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Abstract: Let K be a connected Lie group of compact type andfetk) be its cotan-

gent bundle. This paper considers geometric quantizati@h oK), first using the ver-

tical polarization and then using a natural Kéhler polarization obtained by identifying
T*(K) with the complexified grougKc. The first main result is that the Hilbert space
obtained by using the Kahler polarization is naturally identifiable with the generalized
Segal-Bargmann space introduced by the author from a different point of view, namely
that of heat kernels. The second main result is that the pairing map of geometric quan-
tization coincides with the generalized Segal-Bargmann transform introduced by the
author. This means that the pairing map, in this case, is a constant multiple of a unitary
map. For both results it is essential that the half-form correction be included when using
the K&hler polarization.

These results should be understood in the context of results of K. Wren and of the
author with B. Driver concerning the quantization(@f+ 1)-dimensional Yang—Mills
theory. Together with those results the present paper may be seen as an instance of
“quantization commuting with reduction”.
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1. Introduction

The purpose of this paper is to show how the generalized Segal-Bargmann transform
introduced by the author in [H1] fits into the theory of geometric quantization. | begin
this introduction with an overview of the generalized Segal-Bargmann transform and its
applications. | continue with a brief description of geometric quantization and | conclude
with an outline of the results of this paper. The reader may wish to begin with Sect. 5,
which explains how the results work out in tR& case.

1.1. The generalized Segal-Bargmann transfo8ee the survey paper [H7] for a sum-
mary of the generalized Segal-Bargmann transform and related results.

Consider a classical system whose configuration space is a connected Li&gobup
compact type. Lie groups of compact type include all compact Lie groups, the Euclidean
spaceR”, and products of the two (and no others — see Sect. 7). As a simple example,
consider a rigid body ifR3, whose rotational degrees of freedom are described by a
system whose configuration space is the compact groy3)SO

For a system whose configuration space is the grEuphe corresponding phase
space is the cotangent bundl&(K). There is a natural way to identify* (K) with the
complexificationk ¢ of K. Here K¢ is a certain connected complex Lie group whose
Lie algebra is the complexification of L(& ) and which contain& as a subgroup. For
example, ifK = R"” thenK¢ = C" and if K = SU(n) thenK¢ = SL(n; C).

The paper [H1] constructs a generalized Segal-Bargmann transforkn {dfore
precisely, [H1] treats the compact case;fecase is just the classical Segal-Bargmann
transform, apart from minor differences of normalization.) The transform is a unitary
mapCj, of L2(K, dx) ontoH L?(K¢, vy (g) dg), wheredx anddg are the Haar measures
on K andKc, respectively, and wheng, is the K -invariantheat kernebn K¢. Hereh
is Planck’s constant, which is a parameter in the construction (denate/¢i1]). The
transform itself is given by

Cpf = analytic continuation of"*x/2 f,

where the analytic continuation is fromto K¢ with 7 fixed. The results of the present
paper and of [Wr] and [DH] give other ways of thinking about the definition of this
transform. (See below and Sect. 3 for a discussion of [Wr, DH].)

The results of [H1] can also be formulated in terms of coherent states and a resolution
of the identity, as described in [H1] and in much greater detail in [HM]. The isometricity
of the transform and the resolution of the identity for the coherent states are just two
different ways of expressing the same mathematical result.

The results of [H1] extend to systems whose configuration space is a compact homo-
geneous space, such as a sphere, as shown in [H1, Sect. 11] and [St]. However the group
case is special both mathematically and for applications to gauge theories. In particu-
lar the results of the present papermiut extend to the case of compact homogeneous
spaces.

The generalized Segal-Bargmann transform has been applied to the Ashtekar ap-
proach to quantum gravity in [A], as a way to deal with the “reality conditions” in the
original version of this theory, formulated in terms of complex-valued connections. (See
also [Lo].)

More recently progress has been made in developing a purely real-valued version of
the Ashtekar approach, using compact gauge groups. In a series of six papers (beginning
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with [T2]) T. Thiemann has given in this setting a diffeomorphism-invariant construc-
tion of the Hamiltonian constraint, thus giving a mathematically consistent formulation
of quantum gravity. In an attempt to determine whether this construction has ordinary
general relativity as its classical limit, Thiemann and co-authors have embarked on a pro-
gram [T3,TW1,TW2,TW3,STW] to construct coherent states that might approximate
a solution to classical general relativity. These are to be obtained by gluing together the
coherent states of [H1] for a possibly infinite number of edges in the Ashtekar scheme.
This program requires among other things a detailed understanding of the properties of
the coherent states of [H1] for one fixed compact gr&upvhich has been worked out

in the case&K = SU(2) in [TW1].

In another direction, K. K. Wren [Wr], using a method proposed by N. P. Landsman
[Lal], has shown how the coherent states of [H1] arise naturally in the canonical quan-
tization of (1 + 1)-dimensional Yang—Mills theory on a spacetime cylinder. The way
this works is as follows. (See Sect. 3 for a more detailed explanation.) For the canonical
guantization of Yang—Mills on cylinder, one has an infinite-dimensional “unreduced”
configuration space consisting &f-valued connections over the spatial circle, where
K is the structure group. One is then supposed to pass to the “reduced” or “physical”
configuration space consisting of connections modulo gauge transformations. It is con-
venient to work at first with “based” gauge transformations, those equal to the identity
at one fixed point in the spatial circle. In that case the reduced configuration space,
consisting of connections modulo based gauge transformationsSéyes simply the
structure groupK. (This is because the one and only quantity invariant under based
gauge transformations is the holonomy around the spatial circle.)

Wren considers the ordinary “canonical”’ coherent states for the space of connections
and then “projects” these (using a suitable regularization procedure) onto the gauge-
invariant subspace. The remarkable result is that after projection the ordinary coherent
states for the space of connections become precisely the generalized coherent states
for K, as originally defined in [H1]. Wren’s result was elaborated on by Driver—Hall
[DH] and Hall [H8], in a way that emphasizes the Segal-Bargmann transform and uses
a different regularization scheme. These results raise interesting questions about how
geometric quantization behaves under reduction — see Sect. 3.

Finally, as mentioned above, we can think of the Segal-Bargmann transfokfirefor
aresolution of the identity for the corresponding coherent states. The coherent states then
“descend” to give coherent states for any system whose configuration space is a compact
homogeneous space [H1, Sect. 11], [St]. Looked at this way, the results of [H1, St] fitinto
the large body of results in the mathematical physics literature on generalized coherent
states. Itis very natural to try to construct coherent states for systems whose configuration
space is a homogeneous space, and there have been previous constructions, notably b
C. Isham and J. Klauder [IK] and De Biévre [De]. However, these constructions, which
are based on extensions of the Perelomov [P] approachotequivalent to the coherent
states of [H1, St]. In particular the coherent states of [IK] and [De] do not in any sense
depend holomorphically on the parameters, in contrast to those of [H1, St].

More recently, the coherent states of Hall-Stenzel for the case of a 2-sphere were
independently re-discovered, from a substantially different point of view, by K. Kowalski
and J. Rembietiski [KR1]. (See also [KR2].) The forthcoming paper [HM] explains in
detail the coherent state viewpoint, taking into account the new perspectives offered by
Kowalski and Rembietiski [KR1] and Thiemann [T1]. In the group case, the present
paper shows that the coherent states of [H1] can be obtained by means of geometric
guantization and are thus of “Rawnsley type” [Ral,RCG].
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1.2. Geometric quantizationA standard example in geometric quantization is to show
how the Segal-Bargmann transform &t can be obtained by means of this theory.
Furthermore, the standard method for constructing other Segal-Bargmann-type Hilbert
spaces of holomorphic functions (and the associated coherent states) is by means of
geometric quantization. Since [H1] is not formulated in terms of geometric quantization,
it is natural to apply geometric quantization in that setting and see how the results
compare. A first attempt at this was made in [H4, Sect. 7], which used “plain” geometric
gquantization and found that the results were not equivalent to those of [H1]. The present
paper uses geometric quantization with the “half-form correction” and the conclusion
is that geometric quantization with the half-form correctiwesgive the same results

as [H1]. In this subsection | give a brief overview of geometric quantization, and in the
next subsection | summarize how it works out in the particular case at hand. See also
Sect. 5 for how all this works in the stand&d case.

For guantum mechanics of a particle movindihthere are several different ways of
expressing the quantum Hilbert space, including the position Hilbert space (or Schrédinger
representation) and the Segal-Bargmann (or Bargmann, or Bargmann—Fock) space. The
position Hilbert space i62(R"), with R” thought of as the position variables. The Segal—
Bargmann space is the space of holomorphic functiorS'otat are square-integrable
with respect to a Gaussian measure, wii@te= R?" is the phase space. (There are also
the momentum Hilbert space and the Fock symmetric tensor space, which will not be
discussed in this paper.) There is a natural unitary map that relates the position Hilbert
space to the Segal-Bargmann space, namely the Segal-Bargmann transform.

One way to understand these constructions is in terms of geometric quantization. (See
Sect. 5.) In geometric quantization one first constructs a pre-quantum Hilbert space over
the phase spad@?'. The prequantum Hilbert space is essentially ju${R?") . It is
generally accepted that this Hilbert space is “too big”; for example, the space of position
and momentum operators does not act irreducibly. To get an appropriate Hilbert space
one chooses a “polarization”, that is (roughly) a choice ot of the 2: variables on
R?". The quantum Hilbert space is then the space of elements of the prequantum Hilbert
space that are independent of the choseariables. So in the “vertical polarization” one
considers functions that are independent of the momentum variables, hence functions of
the position only. In this case the quantum Hilbert space is just the position Hilbert space
L? (R"). Alternatively, one may identifiR?* with C" and consider complex variables
z1,...,2n, @ndzy, ..., z,. The Hilbert space is then the space of functions that are
“independent of th&;’s”, that is, holomorphic. In this case the quantum Hilbert space
is the Segal-Bargmann space.

