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Abstract: We consider a class of a priori stable quasi-integrable analytic Hamiltonian
systems and study the regularity of low-dimensional hyperbolic invariant tori as functions
of the perturbation parameter.We show that, under natural nonresonance conditions, such
tori exist and can be identified through the maxima or minima of a suitable potential.
They are analytic inside a disc centered at the origin and deprived of a region around the
positive or negative real axis with a quadratic cusp at the origin. The invariant tori admit
an asymptotic series at the origin with Taylor coefficients that grow at most as a power
of a factorial and a remainder that to any orderN is bounded by the(N +1)-st power of
the argument times a power ofN !. We show the existence of a summation criterion of
the (generically divergent) series, in powers of the perturbation size, that represent the
parametric equations of the tori by following the renormalization group methods for the
resummations of perturbative series in quantum field theory.

1. Introduction

1.1. The model. Consider the Hamiltonian

H = ω · A + 1

2
A · A + 1

2
B · B + εf (α,β), (1.1)

where(α,A) ∈ T
r × R

r and(β,B) ∈ T
s × R

s are conjugated variables,· denotes the
inner product both inRr and inR

s , andω is a vector inRr satisfying the Diophantine
condition

|ω · ν| > C0|ν|−τ ∀ν ∈ Z
r \ {0}, (1.2)

with C0 > 0 andτ ≥ r − 1; we shall define byDτ (C0) the set of rotation vectors inRr

satisfying (1.2). We also write

f (α,β) =
∑
ν∈Zr

eiν·αfν(β), (1.3)
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and setd = r + s. We shall suppose thatf is analytic in a strip of widthκ > 0
around the real axis of the variablesα,β, so that there exists a constantF such that
|fν(β)| ≤ F e−κ|ν| for all ν ∈ Z

r and allβ ∈ T
s .

1.2. Low-dimensional tori. The equations of motion for the system (1.1) are

α̇ = ω + A,

β̇ = B,

Ȧ = −ε∂αf (α,β),

Ḃ = −ε∂βf (α,β).

(1.4)

Forε = 0 the system of Eqs. (1.4), with initial data(α0,β0, 0, 0), admits the solution

α(t) = α0 + ωt,
β(t) = β0,

A(t) = 0,
B(t) = 0,

(1.5)

which corresponds to ar-dimensional torus (KAM torus): the firstr angles rotate with
angular velocityω1, . . . , ωr , while the remainings remain fixed to their initial values.

Note that (1.4) can be written as{
α̈ = −ε∂αf (α,β),

β̈ = −ε∂βf (α,β),
(1.6)

so that we obtain closed equations for the angle variables: once a solution has been found
for them, it can be used to find the action components by a simple integration.

We look for solutions of (1.6), forε �= 0, conjugated to (1.5), i.e. we look for solutions
of the form {

α(t) = ψ + a(ψ,β0; ε),
β(t) = β0 + b(ψ,β0; ε),

(1.7)

for some functionsa and b, real analytic and 2π -periodic inψ ∈ T
r , such that the

motion in the variableψ is ψ̇ = ω.
We shall prove the following result.

Theorem 1.1. Consider the equations of motion (1.6) for ω ∈ Dτ (C0), and suppose β0
to be such that

∂βf0(β0) = 0,

∂2
βf0(β0) is negative definite.

(1.8)

There exist a constant ε0 > 0 and, for all ε ∈ (0, ε0), two functions a(ψ,β0; ε) and
b(ψ,β0; ε), real analytic and 2π -periodic in ψ ∈ T

r , such that (1.7) is a solution of
(1.6).
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complex
ε−plane

Fig. 1. Analyticity domainD0 for the hyperbolic invariant torus. The cusp at the origin is a second order cusp.
The figure corresponds to the case in (1.8) of the Theorem 1.1

Remarks. (1) As it is well known, and as it will appear from the proof, the solutions
whose existence is stated by the theorem cannot be expected to be analytic inε atε = 0.
Furthermore, if the second condition in (1.8) is replaced with

∂2
βf0(β0) is positive definite, (1.9)

then the same conclusions hold forε ∈ (−ε0,0).
(2) The proof will yield more detailed information on the regularity of the considered

tori, as we shall point out. In particular the analyticity domain is much larger, see the
heart-like domainD0 in Fig. 1 below (and the discussion in the forthcoming Sect. 5.3). In
fact we think that our technique can lead to prove existence of many elliptic invariant tori,
i.e. for a large set of negativeε’s, and to understand some of their analyticity properties;
see Sect. 6 for further remarks and results.

