ∈ A2

1(&, α
−1+ ). But,

in the case under consideration, 1/s ∈ H∞(&, α+α−). Hence, the functione−(0, t)
itself belongs toA2

1(&, α−). Therefore, we can project each term ontoA2
1(&, α−) in the

relation
t̄ (se+)(−1, t̄) = e−(0, t)+ t̄ (s−e−)(0, t̄).

On the right-hand side we get

PA2
1(&,α−)

{e−(0, t)+ t̄ (s−e−)(0, t̄)} = (I +Hs−)e
−(0, t).

To evaluate the left-hand side, using (1.10), we write

s(t)e+(−1, t) = s(0)(be+)(−1,0)
kα

−1− µ(t)

b(t)kα
−1− µ(0)

+ g(t)

= b′(0)
e−(0,0)

kα
−1− µ(t)

b(t)kα
−1− µ(0)

+ g(t), g ∈ A2
1(&, α

−1− ).

Using (1.12), we get

PA2
1(&,α−)

{t̄ (se+)(−1, t̄)} = kα−(t)

e−(0,0)
= (I +Hs−)e

−(0, t).

Thus,
e−(0, t)e−(0,0) = (I +Hs−)

−1kα− .

In particular,e−(0,0) = Kα−s− (0), and (1.10) becomes the statement of the lemma.$%
Lemma 1.7. Assume that for some Jacobi matrix J there exists a pair of unitary trans-
forms

F± : l2(Z)→ L2
s± , (F±Jf )(t) = z(t)(F±f )(t),

determining each other by the relations

s(t)(F±f )(t) = t̄ (F∓f )(t̄)+ s∓(t)(F∓f )(t),
such that

sF±(l2(Z±)) ⊂ A2
1(&, α

−1∓ ). (1.13)



582 A. Volberg, P. Yuditskii

As before, we put

e+(n, t) = (F+en)(t), e−(n, t) = (F−e−n−1)(t). (1.14)

Then e±(n, t) has at the origin zero (poles) of multiplicity n, n > 0 (−n, n < 0).
Furthermore, F±(l2(Z±)) ⊃ H 2

s±(α±), and, hence,

e±(0,0) ≥ Kα±s± (0). (1.15)

The equality in (1.15) takes place if and only if e±(0, t) = Kα±s± (t).
Proof. Let us show that the annihilator of the linear spaceA2

1(&, α
+) ⊂ L2

s+ contains

F+{l2(Z−)}. Forf ∈ A2
1(&, α

+) ande+(−n− 1, t), n ≥ 0, we have

〈f (t), e+(−n− 1, t)〉s+ =
1

2

〈[
f (t)

t̄f (t̄)

]
,

[
1 s+(t)

s+(t) 1

] [
e+(−n− 1, t)
t̄e+(−n− 1, t̄)

]〉
= 〈f (t), e+(−n− 1, t)+ ts+(t)e+(−n− 1, t̄)〉
= 〈f (t), t̄(se−)(n, t̄)〉.

By (1.13) and (DCT), the last scalar product equals zero. Therefore,

H 2
s+(α+) = closL2

s+
A2

1(&, α
+) ⊂ {F+(l2(Z−))}⊥ = F+(l2(Z+)).

Now, from the three-term recurrent relation

z(t)s(t)e+(n, t) = pns(t)e+(n− 1, t)+ qns(t)e+(n, t)+ pn+1s(t)e
+(n+ 1, t),

(1.16)

and (1.13) it follows thate+(n, t), n > 0, has in the origin zero, at least of multiplicity
n.

SinceKα+s+ (t) ∈ F+(l2(Z+)), it possesses the decomposition

K
α+
s+ (t) =

∑
n∈Z+

ane
+(n, t).

Sincee+(n,0) = 0, n > 0,

a0 = K
α+
s+ (0)

e+(0,0)
in this decomposition. But,

|a0|2 ≤
∑
|an|2 = ||Kα+s+ (t)||2s+ = 1.

Thus, (1.15) and the lemma are proved.$%
Lemma 1.8 ([10]). Let f ∈ L∞(α−2). Then

PA2
1(&,α)

{
t̄ (f bnKαµ

−n
)(t̄)

}
→ 0, n→+∞,

where PA2
1(&,α)

is the orthogonal projection from L2
dm|E onto A2

1(&, α).



Inverse Scattering Problem for Jacobi Matrices 583

Proof. Let us denote by2β(t) an extremal function of the problem

2β(0) = sup{φ(0) : φ ∈ H∞(&, β), ||φ|| ≤ 1}.
Using properties (1), (2) of a group of Widom type with (DCT), Theorem [7], and
compactness of&∗, for anyε > 0, we can find a finite covering of&∗,

&∗ =
l(ε)⋃
j=1

{β : dist(β, βj ) ≤ η(ε)}

such that

2

∣∣∣∣1−2β−1
j β
(0)
Kβj (0)

Kβ(0)

∣∣∣∣ ≤ ε2, dist(β, βj ) ≤ η(ε).
It means that

‖(2β−1
j β
Kβj )−Kβ‖2 ≤ 1+ 1− 22β

−1
j β
(0)
Kβj (0)

Kβ(0)
≤ ε2, dist(β, βj ) ≤ η(ε).

For fixedβ one can findn0 such that

‖PbnA2
1(&,α

2β−1µ−n)t̄ (fK
β)(t̄)‖ ≤ ε, ∀n > n0.

Therefore, there existsn0 such that

‖P
bnA2

1(&,α
2β−1
j µ−n)t̄ (fK

βj )(t̄)‖ ≤ ε, ∀n > n0, 1≤ j ≤ l(ε).

Now, letn > n0 = n0(ε) and letβj : dist(βj , αµ−n) ≤ η(ε). Forh ∈ A2
1(&, α), we

write

〈t̄ (f bnKαµ−n)(t̄), h〉
= 〈t̄ (bnf [Kαµ−n −2αµ−nβ−1

j Kβj ])(t̄), h〉 + 〈t̄ (bn2αµ−nβ−1
j fKβj )(t̄), h〉.

Then

|〈t̄ (bnf [Kαµ−n −2αµ−nβ−1
j Kβj ])(t̄), h〉|
≤ ‖f ‖ ‖h‖ ‖Kαµ−n −2αµ−nβ−1

j Kβj ‖ ≤ ε||f || ‖h‖,
and

|〈t̄ (bn2αµ−nβ−1
j fKβj )(t̄), h〉| = |〈t̄ (fKβj )(t̄), bn2αµ−nβ−1

j (t̄)h〉|
≤ ‖P

bnA2
1(&,α

2β−1
j µ−n)t̄ (fK

βj )(t̄)‖ ||h|| ≤ ε||h||.
Therefore,

|〈PA2
1(&,α)

{
t̄ (f bnKαµ

−n
)(t̄)

}
, h〉| ≤ ε(1+ ||f ||)||h||.

Puttingh = PA2
1(&,α)

{
t̄ (f bnKαµ

−n
)(t̄)

}
, we get

||PA2
1(&,α)

{
t̄ (f bnKαµ

−n
)(t̄)

}
|| ≤ ε(1+ ||f ||).

