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Abstract: In this paper we consider dynamical r-matrices over a nonabelian base. There
are two main results. First, corresponding to a fat reductive decomposition of a Lie
algebrag = h ⊕ m, we construct geometrically a non-degenerate triangular dynamical
r-matrix using symplectic fibrations. Second, we prove that a triangular dynamical r-
matrix r : h∗ −→ ∧2g naturally corresponds to a Poisson manifoldh∗ ×G. A special
type of quantization of this Poisson manifold, called compatible star products in this
paper, yields a generalized version of the quantum dynamical Yang–Baxter equation
(or Gervais–Neveu–Felder equation). As a result, the quantization problem of a general
dynamical r-matrix is proposed.

1. Introduction

Recently, there has been growing interest in the so-called quantum dynamical Yang–
Baxter equation:

R12(λ)R13(λ+ h̄h(2))R23(λ) = R23(λ+ h̄h(1))R13(λ)R12(λ+ h̄h(3)). (1)

This equation arises naturally from various contexts in mathematical physics. It first
appeared in the work of Gervais–Neveu in their study of quantum Liouville theory [24].
Recently it reappeared in Felder’s work on the quantum Knizhnik–Zamolodchikov–
Bernard equation [23]. It also has been found to be connected with the quantum Caloger–
Moser systems [4]. As the quantum Yang–Baxter equation is connected with quantum
groups, the quantum dynamical Yang–Baxter equation is known to be connected with
elliptic quantum groups [23], as well as with Hopf algebroids or quantum groupoids [20,
32,33].

The classical counterpart of the quantum dynamical Yang–Baxter equation was first
considered by Felder [23], and then studied by Etingof and Varchenko [19]. This is the
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so-called classical dynamical Yang–Baxter equation, and a solution to such an equation
(plus some other reasonable conditions) is called a classical dynamical r-matrix. More
precisely, given a Lie algebrag overR (or overC) with an Abelian Lie subalgebrah,
a classical dynamical r-matrix is a smooth (or meromorphic) functionr : h∗ −→ g⊗g
satisfying the following conditions:

(i) (zero weight condition)[h⊗1 + 1⊗h, r(λ)] = 0, ∀h ∈ h;
(ii) (normal condition)r12 + r21 = �, where� ∈ (S2g)g is a Casimir element;
(iii) (classical dynamical Yang–Baxter equation1)

Alt (dr)− ([r12, r13] + [r12, r23] + [r13, r23]) = 0, (2)

where Altdr = ∑
(h
(1)
i
∂r23
∂λi

− h(2)i ∂r13
∂λi

+ h(3)i ∂r12
∂λi
).

A fundamental question is whether a classical dynamical r-matrix is always quantiz-
able. There has appeared a lot of work in this direction, for example, see [2,25,18]. In the
triangular case (i.e.,r is skew-symmetric:r12(λ)+ r21(λ) = 0), a general quantization
scheme was developed by the author using the Fedosov method, which works for a vast
class of dynamical r-matrices, called splittable triangular dynamical r-matrices [34]. Re-
cently, Etingof and Nikshych, using the vertex-IRF transformation method, proved the
existence of quantizations for the so-called completely degenerate triangular dynamical
r-matrices [21].

Interestingly, although the quantum dynamical Yang–Baxter equation in [23] only
makes sense when the base Lie algebrah is Abelian, its classical counterpart admits an
immediate generalization for any base Lie algebrah which is not necessarily Abelian.
Indeed, all one needs to do is to change the first condition (i) to:

(i’) r : h∗ −→ g⊗g isH -equivariant, whereH acts onh∗ by coadjoint action and on
g⊗g by adjoint action.

There exist many examples of such classical dynamical r-matrices. For instance, when
g is a simple Lie algebra andh is a reductive Lie subalgebra containing the Cartan
subalgebra, there is a classification due to Etingof–Varchenko [19]. In particular, when
h = g, an explicit formula was discovered by Alekseev and Meinrenken in their study of
non-commutative Weil algebras [1]. Later, this was generalized by Etingof and Schiffer-
mann [17] to a more general context. Moreover, under some regularity condition, they
showed that the moduli space of dynamical r-matrices essentially consists of a single
point once the initial value of the dynamical r-matrices is fixed. A natural question arises
as to what should be the quantum counterpart of these r-matrices. And more generally,
is any classical dynamical r-matrix (with nonabelian base) quantizable?

A basic question is what the quantum dynamical Yang–Baxter equation should look
like whenh is nonabelian. In this paper, as a toy model, we consider the special case
of triangular dynamical r-matrices and their quantizations. As in the Abelian case, these
r-matrices naturally correspond to some invariant Poisson structures onh∗ × G. It is
standard that quantizations of Poisson structures correspond to star products [8]. The
special form of the Poisson bracket relation onh∗ ×G suggests a specific form that their
star products should take. This leads to our definition of compatible star products. The
compatibility condition (which, in this case, is just the associativity) naturally leads to
a quantum dynamical Yang–Baxter equation: Eq. (33). As we shall see, this equation

1 Throughout the paper, we follow the sign convention in [4] for the definition of a classical dynamical
r-matrix in order to be consistent with the quantum dynamical Yang–Baxter equation (1). This differs in sign
from the one used in [19].
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indeed resembles the usual quantum dynamical Yang–Baxter equation (unsymmetrized
version). The only difference is that the usual pointwise multiplication onC∞(h∗) is
replaced by the PBW-star product, which is indeed the deformation quantization of the
canonical Lie–Poisson structure onh∗. Although Eq. (33) is derived by considering
triangular dynamical r-matrices, it makes perfect sense for non-triangular ones as well.
This naturally leads to our definition of quantization of dynamical r-matrices over an
arbitrary base Lie subalgebra which is not necessaryAbelian. The problem is that such an
equation only makes sense forR : h∗ −→ Ug⊗Ug[[h̄]]. In the Abelian case, it appears
that one may considerR valued in a deformed universal enveloping algebraUh̄g, but in
most casesUh̄g is isomorphic toUg[[h̄]] as an algebra. So Eq. (33), in a certain sense,
is general enough to include all the interesting cases. However, the physical meaning of
this equation remains mysterious.

Another main result of the paper is to give a geometric construction of triangular
dynamical r-matrices. More precisely, we give an explicit construction of a triangular
dynamical r-matrix from a fat reductive decomposition of a Lie algebrag = h ⊕ m
(see Sect. 2 for the definition). This includes those examples of triangular dynamical
r-matrices considered in [19]. Our main purpose is to show that triangular dynamical
r-matrices (with nonabelian base) do rise naturally from symplectic geometry. This gives
us another reason why it is important to consider their quantizations. Discussion of this
part occupies Sect. 2. Section 3 is devoted to the discussion of compatible star products,
whose associativity leads to a “twisted-cocycle” condition. In Sect. 4, we will derive the
quantum dynamicalYang–Baxter equation from this twisted-cocycle condition. The last
section contains some concluding remarks and open questions.

Finally, we note that in this paper, by a dynamical r-matrix, we always mean a
dynamical r-matrix over a general base Lie subalgebra unless specified.Also Lie algebras
are normally assumed to be overR, although most results can be easily modified for
complex Lie algebras. For simplicity, in this paper we assume that a dynamicalr-matrix
is defined onh∗. In reality, it may only be defined on an open submanifoldU ⊆ h∗.

