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Abstract: Inthis paper we consider dynamical r-matrices over a nonabelian base. There
are two main results. First, corresponding to a fat reductive decomposition of a Lie
algebrag = h @ m, we construct geometrically a non-degenerate triangular dynamical
r-matrix using symplectic fibrations. Second, we prove that a triangular dynamical r-
matrixr : h* — A2g naturally corresponds to a Poisson manifgifdx G. A special

type of quantization of this Poisson manifold, called compatible star products in this
paper, yields a generalized version of the quantum dynamical Yang—Baxter equation
(or Gervais—Neveu—Felder equation). As a result, the quantization problem of a general
dynamical r-matrix is proposed.

1. Introduction

Recently, there has been growing interest in the so-called quantum dynamical Yang—
Baxter equation:

R1200) R13( + BhP)Rpz(M) = Raz(h + AhD)R13(M R12(h + 1R D). (1)

This equation arises naturally from various contexts in mathematical physics. It first
appeared in the work of Gervais—Neveu in their study of quantum Liouville theory [24].
Recently it reappeared in Felder's work on the quantum Knizhnik—Zamolodchikov—
Bernard equation [23]. It also has been found to be connected with the quantum Caloger—
Moser systems [4]. As the quantum Yang—Baxter equation is connected with quantum
groups, the quantum dynamical Yang—Baxter equation is known to be connected with
elliptic quantum groups [23], as well as with Hopf algebroids or quantum groupoids [20,
32,33].

The classical counterpart of the quantum dynamical Yang—Baxter equation was first
considered by Felder [23], and then studied by Etingof and Varchenko [19]. This is the
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so-called classical dynamical Yang—Baxter equation, and a solution to such an equation
(plus some other reasonable conditions) is called a classical dynamical r-matrix. More
precisely, given a Lie algebraoverR (or overC) with an Abelian Lie subalgebri,

a classical dynamical r-matrix is a smooth (or meromorphic) funatioh* — g®g
satisfying the following conditions:

(i) (zero weight condition)h®1 + 1®h, r(A)] =0, Vh € b;
(i) (normal condition)r1o + 21 = 2, whereQ2 € (52g)¢ is a Casimir element;
(iii) (classical dynamical Yang—Baxter equation

Alt (dr) — ([r12, r13] + [r12, 23] + [r13, r23]) = 0, 2

where Altdr = Y"(h\” %rzs h(? o3 3’13 +1® 3’12)

A fundamental ques{ion is Whether a classmal dynamical r-matrix is always quantiz-
able. There has appeared a lot of work in this direction, for example, see [2,25,18]. Inthe
triangular case (i.er, is skew-symmetricz12(1) + r21(A) = 0), a general quantization
scheme was developed by the author using the Fedosov method, which works for a vast
class of dynamical r-matrices, called splittable triangular dynamical r-matrices [34]. Re-
cently, Etingof and Nikshych, using the vertex-IRF transformation method, proved the
existence of quantizations for the so-called completely degenerate triangular dynamical
r-matrices [21].

Interestingly, although the quantum dynamical Yang—Baxter equation in [23] only
makes sense when the base Lie algéhbisAbelian, its classical counterpart admits an
immediate generalization for any base Lie algebrahich is not necessarily Abelian.
Indeed, all one needs to do is to change the first condition (i) to:

(i r:bp* — gRgis H-equivariant, whergd acts onh* by coadjoint action and on
g®g by adjoint action.

There exist many examples of such classical dynamical r-matrices. For instance, when
g is a simple Lie algebra anfl is a reductive Lie subalgebra containing the Cartan
subalgebra, there is a classification due to Etingof—Varchenko [19]. In particular, when
h = g, an explicit formula was discovered by Alekseev and Meinrenken in their study of
non-commutative Weil algebras [1]. Later, this was generalized by Etingof and Schiffer-
mann [17] to a more general context. Moreover, under some regularity condition, they
showed that the moduli space of dynamical r-matrices essentially consists of a single
point once the initial value of the dynamical r-matrices is fixed. A natural question arises
as to what should be the quantum counterpart of these r-matrices. And more generally,
is any classical dynamical r-matrix (with nonabelian base) quantizable?

A basic question is what the quantum dynamical Yang—Baxter equation should look
like whenb is nonabelian. In this paper, as a toy model, we consider the special case
of triangular dynamical r-matrices and their quantizations. As in the Abelian case, these
r-matrices naturally correspond to some invariant Poisson structurg$ anG. It is
standard that quantizations of Poisson structures correspond to star products [8]. The
special form of the Poisson bracket relationhdrnk G suggests a specific form that their
star products should take. This leads to our definition of compatible star products. The
compatibility condition (which, in this case, is just the associativity) naturally leads to
a quantum dynamical Yang—Baxter equation: Eq. (33). As we shall see, this equation

1 Throughout the paper, we follow the sign convention in [4] for the definition of a classical dynamical
r-matrix in order to be consistent with the quantum dynamical Yang—Baxter equation (1). This differs in sign
from the one used in [19].
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indeed resembles the usual quantum dynamical Yang—Baxter equation (unsymmetrized
version). The only difference is that the usual pointwise multiplicatiorC&M(h*) is
replaced by the PBW-star product, which is indeed the deformation quantization of the
canonical Lie—Poisson structure ¢i. Although Eq. (33) is derived by considering
triangular dynamical r-matrices, it makes perfect sense for non-triangular ones as well.
This naturally leads to our definition of quantization of dynamical r-matrices over an
arbitrary base Lie subalgebra which is not necessary Abelian. The problem is that such an
equation only makes sense Br: h* — Ug®Ug[[%]. In the Abelian case, it appears

that one may considet valued in a deformed universal enveloping algetssa, but in

most case$/; g is isomorphic toU g[[#] as an algebra. So Eq. (33), in a certain sense,

is general enough to include all the interesting cases. However, the physical meaning of
this equation remains mysterious.