More precisely, the prequantum Hilbert space for a symplectic manifdldy) is
the space of sections of a line-bundle-with-connecfioover M, where the curvature
of L is given by the symplectic form. A real polarization forM is a foliation of M into
Lagrangian submanifolds. A K&éhler polarization is a choice of a complex structure on
that is compatible with the symplectic structure, in such a wayx¥hbecomes a Kéhler
manifold. The quantum Hilbert space is then the space of sections that are covariantly
constant along the leaves of the foliation (for a real polarization) or covariantly constant
in thez-directions (for a complex polarization). Since the leaves of areal polarization are
required to be Lagrangian, the curvaturd.diven byw) vanishes along the leaves and
so there exist, at least locally, polarized sections. Similarly, the compatibility condition
between the complex structure and the symplectic structure in a complex polarization
guarantees the existence, at least locally, of polarized sections.
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Afurther ingredient is the introduction of “half-forms”, which is a technical necessity
in the case of the vertical polarization and which can be useful even for a Kéhler polar-
ization. The inclusion of half-forms in the K&hler-polarized Hilbert space is essential to
the results of this paper.

If one has two different polarizations on the same manifold then one gets two different
guantum Hilbert spaces. Geometric quantization gives a canonical way of constructing
a map between these two spaces, called the pairing map. The pairing map is not unitary
in general, but it is unitary in the case of the vertical and Kahler polarizatiofi&on
In theR?" case, this unitarity can be explained by the Stone-von Neumann theorem. |
do the calculations for thR?* case in Sect. 5; the reader may wish to begin with that
section.

Besides th&?" case, there have not been many examples where pairing maps have
been studied in detail. In particular, the only works | know of that address unitarity
of the pairing map outside d@2* are those of J. Rawnsley [Ra2] and K. Furutani and
S.Yoshizawa [FY]. Rawnsley considers the cotangent bundle of spheres, with the vertical
polarization and also a certain Kahler polarization. Furutani and Yoshizawa consider a
similar construction on the cotangent bundle of complex and quaternionic projective
spaces. In these cases the pairing map is not unitary (nor a constant multiple of a unitary
map).

1.3. Geometric quantization and the Segal-Bargmann transféiminteresting class

of symplectic manifolds having two different natural polarizations is the following.
Let X be a real-analytic Riemannian manifold and Mt= T*(X). ThenM has a
natural symplectic structure and a natural vertical polarization, in which the leaves of
the Lagrangian foliation are the fibers Bf (X) . By a construction of Guillemin and
Stenzel [GStenzl,GStenz2] and Lempert andk84LS], 7* (X) also has a canonical
“adapted” complex structure, defined in a neighborhood of the zero section. This complex
structure is compatible with the symplectic structure and so defines a Kéhler polarization
on an open setiff’* (X) .

This paper considers the special case in wikdhk a Lie groupK with a bi-invariant
Riemannian metric. Lie groups that admit a bi-invariant metric are said to be of “compact
type”; these are precisely the groups of the fgommpact x R”. In this special case, the
adapted complex structure is defined on all'6f k'), so7T*(K) has two polarizations,
the vertical polarization and the Ké&hler polarization coming from the adapted complex
stgucture. IfK = R" then the complex structure is just the usual oneTérR") =
R = C".

There are two main results, generalizing what is known inRhecase. First, the
Kéahler-polarized Hilbert space constructed oé&(K) is naturally identifiable with the
generalized Segal-Bargmann space defined in [H1] in terms of heat kernels. Second, the
pairing map between the vertically polarized and the Kéhler-polarized Hilbert space over
T*(K) coincides (up to a constant) with the generalized Segal-Bargmann transform of
[H1]. Thus by [H1, Thm. 2] a constant multiple of the pairing map is unitary in this case.
Both of these results hold only if one includes the “half-form correction” in the con-
struction of the Kahler-polarized Hilbert space. In the ckise R" everything reduces
to the ordinary Segal-Bargmann space and the Segal-Bargmann transform (Sect. 5).

The results are surprising for two reasons. First, the constructions in [H1] involve
heat kernels, whereas geometric quantization seems to have nothing to do with heat
kernels or the heat equation. Second, in the absence of something like the Stone—von
Neumann theorem there does not seem to be any reason that pairingugap® be
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unitary. The discussion in Sect. 4 gives some partial explanation for the occurrence of
the heat kernel. (See also [JL].)

If one considers Yang—Mills theory over a space-time cylinder, in the temporal gauge,
the “unreduced phase space” is a certain infinite-dimensional linear space of connec-
tions. The reduced phase space, obtained by “reducing” by a suitable gauge group,
is the finite-dimensional symplectic manifolet(K), whereK is the structure group
for the Yang—Mills theory. Thus the symplectic manifdid (K) considered here can
also be viewed as the “symplectic quotient” of an infinite-dimensional linear space by
an infinite-dimensional group. It is reasonable to ask whether “quantization commutes
with reduction”, that is, whether one gets the same results by first quantizing and then
reducing as by first reducing and then quantizing. Surprisingly (to me), the answer in
this case is yes, as described in Sect. 3.

| conclude this introduction by discussing two additional points. First, it is reasonable
to consider the more general situation where the giup allowed to be a symmetric
space of compact type. In that case the geometric quantization constructions make perfect
sense, but the main results of this papendobhold. Specifically, the Kahler-polarized
Hilbert space does not coincide with the heat kernel Hilbert space of M. Stenzel [St],
and | do not know whether the pairing map of geometric quantization is unitary. This
discrepancy reflects special properties that compact Lie groups have among all compact
symmetric spaces. See the discussion at the end of Sect. 2.3.

Second, one could attempt to construct a momentum Hilbert spaZé fé&r). In the
caseK = R” this may be done by considering the natural horizontal polarization. The
pairing map between the vertically polarized and horizontally polarized Hilbert spaces
is in this case just the Fourier transform. By contrask ifs non-commutative, then
there is no natural horizontal polarization. (For example, the foliatiofi"*gi) into
the left orbits ofK is not Lagrangian.) Thus, even though there is a sort of momentum
representation given by the Peter-Weyl theorem, it does not seem possible to obtain a
momentum representation by means of geometric quantization.

Itis a pleasure to thank Bruce Driver for valuable discussions, Dan Freed for making
an important suggestion regarding the half-form correction, and Steve Sontz for making
corrections to the manuscript.

2. TheMain Results

2.1. Preliminaries.Let K be a connected Lie group @abmpact type. A Lie group
is said to be of compact type if it is locally isomorphic to some compact Lie group.
Equivalently, a Lie grouK is of compact type if there exists an inner product on the
Lie algebra ofK that is invariant under the adjoint action &f. SoR" is of compact
type, being locally isomorphic to&torus, and every compact Lie group is of compact
type. It can be shown that every connected Lie group of compact type is isomorphic to a
product ofR" and a connected compact Lie group. So all of the constructions described
here for Lie groups of compact type include as a special case the constructidts for
On the other hand, all the new information (beyond Rfecase) is contained in the
compact case. See [He, Chap. Il, Sect. 6] (including Proposition 6.8) for information on
Lie groups of compact type.

Let ¢ denote the Lie algebra & . We fix once and for all an inner produgt, -) on¢
that is invariant under the adjoint action &f For example we may tak€ = SU(n), in
which caset = su(n) is the space of skew matrices with trace zero. An invariant inner
product ork is (X, Y) = Re[trace(X*Y)].
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Now let K¢ be thecomplexificatiorof K . If K is simply connected then the complex-
ification of K is the unique simply connected Lie group whose Lie algépiat+i¢. In
general K¢ is defined by the following three properties. Filst should be a connected
complex Lie group whose Lie algebta is equal tot + i¢. Second K¢ should contain
K as a closed subgroup (whose Lie algebrags tc). Third, every homomorphism of
K into a complex Lie groud should extend to a holomorphic homomorphisnkaef
into H. The complexification of a connected Lie group of compact type always exists
and is unique. (See [H1, Sect. 3].)

Example 2.1If K = R" thenK¢ = C". If K = SU(n) then K¢ = SL(n; C). If
K = SQ(n) then K¢ = SQ(n; C). In the first two examplesk and K¢ are simply
connected. In the last example, neitlienor K¢ is simply connected.

We have the following structure result for Lie groups of compact type. This resultis a
modest strengthening of Corollary 2.2 of [Dr] and allows all the relevant results for Lie
groups of compact type to be reduced to two cases, the compact case Rficctse.

Proposition 2.2. Suppose thak is a connected Lie group of compact type, with a
fixed Ad-invariant inner product on its Lie algebtaThen there exists a isomorphism
K = H x R", whereH is compact and where the associated Lie algebra isomorphism
t = bh + R" is orthogonal.

The proof of this result is given in an appendix.

2.2. PrequantizationWe let6 be the canonical 1-form ofi*(K), normalized so that
in the usual sort of coordinates we have

0= Zl’dek~

We then letw be the canonical 2-form oh*(K), which | normalize as» = —d#6, so
that in coordinates = Xdg; A dpix. We then consider a trivial complex line bundle
onT*(K)

L=T%K)xC

with trivial Hermitian structure. Sections of this bundle are thus just functiosoK ).
We define a connection (or covariant derivative)lohy

Vy = X — ,ie (X). (2.1)
ih

Note that the connection, and hence all subsequent constructions, depériBtmtk’s
constant). The curvature of this connection is given by

1
[Vx.Vy]l = Vix,y] = E“’(X’ Y).

We lete denote the Liouville volume form ofi* (K ), given by

1
g = —o",
n!
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wheren = dim K = (1/2) dim T*(K). Integrating this form gives the associated Liou-
ville volume measure. Concretely we have the identification

T*(K) = K x ¢ (2.2)

by means of left-translation and the inner product.ddnder this identification we have

[H3, Lemma 4]
/ fe= /f f(x,Y)dxdy, (2.3)
T*(K) tJK

wheredx is Haar measure oi, normalized to coincide with the Riemannian volume
measure, andY is Lebesgue measure énnormalized by means of the inner product.
The prequantum Hilbert space is then the space of sectidnthatt are square integrable

with respect te:. This space may be identified witt? (7*(K), ¢) .

One motivation for this construction is the existence of a natural mapifrpm
functions onT*(K) into the space of symmetric operators on the prequantum Hilbert
space, satisfyingQ (), @ (g)] = —iAQ ({f, g}) , where{ f, g} is the Poisson bracket.
Explicitly, Q (f) = iiVx, + f, whereX is the Hamiltonian vector field associated
to f. This “prequantization map” will not play an important role in this paper. See [Wo,
Chap. 8] for more information.