2. Classical Dynamicalr-Matrices

In this section, we will give a geometric construction of triangular dynamical r-matrices.
As we shall see, these r-matrices do arise naturally from symplectic geometry. We will
show some interesting examples, which include triangular dynamical r-matrices for
simple Lie algebras constructed by Etingof–Varchenko [19].

Below let us recall the definition of a classical triangular dynamicalr-matrix. Letg be
a Lie algebra overR (orC) andh ⊂ g be a Lie subalgebra.A classical dynamical r-matrix
r : h∗ −→ g⊗g is said to betriangular if it is skew symmetric:r12 + r21 = 0. In other
words, a classical triangular dynamicalr-matrix is a smooth function (or meromorphic
function in the complex case)r : h∗ −→ ∧2g such that

(i) r : h∗ −→ ∧2g isH -equivariant, whereH acts onh∗ by coadjoint action and acts
on∧2g by adjoint action.

(ii) ∑
i

hi ∧ ∂r

∂λi
− 1

2
[r, r] = 0, (3)

where the bracket[· , ·] refers to the Schouten type bracket:∧kg⊗ ∧l g −→ ∧k+l−1g
induced from the Lie algebra bracket ong, {h1, . . . , hl} is a basis ofh, and(λ1, . . . , λl)

its induced coordinate system onh∗.
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The following proposition gives an alternative description of a classical triangular
dynamical r-matrix.

Proposition 2.1.A smooth functionr : h∗ −→ ∧2g is a triangular dynamicalr-matrix
iff

π = πh∗ +
∑
i

∂

∂λi
∧ −→
hi + −→

r(λ)

is a Poisson tensor onM = h∗ × G, whereπh∗ denotes the standard Lie (also known

as Kirillov–Kostant) Poisson tensor on the Lie algebra dualh∗,
−→
hi ∈ X(M) is the left

invariant vector field onM generated byhi ∈ h, and similarly
−→
r(λ) ∈ �(∧2TM) is the

left invariant bivector field onM corresponding tor(λ).

Proof. Set

π1 = πh∗ +
∑
i

∂

∂λi
∧ −→
hi .

Thenπ = π1 + −→
r(λ). Note that, for any(λ, x), π1|(λ,x) is tangent toh∗ × xH , on which

it is isomorphic to the standard Poisson (symplectic) structure on the cotangent bundle
T ∗H (see, e.g., [27]). HereT ∗H is identified withh∗ × H (hence withh∗ × xH ) via
left translations. It thus follows that[π1, π1] = 0. Therefore

[π, π ] = 2[π1,
−→
r(λ)] + [−→

r(λ),
−→
r(λ)].

Now

[π1,
−→
r(λ)] = [πh∗ ,

−→
r(λ)] +

∑
i

[ ∂
∂λi

∧ −→
hi ,

−→
r(λ)]

= [πh∗ ,
−→
r(λ)] +

∑
i

[−→
r(λ),

∂

∂λi
] ∧ −→

hi −
∑
i

∂

∂λi
∧ [−→
r(λ),

−→
hi ].

Hence[π, π ] = I1 + I2, where

I1 = 2
∑
i

[−→
r(λ),

∂

∂λi
] ∧ −→

hi + [−→
r(λ),

−→
r(λ)], and

I2 = 2[πh∗ ,
−→
r(λ)] − 2

∑
i

∂

∂λi
∧ [−→
r(λ),

−→
hi ].

With respect to the natural bigrading on∧3T (h∗ ×G), I1 andI2 correspond to the(0,3)
and(1,2)-terms of[π, π ], respectively. It thus follows that[π, π ] = 0 iff I1 = 0 and
I2 = 0.

It is simple to see that

I1 = −2
∑
i

−→
hi ∧ ∂

−→
r

∂λi
+ −−−−−−−→[r(λ), r(λ)].

HenceI1 = 0 is equivalent to Eq. (3).
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To find out the meaning ofI2 = 0, let us writeπh∗ = 1
2

∑
ij fij (λ)

∂
∂λi

∧ ∂
∂λj

(fij =
−fji). A simple computation yields that

I2 = 2
∑
i

∂

∂λi
∧

∑
j

fij (λ)
∂
−→
r

∂λj
+ 2

∑
i

∂

∂λi
∧ −−−−−→[hi, r(λ)].

ThusI2 = 0 is equivalent to

[hi, r(λ)] = −
∑
j

fij (λ)
∂r(λ)

∂λj
= d

dt

∣∣∣∣
t=0
r(Ad∗

exp−1 thi
λ), ∀i,

which means exactly thatr isH -equivariant. This concludes the proof.��
Remark.Note thatM(= h∗ × G) admits a leftG-action and a rightH -action defined
as follows:∀(λ, x) ∈ h∗ ×G,

y · (λ, x) = (λ, yx), ∀y ∈ G;
(λ, x) · y = (Ad∗

yλ, xy), ∀y ∈ H.

It is clear that the Poisson structureπ is invariant under both actions. And, in short,
we will say thatπ isG×H -invariant.

Definition 2.2. A classical triangular dynamicalr-matrix r : h∗ −→ ∧2g is said to be
non-degenerateif the corresponding Poisson structureπ onM is non-degenerate, i.e.,
symplectic.

In what follows, we will give a geometric construction of non-degenerate dynamical
r-matrices. To this end, let us first recall a useful construction of a symplectic manifold
from a fat principal bundle [26,31]. A principal bundleP(M,H) with a connection
is calledfat on an open submanifoldU ⊆ h∗ if the scalar-valued form< λ,� > is
non-degenerate on each horizontal space inT P for λ ∈ U . Here� is the curvature
form, which is a tensorial form of type AdH on P (i.e., it is horizontal,h-valued, and
AdH-equivariant).

Given a fat bundleP(M,H) with a connection, one has a decomposition of the
tangent bundleT P = Vert(P)⊕ Hor(P). We may identify Vert(P) with a trivial bundle
with fiberh. Thus

Vert∗P ∼= h∗ × P.

On the other hand, Vert∗P ∼= Hor⊥(P) ⊂ T∗P. Thus, by pulling back the canonical
symplectic structure onT ∗P , one can equip Vert∗P, henceh∗ × P , anH -invariant
presymplectic structure, whereH acts onh∗ ×P by (λ, x) · h = (Ad∗

hλ, x · h), ∀h ∈ H
and(λ, x) ∈ h∗×P . If U ⊆ h∗ is an open submanifold on whichP(M,H) is fat, then we
obtain anH -invariant symplectic manifoldU×P . In fact, the presymplectic formω can
be described explicitly. Note that Vert∗P admits a natural fibration withT ∗H being the
fibers, and the connection onP induces a connection on this fiber bundle. In other words,
Vert∗P is a symplectic fibration in the sense of Guillemin–Lerman–Sternberg [26]. At
any point(λ, x) ∈ h∗ × P ∼= Vert∗P, the presymplectic formω can be described as
follows: it restricts to the canonical two-form on the fiber; the vertical subspace isω-
orthogonal to the horizontal subspace; and the horizontal subspace is isomorphic to the
horizontal subspace ofTxP and the restriction ofω to this subspace is the two form
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− < λ,�(x) > obtained by pairing the curvature form withλ (see Examples 2.2–2.3
in [26]).