1.3. Contents of the paper. The paper is organized as follows. In Sect. 2 we introduce
the main graph techniques which will be used, and we prove through them the formal
solubility of the equations of motions (known from [JLZ]): this is enough if one wants
to prove existence and analyticity of periodic solutions, (see Remark 2.3 below), but it
requires new arguments to obtain existence of quasi-periodic solutions. Such arguments
are developed in the following sections: in Sect. 3 we introduce the concept of self-energy
graph, which will play a crucial rôle, and we describe the basic cancellation mechanisms
which will be used in Sect. 4 to perform a suitable resummation of the series. In Sect. 5
we shall use such results in order to prove the convergence of the resummed series and its
analyticity properties. Finally in Sect. 6 we make some conclusive remarks, and briefly
discuss possible generalizations and extensions of the results. The main technical aspects
of the proof will be relegated to the Appendices.

1.4. Comparison with other papers. The problem considered here isa priori stable
in the sense of [CG]: the low-dimensional invariant tori are degenerate in absence of
perturbations. Hamiltonians of the form (1.1) were explicitly studied in [T], in a more
general formulation (see Sect. 6 below), and in [JLZ], in a more particular case.

The problem usually considered in the literature essentially corresponds to a Hamil-
tonian of the form

1

2
A2 + ω · A + 1

2
B2 − 1

2
�β2 + f (A,B,α,β), f0(A,B,β) = O(A3 + B3 + β3),

(1.10)
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where� is a, a priori fixed, nondegenerate matrix (so that before the perturbation is
switched on the invariant torus atA = 0 has a priori a well defined stability property,
i.e. its elliptic or hyperbolic stability is already well defined); this case is calleda priori
unstable in [CG]. The system (1.10) has been widely studied in the hyperbolic case
� > 0, in the elliptic case� < 0, and in the mixed case. The general hyperbolic
problem has been studied in [Mo]; in [Gr] the stable and unstable manifolds of the tori
are also determined. The elliptic and mixed cases have been considered in great detail in
several papers starting with [Me]; the reader will find, besides original results, a complete
description of the subsequent results and the relevant references in the recent paper [R],
with some very recent further results, on a subject that remains under intense study, in
[XY,BKS,Y].

Our case is of the form of (1.10) with� replaced byε�; in our case the perturbation is
small because it is proportional toε, while in (1.10) one makes also use of the possibility
of takingA,B,β small to obtain a small perturbation. By classical perturbation analysis
our case can be reduced to the theory of (1.10).

We consider the novelty of this paper to be the technical analysis of the analyticity,
in ε, of the resonant (i.e. of dimension lower than maximal) hyperbolic invariant tori of
(1.1) in a region as large as Figure 1 based on the Lindstedt series method; the same
analyticity domain can be obtained by a careful analysis and a nontrivial extension of
the methods of [Mo].

This is partially done in [T], whereC∞ dependence on
√
ε was proved atε = 0. And

it is done in a more special case in the paper [JLZ], where a scenario very similar to the
one provided by our conjecture (see below) emerges.

Closer to our approach is the analysis in [CF]: however the model studied there
differs from ours (see (2.24) of [CF]), and existence of hyperbolic low-dimensional tori
can be obtained for it without the need of performing the resummations which are on the
contrary essential in our case. The technique of [CF] can be extended to cover also our
case (which coincides with Eq. (2.22) of [CF]), but it would still make reference to the
coordinate changes which are characteristic of the methods of [Mo] (called “classical
transformation theory” in [CF]).

In fact one is also interested in asking whether the analyticity region inε can be
extended further to reachsome points on the negative real axis and whether the analytic
continuation toε < 0 of the parametric equations of the hyperbolic tori can be interpreted
as the parametric equations of elliptic tori. We do not address the latter question: the
analysis performed in the present paper at first suggests to us that by the same methods
it should be possible to prove the following.

Conjecture 1.1. Consider the equations of motion (1.6) forω ∈ Dτ (C0), and suppose
β0 to be such that

∂βf0(β0) = 0,

∂2
βf0(β0) is negative definite.