The lemma is proved. $%
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Proposition 1.1. Assume that for some Jacobi matrix J there exists a pair of unitary
transforms

F± : l2(Z)→ L2
s± , (F±Jf )(t) = z(t)(F±f )(t),

determining each other by the relations

s(t)(F±f )(t) = t̄ (F∓f )(t̄)+ s∓(t)(F∓f )(t), (1.17)

such that (1.13) holds. Then the following relations are equivalent:

e+(n, t) = bn(t)Kα+µ−n + o(1) in L2
s+ , (1.18)

t̄pn{e+(n, t)e+(n− 1, t̄)− e+(n− 1, t)e+(n, t̄)} = z′(t), (1.19)

s(0)e+(0,0)(be−)(−1,0) = b′(0), (1.20)

where {e±(n, t)} is defined by (1.14).

Proof. (1.18)⇒ (1.19). It follows from two remarks. First, the form on the left in (1.19)
does not depend onn (it is the Wronskian of the recurrence relation (0.7)). Second, the
identity

t̄
Kα(0)

Kαµ(0)
{Kα(t)(Kαµ/b)(t̄)− (Kαµ/b)(t)Kα(t̄)} = z′(t)

holds for anyα ∈ &∗.
(1.19)⇒ (1.20). Let us introduce the matrix

:(t) =
[
e−(−1, t) −e−(0, t)
−e+(0, t) e+(−1, t)

]
. (1.21)

Then (1.17) implies
t̄:(t̄) = −S(t):(t).

In particular, with the help of (1.19), we get

s(t) = −t̄ e
+(0, t)e+(−1, t̄)− e+(−1, t)e+(0, t̄)
e−(−1, t)e+(−1, t)− e−(0, t)e+(0, t)

= −z′(t)
p0{e−(−1, t)e+(−1, t)− e−(0, t)e+(0, t)} . (1.22)

Sinceb(t)e±(−1, t) are holomorphic functions (in fact, of Smirnov class)

s(0) = b′(0)
p0(be−)(−1,0)(be+)(−1,0)

.

Now, we only have to mention thatp0(be
±)(−1,0) = e±(0,0).

(1.20)⇒ (1.18). This is non–trivial part of the proposition. The main step is to prove
that

lim
n→+∞

(b−ne+)(n,0)
Kα+µ−n(0)

= 1. (1.23)
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By Lemma (1.7) we have an estimate from below,

(b−ne+)(n,0) ≥ Kα+µ−n
s+b2n (0) ≥ {(ε + I +Hs+b2n)−1kα+µ

−n}1/2(0)

= 1√
1+ εK

α+µ−n
s+
1+ε b2n (0). (1.24)

To get an estimate from above we use (1.20).
Let us note that due to the recurrence relation, the form

pn{e+(n− 1, t)e−(−n− 1, t)− e+(n, t)e−(−n, t)}
also does not depend onn. Thus, a relation like (1.20) holds for alln:

(b−ne+)(n,0)(bn+1e−)(−n− 1,0) = pn(b−n+1e+)(n− 1,0)(bn+1e−)(−n− 1,0)

= e+(0,0)(be−)(−1,0) = b′(0)/s(0).
Therefore,

(b−ne+)(n,0) = b′(0)
s(0)

1

(bn+1e−)(−n− 1,0)

≤ b
′(0)
s(0)

1

K
α−µn+1

s−b−2n−2(0)

≤ b
′(0)
s(0)

1

{(ε + I +Hs−b−2n−2)−1kα−µn+1}1/2(0)

= b′(0)
s(0)

√
1+ ε

K
α−µn+1

sε,−b−2n−2(0)
, (1.25)

wheresε,− := s−/(1+ ε).
With the functionsε,−, let us associate the functionssε , sε,+ and the characterαε,+

(note thatsε,+ is not 1
1+ε s+, but sε,+ = −s̄ε,−(sε/s̄ε)). It is important thatsε(0) and

αε,+ depend continuously onε.
By Lemma 1.6,

b′(0)
K
α−µn+1

sε,−b−2n−2(0)
= sε(0)Kαε,+µ

−n
sε,+b2n (0). (1.26)

Substituting (1.26) in (1.25), and combining the result with (1.24), we obtain

1√
1+ εK

α+µ−n
s+
1+ε b2n (0) ≤ (b−ne+)(n,0) ≤

√
1+ ε sε(0)

s(0)
K
αε,+µ−n
sε,+b2n (0). (1.27)

Lemma 1.8 implies that for anyf ∈ L∞(&, α−2+ ) with ||f || < 1 we have

lim
n→+∞

K
α+µ−n
f b2n (0)

Kα+µ−n(0)
→ 1.

Indeed,
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|kα+µ−n
f b2n (0)− kα+µ−n(0)| = |〈Hf b2nkα+µ

−n
, (I +Hf b2n)−1kα+µ

−n〉|
= |〈t̄ (f bnkα+µ−n)(t̄), bn(I +Hf b2n)−1kα+µ

−n〉|
≤ ||PA2

1(&,α+)
{t̄ (f bnkα+µ−n)(t̄)}||||bn(I+Hf b2n)−1kα+µ

−n ||

≤ 1

1− ||f || ||PA2
1(&,α+)

{t̄ (f bnkα+µ−n)(t̄)}|| ||kα+µ−n || → 0,

asn→+∞.
Also, sinceαε,+ depends continuously onε andKα+(0) is continuous on a compact

group&∗, for anyδ > 0 we can chooseε so small that

Kαε,+µ
−n
(0)

Kα+µ−n(0)
≤ 1+ δ, ∀n.

Thus, returning to (1.27), we obtain

1√
1+ ε ≤ lim

n→∞ inf
(b−ne+)(n,0)
Kα+µ−n(0)

≤ lim
n→∞ sup

(b−ne+)(n,0)
Kα+µ−n(0)

≤ √1+ ε sε(0)
s(0)

(1+ δ).

Sinceε andδ are arbitrary small, (1.23) is proved.
Now we are in a position to prove (1.18). Consider the norm of the difference

||e+(n, t)− bnKα+µ−n ||2s+ = 1+ ||bnKα+µ−n ||2s+ − 2〈e+(n, t), bnKα+µ−n〉s+ .
Since

||bnKα+µ−n ||2s+ = 1+ 〈bnKα+µ−n , t̄(s+bnKα+µ−n)(t̄)〉,
using Lemma 1.8, we conclude that

||bnKα+µ−n ||2s+ → 1, n→+∞.
Let us evaluate the scalar product

〈e+(n, t), bnKα+µ−n〉s+ = 〈se−(−n− 1, t), t̄(bnKα+µ
−n
)(t̄)〉

= 〈se−(−n− 1, t), b−nb−1Kα
−1+ µn+1〉

= s(0)(bn+1e−)(−n− 1,0)

Kα
−1+ µn+1

(0)

= Kα+µ
−n
(0)

(b−ne+)(n,0)
→ 1, n→+∞.