Another main result of the paper is to give a geometric construction of triangular
dynamical r-matrices. More precisely, we give an explicit construction of a triangular
dynamical r-matrix from a fat reductive decomposition of a Lie alggpbta h & m
(see Sect. 2 for the definition). This includes those examples of triangular dynamical
r-matrices considered in [19]. Our main purpose is to show that triangular dynamical
r-matrices (with nonabelian base) do rise naturally from symplectic geometry. This gives
us another reason why it is important to consider their quantizations. Discussion of this
part occupies Sect. 2. Section 3 is devoted to the discussion of compatible star products,
whose associativity leads to a “twisted-cocycle” condition. In Sect. 4, we will derive the
guantum dynamical Yang—Baxter equation from this twisted-cocycle condition. The last
section contains some concluding remarks and open questions.

Finally, we note that in this paper, by a dynamical r-matrix, we always mean a
dynamical r-matrix over a general base Lie subalgebra unless specified. Also Lie algebras
are normally assumed to be ovRr although most results can be easily modified for
complex Lie algebras. For simplicity, in this paper we assume that a dynaricatrix
is defined orh*. In reality, it may only be defined on an open submanif@lg h*.

2. Classical Dynamicalr-Matrices

In this section, we will give a geometric construction of triangular dynamical r-matrices.
As we shall see, these r-matrices do arise naturally from symplectic geometry. We will
show some interesting examples, which include triangular dynamical r-matrices for
simple Lie algebras constructed by Etingof—Varchenko [19].

Below let us recall the definition of a classical triangular dynamigaktrix. Letg be
aLiealgebraoveR (orC) andh C gbe aLie subalgebra. A classical dynamical r-matrix
r: b* — g®g is said to bdriangular if it is skew symmetricri2 + r21 = 0. In other
words, a classical triangular dynamieamatrix is a smooth function (or meromorphic
function in the complex case): h* —> A2g such that

() r:h* — AZgis H-equivariant, wherdf acts onh* by coadjoint action and acts
on A2g by adjoint action.

(ii)
or 1
Zi:h,-/\ﬁ—z[r,r]=0, (3)

where the bracket , -] refers to the Schouten type brackstg® Al g — AktH—1g
induced from the Lie algebra bracketgr{i1, ... , h;} is a basis ofy, and(Al, ... , 1))
its induced coordinate system gf.
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The following proposition gives an alternative description of a classical triangular
dynamical r-matrix.

Proposition 2.1.A smooth function : h* — A?g is a triangular dynamical-matrix
iff

0 - —
T =Ty +lz.3)w’ i +r(d)
is a Poisson tensor o = h* x G, wherer- denotes the standard Lie (also known

as Kirillov—Kostant) Poisson tensor on the Lie algebra dl)raIE) € X(M) is the left

—
invariant vector field on/ generated by:; € b, and similarlyr(x) € T'(A2T M) is the
left invariant bivector field oM corresponding to(1).

Proof. Set
0 —
711:77.'{)*4' E ﬁ/\hi.
. 1
1

Thenr = 71+ r(T). Note that, for anya, x), 1| .x) iS tangent thy* x x H, on which

it is isomorphic to the standard Poisson (symplectic) structure on the cotangent bundle
T*H (see, e.g., [27]). Her&* H is identified withh* x H (hence withh* x x H) via

left translations. It thus follows thdirq, 1] = 0. Therefore

—> —_— —>
[, ] = 2[m1, r)] + [r V), r(M)].
Now

—> —_—> 0 - —>
[1, r(M)] = [mp=, r(M)]+ Z[W A hi, r(A)]

—> —> 0 — 0 —_— —
= [mye. r(x)1+Z[r<x>, pr i ‘Za_x,-”r(”’ hi].

i
Hence[r, 7] = I1 + I», where
I= ZZ[r_(T), 3%] A ;417G r(], and

Iz = 2wy, O3]~ 230 - A ), T .

With respect to the natural bigrading A7 (h* x G), I1 andI» correspond to theD, 3)
and (1, 2)-terms of[r, 7], respectively. It thus follows thatr, 7] = 0 iff I; = 0 and
I =0.

It is simple to see that

- 3 F —
n=-2%"T A % +Ir (o, r(.
i

Hencel; = 0 is equivalent to Eq. (3).
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To find out the meaning ab = 0, let us writery: = %Zij fii () d‘i, d‘M. (fij =
— fji). A simple computation yields that

12—22 Zﬁ](k) -+ Z—A[h,,r(m

Thus/l = 0 is equivalent to

8r(k) d
[hi,r(M)] = ij(A) = —
r Zf/ NI 0

A), Vi,

r (Ade;rl th

which means exactly thatis H-equivariant. This concludes the proofo

Remark. Note thatM (= h* x G) admits a leftG-action and a righ#f-action defined
as follows:v(%, x) € b* x G,

y- (A, x) =@, yx), VyeGqG;
A, x)-y= (Ad;,*k, Xy), VyeH.

It is clear that the Poisson structurds invariant under both actions. And, in short,
we will say thatr is G x H-invariant.

Definition 2.2. A classical triangular dynamical-matrixr : h* — A?g is said to be
non-degeneratdf the corresponding Poisson structureon M is non-degenerate, i.e.,
symplectic.

In what follows, we will give a geometric construction of non-degenerate dynamical
r-matrices. To this end, let us first recall a useful construction of a symplectic manifold
from a fat principal bundle [26,31]. A principal bundR(M, H) with a connection
is calledfat on an open submanifoldy C h* if the scalar-valued form< 1, Q > is
non-degenerate on each horizontal spac® infor A € U. HereQ is the curvature
form, which is a tensorial form of type Adon P (i.e., it is horizontal h-valued, and
Ady-equivariant).