(1.11)

Is it possible that there exist constantsε0 > 0, ξ > 0 and a subsetIε0 ⊂ [−ε0,0]
with length≥ (1− ε

ξ
0) ε0 such that the functions of Theorem 1.1 above are analytically

continuable outside the domainD0 along vertical lines which start at points interior to
D0 and end onIε0, where their boundary value is real and gives the parametric equations
of an invariant torus for allε ∈ Iε0 on which the motion according to (1.6) iṡψ = ω?
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The extended domain shape, near the origin, suggested in the above conjecture is
illustrated in the following Fig. 1′.

complex
ε−plane

Fig. 1′. The domainD0 of Fig. 1 can be further extended? The conjecture above asks whether the extended
analyticity domain could possibly be represented (close to the origin) as here: the domain reaches the real
axis at cusp points which are inIε0 and correspond, in the complexε-plane, to the elliptic tori which are the
analytic continuations of the hyperbolic tori. The analytic continuation would be continuous through the real
axis at the points ofIε0. The cusps would be at least quadratic

2. Formal Solubility of the Equations of Motion

2.1. Formal expansion and recursive equations. We look for a formal expansion

a(ψ; ε) =
∞∑
k=1

εka(k)(ψ) =
∑
ν∈Zr

eiν·ψaν(ε) =
∞∑
k=1

εk
∑
ν∈Zr

eiν·ψ a(k)
ν ,

b(ψ; ε) =
∞∑
k=1

εkb(k)(ψ) =
∑
ν∈Zr

eiν·ψbν(ε) =
∞∑
k=1

εk
∑
ν∈Zr

eiν·ψ b(k)
ν ,

(2.1)

where we have not explicitly written the dependence onβ0.
Then to orderk the equations of motion (1.6) become

(ω · ν)2 a(k)
ν = [∂αf ](k−1)

ν ,

(ω · ν)2 b(k)
ν = [

∂βf
](k−1)
ν

,
(2.2)

where, given any functionF admitting a formal expansion

F(ψ; ε) =
∞∑
k=1

εk
∑
ν∈Zr

eiν·ψF (k)
ν , (2.3)

we denote by[F ](k)ν the coefficient with Taylor labelk and Fourier labelν.
We can write

[∂αf ](k−1)
ν =

∑
p≥0

∑
q≥0

1

p!
1

q!
∑∗

(iν0)
p+1 ∂

q

βfν0(β0)
( p∏

j=1

a
(kj )
νj

)( p+q∏
j=p+1

b
(kj )
νj

)
,

(2.4)
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where 0< kj < k for all j = 1, . . . , p + q and the∗ denotes that the sum has to be
performed with the constraints

1+
p+q∑
j=1

kj = k, ν0 +
p+q∑
j=1

νj = ν, (2.5)

and, analogously,

[
∂βf

](k−1)
ν

=
∑
p≥0

∑
q≥0

1

p!
1

q!
∑∗

(iν0)
p ∂

q+1
β fν0(β0)

( p∏
j=1

a
(kj )
νj

)( p+q∏
j=p+1

b
(kj )
νj

)
,

(2.6)

with the same meaning of the symbols.

2.2. Tree formalism. By iterating (2.2), (2.4) and (2.6), one finds that one can represent
graphicallya(k)

ν andb(k)
ν in terms oftrees. The definition and usage of graphical tools

based on tree graphs in the context of KAM theory has been advocated recently in the
literature as an interpretation of the work [E]; see for instance [G1,GG,BGGM] and
[BaG].

A treeθ (see Fig. 2 below) is defined as a partially ordered set of points, connected
by lines. The lines are oriented toward theroot, which is the leftmost point; the line
entering the root is called theroot line. If a line ! connects two pointsv1 andv2 and is
oriented fromv2 to v1 we say thatv2 ≺ v1 and we shall writev′1 = v2 and! = !v2; we
shall say also that! exits fromv2 and entersv1.

There will be two kinds of points: thenodes and theleaves. The leaves can only be
endpoints, i.e. they have no lines entering them, but an endpoint can be either a node
or a leaf. The lines exiting from the leaves play a very different rôle with respect to
the lines exiting from the nodes, as we shall see below. We shall denote byv0 the last
(i.e. leftmost) node of the tree, and by!0 the root line; for future convenience we shall
write v′0 = r but r will not be considered a node.

root
ν=ν!0

!0

v0

νv0

v1

νv1

v2

v3

v5

v6

v7

v11

v10

v4

v8

v9

Fig. 2. A tree θ with 12 nodes; one haspv0=2,pv1=2,pv2=3,pv3=2,pv4=2. The length of the lines should be
the same but it is drawn of arbitrary size
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We shall denote byV (θ) the set of nodes, byL(θ) the set of leaves and by�(θ) the
set of lines.

For any!v ∈ θ fixed, we shall say that the subset ofθ containing!v as well as all
nodesw � v and all lines connecting them is asubtree of θ with root v′: of course a
subtree is a tree.