The proposition is proved.$%
The following theorem shows that an arbitrary functions+, possessing (1.1), (1.2),

is the reflection coefficient of a Jacobi matrix of Szegö class.
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Theorem 1.1. Let a function s+ ∈ L∞(&, α−2+ ), ||s+|| ≤ 1, s+(t̄) = s+(t), be such that
that log(1− |s+|2) ∈ L1. Let an outer function s, s(0) > 0, and s− be associated to s+
by the relations

|s|2 = 1− |s+|2, s− = −s̄+s/s̄.
Then the system of functions

e+(n, t) = bnKα+µ−n
s+b2n

forms an orthonormal basis in L2
s+ . The dual system, defined by

s(t)e−(n, t) = t̄ e+(−n− 1, t̄)+ s+(t)e+(−n− 1, t),

forms an orthonormal basis in L2
s− . The subspaces of L2

s± , that formed by functions
with vanishing negative Fourier coefficients with respect to these bases, are spaces of
holomorphic character-automorphic forms; moreover,

sf± ∈ A2
1(&, α

−1∓ ) if f± ∈ closL2
s±

span{e±(n, t) : n ≥ 0}.
Further,

e±(n, t) = bnKα±µ−n + o(1) in L2
s± ,

and with respect to these bases the operator multiplication by z(t) is a Jacobi matrix J
of Szegö class.

Proof. All statements, besides the last one, only summarize results of Lemmas 1.4, 1.5
and Proposition 1.1. To prove thatJ is of Szegö class we evaluate its spectral density
ρ(x).

Using the definition of the resolvent matrix–function, we get

R(z) =
[〈
(z(t)− z)−1e+(−1, t), e+(−1, t)

〉
s+
〈
(z(t)− z)−1e+(0, t), e+(−1, t)

〉
s+〈

(z(t)− z)−1e+(−1, t), e+(0, t)
〉
s+

〈
(z(t)− z)−1e+(0, t), e+(0, t)

〉
s+

]
.

Note that iff± ∈ L2
s± are related bys(t)f−(t) = t̄f+(t̄)+ s+(t)f+(t) then(

f+(t)
z(t)− z

)−
= f−(t)
z(t)− z .

Therefore, using Lemma 1.3, we have

R(z) = 1

2

∫
E

[
e+(−1, t) e+(0, t)
e−(0, t) e−(−1, t)

]∗ [
e+(−1, t) e+(0, t)
e−(0, t) e−(−1, t)

] |s(t)|2 dm
z(t)− z ,

and, substitutings(t) from (1.22), we obtain

R(z) =1

2

∫
E

[
e+(−1, t) e+(0, t)
e−(0, t) e−(−1, t)

]∗ [
e+(−1, t) e+(0, t)
e−(0, t) e−(−1, t)

]
p2

0|e−(−1, t)e+(−1, t)− e−(0, t)e+(0, t)|2
|z′(t)|2 dm
z(t)− z

=1

2

∫
E

:̃−1∗(t):̃−1(t)

z(t)− z
|z′(t)|2 |dt |

2πp2
0

,
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where

:̃(t) =
[
e−(−1, t) −e+(0, t)
−e−(0, t) e+(−1, t)

]
. (1.28)

Thus,

2πp2
0ρ(z(t)) = :̃−1∗(t):̃−1(t)|z′(t)|, (1.29)

and

det{2πp0ρ(z(t))} = |z′(t)|2
p2

0|det:̃(t)|2 = |s(t)|
2.

The theorem is proved.$%
Let us note, by the way, that:(t) (see (1.21)) and̃:(t) are related bỹ:(t̄) = :∗(t)

and, besides (1.28),

2πp2
0ρ(z(t)) = :−1(t):−1∗(t)|z′(t)|. (1.30)

2. Existence and Uniqueness

We start this section with a remark that the spectral measuredσ determines a Jacobi
matrix uniquely, but it is not an arbitrary 2× 2 matrix–measure, or, say, a real-valued
(all entries are real) 2× 2 matrix–measure.

Indeed, one can representJ as a two dimensional perturbation of an orthogonal sum
of a pair of one–sided Jacobi matrices, i.e.:

J =
[
J− 0
0 J+

]
+ p0〈 , e−1〉e0 + p0〈 , e0〉e−1,

whereJ± = Pl2(Z±)J |l2(Z±). This formula implies that

R(z) =
[
r−1− (z) p0

p0 r−1+ (z)

]−1

, (2.1)

where

r−(z) = r(z, J−) = 〈(J− − z)−1e−1, e−1〉 =
∫
dσ−(x)
x − z ,

r+(z) = r(z, J+) = 〈(J+ − z)−1e0, e0〉 =
∫
dσ+(x)
x − z .

Thus, the real-valued matrix-measuredσ is determined by two scalar measuresdσ±
(with the normalization

∫
dσ± = 1) and a constantp0.

In what followsf̂ (x) ∈ L2
dσ denotes the image off ∈ l2(Z) in the spectral repre-

sentation. Recall that

ê−1 =
[
1
0

]
, ê0 =

[
0
1

]
and

(Ĵf )(x) = xf̂ (x).
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Let {P±n (z)} be the orthonormal polynomials with respect to the (scalar) measure
dσ± and

Q±n (z) :=
∫
P±n (x)− P±n (z)

x − z dσ±(x)

(so-called polynomials of the second kind). In these terms

ên(x) =
[−p0Q

+
n (x)

P+n (x)

]
, n ≥ 0,

ê−n−1(x) =
[
P−n (x)−p0Q

−
n (x)

]
, n ≥ 0.

(2.2)

Now, we prove Theorem 0.5.

Proof of Theorem 0.5, the uniqueness part. The functione±(0, ζ )/e±(−1, ζ ) is &-
automorphic, thus it defines a meromorphic function inC̄ \ E,

r̃±(z(ζ )) := − e±(0, ζ )
p0e±(−1, ζ )

.

The recurrence relations imply thatr̃±(z) possesses the same decomposition into a
continued fraction asr±(z). Therefore,

r±(z(ζ )) = − e±(0, ζ )
p0e±(−1, ζ )

. (2.3)

By Proposition 1.1 the asymptotic (1.18) implies the identity (1.19). Using this identity,
we get (t ∈ T)

r±(z(t))− r±(z(t)) = −p0
e±(0, t)e±(−1, t)− e±(−1, t)e±(0, t)

|p0e±(−1, t)|2

= −tz′(t)
|p0e±(−1, t)|2 .

This means that an outer part of the functione±(−1, ζ ) is determined uniquely. But
then (2.3) means that an outer part ofe±(0, ζ ) is determined uniquely, and since
b(ζ )e±(−1, ζ ) ande±(0, ζ ) are of Smirnov class, these functions are determined up
to a common inner factor2±(ζ ), i.e.,

e±(0, ζ ) = 2±(ζ )ẽ±(0, ζ ) ande±(−1, ζ ) = 2±(ζ )ẽ±(−1, ζ ), (2.4)

where the inner parts of̃e±(0, ζ ), ẽ±(−1, ζ ) are relatively prime.
To show that2±(ζ ) = 1, we use (0.23), (0.24). Since

s(t)e∓(0, t) = t̄ e±(−1, t̄)+ s±(t)e±(−1, t),

s(t)e∓(−1, t) = t̄ e±(0, t̄)+ s±(t)e±(0, t),
(2.5)

we have

s(t){e∓(−1, t)e±(−1, t)− e∓(0, t)e±(0, t)}
= t̄{e±(0, t̄)e±(−1, t)− e±(−1, t̄)e±(0, t)}.
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Substituting (2.4) and using the symmetry

ẽ±(0, t̄) = ẽ±(0, t), ẽ±(−1, t̄) = ẽ±(−1, t),

we obtain

s(t)b2(t){e∓(−1, t)ẽ±(−1, t)− e∓(0, t)ẽ±(0, t)}
= t̄2±(t̄)b2(t){ẽ±(0, t)ẽ±(−1, t)− ẽ±(−1, t)ẽ±(0, t)}
= −b2(t)z′(t){p02±(t̄)}−1.