Now assume that

g = h ⊕ m (4)

is a reductive decomposition of a Lie algebrag, i.e.,h is a Lie subalgebra andm is stable
under the adjoint action ofh: [h, m] ⊂ m. ByG, we denote a Lie group with Lie algebra
g, andH the Lie subgroup corresponding toh. It is standard [28] that the decomposition
(4) induces a leftG-invariant connection on the principal bundleG(G/H,H), where
the curvature is given by

�(X, Y ) = −[X, Y ]h, h − component of[X, Y ] ∈ g. (5)

HereX andY are arbitrary left invariant vector fields onG belonging tom.
A reductive decompositiong = h ⊕ m is said to befat if the corresponding principal

bundleG(G/H,H) is fat on an open submanifoldU ⊆ h∗. As a consequence, a fat
decompositiong = h ⊕ m gives rise to aG×H -invariant symplectic structure onM =
U×G, where the symplectic structure is the restriction of the canonical symplectic form
onT ∗G. In other words,M is a symplectic submanifold ofT ∗G. Here the embedding
U ×G ⊆ h∗ ×G −→ g∗ ×G (∼= T ∗G) is given by the natural inclusion(λ, x) −→
(pr∗λ, x), wherepr : g −→ h is the projection along the decompositiong = h ⊕ m.
Since the symplectic structureω on U × G is left invariant, in order to describeω
explicitly, it suffices to specify it at a point(λ,1). Now T(λ,1)(U × G) ∼= h∗ ⊕ g =
h∗ ⊕ h ⊕ m. Under this identification, we haveω = ω1 ⊕ ω2, whereω1 ∈ �2(h∗ ⊕ h)
is the canonical symplectic two-form onT ∗H at the point(λ,1) ∈ h∗ × H (∼= T ∗H),
andω2 ∈ �2(m) is given by

ω2(X, Y ) = 〈λ, [X, Y ]h〉, ∀X, Y ∈ m.

Let r(λ) ∈ ∧2m be the inverse ofω2, which always exists forλ ∈ U sinceω2 is assumed
to be non-degenerate onU . It thus follows that the Poisson structure onU ×G is

π = πh∗ +
∑
i

∂

∂λi
∧ −→
hi + −→

r(λ).

According to Proposition 2.1,r : U −→ ∧2m ⊂ ∧2g is a non-degenerate triangular
dynamical r-matrix. Thus we have proved

Theorem 2.3.Assume thatg = h ⊕ m is a reductive decomposition which is fat on
an open submanifoldU ⊆ h∗. Then the dual of the linear mapϕ : ∧2m −→ h :
(X, Y ) −→ [X, Y ]h, ∀X, Y ∈ m defines a non-degenerate triangular dynamicalr-
matrix r : U(⊆ h∗) −→ ∧2m ⊂ ∧2g, ∀λ ∈ U . Herem∗ is identified withm using the
non-degenerate bilinear formϕ∗(λ) ∈ ∧2m∗.

It is often more useful to expressr(λ) explicitly in terms of a basis. To this end, let
us choose a basis{e1, . . . , em} of m. Let aij (λ) = 〈λ, [ei, ej ]h〉, i, j = 1, . . . , m. By
(cij (λ)) we denote the inverse of the matrix(aij (λ)), ∀λ ∈ U . Then one has

r(λ) = 1

2

∑
ij

cij (λ)ei ∧ ej . (6)
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Remark.(i) After the completion of the first draft, we learned that a similar formula
is also obtained independently by Etingof [15]. Note that this dynamical r-matrixr

is always singular at 0. To remove this singularity, one needs to make a shift of the
dynamical parameterλ → λ− µ.

(ii) It would be interesting to compare our formula with Theorem 3 in [17].

We end this section with some examples.

Example 2.1.Let g be a simple Lie algebra overC andh a Cartan subalgebra. Let

g = h ⊕
⊕
α∈.+

(gα ⊕ g−α)

be the root space decomposition, where.+ is the set of positive roots with respect toh.
Takem = ⊕α∈.+(gα⊕g−α). Theng = h⊕m is clearly a reductive decomposition. Let
eα ∈ gα ande−α ∈ g−α be dual vectors with respect to the Killing form:(eα, e−α) = 1.
For anyλ ∈ h∗, setaαβ(λ) = 〈λ, [eα, eβ ]h〉, ∀α, β ∈ .+ ∪ (−.+). It is then clear that
aαβ(λ) = 0, wheneverα + β �= 0; and

aα,−α(λ) = 〈λ, [eα, e−α]h〉
= (λ, α)(eα, e−α)
= (λ, α).

Therefore, from Theorem 2.3 and Eq. (6), it follows that

r(λ) = −
∑
α∈.+

1

(λ, α)
eα ∧ e−α

is a non-degenerate triangular dynamical r-matrix, so we have recovered this standard
example in [19].

Example 2.2.As in the above example, letg be a simple Lie algebra overC with a fixed
Cartan subalgebrah, andl a reductive Lie subalgebra containingh. There is a subset
.(l)+ of .+ such that

l = h ⊕
⊕

α∈.(l)+
(gα ⊕ g−α).

Let .+ = .+ − .(l)+, .(l) = .(l)+ ∪ (−.(l)+), and. = .+ ∪ (−.+), and
denote bym the subspace ofg:

m =
∑
α∈.+

(gα ⊕ g−α).

It is simple to see thatg = l ⊕ m is indeed a fat reductive decomposition, and therefore
induces a non-degenerate triangular dynamical r-matrixr : l∗ −→ ∧2g. To describer
explicitly, we note that the dual spacel∗ admits a natural decomposition

l∗ = h∗ ⊕
⊕

α∈.(l)+
(g∗
α ⊕ g∗−α).
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Hence any elementµ ∈ l∗ can be written asµ = λ ⊕ ⊕α∈.(l)ξα, whereλ ∈ h∗ and
ξα ∈ g∗

α. Let aαβ(µ) =< µ, [eα, eβ ]l >, ∀α, β ∈ .. It is easy to see that

aαβ(µ) =


(λ, α), if α + β = 0;
< ξγ , [eα, eβ ] >, if α + β = γ ∈ .(l);
0, otherwise.

(7)

By (cαβ(µ)), we denote the inverse matrix of(aαβ(µ)). According to Eq. (6),

r(µ) = 1

2

∑
α,β∈.

cαβ(µ)eα ∧ eβ

is a non-degenerate triangular dynamical r-matrix overl∗. In particular, ifµ = λ ∈ h∗,
it follows immediately that

r(λ) = −
∑
α∈.+

1

(λ, α)
eα ∧ e−α. (8)

Equation (8) was first obtained by Etingof–Varchenko in [19].

The following example was pointed out to us by D. Vogan.

Example 2.4.Letg = R
m+n⊕R

m+n⊕R be a 2(m+n)+1 dimensional Heisenberg Lie
algebra andh = R

n⊕R
n⊕R its standard Heisenberg Lie subalgebra. By{pi, qi, c}, i =

1, . . . , n+m, we denote the standard generators ofg and{pm+i , qm+i , c}, i = 1, . . . , n,
the generators ofh. Let m be the subspace ofg generated by{pi, qi}, i = 1, . . . , m.
It is then clear thatg = h ⊕ m is a reductive decomposition. Let{p∗

i , q
∗
i , c

∗}, i =
1, . . . , n+m, be the dual basis corresponding to the standard generators ofg. For any
λ ∈ h∗, write λ = ∑n

i=1(aip
∗
m+i + biq∗

m+i ) + xc∗. This induces a coordinate system
on h∗, and therefore a function onh∗ can be identified with a function with variables
(ai, bi, x). It is clear that

ω(pi, qj )(λ) = 〈λ, [pi, qj ]h〉 = xδij ;
ω(pi, pj ) = ω(qi, qj ) = 0, ∀i, j = 1, . . . , m.