Given a tree, with each nodev we associate amode label νv ∈ Z
r , and to each leaf

v a leaf label κv ∈ N. The quantity

k = |V (θ)| +
∑

v∈L(θ)

κv (2.7)

is called theorder of the treeθ .
With any line! exiting from a nodev we associate two labelsγ!, γ ′! assuming the

symbolic valuesα, β and amomentum label ν! ∈ Z
r , which is defined as

ν! ≡ ν!v =
∑

w∈V (θ)
w�v

νw, (2.8)

while with any line! exiting from a leafv we associate only the labelsγ! = γ ′! = β.
We can associate with each node also some labels depending on the entering lines and

on the exiting one: thebranching labels pv andqv, denoting how many lines! having
the labelγ! = α and, respectively,γ! = β enterv, and the labelδv, defined as

δv =
{

1, if γ!v = β,

0, if γ!v = α.
(2.9)

Then with each nodev we associate anode factor

Fv = 1

pv!
1

qv!
(
iνv

)pv+(1−δv)

∂
qv+δv
β fνv (β0), (2.10)

which is a tensor of rankpv + qv + 1, while with each leafv we associate aleaf factor
(to be defined recursively, see below)

Lv = b(κv)
0 , (2.11)

which is a tensor of rank 1 (i.e. a vector); to each line! exiting from a nodev we associate
a propagator

G! ≡ δγ!,γ!′
11

(ω · ν!)2 , (2.12)

which is a (diagonal)d × d matrix, while no small divisor is associated with the lines
exiting from the leaves. For consistency we can define

G! ≡ δγ!,γ!′ δγ!′ ,β 11, (2.13)

for lines exiting from leaves, so that a propagatorG! is in fact associated with each line.
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Remark 2.1. Note that we can write (2.12) in the form

G! =
(
G!,αα G!,αβ

G!,βα G!,ββ

)
, (2.14)

whereG!,αα, G!,αβ , G!,βα andG!,ββ arer × r, r × s, s × r ands × s matrices. By
construction one hasG!,αβ = GT

!,βα = 0, and

G! = G(ω · ν!), GT (−x) = G†(x) = G(x); (2.15)

here and henceforthT and † denote, respectively, the transposed and the adjoint of a
matrix.

2.3. Tree values and reduced tree values. Call-k,ν,γ the set of all trees of orderk with
ν!0 = ν andγ!0 = γ , if !0 is the root line. Set

dγ =
{
r, for γ = α,

s, for γ = β; (2.16)

we can define an applicationVal : -k,ν,γ → R
dγ , defined as

Val(θ) =
( ∏

v∈V (θ)

Fv

)( ∏
v∈L(θ)

Lv

)( ∏
!∈�(θ)

G!

)
, (2.17)

which is called thevalue of the treeθ .
We can define also

Val′(θ) =
( ∏

v∈V (θ)

Fv

)( ∏
v∈L(θ)

Lv

)( ∏
!∈�(θ)\!0

G!

)
, (2.18)

where, as usual,!0 denotes the root line;Val′(θ) is called thereduced value of the treeθ .
The following cancellation is proved in Appendix A1.

Lemma 2.1. Suppose that for all trees θ ∈ -k,ν,γ the set �(θ) \ !0 does not contain
any lines ! with momentum ν! = 0. Then Val′(θ) is well defined and∑

θ∈-k,0,α

Val′(θ) = 0. (2.19)

2.4. Existence of formal solutions. The following result states the existence of formal
solutions to (1.6) which are conjugated to the unperturbed motion (1.5), provided the
valueβ0 is suitably fixed.

Lemma 2.2. One can write, formally, for all ν ∈ Z
r \ {0},

a(k)
ν =

∑
θ∈-k,ν,α

Val(θ),

b(k)
ν =

∑
θ∈-k,ν,β

Val(θ),
(2.20)
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while a(k)
0 ≡ 0 and

b(k)
0 = −

[
∂2
βf0(β0)

]−1 ∑
θ∈-∗

k+1,0,β

Val′(θ), (2.21)

where the quantities Val(θ) and Val′(θ) are defined by (2.17)and (2.18), respectively,
and ∗ imposes the constraint that the tree whose reduced value is given by ∂2

βf0(β0)b(k)
0

has to be discarded from the set -k+1,0,β . If one has

∂βf0(β0) = 0,

det∂2
βf0(β0) �= 0,

(2.22)

then there exists a unique way to fix b(k)
0 for all k ∈ N such that a(k)

ν and b(k)
ν are finite

for all ν ∈ Z
p \ {0} to all perturbative orders k.