Since the first expression here is a function of Smirnov class andb2z′ is an outer function,
we conclude that2±(t) is a constant.

Since

t̄:(t̄) = −S(t):(t) (2.6)

with :(t) defined by (1.21),S(t) is also determined in a unique way. At last, by the
recurrence relations we get the same conclusion with respect to all functions{e±(n, ζ )},
not only forn = −1,0. $%

Proof of Theorem 0.5, the existence part. The key instrument is the following theo-
rem [11]: if r(z) is a meromorphic function in̄C \ E such that Imr(z)/Imz ≥ 0 and
poles ofr(z(ζ )) satisfy the Blaschke condition, thenr(z(ζ )) is a function of bounded
characteristic inD without a singular component in the multiplicative representation.

Let us show that poles ofr±(z(ζ )) satisfy the Blaschke condition. Diagonal entries
R−1,−1(z) andR0,0(z) of the resolvent matrix–functionR(z) are holomorphic in̄C \E.
By the theorem mentioned above they are functions of bounded characteristic. Using
the force of (2.1),

−1/R−1,−1(z) = −1/r−(z)+ p2
0r+(z),

−1/R0,0(z) = −1/r+(z)+ p2
0r−(z).

This means that poles ofr± are subsets of poles of 1/R−1,−1 and 1/R0,0. Thusr±(z(ζ ))
are functions of bounded characteristic.

Now, let us use the Szegö condition log det ImR(z(t)) ∈ L1. Since

det ImR−1(z(t)) = |detR−1(z(t))|2 det ImR(z(t)),

using again (2.1), we have

log Im r−1− (z(t))+ log Im r−1+ (z(t)) = log det ImR−1(z(t)) ∈ L1.

Therefore, each of the functions log Imr±(z(t)) belongs toL1. Thus we can represent
r±(z) (uniquely) in the form

r±(z(ζ )) = − e±(0, ζ )
p0e±(−1, ζ )

,

wheree±(0, ζ ) andb(ζ )e±(−1, ζ ) are functions of Smirnov class with coprime inner
parts (in fact, they are Blaschke products) such that

t̄p0{e±(0, t)e±(−1, t̄)− e±(−1, t)e±(0, t̄)} = z′(t), (2.7)
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ande±(0,0) > 0, (be±)(−1,0) > 0. Note that

p0 = e±(0,0)
(be±)(−1,0)

.

As soon as the functionse±(0, ζ ) ande±(−1, ζ ) have been constructed we are able
to introduceS(t) andF± in their terms.

First, let us write down an expression for the resolvent matrix-function:

R(z(ζ )) =
[−p0

e−(−1,ζ )
e−(0,ζ ) p0

p0 −p0
e+(−1,ζ )
e+(0,ζ )

]−1

= −(p0:)
−1= = −=̃(p0:̃)

−1,

(2.8)

where: and:̃ are as in (1.21) and (1.28) respectively, and

=(ζ) = =̃(ζ ) =
[
e−(0, ζ ) 0

0 e+(0, ζ )

]
.

Therefore,

p2
0{R(z(t))− R∗(z(t))} = −tz′(t):−1(t):−1∗(t) = −tz′(t):̃−1∗(t):̃−1(t), (2.9)

since (see (2.7))

p0{=:∗ −:=∗} = p0{:̃∗=̃ − =̃∗:̃} = tz′.
From (2.9) and:̃∗(t) = :(t̄) we get immediately that the matrix–functionS(t)

defined by (2.6) is unitary–valued. Let us show that its elements(ζ ) is an outer function.
In fact, we have to show that the functionb2(ζ )det:(ζ) is an outer function (see (1.22)).
To this end let us use the representation for the diagonal entries ofR(z) (see (2.8))

R−1,−1(z(ζ )) = −e
+(−1, ζ )e−(0, ζ )
p0 det:(ζ)

,

R0,0(z(ζ )) = −e
−(−1, ζ )e+(0, ζ )
p0 det:(ζ)

.

Let2 be an inner part ofb2(ζ )det:(ζ). SinceR0,0(z(ζ )) is of Smirnov class,2 is
a divisor ofe−(−1, ζ )e+(0, ζ ). If 2 is not trivial, then it has a non–trivial divisor21
that is a divisor of one of these functions, say,e−(−1, ζ ). Sincee−(−1, ζ ) ande−(0, ζ )
are coprime (and21 is a divisor ofb2(ζ )det:(ζ)), the21 is a divisor ofe+(0, ζ ),
and, therefore, it is not a divisor ofe+(−1, ζ ). Thus,21 is not a divisor of the product
e+(−1, ζ )e−(0, ζ ). But this means thatR−1,−1(z(ζ )) is not of Smirnov class. We arrive
at a contradiction, hence2 is a constant.

We defineF± by the formulas

(F+f )(t) = [
e+(−1, t) e+(0, t)

]
f̂ (z(t)),

(F−f )(t) = [
e−(0, t) e−(−1, t)

]
f̂ (z(t)).

(2.10)



592 A. Volberg, P. Yuditskii

Evidently, (F±Jf )(t) = z(t)(F±f )(t) and by (2.6), (0.23) are fulfilled. Using the
formula for the spectral densityρ(x) = 1

π
Im R(x) and (2.9), we have∫

E

f̂ ∗(x) ρ(x)dx f̂ (x) = 1

2

∫
E

f̂ ∗(z(t))(p0:̃)
∗−1(p0:̃)

−1f̂ (z(t)) |z′(t)|2dm(t).

Since

:̃−1(t) = 1

det:̃(t)

[
e+(−1, t) e+(0, t)
e−(0, t) e−(−1, t)

]
,

we obtain

||f ||2 = ||f̂ ||2
L2
dσ

= 1

2
{||sF+f ||2+ ||sF−f ||2}

= ||F+f ||2s+ = ||F−f ||2s− .
ThusF+ is an isometry, and since this map is invertible,[

f̂−1(z(t))

f̂0(z(t))

]
= − p0

z′(t)

[
t̄ e+(0, t̄) −e+(0, t)
−t̄ e+(−1, t̄) e+(−1, t)

] [
g(t)

t̄g(t̄)

]
,

whereg = F+f , it is a unitary map.
Further, using (2.2), forn ≥ 0 we have

e+(n, ζ ) = [
e+(−1, ζ ) e+(0, ζ )

] [−p0Q
+
n (z(ζ ))

P+n (z(ζ ))

]
.

Due to the well known properties of orthogonal polynomials these functions have no
singularity at the origin and hence they are functions of Smirnov class.This easily implies
(0.24).