2.3. The Kahler-polarized subspacket me summarize what the results of this subsec-
tion will be. The cotangent bundIE*(K) has a natural complex structure that comes
by identifying it with the ‘complexification’ ofK. This complex structure allows us
to define a notion of Kéhler-polarized sections of the buridi&here exists a natural
trivializing polarized sectiong such that every other polarized section is a holomorphic
function timessg. The Ké&hler-polarized Hilbert space is then identifiable with/Zn
space of holomorphic functions @t (K ), where the measure is the Liouville measure
times|so|2 . We then consider the “half-form” bundée. The half-form corrected Kahler
Hilbert space is the space of polarized sectionk @fs;. This may be identified with an
L? space of holomorphic functions @i (K), where now the measure is the Liouville
measure timesso|2 |/30|2, wherepy is a trivializing polarized section af;. The main
result is that this last measure coincides up to a constant witki timeariant heat kernel
measure o *(K) introduced in [H1]. Thus the half-form-corrected Kahler-polarized
Hilbert space of geometric quantization coincides (up to a constant) with the generalized
Segal-Bargmann space of [H1, Thm. 2].

We let K¢ denote the complexification &, as described in Sect. 2.1, and we let
T*(K) denote the cotangent bundlekf There is a diffeomorphism & * (K) with K¢
as follows. We identify7"*(K) with K x £* by means of left-translation and then with
K x t by means of the inner product énWe consider the ma@ : K x ¢ — K¢ given
by

O((x,Y)=xeY, xeK,Yet (2.4)

The mapd is a diffeomorphism. If we us® to transport the complex structure 6¢ to

T*(K), thenthe resulting complex structure Bh(K ) is compatible with the symplectic

structure orf"*(K), so thatT*(K) becomes a Kahler manifold. (See [H3, Sect. 3].)
Consider the functior : T*(K) — R given by

K (x,Y)=Y%. (2.5)
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This function is aa&bhler potentialfor the complex structure ofi*(K) described in the
previous paragraph. Specifically we have

Im (k) = 6. (2.6)
Then because = —d0 it follows that
133Kk = w. (2.7)

An important feature of this situation is the natural explicit form of the Kahler potential.
This formula fork comes as a special case of the general construction of Guillemin—
Stenzel [GStenzl, Sect. 5] and Lemperei&z[LS, Cor. 5.5]. In this case one can
compute directly that satisfies (2.6) and (2.7) (see the first appendix).

We define a smooth sectigrof L to beKahler-polarizedf

Vxs =0

for all vectors of typeg(0, 1) . Equivalentlys is polarized ifVy,5z,s = 0 for all k, in
holomorphic local coordinates. Ti&hler-polarized Hilbert spacis then the space of
square-integrable Kéhler-polarized sectiond.ofSee [Wo, Sect. 9.2].)

Proposition 2.3. If we think of sections of L as functions o7 *(K) then the Kahler-
polarized sections are precisely the functieraf the form

5 = Fe—\y\z/zh’
with F holomorphic and|Y|?> = « (x, Y) the Ké&hler potential (2.5). The notion of
holomorphic is via the identification (2.4) &t (K) with K¢.

Proof. If we work in holomorphic local coordinates, ... , z, then we want sections
s suchthatv, sz, s = 0 for all k. The condition (2.6) or says that in these coordinates

1 oK oK
0 = = <—_d2k - —de) .

P 0 _18/{
0z, )~ 2i 0%

Then we get, using definition (2.1) of the covariant derivative,
9 1 0
AV —k/2h - —Kk/2h —o — —i/2h
097 PE in \oz: )¢
(Lo XLk o
2h 0z ih 2i 9zx
Now any smooth sectioncan be written uniquely as= F exp(—«/2h) , whereF is
a smooth complex-valued function. Such a section is polarized precisely if

0= Vy/z (F e—/(/2h)
IF
— Te—l(/zh + Fva/azkg_K/Zh
0Zk
— ieﬂ(/Zh
07k
for all k, that is, precisely ifF’ is holomorphic. O

So
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The norm of a polarized section(as in Proposition 2.3) is computed as

Is]1? = / F2e/h e
T*(K)

. 2
:// ‘F(xe’Y>‘ eille/hdde.
EJK

Here F is a holomorphic function orK¢ which we are “transporting” t@"*(K) by
means of the ma@ (x, Y) = xe'’. (Recall (2.2) and (2.3).) Thus if we identify the
sections with the holomorphic functiorF, the Kéhler-polarized Hilbert space will be
identified with X

HLA(T*(K), e Y17/,

Heree is the Liouville volume measure arklL? denotes the space of holomorphic
functions that are square-integrable with respect to the indicated measure.

In Sect. 7 of [H4] | compared the measuré?*/"¢ to the “K -invariant heat kernel
measureV; on K¢ = T*(K). The measurey, is the one that is used in the generalized
Segal-Bargmann transform of [H1, Thm. 2]. In the commutative case the two measures
agree up to a constant. However, in the non-commutative case the two measures differ
by a non-constant function df, and it is easily seen that this discrepancy cannot be
eliminated by choosing a different trivializing polarized sectior.ofn the remainder
of this section we will see that this discrepancy between the heat kernel measure and the
geometric quantization measure can be eliminated by the “half-form correction”. | am
grateful to Dan Freed for suggesting to me that this could be the case.

We now consider the canonical bundle #©t(K) relative to the complex structure
obtained fromK¢. The canonical bundle is the complex line bundle whose sections are
complex-valued:-forms of type(n, 0) . The forms of typen, 0) may be described as
thosen-formsa for which

X.a=0

for all vectors of type(0, 1) . We then define the polarized sections of the canonical
bundle to be th&n, 0)-formsa such that

X.ida=0

for all vector fields of typ&0, 1) . (Compare [Wo, Eq. (9.3.1)].) These are nothing but
the holomorphia:-forms. We define a Hermitian structure on the canonical bundle by
defining for an(n, 0)-form «

ana
be

Here the ratio means the only thing that is reasonablé:is the unique function such
that|«|?be = @ A . The constanb should be chosen in such a way as to mpké
positive; we may také = (2i)"(—1)""—1/2,

Inthis situation the canonical bundle may be trivialized as follows. We thifik ¢k )
asKc, since at the moment the symplectic structure is not relevady,If.. , Z, are
linearly independent left-invariant holomorphic 1-formskg then their wedge product
is a nowhere-vanishing holomorphieform.

We now choose a square ratjt of the canonical bundle in such a way that there
exists a smooth section éf whose square i€1 A --- A Z,,. This section of§1 will
be denoted by the mnemonigZi A --- A Z,,. There then exists a unique notion of
polarized sections af; such that 1) a locally defined, smooth, nowhere-zero seetion

2
loe|” =
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of 81 is polarized if and only i2 is a polarized section of the canonical bundle, and 2) if
v is alocally defined, nowhere-zero, polarized sectiofy@nd F is a smooth function,
thenFv is polarized if and only ifF is holomorphic. (See [Wo, p. 186].) Concretely the
polarized sections af; are of the form

s=F@VZin---NZ,

with F a holomorphic function oiK¢. The absolute value of such a section is defined

as
5|2 = /7(s2,s2)=|F|2 Zl/\m/\Zn/\Zl/\n-/\Z,,.
be

Now thehalf-form corrected Kéhler-polarized Hilbert spaiethe space of square-
integrable polarized sections bf® §1. (The polarized sections df ® §1 are precisely
those that can be written locally as the product of a polarized sectibanfl a polarized
section 0fs1.) Such sections are precisely those that can be expressed as

s=Fe W2 g JZin- A Z, (2.8)

with F holomorphic. The norm of such a section is computed as
e N ™
T*(K)

wherey is the function given by

: (2.9)

ZiA-ANZyANZLIA- A Zy
be

and where = (2i)"(—1)""~D/2 We may summarize the preceding discussion in the
following theorem.

Theorem 2.4. If we write elements of the half-form corrected Kahler Hilbert space in
the form (2.8) then this Hilbert space may be identified with

HLA(T*(K). yn).
wherey;, is the measure given by

_vi2

yn = e VI g

Heree is the canonical volume form dfi*(K), |Y |? is the K&hler potential (2.5), angl

is the “half-form correction” defined in (2.9) and given explicitly in (2.10) below. Here
as elsewheré{L? denotes the space of square-integrable holomorphic functions.

Note thatZy A - A Zy A Z1 A -+ A Z,, is a left-invariant 2-form on K¢, so that
the associated measure is simply a multiple of Haar measuiécoMeanwhilee is
just the Liouville volume form orf *(K). Thusy is the square root of the density of
Haar measure with respect to Liouville measure, under our identificatidgicofvith
T*(K). Both measures ark-invariant, so in oulx, Y) coordinates or*(K), n will
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be a function o only. By [H3, Lem. 5] we have that(Y) is the unique AdK -invariant
function ont such that in a maximal abelian subalgebra

inha (¥
n =[] —S":x (“Y() ), (2.10)
a€RT

whereR is a set of positive roots.

Meanwhile there is theK -invariant heat kernel measurey on K¢ = T*(K), used
in the construction of the generalized Segal-Bargmann transform in [H1, Thm. 2]. When
written in terms of the polar decompositign= xe'" , vy, is given explicitly by

dvy = (Th) "2 e—lplzhe—\y\z/hn (Y) dxdY.

(See [H3, Eq. (13)].) Herg is half the sum of the positive roots for the grokip Thus
apart from an overall constant, the measliféK ) coming from geometric quantization
coincides exactly with the heat kernel measure of [H1]. So we have proved the following
result.

Theorem 2.5. Foreachii > Othere exists a constang such that the measugg coming
from geometric quantization and the heat kernel measgi@re related by

Vh = ChVn,

where
cn = (nh)fn/zef\mzh,

and wherep is half the sum of the positive roots for the grokip

Letus try to understand, at leastin part, the seemingly miraculous agreement between
these two measures. (See also Sect. 4.) The cotangent Hihdte has a complex
structure obtained by identification wikc. The metric tensor oK then has an analytic
continuation to a holomorphie-tensor onT*(K). The restriction of the analytically
continued metric tensor to the fibers Bf (K) is the negative of a Riemannian metric
g. Each fiber, with this metric, is isometric to the non-compact symmetric sfa¢& .

(See [St].) This reflects the well-known duality between compact and non-compact
symmetric spaces. Each fiber is also identified wijtand under this identification the
Riemannian volume measure with respect is given by

JgdY =n(Y)? dy.

That is, the “half-form factory; is simply the square root of the Jacobian of the expo-
nential mapping fokK¢/K.