About the proof. The proof of (2.20) is by induction. In order to show that it is possible
to fix uniquelyb(k)

0 so that the existence of a formal solution follows, the key is to realize

that no division by zero occurs in the recursive solution of (2.2): the coefficientsb(k)
0

are determined precisely by imposing the validity of this property for the lines! with
γ! = γ ′! = β. In fact the condition to avoid dividing by zero takes, to all ordersk in ε,

the form∂2
βf0(β0)b(k)

0 = some vector determined recursively, so thatb(k)
0 is defined by

exploiting the assumption (2.22). A further key point is to realize that the lines! with
γ! = γ ′! = α and carryingν! = 0 never appear, and the previous lemma is enough to
imply this. Details of the proof are given in Appendix A2.� 

Remark 2.2. By (2.2) and by Lemma 2.2 one has

[
∂αf

](k)
ν

=
∑

θ∈-k,ν,α

Val′(θ),

[
∂βf

](k)
ν

=
∑

θ∈-k,ν,β

Val′(θ),
(2.23)

as one realizes by comparing (2.17) with (2.18).

Remark 2.3. As it will follow from the analysis performed in the next sections, the
tools described above are sufficient to prove the convergence (hence the analyticity) of
the perturbative expansions (2.1), forε small enough, in the case of periodic solutions
(i.e. r = 1): in fact we shall see that the main technical difficulties shall arise from the
problem of bounding the propagators, while, in the case of periodic solutions, we can
simply boundG! by the inverse of the rotation vectorω (which is a number in such a
case).



430 G. Gallavotti, G. Gentile

3. Self-Energy Graphs

3.1. Trimmed trees. With respect to the papers [GG,BGGM] and [BaG], the trees here
carry also “leaves”: each leaf can be decomposed in terms of trees, becauseb(k)

0 is given
by

b(k)
0 = −

[
∂2
βf0(β0)

]−1
G(k+1)

0 , (3.1)

with G(k+1)
0 expressed as the sum of reduced values of trees of orderk + 1 (see Ap-

pendix A2); more precisely

G(k+1)
0 =

∑
θ∈-k+1,0,β

Val′(θ)− ∂2
βf0(β0)b

(k)
0 ≡

∑
θ∈-∗

k+1,0,β

Val′(θ), (3.2)

where∗ has been defined after (2.21): it recalls that the tree whose reduced value is
given by∂2

βf0(β0)b(k)
0 has to be discarded from the set-k+1,0,β .

Of course each leaf can contain other leaves and so on. If each time a leaf is encoun-
tered, it can be decomposed into trees, at the end we have that the value of a treeθ can
be expressed as product of factors which are values of trees without leaves, that we can
call, as in [Ge],trimmed trees. The sum of the orders of all the so obtained trimmed trees
is equal tok, if the treeθ belonged to-k,ν,γ ; moreover for all trimmed trees the order
equals exactly the number of nodes, as it follows from (2.7) by using that a trimmed tree
has no leaves.

3.2. Multi-scale decomposition and clusters. Given a vectorω ∈ Dτ (C0), defineω0 =
2τC−1

0 ω. Then there exists a sequence{γn}n∈Z+ , with γn ∈ [2n−1,2n], such that∣∣|ω0 · ν| − γp
∣∣ ≥ 2n+1 if 0 < |ν| ≤ 2−(n+3)/τ , (3.3)

for all n ≤ 0 and for allp ≥ n, and|ω0 · ν| �= γn for all ν ∈ Z and for alln ≤ 0; the
existence of such a sequence (depending onω) is proved by proposition in Sect. 3 of
[GG].

Given a line! with momentumν! we say that! has scale labeln! = 1 if

|ω0 · ν!| ≥ γ0, (3.4)

and scale labeln! = n ∈ Z \ Z+ if

γn−1 ≤ |ω0 · ν!| < γn. (3.5)

Once the scale labels have been assigned to the lines one has a natural decomposition
of the tree into clusters. Acluster T on scalen is a maximal set of nodes and lines
connecting them such that all the lines have scalesn′ ≥ n and there is at least one line
with scalen; if a clusterT ′ is contained inside a clusterT we shall say thatT ′ is a
subcluster ofT . ThemT ≥ 0 lines entering the clusterT and the possible exiting line
(unique if existing at all) are called theexternal lines of the clusterT ; given a clusterT
on scalen, we shall denote bynT = n the scale of the cluster. We callT (θ) the set of
all clusters in a treeθ .
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Given a clusterT ∈ T (θ), call V (T ), L(T ) and�(T ) the set of nodes, the set of
leaves and the set of lines ofT , respectively. Let us define also

νT =
∑

v∈V (T )

νv, (3.6)

and denote byT0(θ) the set of all clustersT with νT = 0. Given a clusterT call T0 the
subset ofT obtained fromT by eliminating all the nodes and lines of the subclusters
T ′ ⊂ T such thatνT ′ = 0, and denote byV (T0) and�(T0) the set of nodes and lines,
respectively, inT0.