At last, our maps possess properties (1.19) (or (1.20)), in force of Proposition 1.1,
(0.25) holds. The theorem is proved.$%

Theorem 2.1. Let s+ ∈ L∞(&, α−2+ ), ||s+|| ≤ 1, s+(t̄) = s+(t), satisfy log(1−|s+|2) ∈
L1. Then the reflection coefficient s+ determines a Jacobi matrix of Szegö class in a
unique way if and only if

s(0)Kα±s± (0)K
α∓µ
s∓b−2(0) = b′(0). (2.11)

Proof. Assume on the contrary that

s(0)Kα+s+ (0)K
α−µ
s−b−2(0) �= b′(0). (2.12)

We construct two Jacobi matrices. First, we consider the basis

e+(n, t) = bn(t)Kα+µ−n
s+b2n (t), (2.13)

and byJ we denote the operator multiplication byz(t) in L2
s+ with respect to this basis

(Lemma 1.4). Then, starting with the basis{bn(t)Kα−µ−n
s−b2n (t)} in L2

s− , we introduce the
basis

s(t)ẽ+(−n− 1, t) = t̄ (bnKα−µ−n
s−b2n )(t̄)+ s−(t)(bnKα−µ

−n
s−b2n )(t). (2.14)
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By J̃ we denote the operator multiplication byz(t) in L2
s+ with respect to{ẽ+(n, t)}. By

Lemma 1.5,
s(0)ẽ+(0,0)Kα−µ

s−b−2(0) = b′(0).
Thus (see (2.12)),̃e+(0,0) �= e+(0,0). Due to the uniqueness part of Theorem 0.5,
J̃ �= J . The “only if” part is proved.

Now, let (2.11) hold, and letJ be a Jacobi matrix of Szegö class andF± be its
representations inL2

s± . By Lemma 1.7,

K
α±
s± (0) ≤ e±(0,0) =

b′(0)
s(0)

1

(be∓)(−1,0)
≤ b

′(0)
s(0)

1

K
α∓µ
s∓b−2(0)

.

Then (2.11) implies that, in fact,e±(0,0) = Kα±s± (0) and(be∓)(−1,0) = Kα∓µ
s∓b−2(0),

thus, due to a conclusion of Lemma 1.7,

e±(0, t) = Kα±s± (t), e∓(−1, t) = b−1(t)K
α∓µ
s∓b−2(t).

Recall that these functions determine the functionsr±(z) and the coefficientp0 (see
(2.3)), and they, in their turn, determineJ . The theorem is proved.$%
Corollary 2.1. Let J be a Jacobi matrix of Szegö class with a homogeneous spectrumE.
Let ρ(x) be the density of its spectral measure and S(t) be its scattering matrix-function.
If ∫

E

ρ−1(x) dx <∞, (2.15)

then there is no other Jacobi matrix of Szegö class with the same scattering matrix-
function S(t).

Proof. By virtue of (1.29), (2.15) is equivalent to∫
E

:̃(t):̃∗(t) dm <∞,

that ise±(0, t) ande±(−1, t) belong toL2
dm|E. Then word by word repetition of argu-

ments in the proof of Lemma 1.6 gives us

(I +Hs±)e
±(0, t)e±(0,0) = kα±(t),

(I +Hs±b−2)(be±)(−1, t)(be±)(−1,0) = kα±µ(t).
Thus,e±(0,0) = Kα±s± (0) and(be±)(−1,0) = Kα±µ

s±b−2(0). Since, generally,

s(0)e±(0,0)(be±)(−1,0) = b′(0),
(2.11) holds, the corollary is proved.$%

To finish this section we give an example of a scattering matrix-function, which does
not determine a Jacobi matrix of Szegö class. Moreover, in this example, the associated
operators(I +Hs±) are invertible.
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Example. Let v± ∈ H∞(&), ||v±|| < 1, v±(t̄) = v(t), v±(0) = 0. Define outer
functionsu±, u±(0) > 0, by

|u±|2+ |v±|2 = 1.

Then, we put

s0± = −v̄±u±/ū±.
At last,

S(t) =
[
s− s

s s+

]
=
[
s0− 0
0 s0+

]
+
[
u− 0
0 u+

]
E
{
I −

[
v− 0
0 v+

]
E
}−1 [

u− 0
0 u+

]
,

where

E =
[1+2

2
1−2

2
1−2

2
1+2

2

]
,

and2 is an inner function fromH∞(&),2(t̄) = 2(t).
In this caseHs± = Hs0± , since their symbols differ by functions fromH∞(&, α−2± ),

and therefore(I +Hs±) are invertible. On the other hand, the coefficients is of the form

s = u+u−(1−2)/2
1− (v+ + v−)(1+2)/2+ v+v−2,

and because of the factor(1−2)/2, 1/s does not belong toH∞(&, α+α−).
The simplest choice of parameters:

E = [−2,2], v±(t) = a±t, a± ∈ (0,1);
2(t) is a Blaschke product, deg2 > 1, gives us an example whereẽ+(−1, t), defined
by (2.14), does not belong toL2 (this is direct calculation), at the same timee+(−1, t),
defined by (2.13), belongs toL2.

3. A Weighted Hilbert Transform

By H we denote the transform

(Hg)(z) =
∫
E

g(x)

z− x dx, z ∈ C \ E, (3.1)

primarily defined on integrable 2D vector-functions.

Lemma 3.1. Let J be of Szegö class and F± give its scattering representation in the
model spaces L2

s± . Then[F−f−
F+f+

]
(ζ ) = p0:(ζ){H(ρf̂ )}(z(ζ )), (3.2)

for any finite vector f = f− ⊕ f+ ∈ l2(Z) = l2(Z−)⊕ l2(Z+).
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Proof. Let P̃n(z) denote thenth matrix orthonormal polynomial with respect the spectral
measuredσ . Recall that

P̃n(z) =
[
ê−n−1(z) ên(z)

] = [
P−n (z) −p0Q

+
n (z)−p0Q

−
n (z) P+n (z)

]
,

and, analogically to the scalar case,

Q̃n(z) :=
∫
dσ(x)

P̃n(z)− P̃n(x)
z− x =

[
Q−n (z) 0

0 Q+n (z)

]
. (3.3)

Based on (3.3), we have

p0:(ζ)

∫
dσ(x)

P̃n(x)
z(ζ )− x = p0:(ζ)

{∫
dσ(x)

z(ζ )− x P̃n(z(ζ ))

−
∫
dσ(x)

P̃n(z(ζ ))− P̃n(x)
z(ζ )− x

}
= − p0:(ζ)R(z(ζ ))P̃n(z(ζ ))− p0:(ζ)Q̃n(z(ζ )).

Using (2.8) and Definition (2.10), we get

p0:(ζ)

∫
ρ(x)

[
ê−n−1(x) ên(x)

]
z(ζ )− x dx = =(ζ)P̃n(z(ζ ))− p0:(ζ)Q̃n(z(ζ ))

=
[
e−(n, ζ ) 0

0 e+(n, ζ )

]
=
[
(F−e−n−1)(ζ ) 0

0 (F+en)(ζ )
]
.