Now on any Riemannian manifold the heat kernel measure (at a fixed base point,
written in exponential coordinates) has an asymptotic expansion of the form

dp (Y) ~ (rh)~"/2 =W/ (jl/z (Y) + tar (Y) + 12ap (Y) + .. ) dy. (2.11)

Herej (Y) is the Jacobian of the exponential mapping, also known as the Van Vleck—
Morette determinant. (I have written for the time variable and normalized the heat
equation to belu/dt = (1/4)Au.) Note that this is the expansion for the heat kernel
measurein the expansion of the heat kerrighctionone hasj—1/2 instead ofj /2.
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In the case of the manifoldc/K we have a great simplification. All the higher
terms in the series are just constant multipleg ¥f and we get an exact convergent
expression of the form

dun (Y) = (xh)y "2 e~ VP/h 512 (y) £ (1) dy. (2.12)

Here explicitly f (1) = exp(— |p|?t), wherep is half the sum of the positive roots.
The measurey, in [H1] is then simply this measure times the Haar meaguren the
K -directions. So we have

dvy = e~ PPt (ei)y~/2 ~IYP/R 12 (yy gy qy.

So how does geometric quantization produce a multiphe, ®8The Gaussian factor
in v, comes from the simple explicit form of the K&hler potential. The factoi’éf in
v is the half-form correction — that ig/2(Y) = n(Y).

If we begin with a general compact symmetric spacéhen much of the analysis
goes through?*(X) has a natural complex structuf&|? is a Kahler potential, and the
fibers are identifiable with nhon-compact symmetric spaces. (See [St, p. 48].) Further-
more, the half-form correction is still the square root of the Jacobian of the exponential
mapping. What goes wrong is that the heat kernel expansion (2.11) does not simplify to
an expression of the form (2.12). So the heat kernel measure used in [St] and the measure
coming from geometric quantization will not agree up to a constant. Nevertheless the
two measures do agree “to leading ordek’n

I do not know whether the geometric quantization pairing map is unitary in the case
of general compact symmetric spaceslhere is, however, a unitary Segal-Bargmann-
type transform, given in terms of heat kernels and described in [St].

2.4. The vertically polarized Hilbert spacéfter much sound and fury, the vertically
polarized Hilbert space will be identified simply witt? (K, dx), wheredx is Haar
measure orK . Nevertheless, the fancy constructions described below are important for
two reasons. First, the vertically polarized Hilbert space does not depend on a choice
of measure orK. The Hilbert space is really a space of “half-forms”. If one chooses
a smooth measure on K (with nowhere-vanishing density with respect to Lebesgue
measure in each local coordinate system) then this choice gives an identification of the
vertically polarized Hilbert space with?(K , ). Although Haar measure is the obvious
choice foru, the choice of measure is needed only to give a concrete realization of
the space as ab? space; the vertically polarized Hilbert space exists independently of
this choice. Second, the description of the vertically polarized Hilbert space as space of
half-forms will be essential to the construction of the pairing map in Sect. 2.5.

The following description follows Sect. 9.3 of [Wo]. Roughly speaking our Hilbert
space will consist of objects whose squares:afierms on7* (K ) that are constant along
the fibers and thus descenditdorms onK. The norm of such an object is computed
by squaring and then integrating the resultinfprm overk.

We consider sections @fthat are covariantly constant in the directions parallel to the
fibers of T*(K). Note that each fiber df*(K) is a Lagrangian submanifold @f*(K),
so thatT*(K) is naturally foliated into Lagrangian submanifolds. Suppose Xhit a
tangent vector t@*(K) that is parallel to one of the fibers. Then it is easily seen that
0 (X) = 0, wheref is the canonical 1-form ofi*(K). Thus, recalling definition (2.1)
of the covariant derivative and thinking of the sectionsLoés functions oril'*(K),
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the vertically polarized sections are simply the functions that are constant along the
fibers. Such a section cannot be square-integrable with respect to the Liouville measure
(unless it is zero almost everywhere). This means that we cannot construct the vertically
polarized Hilbert space as a subspace of the prequantum Hilbert space.

We consider, then, the canonical bundlgdf K ) relative to the vertical polarization.
This is thereal line bundle whose sections argformsa such that

Xio=0 (2.13)

for all vectors parallel to the fibers @*(K). We call such a section polarized if in
addition we have

X.da =0 (2.14)

for all vectorsX parallel to the fibers. (See [Wo, Eq. (9.3.1)].)

Now let O be the space of fibers (or the space of leaves of our Lagrangian foliation).
Clearly Q may be identified withK itself, the “configuration space” corresponding to
the “phase spacel'*(K). Let pr : T*(K) — K be the projection map. It is not hard
to verify that if« is an-form onT*(K) satisfying (2.13) and (2.14) then there exists a
uniquen-form g on K such that

a=pr*(p).

We may think of such an-form « as being constant along the fibers, so that it descends
unambiguously to an-form 8 on K . In this way the polarized sections of the canonical
bundle may be identified with-forms onk.

SinceK is a Lie group it is orientable. So let us pick an orientationkbnwhich
we think of as an equivalence class of nowhere-vanishifigrms onK. Then if 8 is
a nowhere-vanishing orientedform on K, we define the “positive” part of each fiber
of the canonical bundle to be the half-line in whigh* (8) lies. We may then construct
a unique trivial real line bundl& such that 1) the square & is the canonical bundle
and 2) ify is a nowhere-vanishing section &f theny? lies in the positive part of the
canonical bundle. We have a natural notion of polarized sectioés, guch that 1) a
locally defined, smooth, nowhere-zero sectioof &, is polarized if and only 2 is a
polarized section of the canonical bundle and 2)ig a locally defined, nowhere-zero,
polarized section of, and f is a smooth function, thefiv is polarized if and only iff
is constant along the fibers.

Now let 8 be any nowhere vanishing orientaeform on K. Then there exists a
polarized section o8, (unique up to an overall sign) whose squargis (8) . This
section is denoteq/pr* (8). Any other polarized section @f is then of the form

f )/ pre(B).

where f (x) denotes a real-valued function @rf(K) that is constant along the fibers.

Finally we consider polarized sectionslof 8>, i.e. those that are locally the product
of a vertically polarized section df and a polarized section 5. These are precisely
the sections that can be expressed in the form

s=f@&Vpr*(h),
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where f is a complex-valued function ofi*(K) that is constant along the fibers. The
norm of such a section is computed as

IISI|2=/K|f(x)I2ﬂ~

It is easily seen that this expression fai| is independent of the choice gf Note that
the integration is over the quotient spacenot overT*(K).

In particular we may choose linearly independent left-invariant 1-fofms. . , n,
on K insuch away thaii A - - - A7y, is oriented. Then every polarized sectiona® &2
is of the form

s=f@Vpr A A
and the norm of a section is computable as

||s||2=/ If )P A=A,
K

:/K|f(x)|2 dx, (2.15)

wheredx is Haar measure ok . Thus we may identify the vertically polarized Hilbert
space withL2(K, dx). More precisely, if we assume up to now that all sections are
smooth, then we have the subspacd ®{K, dx) consisting of smooth functions. The
vezrtically polarized Hilbert space is then the completion of this space, which is just
L?(K,dx).

2.5. Pairing. Geometric quantization gives away to definma&ing between the Kahler-
polarized and vertically polarized Hilbert spaces, that is, a sesquilinear map from
Hyashler X Hvertical into C. This pairing then induces a linear map between the two
spaces, called thmairing map The main results are: (1) the pairing map coincides up to

a constant with the generalized Segal-Bargmann transform of [H1], and (2) a constant
multiple of the pairing map is unitary from the vertically polarized Hilbert space onto
the Kahler-polarized Hilbert space.

Now the elements of the Kéhler-polarized Hilbert space are polarized sections of
L ® 81 and the elements of the vertically polarized Hilbert space are polarized sections
of L ® é>. Here §; and 2 are square roots of the canonical bundle for the Kahler
polarization and the vertical polarization, respectively. The pairing of the Hilbert spaces
will be achieved by appropriately pairing the sections at each point and then integrating
overT*(K) with respect to the canonical volume foem(See [Wo, p. 234].)

A polarized section; of L ® 81 can be expressed as = f1 ® 81, where f1 is a
Ké&hler-polarized section df andgs is a polarized section &. Similarly, a polarized
section ofL ® & is expressible ag = f2 ® B2 with f> a vertically polarized section
of L andp, a polarized section af,. We define a pairing betwegh and gz by

2 2
(Bu, o) = | 2L P2

c¢&

wherec is constant which | will take to be = (—i)"(—1)"®*+D/2_ (This constant is
chosen so that things come out nicely in Riecase. See Sect. 5.) Note tlﬁtandﬂg
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aren-forms onT*(K), so thatB? A B3 is a 2i-form onT*(K). Note that(1, B2) is a
complex-valued function ofi* (K ). There are at most two continuous ways of choosing
the sign of the square root, which differ just by a single overall sign. That there is at least
one such choice will be evident below.

We then define the pairing of two sectionsands; (as in the previous paragraph) by

(51, 52) pair = / (f1, f2) (B1, B2) € (2.16)
T*(K)

whenever the integral is well-defined. Here as usualthe Liouville volume form on
T*(K). It is easily seen that this expression is independent of the decompositipn of
asf; ® B;. The quantity( f1, f2) is computed using the (trivial) Hermitian structure on
the line bundleL. Although the integral in (2.16) may not be absolutely convergent in
general, there are dense subspaces of the two Hilbert spaces for which itis. Furthermore,
Theorem 2.6 below will show that the pairing can be extended by continuity {9 il
in their respective Hilbert spaces.

Now, we have expressed the polarized sections @fé§1 in the form

Fe P2 g JZi A A Ty,

whereF is a holomorphic function ok¢c andZy, . .. , Z, are left-invariant holomorphic
1-forms onKc. As always we identifyKc with 7*(K) as in (2.4). The functiony |2
is the Kahler potential (2.5). We have expressed the polarized secti@dn® ép in the
form

FE)®Vpremin--Am,

where f (x) is a function onT*(K) that is constant along the fibens, ... , n, are
left-invariant 1-forms orK, andpr : T*(K) — K is the projection map.
Thus we have the following expression for the pairing:

(F, f)pair=/ fF(xeiY)f(x)e—'Y'2/2hg(Y) dx dY, (2.17)
K Jt

where¢ is the function ol *(K) given by

(2.18)
Cc¢&

¢ _\/Zl/\"'/\zn/\pr*(nl/\"‘/\nn)
wherec = (—i)"(=1)"*+D/2_ | have expressed things in terms of the functiéhand
f, and | have used the identification (2.2) Bf (K) with K x &. It is easily seen that
¢ (x,Y) is independent of, and so | have writteg (Y) .