3.3. Self-energy graphs. We call self-energy graphs of a treeθ the clustersT ∈ T (θ)

such that

(1) T has only one entering line!2
T and one exiting line!1

T ,
(2) T ∈ T0(θ), i.e.

νT ≡
∑

v∈V (T )

νv = 0, (3.7)

(3) one has ∑
v∈V (T0)

|νv| ≤ 2−(n+3)/τ , (3.8)

wheren!2
T
= n is the scale of the line!2

T .

We say that the line!1
T exiting a self-energy graphT is aself-energy line; we call a

normal line any line of the tree which is not a self-energy line.
Given a self-energy graphT ∈ T (θ) we say that a self-energy graphT ′ ∈ T (θ)

contained inT is maximal if there are no other self-energy graphs internal toT and
containingT ′. We say that a self-energy graphT hasheight DT = 0 if it does not
contain any other self-energy graphs, and that it has heightDT = D ∈ Z+, recursively,
if it contains maximal self-energy graphs with heightD − 1.

Given a line! ∈ �(T0) with momentumν!, its reduced momentum ν0
! is defined as

ν0
! =

∑
w∈V (T0)

w�v

νw, ! ≡ !v, (3.9)

and it can be given a scalen0
! such that

γn0
!−1 ≤

∣∣∣ω0 · ν0
!

∣∣∣ < γn0
!
; (3.10)

we calln0
! thereduced scale of the line!.

Remark 3.1. (1) Given a self-energy graphT , for all lines! ∈ �(T ), one can write, by
setting! = !v,

ν! = ν0
! + σ!ν, (3.11)
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v1

v2

v3

v5

v6

v4
!1
T

T

T ′

T ′′

v7

!2
T

Fig. 3. An example of three clusters symbolically delimited by circles, as visual aids, inside a tree (whose
remaining lines and clusters are not drawn and are indicated by the bullets); not all labels are explicitly shown.
The scales (not marked) of the lines increase as one crosses inward the circles boundaries: recall, however,
that the scale labels are≤ 0. If the mode labels of(v4, v5) add up to0 the clusterT ′′ is a self-energy graph. If
the mode labels of(v4, v5, v2, v6) add up to0 the clusterT ′ is a self-energy graph and such isT if the mode
labels of(v1, v2, v7, v4, v5, v2, v6) add up to0. The graphT ′ is maximal inT . If the three clustersT , T ′, T ′′
are self-energy graphs then their heights are respectively 2,1,0

whereν ≡ ν!2
T

is the momentum flowing through the line!2
T enteringT , while σ! is

defined as follows: writing! ≡ !v thenσ! = 1 if !2
T enters a nodew � v andσ! = 0

otherwise.
(2) Note that the entering line!2

T must have, by the condition (3.7), the same momentum
as the exiting line!1

T , hence, by construction, the same scalen!2
T
= n!1

T
.

(3) The notion of self-energy graphs has been introduced by Eliasson who named them
“resonances”, [E]. We change the name here not only to avoid confusion with the notion
of mechanical resonance (which is related to a rational relation between frequencies of
a quasi-periodic motion) but also because the “tree expansions” that we use here (also
basically due to Eliasson) can be interpreted, [GGM], as Feynman graphs of a suitable
field theory. As such they correspond to classes of self-energy graphs: we use here the
correspondence to perform resummation operations typical of renormalization theory.

3.4. Value of a self-energy graph. Given a self-energy graphT and denoting by|V (T )|
the number of nodes inT , define theself-energy value as

VT (ω · ν) = ε|V (T )|( ∏
v∈V (T )

Fv

)( ∏
v∈L(T )

Lv

)( ∏
!∈�(T )

G!

)
, |V (T )| ≥ 1, (3.12)

seen as a function ofω · ν, if ν ≡ ν!2
T
= ν!1

T
is the momentum flowing through the

external lines of the self-energy graphT . Recall that we are considering trimmed trees,
so that no leaves can appear; see Sect. 3.1.
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We can have four types of self-energy graphs depending on the typesα or β of the
labelsγ ′

!1
T

andγ!2
T
:

γ ′
!1
T

γ!2
T

1. α α

2. α β

3. β α

4. β β

(3.13)

Given a treeθ , define

Nn(θ) = {! ∈ �(θ) : n! = n} , (3.14)

and

M(θ) =
∑

v∈V (θ)

|νv| . (3.15)

Call N∗
n (θ) the number of normal lines on scalen and callRn(θ) the number of self-

energy lines on scalen. Of course

Nn(θ) = N∗
n (θ)+ Rn(θ). (3.16)

Then the following result holds; it is a version of the key estimate of Siegel’s theory
in the interpretation of Bryuno [B] and Pöschel [P]. This is proved as in [G1] or [BaG],
for instance; however, for completeness, a proof is also given in Appendix A3.