Given a fat bundleP (M, H) with a connection, one has a decomposition of the
tangent bundlg” P = Vert(P) & Hor(P). We may identify Ver¢P) with a trivial bundle
with fiber h. Thus

Vert*P = h* x P.

On the other hand, Vet = Hor'(P) ¢ T*P. Thus, by pulling back the canonical
symplectic structure off* P, one can equip VetP, henceh* x P, an H-invariant
presymplectic structure, wher acts onh* x P by (A, x) - h = (AdjA, x-h),Vh € H
and(A, x) € h*x P.If U C h*isan open submanifold onwhidh(M, H) is fat, then we
obtain anH -invariant symplectic manifol@ x P. In fact, the presymplectic form can

be described explicitly. Note that V&R admits a natural fibration withi* H being the
fibers, and the connection @hinduces a connection on this fiber bundle. In other words,
Vert*P is a symplectic fibration in the sense of Guillemin—-Lerman-Sternberg [26]. At
any point(i, x) € b* x P = Vert*P, the presymplectic formv can be described as
follows: it restricts to the canonical two-form on the fiber; the vertical subspaee is
orthogonal to the horizontal subspace; and the horizontal subspace is isomorphic to the
horizontal subspace df, P and the restriction of to this subspace is the two form
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— < X, 2(x) > obtained by pairing the curvature form with(see Examples 2.2-2.3
in [26]).
Now assume that

g=hom 4)

is a reductive decomposition of a Lie algelprae.,} is a Lie subalgebra and is stable
under the adjoint action ¢f. [h, m] C m. By G, we denote a Lie group with Lie algebra
g, andH the Lie subgroup correspondingfolt is standard [28] that the decomposition
(4) induces a lefG-invariant connection on the principal bundi€G/H, H), where
the curvature is given by

Q(X,Y)=—[X, Y]y, b—componentofX, Y]eg. (5)

HereX andY are arbitrary left invariant vector fields @ belonging tom.

A reductive decompositiop = h & m is said to bdat if the corresponding principal
bundleG(G/H, H) is fat on an open submanifold < h*. As a consequence, a fat
decompositiony = h @ m gives rise to & x H-invariant symplectic structure o =
U x G, where the symplectic structure is the restriction of the canonical symplectic form
onT*G. In other words M is a symplectic submanifold &*G. Here the embedding
UxGCh*xG— g*"x G (= T*G) is given by the natural inclusiok, x) —
(pr*x, x), wherepr : g — b is the projection along the decompositign= h & m.
Since the symplectic structuee on U x G is left invariant, in order to describe
explicitly, it suffices to specify it at a poinfx, 1). Now T, 1y)(U x G) = h* @ g =
h* @ h & m. Under this identification, we have = w1 @ w», Wherew; € Q2(h* & b)
is the canonical symplectic two-form @f H at the point(x, 1) € b* x H (=2 T*H),
andw, € Q%(m) is given by

w2(X.Y) = (., [X, Y]p), VXY em.

Letr(1) € A%m be the inverse aby, which always exists fax € U sincew; is assumed
to be non-degenerate @n It thus follows that the Poisson structure@nx G is

a -  —>
n:nb*—i—za—)LiAhi +r(A).
i

According to Proposition 2.7, : U —> A?m C AZg is a non-degenerate triangular
dynamical r-matrix. Thus we have proved

Theorem 2.3.Assume thayj = h & m is a reductive decomposition which is fat on
an open submanifold/ C h*. Then the dual of the linear map : A°m — b :
(X,Y) — [X, Y]y, VX,Y € m defines a non-degenerate triangular dynamical
matrixr : U(C h*) — A%m C A2g, VA € U. Herem* is identified withm using the
non-degenerate bilinear forg* (1) € A2m*.

It is often more useful to express)) explicitly in terms of a basis. To this end, let
us choose a bas{8y, ... , e,} of m. Leta;;(A) = (A, [ej, ¢;1p), i,j=1,...,m.By
(c;j(0)) we denote the inverse of the matcix; (1)), YA € U.Then one has

1
r(A) = EZc,-j()\)e,»/\e,-. (6)
ij
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Remark. (i) After the completion of the first draft, we learned that a similar formula
is also obtained independently by Etingof [15]. Note that this dynamical r-mxatrix
is always singular at 0. To remove this singularity, one needs to make a shift of the
dynamical parameter — A — w.

(ii) It would be interesting to compare our formula with Theorem 3 in [17].

We end this section with some examples.

Example 2.1Let g be a simple Lie algebra ovér andh a Cartan subalgebra. Let

0=h0 P (@ © 9

aeA

be the root space decomposition, whare is the set of positive roots with respectito
Takem = @gen, (9o D g—o). Theng = h @ m is clearly a reductive decomposition. Let
eq € go ande_, € g, be dual vectors with respect to the Killing forite,, e_,) = 1.
Foranyx € b*, setagg(A) = (A, [eq, egly), Yo, B € AL U(=Ay). Itisthen clear that
aeg(A) = 0, whenevet + g # 0; and

aa,fa()t) = (A, [eq, e*ﬁt]h)
=, a)(ea, e—¢)
= (A, ).

Therefore, from Theorem 2.3 and Eq. (6), it follows that

1
r(A) = — Z mea/\e,a

DlEA+ ’

is a non-degenerate triangular dynamical r-matrix, so we have recovered this standard
example in [19].

Example 2.2As in the above example, Igtbe a simple Lie algebra ové&rwith a fixed
Cartan subalgebriy, and! a reductive Lie subalgebra containipgThere is a subset
A(l)4 of Ay such that

(=he P o9

aeA(D),

LetAy = Ay — A(D4, A = A(D4L U(=A(Dy), andA = A, U (—A,), and
denote bym the subspace af:

m= Y (o ® 80
(YEZ+

Itis simple to see that = [ @ m is indeed a fat reductive decomposition, and therefore
induces a non-degenerate triangular dynamical r-matrix* —> AZ2g. To describe-
explicitly, we note that the dual spateadmits a natural decomposition

F=bo P @,

aeA(D)4
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Hence any element € [* can be written ag. = A ® Byea)ée, Wherer € h* and
€y € g Letagp(n) =< u, e, egll >, Yo, p € A. ltis easy to see that

A, ), ifa+pB8=0;
aeg() = <&y, lea, el >, ifa+ B =y e A); (7)
0, otherwise.