It thus follows that

r(ai, bi, x) = − 1

x

m∑
i=1

pi ∧ qi : h∗ −→ ∧2g

is a non-degenerate triangular dynamical r-matrix.

3. Compatible Star Products

From Proposition 2.1, we know that a triangular dynamical r-matrixr : h∗ −→ ∧2g
is equivalent to a special type of Poisson structure onh∗ ×G. It is thus very natural to
expect that quantization ofr can be derived from a certain special type of star-product
onh∗ ×G. It is simple to see that the Poisson brackets onC∞(h∗ ×G) can be described
as follows:

(i) for anyf, g ∈ C∞(h∗), {f, g} = {f, g}πh∗ ;
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(ii) for any f ∈ C∞(h∗) andg ∈ C∞(G), {f, g} = ∑
i (
∂f

∂λi
)(

−→
hi g);

(iii) for any f, g ∈ C∞(G), {f, g} = −→
r(λ)(f, g).

These Poisson bracket relations naturally motivate the following:

Definition 3.1. A star product∗h̄ onM = h∗ ×G is called a compatible star product if

(i) for anyf, g ∈ C∞(h∗),

f (λ) ∗h̄ g(λ) = f (λ) ∗ g(λ); (9)

(ii) for anyf (x) ∈ C∞(G) andg(λ) ∈ C∞(h∗),

f (x) ∗h̄ g(λ) = f (x)g(λ); (10)

(iii) for anyf (λ) ∈ C∞(h∗) andg(x) ∈ C∞(G),

f (λ) ∗h̄ g(x) =
∞∑
k=0

h̄k

k!
∂kf

∂λi1 · · · ∂λik
−→
hi1 · · · −→

hik g; (11)

(iv) for anyf (x), g(x) ∈ C∞(G),

f (x) ∗h̄ g(x) = −−→
F(λ)(f, g), (12)

whereF(λ) is a smooth functionF : h∗ −→ Ug⊗Ug[[h̄]] such thatF = 1+ h̄F1+
O(h̄2).

Here ∗ denotes the standard PBW-star product onh∗ quantizing the canonical Lie–
Poisson structure (see [12]), whose definition is recalled below. Lethh̄ = h[[h̄]] be a Lie
algebra with the Lie bracket[X, Y ]h̄ = h̄[X, Y ], ∀X, Y ∈ h[[h̄]], and

σ : S(h)[[h̄]] ∼= Uhh̄

be the Poincaré–Birkhoff–Witt map, which is a vector space isomorphism. Thus the
multiplication onUhh̄ induces a multiplication onS(h)[[h̄]] (∼= Pol(h∗)[[h̄]]), hence on
C∞(h∗)[[h̄]], which is denoted by∗. It is easy to check that∗ satisfies

f ∗ g = fg + 1

2
h̄{f, g}π∗

h
+

∑
k≥0

h̄kBk(f, g)+ · · · , ∀f, g ∈ C∞(h∗),

whereBk ’s are bidifferential operators. In other words,∗ is indeed a star product onh∗,
which is called the PBW-star product.

The following proposition is quite obvious.

Proposition 3.2.The classical limit of a compatible star product is the Poisson structure

π = πh∗ + ∑
i
∂
∂λi

∧ −→
hi + −→

r(λ), wherer(λ) = F12(λ)− F21(λ).

Below we will study some important properties of compatible star products.
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Proposition 3.3.A compatible star product is always invariant under the leftG-action.
It is right H -invariant iff F : h∗ −→ Ug⊗Ug[[h̄]] isH -equivariant, whereH acts on
h∗ by the coadjoint action and onUg⊗Ug by the adjoint action.

Proof. First of all, note that Eqs. (9–12) completely determine a star product. It is clear
from these equations that∗h̄ is leftG-invariant.

As for the rightH -action, it is obvious from Eq. (10) that∗h̄ is invariant forf (x) ∗h̄
g(λ). It is standard that∗ is invariant under the coadjoint action, so it follows from Eq. (9)
thatf (λ) ∗h̄ g(λ) is alsoH -invariant.

For anyh ∈ h, g(x) ∈ C∞(G) and any fixedy ∈ H ,
−→
h (R∗

yg)(x) = (Lxh)(R
∗
yg)

= (RyLxh)(g)

= (LxyAdy−1h)(g)

= (
−−−−→
Ady−1hg)(xy)

= [R∗
y(

−−−−→
Ady−1hg)](x).

Thus it follows that
−→
hi1 · · · −→

hik (R
∗
yg) = R∗

y(
−→
h′
i1

· · · −→
h′
ik
g), (13)

whereh′
i = Ady−1hi , i = 1, . . . , n. Letξ ′

i = Ad∗
yξi , i = 1, . . . , n. Then{ξ ′

1, . . . , ξ
′
l } is

a dual basis for{h′
1, . . . , h

′
l}. Let(λ

′1, . . . , λ
′l ) be its corresponding induced coordinates

onh∗. Then

∂

∂λi
((Ad∗

y)
∗f ) = d

dt

∣∣∣∣
t=0
((Ad∗

y)
∗f )(λ+ tξi)

= d

dt

∣∣∣∣
t=0
f (Ad∗

yλ+ tAd∗
yξi)

= d

dt

∣∣∣∣
t=0
f (Ad∗

yλ+ tξ ′
i )

= ∂f

∂λ
′i (Ad∗

yλ)

= (Ad∗
y)

∗ ∂f
∂λ

′i .

Hence

∂k[(Ad∗
y)

∗f ]
∂λi1 · · · ∂λik = (Ad∗

y)
∗[ ∂kf

∂λ
′i1 · · · ∂λ′ik

]. (14)

From Eq. (11), it follows that for anyf (λ) ∈ C∞(h∗) andg(x) ∈ C∞(G),

(R∗
yf )(λ) ∗h̄ (R∗

yg)(x) =
∞∑
k=0

h̄k

k!
∂k[(Ad∗

y)
∗f ]

∂λi1 · · · ∂λik
−→
hi1 · · · −→

hik (R
∗
yg) (by Eqs. (13–14))

=
∞∑
k=0

h̄k

k! (Ad∗
y)

∗[ ∂kf

∂λ
′i1 · · · ∂λ′ik

]R∗
y[−→h′

i1
· · · −→
h′
ik

g]

= R∗
y(f (λ) ∗h̄ g(x)).
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I.e.,f (λ) ∗h̄ g(x) is also rightH -invariant.
Finally, ∀f (x), g(x) ∈ C∞(G),

(R∗
y(f ∗h̄ g))(λ, x) = (f ∗h̄ g)(Ad∗

yλ, xy)

= −−−−−→
F(Ad∗

yλ)(f, g)(xy)

= [Lxy(F (Ad∗
yλ))](f ,g).

On the other hand,

(R∗
yf ∗h̄ R∗

yg)(λ, x) = −−→
F(λ)(R∗

yf, R
∗
yg)(x)

= (LxF (λ))(R
∗
yf, R

∗
yg)

= (RyLxF (λ))(f, g).