Theorem 2.6. Let us identify the vertically polarized Hilbert space with (K) as in
(2.15) and the Kahler-polarized Hilbert space WH1L?(T*(K), y;) as in Theorem 2.4.
Then there exists a unique bounded linear operaigr: L2(K) — HL?(T*(K), v1)
such that

(F’ f)pair = (F’ th)’HLZ(T*(K),)/h) = <HZF’ f>L2(K)

forall f € L?(K) and all F € HL?(T*(K), yx). We callIl; thepairing map.
The pairing map has the following properties.
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(1) There exists a constan}; such that for anyf € L2 (K), I f is the unique holo-
morphic function orf"*(K) whose restriction t& is given by

(th)’K = ahehAK/zf.

Equivalently,

s f (8) =ah/Kpn(gx*l)f(X) dx, ge€Kc,

wherepy, is the heat kernel ok, analytically continued t&Kc.
(2) The mapl1; may be computed as

(M3 F) (x) = /F (xe"Y) VP20 vy gy,
4

where¢ is defined by (2.18) and computed in Proposition 2.7 below.
(3) There exists a constarlf; such thatb;I1; is a unitary map ofL2(K) onto
HL2(T*(K), yp). ThusIT; = b, 211, %

The constanta; andb; are given explicitly asy = (2h)"/2 e~ 1°*1/2 and b, =
(4w h)~"/*, wherep is half the sum of the positive roots fé.

Remarks.(1) The madl; coincides (up to the constamf) with the generalized Segal—
Bargmann transform fokK, as described in [H1, Thm. 2].

(2) The formula forfT; F may be taken literally on a dense subspace{df(T*(K),
yn). For generalF, however, one should integrate over a ball of radiuis £ and
then take a limitinL? (K) , as in [H2, Thm. 1].

(3) The formula forIT} is an immediate consequence of the formula (2.17) for the
pairing. By computing (Y) explicitly we may recognizél; as simply a constant
times thenverse Segal-Bargmann transfofar K, as described in [H2].

(4) In [H2] | deduce the unitarity of the generalized Segal-Bargmann transform from
the inversion formula. However, | do not know how to prove the unitarity of the
pairing map without recognizing that the measure in the formuldifprs related
to the heat kernel measure f&i- /K.

(5) Sincer is holomorphic, there can be many different formulasIigr (or 1‘[;1). In
particular, if one takes the second expressiorifgiand computes the adjoint in the
obvious way, one wilhot get the given expression fdi;. Nevertheless, the two
expressions fofl; do agree on holomorphic functions.

Proof. We begin by writing the explicit formula far.

Proposition 2.7. The functiory is an AdK -invariant function ort which is given on a
maximal abelian subalgebra by

sinha (Y /2)
¢(Y)= —
l_R[ a(Y/2)

)

whereR™ is a system of positive roots.
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The proof of this proposition is a straightforward but tedious calculation, which |
defer to an appendix.
Directly from the formula (2.16) for the pairing map we see that

<F’ f>pa|r = <H;F? f>L2(K) ) (219)

whereIl} is defined by

(M3 F) (x) = /F (xe"Y) e P2 vy gy,
€

At the moment it is not at all clear th&t; is a bounded operator, but there is a dense
subspace o0& L2(T*(K), y») on whichIT; makes sense and for which (2.19) holds. We
will see below thafll; extends to a bounded operator on altot.?(T*(K), yy), for
which (2.19) continues to hold. Then by taking the adjoirfigfwe see thatF, f)pair =

(Fs th)HLZ(T*(K),)/h) as We"
Using the explicit formula fot and making the change of varialité = %Y we have

x _on 2iv'\ | ,—2|v'|*/n sinha (¥ v
(T3 F) (x) 2/EF(xe )| ]_[ a(y)

R+

We recognize from [H3] the expression in square brackets as a constant times the heat
kernel measure oK ¢ /K, written in exponential coordinates and evaluated at time
t = h/2. It follows from the inversion formula of [H2] that

-1
I} = cnCp s

for some constant; and whereCy, is the generalized Segal-Bargmann transform of
[H1, Thm. 2].

Now, Cj is unitary if we use orK¢c = T*(K) the heat kernel measutg. But in
Theorem 1 we established that this measure coincides up to a constant with the measure
yi. ThusIly is a constant multiple of a unitary and coincides withup to a constant.

This gives us what we want except for computing the constants, which | leave as an
exercise for the reader.o

3. Quantization, Reduction, and Yang-Mills Theory

Let me summarize the results of this section before explaining them in detalil. It is pos-
sible to realize a compact Lie group as the quotienk = A/L (K), where A is a
certain infinite-dimensional Hilbert space addK) is the based loop group ovéf,
which acts freely and isometrically oA. (Here A is to be interpreted as a space of
connections oves! and £ (K) as a gauge group.) The cotangent bundlelahay be
identified with the associated complex Hilbert spate and the symplectic quotient
Ac//L (K) is identifiable withT*(K). The results of [DH, Wr] (see also the exposition

in [H8]) together with the results of this paper may be interpreted as saying that in this
caseguantization commutes with reductidrhis means two things. First, if we perform
geometric quantization adc and then reduce by (K) the resulting Hilbert space is
naturallyunitarily equivalent to the result of first reducing By(K) and then quantizing

the reduced manifoldlc//L (K) = T*(K). This result holds using either the vertical
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or the Kéhler polarization; in the Kéhler case it is necessary to include the half-form cor-
rection. Second, the pairing map between the vertically polarized and Ké&hler-polarized
Hilbert spaces overlc descends to the reduced Hilbert spaces and then coincides (up
to a constant) with the pairing map fér*(K). Additional discussion of these ideas is
found in [H7,H8]. The first result contrasts with those of Guillemin and Sternberg in
[GStern]. That paper considers the geometric quantization of compact Kéhler manifolds,
without half-forms, and exhibits (under suitable regularity assumptions) a one-to-one
onto linear map between the “first quantize then reduce” space and the “first reduce and
then quantize” space. However, they do not show that this map is unitary, and it seems
very unlikely that it is unitary in general. In the case considered in this paper and [DH],
guantization commutasnitarily with reduction.

Consider then a Lie grou of compact type, with a fixed Ad-invariant inner
product on its Lie algebrta Then consider the real Hilbert space

A:=L?%(0,1];¢).

Let £ (K) denote thdased loop groufor K, namely the group of mags [0, 1] - K
such thaty = /1 = e. (For technical reasons | also assume fhads one derivative in
L2, i.e. that/ has “finite energy”.) There is a natural action®{K) on A given by

dl
(A, =LA = oL L (3.1)

Herelisin L(K), Aisin A, andt isin [0, 1] . Then we have the following result: the
basedloop groug (K) acts freely and isometrically o4, and the quotient/ L (K) isa
finite-dimensional manifold that is isometric ¥. ThusK, which is finite-dimensional
but with non-trivial geometry, can be realized as a quotientdofwvhich is infinite-
dimensional but flat.

Explicitly the quotient map is given in terms of thelonomy For A € A we define
the holonomy: (A) € K by the “path-ordered integral”

h(4) = P (oo 4edr)

. 1/N
= lim elo

2N 1
Ard'fefl//N Acdt L Jiv-nyn AcdT (3.2)
N—oo

Then it may be shown that and B are in the same orbit of (K) if and only if
h(A) = h(B). Furthermore, every € K is the holonomy of somd € A, and so
the £ (K)-orbits are in one-to-one correspondence with points iThe motivation for
these constructions comes from gauge theory. The sdaseo be thought of as the
space of connections for a trivial princip&l-bundle overs?, in which casel (K) is
the based gauge group and (3.1) is a gauge transformation. For connectioass?!
the only quantity invariant under (based) gauge transformations is the holdna#)y
around the circle. See [DH] or [H8] for further details.

Meanwhile, we may consider the cotangent bundledofr* (A) , which may be
identified with

Ac = L*([0,1]; tc) .

ThenAc is an infinite-dimensional flat Kahler manifold. The action of the based loop
groupL (K) on A extends in a natural way to an action dg (given by the same for-
mula). Starting with4c we may construct the symplectic (or Marsden—Weinstein) quo-
tient Ac//L (K) . This quotient is naturally identifiable with* (A/L (K)) = T*(K).
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One may also realize the symplectic quotientlas' £ (K¢), whereL (K¢) is the based
loop group ovelKc. The quotientdc/L (K¢) is naturally identifiable withK¢. So we
have ultimately

T*(K) =T" (A/L(K)) = Ac/L (Kc) = Kc.

The resulting identification df *(K) with K¢ is nothing but the one used throughout this
paper. The quotientic/L (Kc) may be expressed in terms of the complex holonomy.
For Z € Ac we definehc (Z) € K¢ similarly to (3.2). Then theC (K¢)-orbits are
labeled precisely by the value bf.

So the manifold'*(K) that we have been quantizing is a symplectic quotient of the
infinite-dimensional flat K&hler manifoldic. Looking at7*(K) in this way we may
say that we have first reducetl- by the loop groupC (K), and then quantized. One
may attempt to do things the other way aroufit quantizeAc andthenreduce by
L (K) . Motivated by the results of K. Wren [Wr] (see also [La2, Chap. 1V.3.8]), Bruce
Driver and | considered precisely this procedure [DH]. Although there are technicalities
that must be attended to in order to make sense of this, the upshot is that in this case
quantization commutes with reducti@s explained in the first paragraph of this section.

In the end we have three different procedures for constructing the generalized Segal—
Bargmann space fak and the associated Segal-Bargmann transform. The first is the
heat kernel construction of [H1], the second is geometric quantizati@ri @) with a
Kéhler polarization, and the third is by reduction frotga. It is not obviousa priori that
any two of these constructions should agree. That all three agree is an apparent miracle
that should be understood better. | expect that if one replaces the compackgvatip
some other class of Riemannian manifolds, then these constructions will not agree.

Let me now explain how the quantization.df and the reduction by (K) are done
in [DH]. (See also the expository article [H8].) In the interest of conveying the main ideas
I will permit myself to gloss over various technical issues that are dealt with carefully
in [DH]. Although [DH] does not use the language of geometric quantization, it can
easily be reformulated in those terms. Now, the constructions of geometric quantization
are not directly applicable in the infinite-dimensional setting. On the other hénd,
is just a flat Hilbert space and there are by now many techniques for dealing with its
quantization. Driver and | want to first perform quantization@hand then lek: tend
to infinity. If one performs geometric quantization @ with a K&hler polarization and
the half-form correction one ge#L2(C", v;), where

dvp = ef(lmZ)z/h dz.