In fact, this finishes the proof.$%

Theorem 3.1. Let ρ(x) be the spectral density of a Jacobi matrix J of Szegö class and
s+(t) be the reflection coefficient. Then the following statements are equivalent:

1. There exist C <∞ such that∫
E

(Hg)∗(x − i0)ρ−1(x)(Hg)(x − i0) dx

+
∫
E

(Hg)∗(x + i0)ρ−1(x)(Hg)(x + i0) dx

≤ C
∫
E

g∗(x)ρ−1(x)g(x) dx. (3.4)

2. s+ determines J and the operators (I +Hs±) are invertible.
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Proof. 1⇒ 2. Since (see (1.30))

||F−f−||2+ ||F+f+||2 =
∫

E

{H(ρf̂ )}∗(z(t))(p0:)
∗(t)(p0:)(t){H(ρf̂ )}(z(t)) dm

=
∫

E

{H(ρf̂ )}∗(z(t)) 1

2π
ρ−1(z(t)){H(ρf̂ )}(z(t)) |z

′(t)||dt |
2π

=
(

1

2π

)2 ∫
E

{H(ρf̂ )}∗(x − i0)ρ−1(x){H(ρf̂ )}(x − i0) dx

+
(

1

2π

)2 ∫
E

{H(ρf̂ )}∗(x + i0)ρ−1(x){H(ρf̂ )}(x + i0) dx

≤ C

(2π)2

∫
E

f̂ ∗(x)ρ(x)f̂ (x) dx = C

(2π)2
||f ||2, (3.5)

we getF±f± ∈ A2
1(&, α±). Thus,F±{l2(Z±)} = H 2

s±(α±). By Lemma 1.7 and The-
orem 2.1 we come to the conclusion thats+ determinesJ . Further, by (3.5)

||F−f−||2+ ||F+f+||2 ≤ C

(2π)2
{||f−||2+ ||f+||2}

= C

(2π)2
{||F−f−||2s− + ||F+f+||2s+}.

Using againF±f± ∈ A2
1(&, α±), we can represent the last norms in the form

||F−f−||2+ ||F+f+||2

≤ C

(2π)2
{〈(I +Hs−)F−f−,F−f−〉 + 〈(I +Hs+)F+f+,F+f+〉}. (3.6)

This proves the second statement in 2.
2 ⇒ 1. Recall thatH 2

s±(α±) = closL2
s±
A2

1(&, α±), but in the case under considera-

tion, the norm inH 2
s±(α±) is equivalent to the norm inA2

1(&, α±), i.e.:

h ∈ H 2
s±(α±)⇒ h ∈ A2

1(&, α±).

Further, sinces+ determinesJ , by Lemma 1.7, we haveF±{l2(Z±)} = H 2
s±(α±). So,

starting with (3.6) we obtain (3.4).$%

4. Matrix A2 on Homogeneous Sets

In this section our goal is to show that one can substitute (3.4) by theA2 condition. We
do this in a bit more general setting than we need.

LetE be a homogeneous set. Throughout this sectionP+ denotes the orthoprojector
from the vector–valuedL2(Cn) ontoH 2(Cn) in the upper halfplane. We are interested
in the boundedness of the weighted transform

W1/2P+W−1/2 : χEL2(Cn)→ χEL
2(Cn), (4.1)

whereW is a weight onE andχE is the characteristic function of the setE.
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Here is an analog of the matrixA2 condition

sup
x∈E,0<δ<1

||〈W 〉1/2I(x,δ)〈W−1〉1/2I(x,δ) || <∞, (4.2)

whereI(x,δ) := (x − δ, x + δ) and

〈W 〉I(x,δ) :=
1

|I(x,δ)|
∫
I(x,δ)∩E

W(t) dt.

This supremum will be calledQ2,E(W).

Theorem 4.1. The operator (4.1) is bounded if and only ifQ2,E(W) <∞.

Proof of necessity. With an arbitraryz0 ∈ C+ we associate a subspaceKbz0 = H 2(Cn)*
bz0H

2(Cn) of the Hardy space,bz0(z) = z−z0
z−z0 . It is well known, that

PKbz0
= P+ − bz0P+bz0

and
〈PKbz0 f, g〉L2(Cn) = 〈(P+f )(z0), (P+g)(z0)〉Cn.

Because of the first of these relations we have

|〈W1/2PKbz0
W−1/2f, g〉| ≤ 2Q||χEf || ||χEg||.

Now, using the second one we get

|〈(P+W−1/2f )(z0), (P+W1/2g)(z0)〉| ≤ 2Q||χEf || ||χEg||. (4.3)

Let us substitute

f = W−1/2 ξ

x − z0 , g = W1/2 η

x − z0 , ξ, η ∈ C
n

in (4.3). This gives us

|〈 〈W−1〉z0ξ, 〈W 〉z0η〉| ≤ 2Q||〈W−1〉1/2z0 ξ || ||〈W 〉1/2z0 η||,
where〈W 〉z0 denotes an average with the Poisson kernel,

〈W 〉z0 :=
1

π

∫
W

Im z0

|x − z0|2 dx.

Thus we proved an inequality with the Poisson averages

〈W 〉z0 ≤ 2Q〈W−1〉−1
z0
. (4.4)

At last let us note that

Im z0

|x − z0|2 ≥
c

|I |χI , I = I(Re z0,Im z0),

with an absolute and positive constantc. Therefore (4.4) implies (4.2).
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Lemma 4.1. If I is a centered at the E interval and z0 is the center of the square built
on I , then

W ∈ A2(E)⇒ 〈W 〉z0 ≤ C(E,Q2,E(W))〈W 〉I . (4.5)

Proof. First we note that forλ = 2/η,

|λI ∩ E| ≥ η|λI | ≥ 2|I | ≥ 2|I ∩ E|,
and therefore|(λI \ I ) ∩ E| ≥ |I ∩ E|. Let us show that

W(λI) ≥
(

1+ η2

λ2Q2

)
W(I) forW ∈ A2(E). (4.6)

Integrating the inequality [
W−1 1

1 W

]
≥ 0

over(λI \ I ) ∩ E we get[
W−1(λI \ I ) |(λI \ I ) ∩ E|
|(λI \ I ) ∩ E| W(λI \ I )

]
≥ 0.

Therefore [
W−1(λI) |(λI \ I ) ∩ E|

|(λI \ I ) ∩ E| W(λI)−W(I)
]
≥ 0,

or

W(λI)−W(I) ≥ |(λI \ I ) ∩ E|2{W−1(λI)}−1 ≥ |I ∩ E|2{W−1(λI)}−1.

Using (4.2) we obtain

W(λI)−W(I) ≥ |I ∩ E|
2

Q2|λI |2W(λI) ≥
η2

Q2λ2W(I).

To prove (4.5), using

Im z0

|x − z0|2 ≤
c

|I |
∑ 1

λ2k χλkI , λkI = I(Re z0,λk Im z0)
,

we write the following chain of inequalities:

〈W 〉z0 ≤
c

|I |
∑ 1

λ2k W(λ
kI )

≤ c

|I |
∑ Q2|λkI |2

λ2k {W−1(λkI )}−1

≤ cQ
2

|I |
∑(

1+ η2

λ2Q2

)−k
|I |2{W−1(I )}−1

≤ cQ
2

η2

∑(
1+ η2

λ2Q2

)−k
〈W 〉I .
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Proof of sufficiency. We want to prove that (4.2) suffices forW1/2P+W−1/2 in (4.1) to
be bounded. Fixf, g ∈ χEL2(Cn). We need to show∫

C+

∣∣∣〈(P+W−1/2f )′(z), (P+W1/2g)′(z)〉Cn
∣∣∣ Im z dA(z) ≤ C||f || ||g||.