ThereforeR∗
y(f ∗h̄ g) = R∗

yf ∗h̄ R∗
yg iff Lxy(F (Ad∗

yλ)) = RyLxF(λ). The latter is
equivalent to thatF(Ad∗

yλ) = Ady−1F(λ), or F is H -equivariant. This concludes the
proof. ��

In order to give an explicit formula for∗h̄, let us write

F(λ) =
∑

aαβ(λ)Uα⊗Uβ, (15)

whereaαβ(λ) ∈ C∞(h∗)[[h̄]] andUα⊗Uβ ∈ Ug⊗Ug. Using this expression, indeed
one can describe∗h̄ explicitly.

Theorem 3.4.Given a compatible star product∗h̄ as in Definition 3.1, for anyf (λ, x),
g(λ, x) ∈ C∞(h∗ ×G)[[h̄]],

f (λ, x) ∗h̄ g(λ, x) =
∑
αβ

∞∑
k=0

h̄k

k! aαβ(λ) ∗ −→
Uα

∂kf

∂λi1 · · · ∂λik ∗ −→
Uβ

−→
hi1 · · · −→

hik g. (16)

We need a couple of lemmas first.

Lemma 3.5.Under the same hypothesis as in Theorem 3.4,

(i) for anyf (λ, x) ∈ C∞(h∗ ×G) andg(λ) ∈ C∞(h∗),

f (λ, x) ∗h̄ g(λ) = f (λ, x) ∗ g(λ); (17)

(ii) for anyf (x) ∈ C∞(G) andg(λ, x) ∈ C∞(h∗ ×G),

f (x) ∗h̄ g(λ, x) =
∑
αβ

aαβ(λ) ∗ −→
Uαf (x)

−→
Uβg(λ, x); (18)

(iii) for anyf (λ, x) ∈ C∞(h∗ ×G) andg(x) ∈ C∞(G),

f (λ, x) ∗h̄ g(x) =
∑
αβ

∞∑
k=0

h̄k

k! aαβ(λ) ∗ −→
Uα

∂kf (λ, x)

∂λi1 · · · ∂λik
−→
Uβ

−→
hi1 · · · −→

hik g(x). (19)
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Proof. (i) It suffices to show this identity forf (λ, x) = f1(x)f2(λ),∀f1(x) ∈ C∞(G)
andf2(λ) ∈ C∞(h∗). Now

f (λ, x) ∗h̄ g(λ) = (f1(x)f2(λ)) ∗h̄ g(λ) (by Eq. (10))

= (f1(x) ∗h̄ f2(λ)) ∗h̄ g(λ)
= f1(x) ∗h̄ (f2(λ) ∗h̄ g(λ)) (by Eqs. (9–10))

= f1(x)(f2(λ) ∗ g(λ))
= (f1(x)f2(λ)) ∗ g(λ)
= f (λ, x) ∗ g(λ).

(ii) Similarly, we may assume thatg(λ, x) = g1(x)g2(λ), ∀g1(x) ∈ C∞(G) and
g2(λ) ∈ C∞(h∗). Then,

f (x) ∗h̄ g(λ, x) = f (x) ∗h̄ (g1(x)g2(λ))

= f (x) ∗h̄ (g1(x) ∗h̄ g2(λ))

= (f (x) ∗h̄ g1(x)) ∗h̄ g2(λ) (by Eq. (12))

=
∑
αβ

[aαβ(λ)(−→Uαf (x))(−→Uβg1(x))] ∗ g2(λ)

=
∑
αβ

aαβ(λ) ∗ −→
Uαf (x)

−→
Uβg(λ, x).

(iii) Assume thatf (λ, x) = f1(x)f2(λ), ∀f1(x) ∈ C∞(G) andf2(λ) ∈ C∞(h∗).
Then

f (λ, x) ∗h̄ g(x) = (f1(x)f2(λ)) ∗h̄ g(x)
= (f1(x) ∗h̄ f2(λ)) ∗h̄ g(x)
= f1(x) ∗h̄ (f2(λ) ∗h̄ g(x)) (using Eq. (18))

=
∑
αβ

aαβ(λ) ∗ −→
Uαf1(x)

−→
Uβ(f2(λ) ∗h̄ g(x))

=
∑
αβ

∞∑
k=0

h̄k

k! aαβ(λ) ∗ [−→Uαf1(x)
−→
Uβ(

∂kf2(λ)

∂λi1 · · · ∂λik
−→
hi1 · · · −→

hik g(x))]

=
∑
αβ

∞∑
k=0

h̄k

k! aαβ(λ) ∗ [−→Uαf1(x)
∂kf2(λ)

∂λi1 · · · ∂λik
−→
Uβ

−→
hi1 · · · −→

hik g(x)]

=
∑
αβ

∞∑
k=0

h̄k

k! aαβ(λ) ∗ [−→Uα ∂
k(f1(x)f2(λ))

∂λi1 · · · ∂λik
−→
Uβ

−→
hi1 · · · −→

hik g(x)]

=
∑
αβ

∞∑
k=0

h̄k

k! aαβ(λ) ∗ −→
Uα

∂kf (λ, x)

∂λi1 · · · ∂λik
−→
Uβ

−→
hi1 · · · −→

hik g(x).

This concludes the proof of the lemma.��
Now we are ready to prove the main result of this section.
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Proof of Theorem 3.4.Again, we may assume thatg(λ, x) = g1(x)g2(λ), ∀g1(x) ∈
C∞(G) andg2(λ) ∈ C∞(h∗). Then

f (λ, x) ∗h̄ g(λ, x) = f (λ, x) ∗h̄ (g1(x)g2(λ))

= f (λ, x) ∗h̄ (g1(x) ∗h̄ g2(λ))

= (f (λ, x) ∗h̄ g1(x)) ∗h̄ g2(λ) (by Eq. (17))

= (f (λ, x) ∗h̄ g1(x)) ∗ g2(λ) (by Eq. (19))

=
∑
αβ

∞∑
k=0

h̄k

k! [aαβ(λ) ∗ −→
Uα

∂kf (λ, x)

∂λi1 · · · ∂λik
−→
Uβ

−→
hi1 · · · −→

hik g1(x)] ∗ g2(λ)

=
∑
αβ

∞∑
k=0

h̄k

k! aαβ(λ) ∗ −→
Uα

∂kf (λ, x)

∂λi1 · · · ∂λik ∗ −→
Uβ

−→
hi1 · · · −→

hik (g1(x)g2(λ))

=
∑
αβ

∞∑
k=0

h̄k

k! aαβ(λ) ∗ −→
Uα

∂kf (λ, x)

∂λi1 · · · ∂λik ∗ −→
Uβ

−→
hi1 · · · −→

hik g(λ, x). ��

As a consequence of Theorem 3.4, we will see that if a functionF(λ) : h∗ −→
Ug ⊗Ug[[h̄]] defines a compatible star product, it must satisfy a “twisted-cocycle” type
condition. To describe this condition explicitly, we need to introduce some notations.