See Sect. 5 below.

In this form we cannot let the dimension go to infinity because the measure is Gaussian
only in the imaginary directions. So we introduce a regularization parametefi /2
and modify the measure to

dMS‘,h = (Trr)_"/z (JTh)_”/Z 6_(Im z)z/he_(ReZ)Z/r7

wherer = 2(s — i /2). The constants are chosen so thgt, is a probability measure. If
one rescales/, ; by a suitable function of and then lets tend to infinity one recovers
the measurey,. Our Hilbert space is then jug{L2(C”", M; ). Now we can let the
dimension tend to infinity, and we get

HL? (Ac, M 1),



Geometric Quantization and Segal-Bargmann Transform 253

where M, ; is a Gaussian measure on a certain “extensida” of Ac. (See [DH,
Sect. 4.1].) This we think of as the (regularized) K&hler-polarized Hilbert space.

Ournexttaskisto performthe reductionfyK) , which means looking for functions
in HL2(Ac, M; ) that are “invariant” in the appropriate sense under the action of
L (K) . The notion of invariance should itself come from geometric quantization, by
“quantizing” the action of (K) on Ac. Note thatC (K) acts on4 by a combination of
rotations and translations; the action®tK) on Ac is then induced from its action on
A. Let us revert temporarily to the finite-dimensional situation as in Sect. 4. Then the
way we have chosen our 1-fofrand our K&hler potential means that the rotations and
translations oR” act in the Kahler-polarized Hilbert spagd.%(C”", vy) in the simplest
possible way, namely by rotating and translating the variables. (This is not the case in
the conventional form of the Segal-Bargmann space.) We will then formally extend this
notion to the infinite-dimensional case, which means that an elehoéut (K) acts on
afunctionF € HL?(Ac, M) by F(Z2) - F(I71- Z).

We want functions i L2(Ac, M; ;) that are invariant under this action, i.e. such
thatF (I71-Z) = F (Z) foralll € £ (K). Since our functions are holomorphic they
must also (at least formally) be invariant unde(K¢). So we expect the invariant
functions to be those of the form

F(2) = @ (hc (2)),

where® is a holomorphic function oK ¢. (Certainly every such function ig§ (K)-
invariant. Although Driver and | did not prove that evefy K )-invariant function is of
this form, this is probably the case.) The norm of such a function may be computed as

/7 |F(Z)12dM; 5 (Z) = f | ()% dpsn (g),
Ac K¢

wherepu 5 is the push-forward oM; 5 to K¢ underhc. Concretelyu; » is a certain
heat kernel measure dtic. See [DH] or [H5] for details.
So our regularized reduced quantum Hilbert space is

HL*(Kc, 5,1)-
At this point we may remove the regularization by lettingend to infinity. It can be
shown that

lim g5 = va,

§—>00

wherevy, is the K -invariant heat kernel measure of [H1]. So without the regularization
our reduced quantum Hilbert space becomes finally

HL?(Kc, vn),

which (up to a constant) is the same&2(T*(K), yx), using our identification of
T*(K) with K¢.

Meanwhile the vertically polarized Hilbert space €&t also requires a regularization
before we let: tend to infinity. So we considet?(R”, P;), where P, is the Gaussian
measure given by

dP; (x) = (2s) "2 /2.
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RescalingP by a function ofs and then letting tend to infinity gives back the Lebesgue
measure ofiR”. We then consider the Segal-Bargmann transfSsmwhich coincides
with the pairing map of geometric quantization (Sect. 5). This is given by

Snf (2) = rr)™"/? / e~ G2 f () dx.
R»

With the constants adjusted as above this map has the property that it is unitary between
our regularized spaces? (R”, Py) and HL2(C", M ), for all s > h/2. (See [DH,
Sect. 3.1] or [H5].)
Letting the dimension tend to infinity we get a unitary map [DH, Sect. 4.1]
Sp: L2 (A, Py) — HL2(Ac, My p). (3.3)
It seems reasonable to think of this as the infinite-dimensional regularized version of
the pairing map fotdc. To reduce byZ (K) we consider functions it.? @ Ps) that

are L (K)-invariant. According to an important theorem of Gross [G1] these are (as
expected) precisely those of the form

fA)=¢(h(A)), (3.4)

whereg is a function onk. The norm of such a function is computed as
ﬁ |f (A)I? dPs (A) = f |6 ()% dps (x) .
A K

Thus with the vertical polarization our reduced Hilbert space becdrhéx, p,) . Since
lim dos (x) =dx
§—>00
we recover in the limit the vertically polarized subspaceKo(Compare [GO].)

Theorem 3.1. [DH]_Considerthe Segal-Bargmann transfo§nof (3.3). Then consider
afunctionf € L2 (A, P;) of the formf (A) = ¢ (h (A)) , with ¢ a function onk . Then

(Snf) (Z) = @ (hc (2)),
where® is the holomorphic function oK ¢ given by
® = analytic continuation 08" 2x/%¢.

RestrictingS; to theL (K)-invariant subspace and then letting— oo gives the unitary
map

Cn: L?(K,dx) — HL?*(Kc, vy)

given bygp — analytic continuation o8"2x/2¢.
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If we restrict S; to the £ (K)-invariant subspace but keepfinite, then we get a
modified form of the Segal-Bargmann transform &or a unitary mapL2 (K, ps) —
HL?(Kc, jus.). Still given by¢ — analytic continuation 06"2x/2¢. This transform
is examined from a purely finite-dimensional point of view in [H5].

So if we accept the constructions of [DH] as representing regularized forms of the
geometric quantization Hilbert spaces and pairing map, then we have the following con-
clusions. First, the Kahler-polarized and vertically polarized Hilbert spacetdoafter
reducing byL (K) and removing the regularization, are naturally unitarily equivalent to
the Kahler-polarized and vertically polarized Hilbert spacedToiK) = Ac//L (K) .
(lamincluding the half-formsin the construction of the Kéhler-polarized Hilbert spaces.)
Second, the pairing map fotc, after restricting to theC (K)-invariant subspace and
removing the regularization, coincides with the pairing mapfft¢K). Both of these
statements are to be understood “up to a constant”.

4. The Geodesic Flow and the Heat Equation

This section describes how the complex polarizatior7énk) can be obtained from
the vertical polarization by means of tieaginary-time geodesic flowhis description
is supposed to make the appearance of the heat equation in the pairing map seem more
natural. After all the heat operator is nothing butith@ginary-timequantized geodesic
flow. This point of view is due to T. Thiemann [T1,T3].
Suppose thaf is a function onK and letr : T*(K) — K be the projection map.
Then f o 7 is the extension of to T*(K) that is constant along the fibers. A function
of the form f o & is a “vertically polarized function”, that is, constant along the leaves
of the vertical polarization. Now recall the functient 7*(K) — R given by

K (x,Y) = Y%,

Let I'; be the Hamiltonian flow off*(K) generated by the function/2. This is the
geodesic flow for the bi-invariant metric at determined by the inner product on the
Lie algebra. The following result gives a way of using the geodesic flow to produce a
holomorphic function orf*(K).

Theorem 4.1. Let f : K — C be any function that admits an entire analytic continu-
ationtoT*(K) = K¢, for example, a finite linear combination of matrix entries. Let
7w : T*(K) — K be the projection map, and |&} be the geodesic flow di* (K).

Then for eachn € T*(K) the map

t — f (@ (m)))

admits an entire analytic continuation (i) from R to C. Furthermore the function
fc: T*(K) — C given by

fc(m) = f (zw (T; (m)))
is holomorphic o7 *(K) and agrees wittf on K C T*(K).

Note that f¢ is the analytic continuation of from K to T*(K), with respect to
the complex structure ofi*(K) obtained by identifying it withKc. So in words: to
analytically continuef from K to T*(K), first extendf by making it constant along
the fibers and then compose with the tiingeodesic flow. So we can say that the
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Kéhler-polarized functions (i.e. holomorphic) are obtained from the vertically polarized
functions (i.e. constant along the fibers) by composition with the tigmodesic flow.
Now if g is any function or7*(K) theng o I'; may be computed formally as

2}’!
gor[—Z“/){ k) k),

n=0

n

Thus formally we have

2"
fc—z(’i') (o Fom i)k k). (1)

n=0

n

(Compare [T1, Eq. (2.3)].) In fact, this series converges provided only fHas an
analytic continuation t@*(K). This series is the “Taylor series in the fibers”ff, that
is, on each fiber the™ term of (4.1) is a homogeneous polynomial of degree

Theorem 4.2. Suppos¢ is any function ork thatadmits an entire analytic continuation
toT*(K), denotedfc. Then the series on the right in (4.1) converges absolutely at every
point and the sum is equal tfy.

As an illustrative example, consider the case= R so that7*(K) = R2. Then
consider the functiorf (x) = x* onR, so that(f o ) (x, y) = x*. Using the standard

Poisson bracket oR2, {g, i} = g—f% - %% it is easily verified that

O i 5 A AT

n

(The series terminates after the= k term.) Sofc (x +iy) = (x + iy)X is indeed the
analytic continuation of*.

So “classically” the transition from the vertical polarization (functions constant along
the fibers) to the Kahler polarization (holomorphic functions) is accomplished by means
of the timei geodesic flow. Let us then consider the quantum counterpart of this, namely
the transition from the vertically polarized Hilbert space to the Kahler-polarized Hilbert
space. In the position Hilbert space the quantum counterpart of the furgtiis the
operator

H :=—h’Ag/2.

(Possibly one should add an “author-dependent” multiple of the scalar curvature to this
operator [Q], but since the scalar curvaturekofs constant, this does not substantively
affect the answer.) The quantum counterpart of the geodesic flow is then the operator

I, := exp(itH/h)
and so the time quantized geodesic flow is represented by the operator
£ = Mox/2,

Since this is precisely the heat operator karthe appearance of the heat operator in the
formula for the pairing map perhaps does not seem quite so strange as at first glance.
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This way of thinking about the complex structure and the associated Segal-Bargmann
transform is due to T. Thiemann [T1]. The relationship between the complex structure
and the imaginary time geodesic flow is also implicit in the work of Guillemin—-Stenzel,
motivated by the work of L. Boutet de Monvel. (See the discussion between Thm. 5.2
and 5.3 in [GStenz2].) Thiemann proposes a very general scheme for building complex
structures and Segal-Bargmann transforms (and their associated “coherent states”) basec
onthese ideas. However, there are convergence issues that need to be resolved in genera
S0 it is not yet clear when one can carry this program out.