By (cqp(1)), we denote the inverse matrix @f,(1)). According to Eq. (6),

1
r(,u) = E Zﬁcaﬁ(ﬂ)ea Neg
o,fEA

is a non-degenerate triangular dynamical r-matrix d¥ein particular, ifu = A € b*,
it follows immediately that

1
I"()\) = — Z mea N €e_gy. (8)

aeA
Equation (8) was first obtained by Etingof—Varchenko in [19].

The following example was pointed out to us by D. Vogan.

Example 2.4Letg = R"™" @ R" " R be a m +n) + 1 dimensional Heisenberg Lie
algebraang = R"®dR" @R its standard Heisenberg Lie subalgebra{By ¢;, c}, i =
1,...,n+m,wedenote the standard generatorsahd{ p,,, +i, gm+i- c}, i =1, ... ,n,
the generators df. Let m be the subspace gfgenerated byp;,q¢;}, i = 1,... ,m.

It is then clear thay = h @ m is a reductive decomposition. Lép*, ¢*, c*}, i =
1,...,n+ m, be the dual basis corresponding to the standard generatgr&of any

A € b*, write A = Z?zl(aip;‘nH + biq,, ;) + xc*. This induces a coordinate system
on h*, and therefore a function dii* can be identified with a function with variables
(a;, b;, x). Itis clear that

w(pi,q;j)(A) = (A, [pi,qly) = x6ij;
a)(pl’p])Zw(ql7qj):0’ Vi’ j=17""m'

It thus follows that
1 m
r(ai bi,x) === piAgi: bh* — A%g
X
i=1
is a non-degenerate triangular dynamical r-matrix.

3. Compatible Star Products

From Proposition 2.1, we know that a triangular dynamical r-matrixhp* — A2g

is equivalent to a special type of Poisson structurgom G. It is thus very natural to
expect that quantization efcan be derived from a certain special type of star-product
onh* x G. Itis simple to see that the Poisson bracket€6n(h* x G) can be described
as follows:

(i) foranyf.g e CoMO"),{f. g} =1{/. glnys:
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—

(i) forany f e C®(h*) andg € C®(G), {f. g} = X, (&) (hi ),
o _%

(iii) forany f, g € C*(G), {f, g} =r(M)(/, &)

These Poisson bracket relations naturally motivate the following:

Definition 3.1. A star products; on M = h* x G is called a compatible star product if
(i) foranyf,ge C>("),
FQ)*xngA) = f(1) x g(A); )

(iiy forany f(x) € C*°(G) andg(1) € C*(h*),
S ) g(A) = fx)g(A); (10)

(i) forany f(1) € C*®(h*) andg(x) € C*°(G),

. pk akf — -
S ) x5 g(x) =k—oﬁmhiln.hikg’ (11)
(iv) forany f(x), g(x) € C>*(G),
£ #n g(x) = FO(f, 9, (12)

whegeF(A) is asmooth functior : h* — Ug®Ug[[h] suchthatF = 1+ 4 F;+
O (h%).

Here x denotes the standard PBW-star producthdnquantizing the canonical Lie—
Poisson structure (see [12]), whose definition is recalled belowj et h[#] be a Lie
algebra with the Lie brackéX, Y], = A[X, Y], VX, Y € p[A], and

o S(rl = Ubs

be the Poincaré-Birkhoff—Witt map, which is a vector space isomorphism. Thus the
multiplication onUf; induces a multiplication o§(h)[[#]] (= Pol(h*)[%]), hence on
C*°(h™)[1]l, which is denoted by. It is easy to check that satisfies

1
frg=fg+ 50 el + ];)thk(f, g+ Vfige T,

whereBy's are bidifferential operators. In other wordss indeed a star product dyf,
which is called the PBW-star product.
The following proposition is quite obvious.

Proposition 3.2.The classical limit of a compatible star product is the Poisson structure
- —>
m =y + 2 30 A hi +r(1), wherer(h) = Fio(h) — Fai(3).

Below we will study some important properties of compatible star products.
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Proposition 3.3.A compatible star product is always invariant under the &faction.
Itis right H-invariant iff F : h* — Ug®Ug[l/i] is H-equivariant, whereH acts on
b* by the coadjoint action and obig®U g by the adjoint action.

Proof. First of all, note that Egs. (9—12) completely determine a star product. Itis clear
from these equations tha is left G-invariant.

As for the rightH -action, it is obvious from Eq. (10) tha, is invariant for f (x) *p
g(A). Itis standard that is invariant under the coadjoint action, so it follows from Eq. (9)
that f (L) x5 g(A) is alsoH -invariant.

For anyh € b, g(x) € C*°(G) and any fixedy € H,

T (REg)(x) = (Lyh)(RYg)
= (Rnyh)(g)
= (nyAdy—l h) (g)

—

= (Ady-1hg)(xy)
e

= [R}(Ady-1hg)](x).