Lemma 3.1. For any tree θ ∈ -κ,ν,γ one has

N∗
n (θ) ≤ cM(θ)2n/τ , (3.17)

for some constant c.

3.5. Localization operators. For any self-energy graphT we define

LVT (ω · ν) ≡ VT (0)+ (ω · ν) ∂VT (0), (3.18)

where∂VT denotes the first derivative ofVT with respect to its argument; the quantity
VT (0) is obtained fromVT (ω · ν) by replacingν! with ν0

! in the argument of each
propagatorG!, while∂VT (0) is obtained fromVT (ω ·ν) by differentiating it with respect
to x = ω · ν, and thence replacingν! with ν0

! in the argument of each propagatorG!.
We shall callL the localization operator andLVT (ω · ν) the localized part of the

self-energy value.
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V1

V2

v1

v2

v3

v4

v5

v6

!1
T

!2
T

!

T

Fig. 4. The setsV1 andV2 in a self-energy graphT ; note that, even if they are drawn like circles, the setsV1
andV2 are not clusters. One hasν0

!
=νv3+νv4+νv5+νv6 andν=ν

!2
T

; of courseν
!1
T
=ν

!2
T

andν0
!
=−(νv1+νv2) by

definition of self-energy graph. The black balls represent the remaining parts of the trees. The labels are not
explicitly shown.

3.6. Families of self-energy graphs. Given a treeθ containing a self-energy graphT ,
we can consider all trees obtained by changing the location of the nodes inT0 (note that
T0 is defined after (3.6)) which the external lines ofT are attached to: we denote by
FT0(θ) the set of trees so obtained, and call itthe self-energy family associated with the
self-energy graphT . And we shall refer to the operation of detaching and reattaching
the external lines, by saying that we areshifting such lines.

Of course shifting the external lines of a self-energy graph produces a change of the
propagators of the trees. In particular since all arrows have to point toward the root, some
lines can revert their arrows.

Moreover the momentum can change, as a reversal of the arrow implies a change
of the partial ordering of the nodes inside the self-energy graph and a shifting of the
entering line can add or subtract the contribution of the momentum flowing through it.
More precisely, if the external lines of a self-energy graphT are detached then reattached
to some other nodes inV (T ), the momentum flowing through the line! ∈ �(T ) can
be changed into±ν0

! + σν, with σ ∈ {0,1}: if we call V1 andV2 the two disjoint sets
into which! dividesT (see Fig. 2), such that the arrow superposed on! is directed from
V2 to V1 (before detaching the external lines), then the sign is+ if the exiting line is
reattached to a node insideV1 and it is− otherwise, whileσ = 1 if the entering line is
reattached to a node insideV2 when the sign is+ and to a node insideV1 when the sign
is−, andσ = 0 otherwise.

Referring to (3.13) for the notion of type of self-energy graph one shows the existence
of the following cancellations (the proof is in Appendix A4).
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Lemma 3.2. Given a tree θ , for any self-energy graph T ∈ T (θ) one has

∑
θ ′∈FT0(θ)

LVT (ω · ν) =




0, if T is of type 1,
(ω · ν)B ′

FT0(θ)
, if T is of type 2,

(ω · ν)B ′′
FT0(θ)

, if T is of type 3,

AFT0(θ)
, if T is of type 4,

(3.19)

where ν = ν!2
T

, the sum is over the self-energy family associated with T , and AFT0(θ)
,

B ′
FT0(θ)

and B ′′
FT0(θ)

are matrices s × s, r × s and s × r , respectively, depending only

on the self-energy graph T ; in particular they are independent of the quantity ω · ν.

3.7. First step toward the resummation of self-energy graphs. Let θ be a treeθ ∈ -ν,k,γ

with a self-energy graphT . Defineθ0 = θ \ T as the set of nodes and lines ofθ outside
T (of courseθ0 is not a tree). Consider simultaneously all trees such that the structure
θ0 outside of the self-energy graph is the same, while the self-energy graph itself can be
arbitrary, i.e.T can be replaced by any other self-energy graphT ′ with kT ′ ≥ 1. This
allows us to define as a formal power series the matrix

M(ω · ν; ε) =
∑

θ=θ0∪T ′
VT ′(ω · ν), (3.20)

where the sum is over all treesθ such thatθ \ T is fixed to beθ0 and the mode labels
of the nodesv ∈ V (T ) have to satisfy the conditions (1)–(3) in Sect. 3.3 defining the
self-energy graphs.