For anyf (λ) ∈ C∞(h∗), definef (λ+ h̄h) ∈ C∞(h∗)⊗Uh[[h̄]] by

f (λ+ h̄h) = f (λ)⊗1 + h̄
∑
i

∂f

∂λi
⊗hi + 1

2! h̄
2
∑
i1i2

∂2f

∂λi1∂λi2
⊗hi1hi2

+ · · · + h̄k

k!
∑ ∂kf

∂λi1 · · · ∂λik
⊗hi1 · · ·hik + · · · . (20)

The correspondenceC∞(h∗) −→ C∞(h∗)⊗Uh[[h̄]] : f (λ) −→ f (λ+ h̄h) extends
naturally to a linear map fromC∞(h∗)⊗Ug⊗Ug[[h̄]] toC∞(h∗)⊗Uh⊗Ug⊗Ug[[h̄]] ⊆
C∞(h∗)⊗Ug⊗Ug⊗Ug[[h̄]], which is denoted byF(λ) −→ F23(λ + h̄h(1)). More
explicitly, assume thatF(λ) = ∑

αβ fαβ(λ)Uα⊗Uβ , wherefαβ(λ) ∈ C∞(h∗)[[h̄]] and
Uα⊗Uβ ∈ Ug⊗Ug. Then

F23(λ+ h̄h(1)) =
∑
αβ

fαβ(λ+ h̄h)⊗Uα⊗Uβ. (21)

By a suitable permutation, one may defineF12(λ+h̄h(3))andF13(λ+h̄h(2))similarly.
Note thatUg is a Hopf algebra. By. : Ug −→ Ug⊗Ug andε : Ug −→ R, we
denote its co-multiplication and co-unit, respectively. Then. naturally extends to a
mapC∞(h∗)⊗Ug[[h̄]] −→ C∞(h∗)⊗Ug⊗Ug[[h̄]], which will be denoted by the same
symbol.

Corollary 3.6. Assume thatF : h∗ −→ Ug⊗Ug[[h̄]] defines a compatible star product
∗h̄ as in Definition 3.1. Then

(.⊗id)F (λ) ∗ F12(λ+ h̄h(3)) = (id⊗.)F(λ) ∗ F23(λ); (22)

(ε⊗id)F (λ) = 1; (id⊗ε)F (λ) = 1. (23)
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Proof. Equation (23) follows from the fact that 1∗h̄ f (x) = f (x)∗h̄1 = f (x), ∀f (x) ∈
C∞(G).

As for Eq. (22), note that for anyf1(x), f2(x) andf3(x) ∈ C∞(G), according to
Eq. (19), we have

(f1(x) ∗h̄ f2(x)) ∗h̄ f3(x)

=
∑
αβ

∞∑
k=0

h̄k

k! aαβ(λ) ∗ −→
Uα
∂k(f1(x) ∗h̄ f2(x))

∂λi1 · · · ∂λik
−→
Uβ

−→
hi1 · · · −→

hik f3(x).

Now

(.⊗id)F (λ) ∗ F12(λ+ h̄h(3))
=

∞∑
k=0

h̄k

k! (.⊗id)F (λ) ∗ ( ∂kF

∂λi1 · · · ∂λik ⊗hi1 · · ·hik )

=
∑
αβ

∞∑
k=0

h̄k

k! aαβ(λ) ∗.Uα ∂kF

∂λi1 · · · ∂λik ⊗Uβhi1 · · ·hik .

It thus follows that
−−−−−−−−−−−−−−−−−−−−−→
(.⊗id)F (λ) ∗ F12(λ+ h̄h(3))(f1(x), f2(x), f3(x))

=
∑
αβ

∞∑
k=0

h̄k

k! aαβ(λ) ∗ −→
Uα(

∂k
−−→
F(λ)(f1(x), f2(x))

∂λi1 · · · ∂λik )
−→
Uβ

−→
hi1 · · · −→

hik f3(x)

=
∑
αβ

∞∑
k=0

h̄k

k! aαβ(λ) ∗ −→
Uα
∂k(f1(x) ∗h̄ f2(x))

∂λi1 · · · ∂λik
−→
Uβ

−→
hi1 · · · −→

hik f3(x)

= (f1(x) ∗h̄ f2(x)) ∗h̄ f3(x).

On the other hand,

f1(x) ∗h̄ (f2(x) ∗h̄ f3(x)) = f1(x) ∗h̄ −−→
F(λ)(f2(x), f3(x)) (by Eq. (18))

=
∑
αβ

aαβ(λ) ∗ −→
Uαf1(x)

−→
Uβ(

−−→
F(λ)(f2(x), f3(x)))

= −−−−−−−−−−−−−−−→
(id⊗.)F(λ) ∗ F23(λ)(f1(x), f2(x), f3(x)).

Now Eq. (22) follows from the associativity of∗h̄. ��
To end this section, as a special case, let us considerM = h∗ ×H ∼= T ∗H , which is

equipped with the canonical cotangent symplectic structure. The following proposition
describes an explicit formula for a compatible star-product on it.

Proposition 3.7.For anyf (λ, x), g(λ, x) ∈ C∞(h∗ ×H)[[h̄]], the following equation

f (λ, x) ∗h̄ g(λ, x) =
∞∑
k=0

h̄k

k!
∂kf

∂λi1 · · · ∂λik ∗ −→
hi1 · · · −→

hik g (24)

defines a compatible star product onM = h∗×H ∼= T ∗H , which is in fact a deformation
quantization of its canonical cotangent symplectic structure.
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Proof. As earlier in this section, lethh̄ = h[[h̄]] be equipped with the Lie bracket
[X, Y ]h̄ = h̄[X, Y ], ∀X, Y ∈ hh̄, andσ : S(h)[[h̄]] −→ Uhh̄ the PBW-map. Note that
hh̄ is isomorphic toh as a Lie algebra. HenceUhh̄ is canonically isomorphic toUh[[h̄]],
whose elements can be considered as left invariant (formal) differential operators on
H . To each polynomial function onT ∗H ∼= h∗ × H , we assign a (formal) differential
operator onH according to the following rule. Forf ∈ C∞(H), we assign the operator
multiplying by f ; for f ∈ Pol(h∗) ∼= S(h), we assign the left invariant differential

operator
−−→
σ(f ); in general, forf (x)g(λ) with f (x) ∈ C∞(H) andg(λ) ∈ Pol(h∗),

we assign the differential operatorf (x)
−−→
σ(g). Then the multiplication on the algebra of

differential operators induces an associative product∗h̄ on Pol(T ∗H)[[h̄]], hence a star
product onT ∗H . It is simple to see from the above construction that

(i) for anyf (λ), g(λ) ∈ C∞(h∗),

f (λ) ∗h̄ g(λ) = f (λ) ∗ g(λ); (25)

(ii) for any f (x) ∈ C∞(H) andg(λ) ∈ C∞(h∗),

f (x) ∗h̄ g(λ) = f (x)g(λ); (26)

(iii) for any f (λ) ∈ C∞(h∗) andg(x) ∈ C∞(H),

f (λ) ∗h̄ g(x) =
∞∑
k=0

h̄k

k!
∂kf (λ)

∂λi1 · · · ∂λik
−→
hi1 · · · −→

hik g(x); (27)

(iv) for anyf (x), g(x) ∈ C∞(H),

f (x) ∗h̄ g(x) = f (x)g(x). (28)

In other words, this is indeed a compatible star product withF ≡ 1. Equation (24) thus
follows immediately from Theorem 3.4.��
Remark.It would be interesting to compare Eq. (24) with the general construction of
star products on cotangent symplectic manifolds in [10,11].

Equation (27) implies that the elementf (λ + h̄h) ∈ C∞(h∗)⊗Uh[[h̄]], being con-
sidered as a left invariant differential operator onH , admits the following expression:

−−−−−−→
f (λ+ h̄h) = f (λ) ∗h̄ .