Although results similar to Theorems 4.1 and 4.2 are established in [T3, Lem. 3.1],
| give the proofs here for completeness. Similar results hold for the “adapted complex
structure” on the tangent bundle of an real-analytic Riemannian manifold, which will be
described elsewhere.

Proof. According to a standard result [He, Sect. IV.6], the geodesi&same the curves
of the formy (1) = xe'X, with x € K andX € £. This means that if we identify * (K)
with K x ¢ by left-translation, then the geodesic flow takes the form

Iy (x,Y)= (xetY, Y) .
Thus if f is a function onk then
f @ @) = f (xe).

We are now supposed to fixandY and consider the map— f (xe’y) .If f has

an analytic continuation t& ¢, denotedfc, then the map — f (xe¢'") has an analytic
continuation (irv) given by

t — fc (xety), t e C.

(This is because the exponential mapping figmo K¢ is holomorphic.) Thus
f @ (e, ) = fe (xe'™).

Now we simply note that the mag, Y) — fc (xe'!) is holomorphic orf'*(K), with
respect to the complex structure obtained by the dap, Y) = xe' . This establishes
Theorem 4.1.

To establish the series form of this result, Theorem 4.2, we note that (almost) by the
definition of the geodesic flow we have

d n
(E) (fom)ol

On the other hand, if has an entire analytic continuation T6'(K) = K¢, then as
established above, the map> (f o 7) o I'; has an entire analytic continuation. This
analytic continuation can be computed by an absolutely convergent Taylor series at
t = 0, where the Taylor coefficients at= 0 are computable from (4.2). Thus
o
@i/2)"
fo=(fomoli=3 —

n=0

1
=2—n{...{{fOJT,K},K},...,K}. (4.2)

n

t=0

{...{{fom«k},k},... Kk}

n

This establishes Theorem 4.20
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5. TheR” Case

Itis by now well known that geometric quantization can be used to construct the Segal—
Bargmann space f@" and the associated Segal-Bargmann transform. (See for example
[Wo, Sect. 9.5].) In this section | repeat that construction, but in a manner that is non-
standard in two respects. First, | trivialize the quantum line bundle in such a way that
the measure in the Segal-Bargmann space is Gaussian only in the imaginary directions.
This is preferable for generalizing to the group case and it is a simple matter in the
R” case to convert back to the standard Segal-Bargmann space (see below). Second, |
initially compute the pairing map “backward,” that is, from the Segal-Bargmann space
to L2 (R") . | then describe this backward map in terms of the backward heat equation,
which leads to a description of the forward map in terms of the forward heat equation. By
contrast, Woodhouse uses the reproducing kernel for the Segal-Bargmann space in order
to compute the pairing map in the forward direction. Although I include the half-form
correction on the complex side, this has no effect on the calculations R'tbase.

We consider the phase spaké& = T* (R"). We use the coordinates, ... , gn,
p1, ..., Pn, Where theg's are the position variables and tipés are the momentum
variables. We consider theanonical one-form

0= Zpdek,

where here and in the following the sum ranges from A4.t6hen
w:=—-df =) dq rdp:

is the canonical 2-form. We consider a trivial complex line buridle R?* x C with a
notion of covariant derivative given by

1
Vx=X——0(X).
ih

HereVy acts on smooth sections bf which we think of as smooth functions @&f”.

Theprequantum Hilbert spads the space of sections bfthat are square-integrable
with respect to the canonical volume measureéRdh. The canonical volume measure
is the one given by integrating théouville volume forndefined as

1 .
E=—ON- - AN® (n times)
n!
=dqi1 ANdp1 N ---Ndgy, ANdpy.

Since our prequantum line bundle is trivial we may identify the prequantum Hilbert
space withL.2 (R?", ¢) .

We now consider the usual complex structurégh = C”. We think of this complex
structure as defininglé&hler polarizationon R2". This means that we define a smooth
sections of L to bepolarizedif

Va/agks = 0 (5.1)

for all k.
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Proposition 5.1. If we think of sections of L as functions then a smooth section
satisfies (5.1) if and only if is of the form

. . —_ 2
s(q.p)=F(qu+ip1,... . qn+ipn)e 7 /?, (5.2)
whereF is a holomorphic function ofi”. Here p? = p2 + - - - + p2.

Proof. To prove this we first comput€; 5z, as
L Y O
% T oz T in \ 9z

1/ 0 4 0 1
—_— = — l_ [ —
ACTRE Y A
Then we note that

2 1/ 0 p? 1 2
AV -p/2h _ | = [ -_ A e P /2h
8/0%€ 2\oqr Top ) \Ton ) T 2 Pr ¢

Pk —p?/2h
5
0.

2ih

Then ifs is any section, we can writein the forms = F e‘I’Z/Zh, for some complex-
valued functionF. Such a section is polarized if and only if

oF 2

= —¢e P /Zh—{—FVd/aZke p?/2h
8Zk

_ 8_Fe—p2/2h7
0Zk

for all k, that is, if and only ifF is holomorphic. O

We then define thkahler-polarized Hilbert spac® be the space of square-integrable
Kéahler-polarized sections df. Note that thel.? norm of the section in (5.2) is com-
putable as

2
”"'ZZ/C FQ)Re P digd"p,

wherez = ¢ + ip with g, p € R". If we identify the polarized section with the
holomorphic functionF then we identify the K&hler-polarized Hilbert space as the
space

HLAC", e~ P /M a"q d" p). (5.3)

Here?{L? denotes the space of square-integrable holomorphic functions with respect to
the indicated measure. This space is a form ofS8hgal-Bargmann space

The conventional description [Wo, Sect. 9.2] of the Segal-Bargmann space is slightly
differentfrom what we have here, for two reasons. First, itis conventional to insert a factor
of /2 into the identification oR?* with C". Second, it is common to use a different
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trivialization of L, resulting in a different Gaussian measure@h The mapF —
/4 F maps “my” Segal-Bargmann space unitarilyHa2(C", e~ 12*/21gng @ p),
which is the standard Segal-Bargmann space (apart from the above-mentioned factor
of +/2). The normalization used here for tRé case is the one that generalizes to the
group case.

We also define theanonical bundldrelative to the given complex structure) to be the
bundle whose sections ateforms of type(n, 0) . We then define thaalf-form bundle
81 to be the square root of the canonical bundle. The polarized sectiénsud objects

of the form
F () dzaN--- Ndzy,

whereF is holomorphic. Here the square root is a mnemonic for a polarized section of
81 whose square igz1 A - - - A dz,. The absolute value of such a section is computed
by setting

‘ dzi A - /\dZn

dzaAN---ANdZuy ANdza N -+~ ANdzy 12
be
1,

(5.4)

where the constaiitis given byb = (2i)"(—1)""—1D/2,
Thehalf-form-corrected Hilbert spade then the space of square-integrable polarized
sections ofL ® §1. Polarized sections df ® §1 may be expressed uniquely as

s=F @) e P/ Jdai A Adzy. (5.5)

In light of (5.4) our Hilbert space may again be identified with the Segal-Bargmann

spaceH L3(C", e P2/ d"q d"p). Although in this flat case the half-form correction
does not affect the description of the Hilbert space, it still has an important effect on
certain subsequent calculations, such as the WKB approximation. (See [Wo, Chap. 10].)
Next we consider theertically polarized section\ vertically polarized section
of L is one for whichVy,,,,s = 0 for all k. Identifying sections with functions and
usingd = Xprdgi we see thaVy,,, = 3/3dpk. Thus the vertically polarized sections
are simply functionsf (¢, p) that are independent ¢f. Unfortunately, such a section
cannot be square-integrable (0®#") unless it is zero almost everywhere.
So we now consider theanonical bundlégrelative to the vertical polarization). This
is thereal line bundle whose sections ardormso satisfying(d/dpx) i = 0O for all k.
Concretely such forms are precisely those expressible as

a=f(q,p)dgn---Ndg,

where f is real-valued. Such aform is calledpolarizedif (3/dpy)_do = O for all k.
Such forms are precisely those expressible as

a=f(g)dqN---Ndgy.

We now choose an orientation &1 and we construct a square r@gtof the canonical
bundle in such a way that the square of a sectiofpdé a non-negative multiple of
dq1 A --- Ndgy, Whereqs, ... , g, IS an oriented coordinate system f&f. There is

a natural notion of polarized sections®f namely those whose squares are polarized
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sections of the canonical bundle. The polarized sectiois afe precisely those of the

form
B=f(q@)Vdgin---Adgy. (5.6)

We then consider the space of polarized sectioris ®52. Every such section may
be written uniquely in the form

s=f(q) ®Vdgi A+ Ndgy, (5.7)

where nowf is complex-valued. We define the inner product of two such sectipns
ands; by

(s1,52) = /Rn f1(@) f2(q) dgi A -+ Adgy. (5.8)

Note that the integration is ov@"* notR?*. The vertically polarized Hilbert spaces
the space of polarized sectionsf L ® &> for which (s, s) < co. (This construction is
explained in a more manifestly coordinate-independent way in the general group case,
in Sect. 2.4.)

Finally, we introduce th@airing mapbetween the vertically polarized and Kahler-
polarized Hilbert spaces. First we define a pointwise pairing between sectidnarad
sections o, by setting

[dzl/\m/\dzn/\dql/\n-/\dqn:|1/2

ce

(\/dzl/\~-~/\dzn,\/dq1/\~-~/\dqn) -
=1,

where the constantis given bye = (—i)"(—1)"*+1/2, Then we may pair a section
of L ® §1 with a section ofL. ® 8> by applying the above pairing éf andé, and the
Hermitian structure o, and then integrating with respect40So if s1 is a polarized
section ofL ® §1 asin (5.5) andy is a polarized section df ® §, then we have explicitly

T (A L i —p? n n
FSopar = [ [ FaFins @e @ aqary. (5.9)
Here | have expressed things in termsfe HL2(C", e=P*/"a"qd"p) and f €
L2(R").
Theorem 5.2. Let us identify the vertically polarized Hilbert space with (R") as
in (5.8) and the Kahler-polarized Hilbert space WitL2(C", e=*/"d"q d" p) as

in (5.5). Then there exists a unique bounded linear operaigr: L?(R") —
L3(C", e’pz/hd"q d" p) such that

(F, f)=(F, th)mz(c»l,e—pz/h dngdnp) — (M7 F. f>L2(R")'
We callTl; thepairing map. We then have the following results.
(1) The mapll; : L2(R") — HL2(C", e=P*/"d"q a" p) is given by
Mf @ =an [ 02 q) dg.
]Rn

whereay, = (wh) /2 (2nh)™" .
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(2) The mapT; may be computed as
(MEF) (@) = /R F(g+ip)e ? 1 dmp.