Thus it follows that
—

Tk okl /
htl"'hzk(R:g)—Rv(h' -"h~kg), (13)
whereh; = Ady-1hi,i =1, ... ,n.Letf§) = Adj&,i =1, ... ,n.Then{é, ... &}is

adual basisfofhy, ..., h)}.Let(x %, ..., ’)be its correspondinginduced coordinates
onh*. Then

* d .
T ((Ad ) = o [_0((Ad Y, + t&)

d
= — AdiAa + tAdlE
71|, /Ay + 1A

d

=7l Of(AdyA—f—téi)

af
= —-(Adyr
a)L,( )
of

:(A y) 8)\'

Hence

I*[(Ady)*f] e O
ML gAik (Ady) [a)(il...a)\’ik]' (14)

From Eqg. (11), it follows that for any (A) € C*°(h*) andg(x) € C*°(G),
=, ik O [(A)) ] —

(RS Q) 4 (R (x) = % mhil hlk(R g) (by Egs. (13-14))
AR 8kf AR

y(fm *n g(1).
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l.e., f(X) x5 g(x) is also rightH -invariant.
Finally, V£ (x), g(x) € C*(G),
(R3(f #n 8)(h. X) = (f *n )(AdSA, Xy)
R E—
= F(AdyA) (f, &) (xy)
= [Lyxy(F(AdgA)]I(f, 9).
On the other hand,
(RS f *n Ry)(A, x) = F(/\)(R*f R} g)(x)

= (RyL: F(M))(f, 8)-

ThereforeR* (f *n 8) = R f *n Rjg iff ny(F(Ad*k)) = RyLxF(%). The latter is
equivalent to thaF(Ad*k) = Ad 1F(x) or F is H-equivariant. This concludes the
proof. O

In order to give an explicit formula fogz, let us write

FO) =Y awp(MUa®Up, (15)

whereaqg(r) € C*H*[A] andU,QUp € Ug®Ug. Using this expression, indeed
one can describe; explicitly.

Theorem 3.4.Given a compatible star produet, as in Definition 3.1, for any (1, x),
g, x) € C(h* x G)[IA],

*kf ——

FOLx) %5 (A, x) = ZZ aaﬁ(x) W*Uﬂhil...hikg. (16)

af k= 0
We need a couple of lemmas first.

Lemma 3.5.Under the same hypothesis as in Theorem 3.4,
(i) foranyf(r,x) e C®(h* x G) andg(L) € C®(h*),

J A, x) p g(A) = f(h, x) % g(R); 17)

(i) forany f(x) € C*°(G)andg(r,x) € C®(h* x G),

— —
F) #n g0 x) =) aap(M) % Ug f (x)Upg (A, x); (18)
of

(i) forany f(r, x) € C®°(h* x G) andg(x) € C*(G),

A,
£ 0186 = Y3 By 2 UL B T i g, (19)

af k=0
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Proof. (i) Itsufficestoshowthisidentityfof (A, x) = f1(x) f2(1),V f1(x) € C*(G)
and fo(A) € C*(h*). Now

FOx) xp g1) = (fa(x) f2(1)) *5 g(A)  (by Eq. (10))
= (f1(x) *n f2(X)) *n g(A)
= f1(x) xn (f2(0) xn g(A)) (by Egs. (9-10))
= fi(x)(f2(A) * g(A))
= (f1(x) f2(A)) * g(A)
= f(x, x)* g(A).

(i) Similarly, we may assume that(r, x) = g1(x)g2(0), Vgi1(x) € C*°(G) and
g2(A) € C*(h*). Then,

S ) xn g(h, x) = f(x) *p (g1(x)82(R))
= f(x) *p (g1(x) *5 g2(2))
= (f(x) %5 g1(x)) *n g2(1) (by Eq. (12))

— —
= Z[aaﬂ M) U f(x))(Upgr(x))] * g2(2)
ap

— —
= 3 aup () # U f () Upg s ).
af

(i) Assume thatf (L, x) = fi(x) (), Yfi(x) € C°(G) and (L) € Co(h%).
Then
S, x) *xp g(x) = (f1(x) f2(A)) x5 g(x)
= (f1(x) *p f2(1)) *p g(x)
= f1(x) xp (f2(1) x5 g(x)) (using Eq. (18))

— —
=Y aap () x Uy f1(X)Up(f2(3) n g(x))

ap
O* fo(n

—ZZ k,aaﬁamv f1<x)U,s(mff2Falik n g ()]

af k=0

F ) —— =

—ZZ aaﬂm* [V f100) 2 Uiy - iy g ()]

aﬂkO IANIL « . YAk 1 K

— 0 (f1(x) f2(1)) —
—%kzo aaﬂ()») aWUﬁhzl zkg(X)]
A

= ZZ aa;;(x) ﬁ@f i g ().

af k= o

This concludes the proof of the lemman

Now we are ready to prove the main result of this section.
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Proof of Theorem 3.4Again, we may assume thg(i, x) = g1(x)g2(1), Vg1(x) €
C*(G) andga(A) € C*®(h*). Then
S, x) *xp g(A, x) = f (A, x) *n (g1(x)g2(X))

= f (A, x) xn (81(x) *n g2(X))

= (f (A, x) %5 g1(x)) *1 g2(1)  (by Eq. (17))

= (f()L x) *h g1(x)) * g2(») (by Eq. (19))

— 9k fA,x) —>— —
—ZZ ,aaﬂm Us o= Uphiy -+ higg1(0)] % g2(2)
B (=0 k! oA ANk

" f(r
—ZZ aa,g<x> QM*@Z--E@M)&(M)

aff k= 0 IATL- - - Ak
—> ok fx, x) —— —
=) § a,g(x) Um0 s Ughiy -+ i g O x). O
AL ... PAkk
af k:O

As a consequence of Theorem 3.4, we will see that if a funckiéh) : h* —
Ug® Ugl[h] defines a compatible star product, it must satisfy a “twisted-cocycle” type
condition. To describe this condition explicitly, we need to introduce some notations.