Thus we have:

Corollary 3.8. For anyf, g ∈ C∞(h∗),

(f ∗ g)(λ+ h̄h) = f (λ+ h̄h) ∗ g(λ+ h̄h), (29)

where the∗ on the left hand side stands for the PBW-star product onh∗, while on the right
hand side it refers to the multiplication on the algebra tensor product of(C∞(h∗)[[h̄]], ∗)
withUh[[h̄]].
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Proof. Let ∗h̄ denote the star product onT ∗H as in Proposition 3.7. For anyϕ(x) ∈
C∞(H),

(f (λ) ∗h̄ g(λ)) ∗h̄ ϕ(x) (by Eqs. (25, 27))=
∞∑
k=0

h̄k

k!
∂k(f (λ) ∗ g(λ))
∂λi1 · · · ∂λik

−→
hi1 · · · −→

hikϕ(x)

= −−−−−−−−−−→
(f ∗ g)(λ+ h̄h)ϕ(x).

On the other hand,

f (λ) ∗h̄ (g(λ) ∗h̄ ϕ(x)) (by Eq. (24))

=
∞∑
k=0

h̄k

k!
∂kf (λ)

∂λi1 · · · ∂λik ∗ −→
hi1 · · · −→

hik (g(λ) ∗h̄ ϕ(x))

=
∞∑
k=0

∞∑
l=0

h̄k

k!
∂kf (λ)

∂λi1 · · · ∂λik ∗ −→
hi1 · · · −→

hik (
h̄l

l!
∂lg(λ)

∂λj1 · · · ∂λjl
−→
hj1 · · · −→

hjl ϕ(x))

=
∞∑
k=0

∞∑
l=0

h̄k+l

k!l!
∂kf (λ)

∂λi1 · · · ∂λik ∗ ∂lg(λ)

∂λj1 · · · ∂λjl
−→
hi1 · · · −→

hik
−→
hj1 · · · −→

hjl ϕ(x)

= −−−−−−−−−−−−−−−→
f (λ+ h̄h) ∗ g(λ+ h̄h)ϕ(x).

The conclusion thus follows from the associativity of∗h̄. ��
Corollary 3.9. For anyF,G ∈ C∞(h∗)⊗Ug⊗Ug[[h̄]],

(F ∗G)23(λ+ h̄h(1)) = F23(λ+ h̄h(1)) ∗G23(λ+ h̄h(1)). (30)

In particular, if F(λ) ∈ C∞(h∗)⊗Ug⊗Ug[[h̄]] is invertible, we have

F−1
23 (λ+ h̄h(1)) = F23(λ+ h̄h(1))−1. (31)

4. Quantum Dynamical Yang–Baxter Equation

The main purpose of this section is to derive the quantum dynamicalYang–Baxter equa-
tion over a nonabelian baseh from the “twisted-cocycle” condition (22). This was stan-
dard whenh is Abelian (e.g., see [6]). The proof was based on the Drinfel’d theory of
quasi-Hopf algebras [13]. In our situation, however, the quasi-Hopf algebra approach
does not work any more. Nevertheless, one can carry out a proof in a way completely
parallel to the ordinary case.

The main result of this section is the following:

Theorem 4.1.Assume thatF : h∗ −→ Ug⊗Ug[[h̄]] satisfies the “twisted-cocycle”
condition (22). Then

R(λ) = F21(λ)
−1 ∗ F12(λ) (32)

satisfies the following generalized quantum dynamical Yang–Baxter equation (or
Gervais–Neveu–Felder equation):

R12(λ) ∗ R13(λ+ h̄h(2)) ∗ R23(λ) = R23(λ+ h̄h(1)) ∗ R13(λ) ∗ R12(λ+ h̄h(3)).
(33)

Here ∗ denotes the natural multiplication onC∞(h∗)⊗(Ug)n[[h̄]], ∀n, with C∞(h∗)
being equipped with the PBW-star product.
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It is simple to see that the usual relation

.(a ∗ b) = .a ∗.b (34)

still holds for anya, b ∈ C∞(h∗)⊗Ug[[h̄]]. Define .̃ : C∞(h∗)⊗Ug[[h̄]] −→
C∞(h∗)⊗Ug⊗Ug[[h̄]] by

.̃a = F(λ)−1 ∗.a ∗ F(λ), ∀a ∈ C∞(h∗)⊗Ug[[h̄]]. (35)

It is simple to see, using the associativity of∗, that

.̃opa = R(λ) ∗ .̃a ∗ R(λ)−1. (36)

The following is immediate from Corollary 3.9.

Corollary 4.2.

R23(λ+ h̄h(1)) = F32(λ+ h̄h(1))−1 ∗ F23(λ+ h̄h(1)). (37)

Remark.Equation (37) is trivial whenh is Abelian. It, however, does not seem obvious
in general. We can see from the proof of Corollary 3.9 that this equation essentially
follows from the associativity of the star product given by Eq. (24).

For any givenF(λ) ∈ C∞(h∗)⊗Ug⊗Ug[[h̄]], introduce=123(λ) ∈ C∞(h∗)⊗Ug
⊗Ug⊗Ug[[h̄]] by

=123(λ) = F23(λ)
−1 ∗ [(id⊗.)F(λ)−1] ∗ [(.⊗id)F (λ)] ∗ F12(λ). (38)

Lemma 4.3.

(.̃⊗id)R = =231 ∗ R13 ∗=−1
132 ∗ R23 ∗=123; (39)

(id⊗.̃)R = =−1
312 ∗ R13 ∗=213 ∗ R12 ∗=−1

123. (40)

Proof. By applying the permutationa1⊗a2⊗a3 −→ a1⊗a3⊗a2 on Eq. (38), one obtains
that

=132(λ) = F32(λ)
−1 ∗ σ23[(id⊗.)F(λ)−1] ∗ σ23[(.⊗id)F (λ)] ∗ F13(λ)

= F32(λ)
−1 ∗ [(id⊗.)F(λ)−1] ∗ σ23[(.⊗id)F (λ)] ∗ F13(λ),

since . is cocommutative. Similarly, applying the permutationa1⊗a2⊗a3 −→
a2⊗a3⊗a1 on Eq. (38), one obtains that

=231(λ) = F12(λ)
−1 ∗ [(.⊗id)F21(λ)

−1] ∗ σ23[(.⊗id)F (λ)] ∗ F31(λ). (41)

On the other hand, by definition,

R13(λ) = F31(λ)
−1 ∗ F13(λ), (42)

R23(λ) = F32(λ)
−1 ∗ F23(λ). (43)

It thus follows that

=231 ∗ R13 ∗=−1
132 ∗ R23 ∗=123

= F12(λ)
−1 ∗ (.⊗id)F21(λ)

−1 ∗ (.⊗id)F (λ) ∗ F12(λ) (by Eq. (34))

= F12(λ)
−1 ∗ (.⊗id)R(λ) ∗ F12(λ) (by Eq. (35))

= (.̃⊗id)R.
Equation (39) can be proved similarly.��
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Proof of Theorem 4.1.From Eq. (36), it follows that

R12 ∗ (.̃⊗id)R = (.̃op⊗id)R ∗ R12.

According to Eq. (39), this is equivalent to

R12 ∗=231 ∗ R13 ∗=−1
132 ∗ R23 ∗=123 = =321 ∗ R23 ∗=−1

312 ∗ R13 ∗=213 ∗ R12.

Thus,

R12 ∗ (=231 ∗ R13 ∗=−1
132) ∗ R23 = (=321 ∗ R23 ∗=−1

312) ∗ R13 ∗ (=213 ∗ R12 ∗=−1
123).