In other words, introducing a Stolz cone&t and

S(t) =
∫
&t

∣∣∣〈(P+W−1/2f )′(z), (P+W1/2g)′(z)〉Cn
∣∣∣ dA(z)

one needs to prove that ∫
S(t) dt ≤ C||f || ||g||. (4.7)

We follow closely the lines of the proof in [13]. Let us consider a nonnegative function
h(t) and

Sh(t)(t) =
∫
&t,h(t)

∣∣∣〈(P+W−1/2f )′(z), (P+W1/2g)′(z)〉Cn
∣∣∣ dA(z),

where
&t,h(t) = &t ∩ {z : Im z ≤ h(t)}.

Let us note that ∫
S(t) dt ≤ c

∫
Sh(t) dt (4.8)

if the functionh(t) has the following property:

∀I ⊂ R |{t ∈ I : h(t) ≥ |I |}| ≥ a|I |. (4.9)

Let us chooseh to be maximal such that

Sh(t)(t) ≤ B(M||f ||p∗)1/p∗(t)(M||g||p∗)1/p∗(t), (4.10)

whereB, p∗ ∈ (1,2) will be chosen a bit later andM denotes the maximal function

(Mf )(x) = sup
δ>0

1

|I (x, δ)|
∫
I (x,δ)

|f (t)| dt.

If this h satisfies (4.9), then (4.8) and (4.10) imply what we need.
To chooseB,p∗ and to prove thath satisfies (4.9) we follow the algorithm below.

Let I0 be an arbitrary interval on the real axis. We will consider two cases: 2I0∩E �= ∅
and 2I0 ∩ E = ∅.

In the first case we fix an intervalI centered atE such thatI0 ⊂ I and|I | ≤ 3|I0|.
Let f1 = f · χ2I , g1 = g · χ2I andf2 = f − f1, g2 = g − g1. DenoteAI = 〈W 〉1/2I .
Consider

t ∈ I, SAI (fi)(t) =
(∫

&t,|I |
||(P+AIW−1/2fi)

′||2 dA(z)
)1/2

, i = 1,2;

t ∈ I, SA
−1
I (gi)(t) =

(∫
&t,|I |

||(P+A−1
I W

1/2gi)
′||2 dA(z)

)1/2

, i = 1,2.
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We will fix later α = α(Q2,E(W), n) > 1. Now,

1

|I |
∫
I

(
SA

−1
I (g1)(t)

)α
dt ≤ C(α)|I |

∫
2I
||A−1

I W
1/2g(t)||α dt

≤ C1(α, n)

|I |
∫

2I

(
||g(t)||

n∑
i=1

||W1/2(t)A−1
I ei ||

)α
dt

≤ C2(α, n)

|I |
(∫

2I
||g(t)||(2−ε̃)α dt

) 1
2−ε̃ n∑

i=1

(∫
2I
||W1/2(t)A−1

I ei ||(2+ε)α dt
) 1

2+ε
.

(4.11)

Here(2+ ε)−1+ (2− ε̃)−1 = 1. Notice that for every vectorx ∈ C
n the scalar function

t → ||W(t)1/2x|| is uniformly in the scalarA2(E). In particular, there exists such an
ε0 > 0 that we have the inverse Hölder inequality for all such functions uniformly:

∀I centered atx ∈ E
(

1

|I |
∫
I

||W(t)1/2x||2+ε0 dt
) 1

2+ε0

≤ C
(

1

|I |
∫
I

||W(t)1/2x||2 dt
) 1

2

. (4.12)

Let us chooseε = ε0
2 (ε̃ = ε0

2+ε0 ), α = 1+ ε0
2(2+ε0) , then we have

(2+ ε)α < 2+ ε0, (4.13)

(2− ε̃)α < 2. (4.14)

We use (4.13) and the inverse Hölder inequality (4.12) in (4.11) to rewrite it as(
1

|I |
∫
I

(
SA

−1
I (g1)(t)

)α
dt

)1/α

≤ C(α, n)
(

1

|I |
∫

2I
||g(t)||(2−ε̃)α dt

) 1
(2−ε̃)α n∑

i=1

(
1

|I |
∫

2I
||W1/2(t)A−1

I ei ||2 dt
) 1

2

≤ C1(α, n)

(
1

|I |
∫

2I
||g(t)||(2−ε̃)α dt

) 1
(2−ε̃)α n∑

i=1

〈
〈W 〉−1/2

I 〈W 〉2I 〈W 〉−1/2
I ei, ei

〉 1
2

≤ C3(α, n,Q2,E(W)) inf
x∈I

(
M||g||p∗) 1

p∗ (x),

wherep∗ = (2 − ε̃)α < 2. We used the doubling property ofW : 〈W 〉−1/2
I 〈W 〉2I

〈W 〉−1/2
I ≤ 2Q

2

η2 , the inequality which can be proved in the same way as (4.6).
The last inequality ensures that for anyτ , τ ∈ (0,1), using Kolmogorov-type in-

equalities we can find a subsetE(τ, I0) ⊂ I0, |E(τ, I0)| ≥ |I0|− τα|I | ≥ (1−3τα)|I0|
such that

t ∈ E(τ, I0)⇒ SA
−1
I (g1)(t) ≤ C3(α, n,Q2,E(W))

τ
inf
x∈I

(
M||g||p∗) 1

p∗ (x). (*)
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Similarly, for everyτ there exists a setE(τ, I0), |E(τ, I0)| ≥ (1−3τα)|I0| such that

t ∈ E(τ, I0)⇒ SAI (f1)(t) ≤ C(α, n,Q2,E(W))

τ
inf
x∈I

(
M||f ||p∗) 1

p∗ (x). (*)

Here we use the same calculations and the fact that for anyI centered atE,

〈W 〉1/2I 〈W−1〉2I 〈W 〉1/2I ≤ 2Q2.

Now let us work withf2, g2. LetcI be the center of the square built on 2I . Using the
representation

(
P+AIW−1/2f2

)′
(z) = 1

2πi

∫
(AIW

−1/2f2)(x)

(x − z)2 dx, Im z > 0, (4.15)

clearly, we obtain for everyt ∈ I ,(∫
&t,|I |

||
(
P+AIW−1/2f2

)′
(z)||2 dA(z)

)1/2

≤ C
∫

Im cI

|x − cI |2 ||(AIW
−1/2f2)(x)|| dx.

(4.16)

Therefore, using the inverse Hölder inequality (4.12), we have again(∫
&t,|I |

||
(
P+AIW−1/2f2

)′
(z)||2 dA(z)

)1/2

≤ C
n∑
i=1

∫
Im cI

|x − cI |2 ||W
−1/2AIei || ||f2|| dx

≤ C1

n∑
i=1

(∫
Im cI

|x − cI |2 ||W
−1/2AIei ||2+ε dx

) 1
2+ε (∫ Im cI

|x − cI |2 ||f2||2−ε̃ dx
) 1

2−ε̃

≤ C2

n∑
i=1

〈
〈W 〉1/2I 〈W−1〉cI 〈W 〉1/2I ei, ei

〉 1
2

inf
x∈I

(
M||f ||2−ε̃ (x)

) 1
2−ε̃
. (4.17)

Here 2+ ε is close to 2 (ε ≤ ε0). Finally, using Lemma 4.1 we estimate the last sum by
a constant:(∫

&t,|I |
||
(
P+AIW−1/2f2

)′
(z)||2 dA(z)

)1/2

≤ C(n,E,Q) inf
x∈I

(
M||f ||2−ε̃ (x)

) 1
2−ε̃
.