For any f () € C*®(h*), definef (A + Ah) € C*(h*)QUBH[[A] by

A+hh) = FO)RL+h hi + — hi hi
fO+nh) = fFO®L+ § ® + ;a/\lmu@ll iz
h* ok r
o BN ek 20
+ +k'§ T alk®ll i + (20)

The corresponden@&™® (h*) — C*(H*)QUH[A] : f(A) —> f(A+Hhh) extends
naturally to a linear map fror@> (h*)U gQU g[[A] to C* (h*) QU HRQAU gU g[[A] <
C®(h*)QUgQU g®Ug[[h], which is denoted by (,) — Foa(x + ihD). More
explicitly, assume tha¥' (A) = Zaﬁ fap(M) U ®@Ug, where fog(1) € C*(h*)[[#] and
Us®Up € Ug®Ug. Then

Fa3(+ 1A D) =" fup(h+ h)@Ua@Up. (21)
ap

By a suitable permutation, one may define(r+44®) andF13(A+ih @) similarly.
Note thatUg is a Hopf algebra. B : Ug — Ug®Ug ande : Ug — R, we
denote its co-multiplication and co-unit, respectively. Thematurally extends to a
MapC®H*RQUgA]] — C*®(H*)QU gU g[[#]], which will be denoted by the same
symbol.

Corollary 3.6. Assume thaf' : h* — Ug®U gl[/]] defines a compatible star product
*p as in Definition 3.1. Then

(Aid)F (1) * F12(n + hh®) = (id®A)F (A) * Fa3(M); (22)
(e®id)F(A) =1; (id®e)F(A) = 1. (23)
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Proof. Equation (23) follows fromthe factthat} f(x) = f(x)*z 1= f(x), Vf(x) €
C*®(G).

As for Eq. (22), note that for anyi(x), f2(x) and f3(x) € C*°(G), according to
Eqg. (19), we have

) o)) o0 S50
— gk
_ ZZ k'aaﬁ 0w 0, A 0 2D e o)

af k=0 OAL- - DMk
Now
(A®id)F()) % Flz(k + hh®)
k k
= Z—(A@zd)F(M*(m@ i1 hig)
— ZZ i aaﬁ(x) * AUa I ————®Ughj, - hj,.

ap k=0

It thus follows that

(AQid)F(}) *F12<x+hh<3>><f1(x> f2(x), f3(x))

akF(k)(fl(X) f2(x) =
—Xﬂj;’ aaﬁm Ua( TURRTT YUphty - iy, f3(x)
= K () * o(x) > —> —
- ZZ—aa () * Uq gf\f hafka Ushiy -+ hiy f3(x)
af k=0
= (fi(x) *p f2(x)) *n f3(x).
On the other hand,

f1(x) *p (f2(x) #5 f3(x)) = f1(x) *p m(fz(X), f3(x)) (by Eq. (18))

— — —>
=Y aup() * Uy i) U (F (M) (f2(x), f3(x)))
of

= ([d®A)F () x F23(M) (f1(x), f2(x), f3(x)).
Now Eg. (22) follows from the associativity éf,. O

To end this section, as a special case, let us consfderh* x H = T*H, which is
equipped with the canonical cotangent symplectic structure. The following proposition
describes an explicit formula for a compatible star-product on it.

Proposition 3.7.For any f (i, x), g(A, x) € C*°(h* x H)[[A], the following equation

0 hk akf —

ﬁ
f(A,x) *p g(A,x) = Fm*hllhlkg (24)
k=0

defines a compatible star productdh= h* x H = T*H,whichisin facta deformation
quantization of its canonical cotangent symplectic structure.
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Proof. As earlier in this section, leli; = H[[A] be equipped with the Lie bracket
[X,Y]s = A[X,Y],VX,Y € b, ando : S(h)[A] — Ub; the PBW-map. Note that

b is isomorphic td) as a Lie algebra. Hendéh, is canonically isomorphic t&/h[[#]],
whose elements can be considered as left invariant (formal) differential operators on
H. To each polynomial function of*H = h* x H, we assign a (formal) differential
operator orH according to the following rule. Fof € C°°(H), we assign the operator
muItipIyirM))y f; for f € Pol(h*) = S(bh), we assign the left invariant differential

operatoro (f); in general, forf(x)g(k)_wjth f(x) € C*(H) andg()) € Polh*),

we assign the differential operat@x)o (g). Then the multiplication on the algebra of
differential operators induces an associative proggain PolT* H)[[#]], hence a star
product onT*H. Itis simple to see from the above construction that

(i) foranyf(h),g() € C>(H"),
J ) #n g() = f(A) * g(1); (25)

(iiy forany f(x) € C*°(H) andg(r) € C*(h*),
S *xp g(A) = fx)g(A); (26)

(iii) forany f(1) € C*(h*) andg(x) € C*°(H),

S BE Oy —

—
e AU @
k=0 "

J ) *n g(x) =

(iv) forany f(x), g(x) € C*(H),

() #n g(x) = f(x)g(x). (28)

In other words, this is indeed a compatible star product Wit 1. Equation (24) thus
follows immediately from Theorem 3.4.0

Remark. It would be interesting to compare Eq. (24) with the general construction of
star products on cotangent symplectic manifolds in [10, 11].

Equation (27) implies that the elemefith + fih) € C*°(h*)QUb[[A], being con-
sidered as a left invariant differential operatorBnadmits the following expression:

FOA R = £ %5 -
Thus we have:
Corollary 3.8. For any f, g € C*°(h*),
(f*@)(XA+hh) = f(A+hh) x g(A+ hh), (29)

where thex on the left hand side stands for the PBW-star produdfomvhile on the right
hand side it refers to the multiplication on the algebra tensor produ@éf (h*) [ %], *)
with Uh[[#]).
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Proof. Let x; denote the star product dfi* H as in Proposition 3.7. For any(x) €
C*(H),

n* 8"(f(k) *g(0) =

—
g gai i hie )

(f () #r g(M) #4 (x) (by Egs. (25, 27))= Z

—_—
= (f * g+ hah)p(x).
On the other hand,

J ) (8(1) # 9(x)) (by Eq. (24))