(44)

Now the twisted-cocycle condition (22) implies that

=123(λ) = F12(λ+ h̄h(3))−1 ∗ F12(λ). (45)

It thus follows that

=213 ∗ R12 ∗=−1
123

= F21(λ+ h̄h(3))−1 ∗ F21(λ) ∗ F21(λ)
−1 ∗ F12(λ) ∗ F12(λ)

−1 ∗ F12(λ+ h̄h(3))
= F21(λ+ h̄h(3))−1 ∗ F12(λ+ h̄h(3)) (by Corollary 4.2)

= R12(λ+ h̄h(3)).

Applying the permutations:a1⊗a2⊗a3 −→ a3⊗a1⊗a2, and a1⊗a2⊗a3 −→
a1⊗a3⊗a2 respectively to the equation above, one obtains

=321 ∗ R23 ∗=−1
312 = R23(λ+ h̄h(1)) and

=231 ∗ R13 ∗=−1
132 = R13(λ+ h̄h(2)).

Equation (33) thus follows immediately.��

5. Concluding Remarks

Even though our discussion so far has been mainly confined to triangular dynamical
r-matrices, we should point out that there do exist many interesting examples of non-
triangular ones. For instance, when the Lie algebrag admits an ad-invariant bilinear
form and the base Lie algebrah equalsg, Alekseev and Meinrenken found an explicit
construction of an interesting non-triangular dynamical r-matrix [1] in connection with
their study of the non-commutative Weil algebra. In fact, for simple Lie algebras, the
existence of AM-dynamical r-matrices was already proved by Etingof and Varchenko
[19]. The construction ofAlekseev and Meinrenken was later generalized by Etingof and
Schiffmann to a more general context [17]. So there is no doubt that there are abundant
non-trivial examples of dynamical r-matrices with a nonabelian base. It is therefore
desirable to know how they can be quantized. Inspired by the above discussion in the
triangular case, we are ready to propose the following quantization problem along the
line of Drinfel’d’s naive2 quantization [14].

2 Drinfeld’s original naive quantization was proposed for a classicalr-matrix inA⊗A for an associative
algebraA. Here one can considerA as the universal enveloping algebraUg, andr ∈ g⊗g ⊂ Ug⊗Ug.
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Definition 5.1. Given a classical dynamical r-matrixr : h∗ −→ g⊗g, a quantization of
r isR(λ) = 1+ h̄r(λ)+O(h̄2) ∈ U(g)⊗U(g)[[h̄]] which isH -equivariant and satisfies
the generalized quantum dynamical Yang–Baxter equation (or Gervais–Neveu–Felder
equation):

R12(λ) ∗ R13(λ+ h̄h(2)) ∗ R23(λ) = R23(λ+ h̄h(1)) ∗ R13(λ) ∗ R12(λ+ h̄h(3)).
(46)

Combining Proposition 2.1, Proposition 3.2, Corollary 3.6 and Theorem 4.1, we may
summarize the main result of this paper in the following:

Theorem 5.2.A triangular dynamicalr-matrix r : h∗ −→ ∧2g is quantizable if there
exists a compatible star product on the corresponding Poisson manifoldh∗ ×G.

We conclude this paper with a list of questions together with some thoughts.

Question 1. Is every classical triangular dynamicalr-matrix quantizable?
According to Theorem 5.2, this question is equivalent to asking whether a compatible

star product always exists for the corresponding Poisson manifoldh∗ × G. When the
base Lie algebra is Abelian, a quantization procedure was found for splittable classi-
cal triangular dynamical r-matrices using Fedosov’s method [34]. Recently Etingof and
Nikshych [21], using the vertex-IRF transformation method, showed the existence of
quantization for the so-called completely degenerate triangular dynamical r-matrices,
which leads to the hope that the existence of quantization could be possibly settled by
combing both methods in [34] and [21]. However, when the base Lie algebrah is non-
abelian, the method in [34] does not admit a straightforward generalization. One of the
main difficulties is that the Fedosov method uses Weyl quantization, while our quantiza-
tion here is in normal ordering. Nevertheless, for the dynamical r-matrices constructed
in Theorem 2.3, under some mild assumptions a quantization seems feasible by using
the generalized Karabegov method [3,5]. This problem will be discussed in a separate
publication.

Question 2. What is the symmetrized version of the quantum dynamical Yang–Baxter
equation (46)?

We derived Eq. (46) from a compatible star product, which is a normal ordering star
product. The reason for us to choose the normal ordering here is that one can obtain
a very explicit formula for the star product: Eq. (16). A Weyl ordering compatible star
product may exist, but it may be more difficult to work with. For the canonical cotangent
symplectic structureT ∗H , a Weyl ordering star product was found by Gutt [27], but it
is rather difficult to write down an explicit formula [9]. As we can see from the previous
discussion, how a quantum dynamical Yang–Baxter equation looks is closely related
to the choice of a star product onT ∗H . WhenH is Abelian, there is a very simple
operator establishing an isomorphism between these two quantizations, which is indeed
the transformation needed to transform a unsymmetrized QDYBE into a symmetrized
one. Such an operator also exists for a general cotangent bundleT ∗Q [10], but it is
much more complicated. Nevertheless, this viewpoint may still provide a useful method
to obtain the symmetrized version of a QDYBE.

Question 3. Is every classical dynamicalr-matrix quantizable?
This question may be a bit too general. As a first step, it should already be quite

interesting to find a quantum analogue of Alekseev–Meinrenken dynamical r-matrices.

Question 4. What is the deformation theory controlling the quantization problem as
proposed in Definition 5.1?
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If R = 1+ h̄r+· · ·+ h̄iri +· · · , whereri ∈ C∞(h∗)⊗Ug⊗Ug, i ≥ 2, is a solution
to the QDYBE, thēh-termr must be a solution of the classical dynamical Yang–Baxter
equation. Indeed the quantum dynamical Yang–Baxter equation implies a sequence of
equations ofri in terms of lower order terms. One should expect some cohomology
theory here just as for any deformation theory [8]. However, in our case, the equation
seems very complicated. On the other hand, it is quite surprising that such a theory does
not seem to exist in the literature even in the case of quantization of a usualr-matrix.

Finally, we would like to point out that perhaps a more useful way of thinking of
quantization of a dynamical r-matrix is to consider the quantum groupoids as defined
in [33]. This is in some sense an analogue of the “sophisticated” quantization in terms
of Drinfel’d [14]. A classical dynamical r-matrix gives rise to a Lie bialgebroid(T h∗ ×
g, T ∗h∗ × g∗) [7,29]. Its induced Poisson structure on the base spaceh∗ is the Lie-
Poisson structureπh∗ , which admits the PBW-star product as a standard deformation
quantization. This leads to the following

Question 5. Does the Lie bialgebroid(T h∗ ×g, T ∗h∗ ×g∗) corresponding to a classical
dynamical r-matrix always admit a quantization in the sense of [33], with the base algebra
being the PBW-star algebraC∞(h∗)[[h̄]]?

To connect the quantization problem in Definition 5.1 with that of Lie bialgebroids,
it is clear that one needs to consider preferred quantization of Lie bialgebroids: namely,
a quantization where the total algebra is undeformed and remains to beD(h∗)⊗Ug[[h̄]].
Question 6. Does the Lie bialgebroid(T h∗ × g, T ∗h∗ × g∗) admit a preferred quanti-
zation? How is such a preferred quantization related to the quantization ofr as proposed
in Definition 5.1?

Whenh = 0, namely for usual r-matrices, the answer to Question 6 is positive, due
to a remarkable theorem of Etingof–Kazhdan [16].
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