That is

SAI (f2)(t) ≤ C(n,E,Q) inf
x∈I

(
M||f ||2−ε̃ (x)

) 1
2−ε̃
, ∀t ∈ I, (*)

the same forSA
−1
I (g2)(t).
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Combining all (*) inequalities we obtain that with a suitableC = C(n,E,W),
SI (t) :=

∫
&t,|I |

∣∣∣〈(P+W−1/2f )′(z), (P+W1/2g)′(z)〉Cn
∣∣∣ dA(z)

≤ SAI (f )(t)SA−1
I (g)(t) ≤ C2 (M||f ||p∗(t)) 1

p∗
(
M||g||p∗(t)) 1

p∗ (4.18)

at least on a quarter ofI0. Of course,SI0(t) ≤ SI (t).
In the case 2I0 ∩ E = ∅ we fix an intervalI centered atE such thatI0 ⊂ I and

dist(I0, E) ≥ |I |/6. Let cI be the center of the square built onI . We can use again a
representation of the form (4.15):(

P+AIW−1/2f
)′
(z) = 1

2πi

∫
(AIW

−1/2f )(x)

(x − z)2 dx, Im z > 0,

to obtain an analog of (4.16),(∫
&t,|I |

||
(
P+AIW−1/2f

)′
(z)||2 dA(z)

)1/2

≤ C
∫

Im cI

|x − cI |2 ||(AIW
−1/2f )(x)|| dx

for all t ∈ I0. Continuing in this way we get

SAI (f )(t) ≤ C(n,E,Q) inf
x∈I

(
M||f ||p∗(x)) 1

p∗ , ∀t ∈ I0.

The same forSA
−1
I (g)(t). Thus

SI (t) ≤ C(n,E,Q)2
(
M||f ||p∗(t)) 1

p∗
(
M||g||p∗(t)) 1

p∗ (4.19)

everywhere onI0.
LetB be the largest constant in (4.18), (4.19). We have already chosenp∗ < 2. Now

we introduce the following functionh(t):

h(t) = sup{h : Sh(t) ≤ B
(
M||f ||p∗(t)) 1

p∗
(
M||g||p∗(t)) 1

p∗ }.
What we proved can be summarized in:

if I0 : 2I0 ∩ E �= ∅ then h(t) ≥ |I0| on a quarter of measure ofI0,

if I0 : 2I0 ∩ E = ∅ then h(t) ≥ |I0| ∀t ∈ I0.
In any case,

1

4

∫
C+

∣∣∣〈(P+W−1/2f )′(z), (P+W1/2g)′(z)〉Cn
∣∣∣ Im z dA(z)

≤
∫

R

∫
&t,h(t)

∣∣∣〈(P+W−1/2f )′(z), (P+W1/2g)′(z)〉Cn
∣∣∣ dA(z) dt

≤ B
∫

R

(
M||f ||p∗(t)) 1

p∗
(
M||g||p∗(t)) 1

p∗ dt

≤ B
(∫

R

(
M||f ||p∗(t)) 2

p∗ dt

) 1
2
(∫

R

(
M||g||p∗(t)) 2

p∗ dt

) 1
2

≤ BC(p∗)
(∫

R

||f ||2(t) dt
) 1

2
(∫

R

||g||2(t) dt
) 1

2
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because2
p∗ > 1, and we can use the Hardy–Littlewood maximal theorem. The theorem

is proved. $%

5. The Inverse Scattering Problem and a Riemann–Hilbert Problem

Reduction of an inverse scattering problem to Riemann–Hilbert Problem is, maybe,
the most popular approach (see, e.g. [14]). In this section, we show what kind of a
Riemann–Hilbert problem is associated with the problem under consideration.

Let us define
√−b2z′(ζ )as the square root of an outer function such that

√−b2z′(0)>
0. Put

√−z′(ζ ) =
√−b2z′(ζ )
b(ζ )

. (5.1)

In this case,
√−z′(ζ̄ ) = √−z′(ζ ). Let E− = {t ∈ E : Imt < 0}. Then−tz′(t) =

i|z′(t)|, t ∈ E−. Thus,

t{√−z′(t)}2 = i√−z′(t)√−z′(t) = i√−z′(t)√−z′(t̄), t ∈ E−,

or

t̄
√−z′(t̄) = −i√−z′(t), t ∈ E−. (5.2)

Besides, √−z′|[γ ] = ε(γ )√−z′(ζ ),
whereε ∈ &∗, ε2 = 1&∗ . But, in fact, the group& is defined up to a choice of a
half–periodε̃ ∈ &∗. So, we may assume that

√−z′|[γ ] = √−z′(ζ ). (5.3)

Proposition 5.1. Let E = [b0, a0] \ ∪j≥1(aj , bj ) be a homogeneous set. Then

G(z(ζ )) := :(ζ)√−z′(ζ )
is a holomorphic matrix function in C̄ \ [b0, a0] satisfying the following RHP:

G(x − i0) =
[
α−,j 0

0 α+,j

]
G(x + i0), x ∈ (aj , bj ), (5.4)

G(x − i0) =− iH(x)G(x + i0), x ∈ E, (5.5)

where H(z(t)) := S(t), t ∈ E−, with the normalization at infinity:

G(z) =
[

1+ · · · − a
z
+ · · ·

− b
z
+ · · · 1+ · · ·

][ 1√
bs(0)

0

0 1√
as(0)

]
. (5.6)
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Proof. Equation (5.4) follows from Equation (5.3). (5.5) follows from (5.2) and (2.6).
To prove (5.6), we representG(z) in the form

G(z) =
[

1+ · · · − a
z
+ · · ·

− b
z
+ · · · 1+ · · ·

] [
c1 0
0 c2

]
.

Then, we note that

c1c2 = detG(∞) = e−(−1, ζ )e+(−1, ζ )− e−(0, ζ )e+(0, ζ )
−z′(ζ )

∣∣∣∣
ζ=0

= 1

p0s(0)
,

(5.7)

and

ac2

c1
= bc1

c2
= z(ζ )e±(0, ζ )

e±(−1, ζ )

∣∣∣∣
ζ=0

= p0. (5.8)

Solving together (5.7), (5.8), we get (5.6).$%
We want to finish this section with the following discussion.
As an initial data for the inverse scattering problem in this paper we used a character

automorphic functions+ ∈ L∞(&, α−2+ ) and a characterα+ ∈ &∗. In fact, this set of data
can be defined uniquely by a functionσ+(x) on the spectral setE (σ+(z(t)) = s+(t),
t ∈ E−) and a system of unimodular multipliers{α+,j }, each factorα+,j is associated
with a spectral gap(aj , bj ). In terms ofσ+(x) and{α+,j } one can define a 2× 2 matrix
functionH(x) over interval[b0, a0]. Then one has to solve a RHP (5.4), (5.5) with
a normalization condition (5.6) at infinity. The spectral densityρ(x) (and thereforeJ
itself) is determined via a solution of the RHP by

ρ−1 = 2πabG∗G.

However, when solving the RHP, one carefully has to specify a class of analytic functions
to whichG(z) belongs. Therefore, in any case, one has to introduce this or that analog
of the functional spaceA2

1(&, α).
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