Bk ) > >
-y I i Fhin e hi(g() % 9()
kI

B ZZ k! QAL ... 9Nk iy - ’k(ly G g T i P(x))

k=0 I=

o o A ka(/\) g > o
= ZZ — ok —— —hiy o highy - (p(x)
KWV QAL - QA QAL .. oni 1t hi

k=0 I=
= f(A + hh) x g + hh)p(x).
The conclusion thus follows from the associativitysgf O
Corollary 3.9. Forany F, G € C* (") U gU g[[A],
(F % G)23(h + hhY) = Foz(n + 8h D) % Gog(h + Ah D). (30)
In particular, if F(1) € C*°(h*)QU gxU g[[4]] is invertible, we have
Fog- 4 1h®) = Faa(r + rh D)L, (31)

4. Quantum Dynamical Yang—Baxter Equation

The main purpose of this section is to derive the quantum dynamical Yang—Baxter equa-
tion over a nonabelian bagdrom the “twisted-cocycle” condition (22). This was stan-
dard whert is Abelian (e.g., see [6]). The proof was based on the Drinfel'd theory of
quasi-Hopf algebras [13]. In our situation, however, the quasi-Hopf algebra approach
does not work any more. Nevertheless, one can carry out a proof in a way completely
parallel to the ordinary case.

The main result of this section is the following:

Theorem 4.1.Assume that# : h* — Ug®Ugl[[#] satisfies the “twisted-cocycle”
condition (22). Then

R() = Fa1(0) ™ Fio(0) (32)
satisfies the following generalized quantum dynamical Yang—Baxter equation (or
Gervais—Neveu—Felder equation):

R12(0) % R13(x + 1h®) x R3(2) = Roa(h + hh D) % R13(h) x Ri2( + k).
(33)

Here x denotes the natural multiplication o (h*)Q (U g)"[[%]], Vn, with C*°(h*)
being equipped with the PBW-star product.
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Itis simple to see that the usual relation
A(a *b) = Aa x Ab (34)

still holds for anya, b € C®H*)®Uglhl. Define A : C®(H*)QUgllh] —>
C>®(H")UgUgllh] by

Aa=FM\) Yk Aax F(L), VaeC®WOH*QUglhI. (35)
It is simple to see, using the associativitysgthat
A%q = R(L) * Aa* RO) L. (36)
The following is immediate from Corollary 3.9.
Corollary 4.2.
Ro3(A 4+ 1h D) = F3o(h + ik ™M) % Fog(n 4+ 1k D). (37)

Remark. Equation (37) is trivial whei is Abelian. It, however, does not seem obvious
in general. We can see from the proof of Corollary 3.9 that this equation essentially
follows from the associativity of the star product given by Eq. (24).

For any givenF (1) € C®(h*)QUgUg[A]l, introduced123(A) € C*(H*)QUg
RUgRUg[lA] by

D123(A) = F23(0) "1 # [((d®A)F (R) "1 % [(A®id) F(M)] * Fia(). (38)
Lemma 4.3.

(A®id)R = ®231% R13* @13, * Rogx D123 (39)

({d®A)R = dgir* Riz* P213% Rip * Plas (40)

Proof. By applying the permutatiomm ®a,®az — a1®az®az on Eq. (38), one obtains
that

D132(1) = F3o(A) "L % 023[(id®A)F (1)1 * 023[(A®id) F (M)] % F13(A)
= F30.) L% [((d®A)F (1)1 % 023[(AQid) F (M)] % F13()),

since A is cocommutative. Similarly, applying the permutatied®a>®az —>
ax®a3z®ay on Eg. (38), one obtains that

Do31(2) = F120) 1 # [(A®id) F21(0) 1 # 023[(A®id) F ()] % Fa1(A).  (41)
On the other hand, by definition,
R13(%) = F31(0) 1 % Fi3(0), (42)
Ros(h) = Fa2() ™1 % Fag(h). (43)
It thus follows that
Do31 % R13 * <I>Ig,12 * Roz x @123
= Fio(\) ™t % (A®id) F1(0) 1 % (A®id)F (1) % F12(2) (by Eq. (34))
= F1o(0) ™t % (A®id)R(%) * F12(2) (by Eq. (35))
— (A®id)R.

Equation (39) can be proved similarlyo
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Proof of Theorem 4.1krom Eq. (36), it follows that
Ri2 % (A®id)R = (A°’®id)R * Ria.
According to Eq. (39), this is equivalent to

-1 —1
R12 % @231 % R13 % P 35 % Rog* @123 = P321% Ro3* Pgi5%* R13* $P213% Rio.

Thus,
R12 % (P231 % Ri3* <I>I312) * Rog = (P321 % Ro3* <I>§1lz) * Rig* (P213% Ry2* <I>I213)-
(44)
Now the twisted-cocycle condition (22) implies that
P123(A) = Fia(h + 1h®) ™1 F1o(0). (45)

It thus follows that

Do13% R1o * CDI213
= Fo1(h + hh®) ™ s Fo1(0) % Fa1(A) ™1 % Fio(A) * F1a(M) ™ % Fio(h + hh®)
= Fo10. + 1h®) ™1 % F1o(0 + 8h®)  (by Corollary 4.3
= R1o(A + hh®).

Applying the permutationsa;®a>®az —> a3®a1®az, and a1@arxQaz —>
a1®a3®ay respectively to the equation above, one obtains

®321 % Ro3 * @5112 = Ro3(A + hh(l)) and
®o31% R13 * CI)Islz = R13(A + hh(z)).

Equation (33) thus follows immediately.