(3) The mapby I is unitary, whereb, = (wh)"/* (27 h)"/?.

Note that the formula folT; (mapping from the Segal-Bargmann spacd fgR"))

comes almost directly from the formula (5.9) for the pairing. The unitarity (up to a
constant) of the pairing map in thi¥' case is “explained” by the Stone—von Neumann
theorem. The mapl;, as given in 1), is the “invariant” form of the Segal-Bargmann
transform, as described, for example, in [H6, Sect. 6.3]. In the expressidi;fine
integral is not absolutely convergent in general, so more precisely one should integrate
over the setp| < R and then take a limit (iL2(R")) asR — oo. (Compare [H2,

Thm. 1].)

There are doubtless many ways of proving these results. | will explain here simply
how the heat equation creeps into the argument, since the heat equation is essential to the
proof in the group case. Fix a holomorphic functiBron C" that is square-integrable
overR" and that has moderate growth in the imaginary directions. Then define a function
fn onR" by

e~ P2
= F(g+ip)| ——— | d"p. 5.10
fn (@) /Rn (g +ip) oy 2 |47 (5.10)
Note that the Gaussian factor in the square brackets is just the standard heat kernel in
the p-variable and in particular satisfies the forward heat equatigid = (1/2)Au.

Let us then differentiate under the integral sign, integrate by parts, and use the Cauchy—
Riemann equations in the for&¥ /dp, = id F/dqy. This shows that

ofn 1

= —=Afs, 5.11

o SO (5.11)

which is thebackwardheat equation. Furthermore, lettihdend to zero we see that
li =F(q). 5.12

i fn (@) (@) (5.12)

Thus (up to a factor of27h)"/?) IT; F is obtained by applying thaverseheat
operator to the restriction df to R”. Turning this the other way around we have

() f = (@2rh)"/? (analytic continuation oé’m/zf) , (5.13)

wheree2/2 f means the solution to the heat operator at timeith initial condition
f. Of course¢"2/2 f can be computed by integratingagainst a Gaussian, so we have

(M) ™ f (@) = /Rn GO 4y ag,

where the factors of2% in (5.13) have canceled those in the computation of the heat
operator orR".

-1
We now recognize IT; as coinciding up to a constant with the “invariant” form

C;, of the Segal-Bargmann transform, as described in [H6, Sect. 6.3]. The unitarity of
Cy, then implies thafly is unitary up to a constant. The argument in the compact group
case goes in much the same way, using the inversion formula [H2] for the generalized
Segal-Bargmann transform of [H1].
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6. Appendix: Calculationswith ¢ and «

We will as always identifyT*(K) with K x £ by means of left-translation and the
inner product ort. We choose an orthonormal basis foand we letys, ..., y, be
the coordinates with respect to this basis. Then all form& oxn ¢ can be expressed in
terms of the left-invariant 1-formsg, . .. , n, on K and the translation-invariant 1-forms
dy, ..., dy, ont. Since the canonical projectign- : T*(K) — K in this description
is just projection onto thé& factor, pr* (n;) is just identified withn,. We identify the
tangent space at each pointknx ¢ with ¢ + ¢.

Meanwhile we identify the tangent spacelof at each point witltc = € + £. We
then consider the map that identifiesT*(K) = K x ¢ with K¢,

& (x,Y) =xe'’.

Since we are identifying the tangent space at every point of Koth ¢ and K¢ with
£+ ¢, the differential of® at any point will be described as a linear mas eft to itself.
Explicitly we have [H3, Eq. (14)] at each poiat, Y)

1-—cosadY
o _( cosadY Z?z—sya) 6.1)
T i inady |- '
—sinady S0eCt

Our first task is to compute the functigriY) defined in (2.18). So let us usketo
pull back the left-invariant anti-holomorphic fornf to 7*(K). To do this we compute
the adjoint®* of the matrix (6.1), keeping in mind that/Y is skew, since our inner
product is AdX -invariant. We then get that

®* (Zi) = terms involvingn,
[sinady . cosadY —1
— 1 + i dyy.
adY adY Ik

Thus
ZAN- ANZy AMLA - Ay = (=D)"C X2 A Ay Adyt A~ Adyy
= £(=1)"¢ (N 2e,

where

2 sinadY .cosadY —1
¢ (Y)? = det +i .

adY adY

Heree = n1 Ady1 A --- A, A dy, is the Liouville volume form, and the factor of
+(—i)" is accounted for by the constanin the definition ofz.
Computing in terms of the roots we have

£(Y)? = l—[ sinho(Y) 4+ cosha(Y) — 1

a€R a(¥)
) 1
(0~ (1)

a(Y)?

a€RT
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Since(e® — 1) (1 — ™) = 4sinl?(x/2) we get

sinfPa(Y/2)

c =[] —rms

aeR* «(Y/2)
Taking a square root gives the desired expression by.

Now we turn to the Kahler potential. As usual we identifyT*(K) with K x ¢

by means of left-translation and the inner producttomhe canonical projection :

T*(K) — K inthis description is simply the map, Y) — x. The canonical 1-form
is defined by setting

0 (X) = (¥, s (X)),

whereX is a tangent vector t&*(K) at the point(x, Y) . Choose an orthonormal basis
e1,...,e, fortandletys, ..., y, be the coordinates drwith respect to this basis. Let
a1, ... ,a, be left-invariant 1-forms oK whose values at the identity are the vectors
e1,...,e, IN €= £ Then it is easily verified that at each point, Y) € T*(K) we
have

n
0= Z Vil
k=1

Now letx be the function o *(K) given by

n
k(. Y)=YP=) ")
k=1

We want to verify that
Im [5/{] =0.
We start by observing that
n
dx = Z 2yr dyg.
k=1

To computedx we need to transpodk to K¢, where the complex structure is
defined. OnK¢ we express things in terms of left-invariant 1-forms ... , n, and
Jni, ..., Jn,. We then want to pull backx to K¢ by means ofb~1. So we need to
compute the inverse transpose of the matrix (6.1) describing his may be computed

as
((D*l)" _ adY Si‘r;d# —sinadY
* " sinadY 1_‘;0—3‘1” cosadY '

dY

In terms of our basis for 1-forms di*(K), dk is represented by the vector

H
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so we have to apply the matrix above to this vector. But of couse(Y) = 0, and so
we get simply

(072 @ =2 wsmi
k=1

n
1 . .
=2 E Ve (O +idne) — (e — i) .
k=1

Thus taking only the term involving the anti-holomorphic 1-forms- i Jn; we have

n

5K=Ziyk (e — i mi)

k=1
which is represented by the vector

iy

v |-

We now transfer this back t6*(K) by means ofb*. So applying the transpose of
the matrix (6.1) we get

n
Ok =Y (iykeu + yidyr)
k=1

and so

n
Im [5/(] = Zykotk =46.
k=1

7. Appendix: Lie Groups of Compact Type

In this appendix | give a proof of Proposition 2.2, the structure result for connected
Lie groups of compact type. We consider a connected Lie gioug compact type,
with a fixed Ad-invariant inner product on its Lie algelraSince the inner product
is Ad-invariant, the orthogonal complement of any ideat iwill be an ideal. Thug
decomposes as a direct sum of subalgebras that are either simple or one-dimensional.
Collecting together the simple factors in one group and the one-dimensional factors in
another, we obtain a decompositiontoiist = €1 + 3, wheret; is semisimple ang
is commutative. Sincé; is semisimple and admits an Ad-invariant inner product, the
connected subgroufi; of K with Lie algebrat; will be compact. (By Cor. 11.6.5 of
[He], the adjoint group oK is a closed subgroup of @;) N O (¢1) and is therefore
compact. Then Thm. 11.6.9 of [He] implies th& itself is compact.)

Now letI" be the subset gfgiven by

F:[Z€3|eZ=id},

whereid is the identity inK. Sincej is commutative[ is a discrete additive subgroup
of 3, hence there exist vectopsy, ... , Xy, linearly independent oveR, such thatl"

is the set of integer linear combinations of thig's. (See [Wa, Exer. 3.18] or [BtD,
Lemma 3.8].)
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Now let31 be the real span of 4, ... , X, and let;» be the orthogonal complement
of 31 in 3, with respect to the fixed Ad-invariant inner product. Sigcés commutative,
the image of; under the exponential mapping is a connected subgrop @fhich is
isomorphic to a torus, hence compact. Thus the connected subgrofik whose Lie
algebrais; + 31 is a quotient oKy x (31/T") , hence compact.

Next consider the may : H x 32 — K given by

U (h, X) = heX,

which is a homomorphism becauggeis central. | claim that this map is injective. To
see this, suppos@, X) is in the kernel. Theik = ¢~X, which means that is in the
center ofK, hence in the center afi. Now, H is a quotient oK1 x (31/T), so there
existx € K1 andy € (31/T') such that: = xy. Sinceh is central and is central x is
central as well. But the center &f; is finite, so there existg such thatt™ = id. Since

y andeX are central, this means that

= xmymemX — ymemX —id.

Buty = ¢! for someY e 31, so we have”Y ¢"X = ¢"Y+mX — 4 which means that
mY +mX e I'. This means thak = 0, sincej is the direct sum of the real span bf
andj,, and so alsé = ¢ ¥ = id.

ThusW is an injective homomorphism @f x Z into K. The associated Lie algebra
homomorphism is clearly an isomorphistn=£ (£1 + 31) + 32). It follows that ¥ is
actually a diffeomorphism. To finish the argument, we need to show that the Lie algebra
of H (hamely,t1 + 31) is orthogonal tg2. To see this, note thdg andz, are automat-
ically orthogonal with respect to any Ad-invariant inner product (since the orthogonal
projection oft; onto 3, is a Lie algebra homomorphism of a semisimple algebra into
a commutative algebra), and andj2 are orthogonal with respect to the chosen inner
product, by the construction g3.
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