5. Concluding Remarks

Even though our discussion so far has been mainly confined to triangular dynamical
r-matrices, we should point out that there do exist many interesting examples of non-
triangular ones. For instance, when the Lie algghadmits an ad-invariant bilinear
form and the base Lie algebhaequalsg, Alekseev and Meinrenken found an explicit
construction of an interesting non-triangular dynamical r-matrix [1] in connection with
their study of the non-commutative Weil algebra. In fact, for simple Lie algebras, the
existence of AM-dynamical r-matrices was already proved by Etingof and Varchenko
[19]. The construction of Alekseev and Meinrenken was later generalized by Etingof and
Schiffmann to a more general context [17]. So there is no doubt that there are abundant
non-trivial examples of dynamical r-matrices with a nonabelian base. It is therefore
desirable to know how they can be quantized. Inspired by the above discussion in the
triangular case, we are ready to propose the following quantization problem along the
line of Drinfelt’s naive? quantization [14].

2 Drinfeld’s original naive quantization was proposed for a classiaaktrix in A® A for an associative
algebraA. Here one can considér as the universal enveloping algelifg, andr € g®g C Ug®Ug.
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Definition 5.1. Given a classical dynamical r-matrix: h* — g®g, a quantization of
risRA\) =1+har(\) + O € U (g)®U (g)[[h] which isH-equivariant and satisfies

the generalized quantum dynamical Yang—Baxter equation (or Gervais—Neveu—Felder
equation):

Ri2(A) % R13(h 4 ih@) % Rag(h) = Roa(h + hh™V) x Ri3(h) * Rio( + 7).
(46)

Combining Proposition 2.1, Proposition 3.2, Corollary 3.6 and Theorem 4.1, we may
summarize the main result of this paper in the following:

Theorem 5.2.A triangular dynamicak-matrix r : §* — A2g is quantizable if there
exists a compatible star product on the corresponding Poisson maiifoldG.

We conclude this paper with a list of questions together with some thoughts.

Question 1 Is every classical triangular dynamigamatrix quantizable?

According to Theorem 5.2, this question is equivalent to asking whether a compatible
star product always exists for the corresponding Poisson marjfold G. When the
base Lie algebra is Abelian, a quantization procedure was found for splittable classi-
cal triangular dynamical r-matrices using Fedosov's method [34]. Recently Etingof and
Nikshych [21], using the vertex-IRF transformation method, showed the existence of
guantization for the so-called completely degenerate triangular dynamical r-matrices,
which leads to the hope that the existence of quantization could be possibly settled by
combing both methods in [34] and [21]. However, when the base Lie aldgeisraon-
abelian, the method in [34] does not admit a straightforward generalization. One of the
main difficulties is that the Fedosov method uses Weyl quantization, while our quantiza-
tion here is in normal ordering. Nevertheless, for the dynamical r-matrices constructed
in Theorem 2.3, under some mild assumptions a quantization seems feasible by using
the generalized Karabegov method [3,5]. This problem will be discussed in a separate
publication.

Question 2 What is the symmetrized version of the quantum dynamical Yang—Baxter
equation (46)?

We derived Eg. (46) from a compatible star product, which is a normal ordering star
product. The reason for us to choose the normal ordering here is that one can obtain
a very explicit formula for the star product: Eq. (16). A Weyl ordering compatible star
product may exist, but it may be more difficult to work with. For the canonical cotangent
symplectic structurd* H, a Weyl ordering star product was found by Gutt [27], but it
is rather difficult to write down an explicit formula [9]. As we can see from the previous
discussion, how a quantum dynamical Yang—Baxter equation looks is closely related
to the choice of a star product df* H. When H is Abelian, there is a very simple
operator establishing an isomorphism between these two quantizations, which is indeed
the transformation needed to transform a unsymmetrized QDYBE into a symmetrized
one. Such an operator also exists for a general cotangent bzifidlg10], but it is
much more complicated. Nevertheless, this viewpoint may still provide a useful method
to obtain the symmetrized version of a QDYBE.

Question 3 Is every classical dynamicaimatrix quantizable?

This question may be a bit too general. As a first step, it should already be quite

interesting to find a quantum analogue of Alekseev—Meinrenken dynamical r-matrices.

Question 4 What is the deformation theory controlling the quantization problem as
proposed in Definition 5.1?
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If R=1+hr+---+h'ri+---,wherer, € C*(H")QUgQUg, i > 2, is a solution
to the QDYBE, thei-termr must be a solution of the classical dynamical Yang—Baxter
equation. Indeed the quantum dynamical Yang—Baxter equation implies a sequence of
equations of; in terms of lower order terms. One should expect some cohomology
theory here just as for any deformation theory [8]. However, in our case, the equation
seems very complicated. On the other hand, it is quite surprising that such a theory does
not seem to exist in the literature even in the case of quantization of ansuetkix.

Finally, we would like to point out that perhaps a more useful way of thinking of
quantization of a dynamical r-matrix is to consider the quantum groupoids as defined
in [33]. This is in some sense an analogue of the “sophisticated” quantization in terms
of Drinfel'd [14]. A classical dynamical r-matrix gives rise to a Lie bialgebr@lth* x
g, T*b* x g*) [7,29]. Its induced Poisson structure on the base spads the Lie-
Poisson structurey, which admits the PBW-star product as a standard deformation
guantization. This leads to the following

Question 5 Does the Lie bialgebroitl'h* x g, T*h* x g*) corresponding to a classical
dynamical r-matrix always admit a quantization in the sense of [33], with the base algebra
being the PBW-star algeb@™> (h*)[[4]]?

To connect the quantization problem in Definition 5.1 with that of Lie bialgebroids,
it is clear that one needs to consider preferred quantization of Lie bialgebroids: namely,
a quantization where the total algebra is undeformed and remainbex U g[[#]].

Question 6 Does the Lie bialgebroidl'h* x g, T*h* x g*) admit a preferred quanti-
zation? How is such a preferred quantization related to the quantizatiaasqiroposed
in Definition 5.1?

Whenh = 0, namely for usual r-matrices, the answer to Question 6 is positive, due
to a remarkable theorem of Etingof-Kazhdan [16].
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