The following property holds (the proof is in Appendix A5) as an algebraic identity
between formal power series.

Lemma 3.3. The following two properties hold: (1) (M(x; ε))T = M(−x; ε), and (2)
(M(x; ε))† =M(x; ε); the latter means that the matrix M(x; ε) is self-adjoint.

Remark 3.2. (1) The functionM(ω · ν; ε) depends onε but, by construction, it is inde-
pendent ofθ0: hence we can rewrite (3.20) as

M(ω · ν; ε) =
∑
T ′

VT ′(ω · ν), (3.21)

where the sum is over all self-energy graphs of orderk ≥ 1 with external lines with
momentumν.
(2) In (3.20) or (3.21), ifγn−1 ≤ |ω0 · ν| < γn, the sum has to be restricted to the
self-energy graphsT ′ on scalenT ′ ≥ n+ 3. Writing, for any line! ∈ T ′

0, ν! as in (3.11)
one has∣∣∣ω0 · ν0

!

∣∣∣ > 2τC−1
0 C0

∣∣∣ν0
!

∣∣∣−τ ≥ 2τ
( ∑

v∈V (T0)

|νv|
)−τ ≥ 2τ2n+3, (3.22)
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while |ω0 · ν| < 2n, so that, by using again (3.11), one obtains

|ω0 · ν!| > 2τ2n+3 − 2n > 2n+2, (3.23)

which impliesn! ≥ n+ 3.
(3) The matrixM(ω · ν; ε) can be written as

M(ω · ν; ε) =
(
Mαα(ω · ν; ε) Mαβ(ω · ν; ε)
Mβα(ω · ν; ε) Mββ(ω · ν; ε)

)
, (3.24)

whereMαα(ω · ν; ε), Mαβ(ω · ν; ε), Mβα(ω · ν; ε) andMββ(ω · ν; ε) arer × r, r × s,
s × r ands × s matrices. It is easy to realize that (up to convergence problems to be
discussed in Sect. 5)

Mαα(ω · ν; ε) = O(ε2(ω · ν)2)),
Mαβ(ω · ν; ε) = O(ε2(ω · ν)),
Mββ(ω · ν; ε) = O(ε)+O(ε2(ω · ν)2).

(3.25)

The proportionality ofMαα(ω · ν; ε) to (ω · ν)2 and ofMαβ(ω · ν; ε) to ω · ν is a
consequence of Lemma 3.2. First order computations already give, for instance,

Mββ(ω · ν; ε) = ε∂2
βf0(β0)+O(ε2)+O(ε2(ω · ν)2),

Mαβ(ω · ν; ε) = −2ε2i (ω · ν)
∑

ν1+ν2=0

|ν1|+|ν2|<2−(n+3)/τ

1

(ω · ν2)3

[
ν1∂βfν1(β0)∂

2
βfν2(β0)−ν2

1fν1(β0)ν2∂βfν2(β0)
]
+O(ε3(ω · ν))

,

(3.26)

whereγn−1 ≤ |ω0 · ν| < γn. ThereforeMββ(ω · ν; ε) �= 0 by hypothesis (see (1.8)),
andMαβ(ω · ν; ε) is generically nonvanishing.
(4) Lemma 3.3 implies that, by defining the matricesB ′

FT0(θ)
andB ′′

FT0(θ)
as in Lemma 3.2,

one has

B ′
FT0(θ)

= −
(
B ′′

FT0(θ)

)T
. (3.27)

3.8. Changing scales. When shifting the lines external to the self-energy graphs, the
momenta of the internal lines can change. As a consequence in principle also the scale
labels could change; however this does not happen, as the following result shows; for
the proof see Appendix A6.

Lemma 3.4. For all lines ! ∈ �(θ) one has n! = n0
!; in particular this implies that,

when shifting the lines external to the self-energy graphs of a tree θ , the scale labels n!

of all line ! ∈ �(θ) do not change.
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4. Resummations of Self-Energy Graphs: Renormalized Propagators

4.1. Renormalized trees. So far we considered formal power expansions inε. By intro-
ducing the functionh = (hα,hβ) = (a,b), we can write the functionh(ψ,β0; ε) ≡
h(ψ; ε) as

h(ψ; ε) =
∑
ν∈Zr

eiν·ψhν(ε), (4.1)

because we are looking for a solution periodic inψ ∈ T
r .

In terms of the formal power expansion envisaged in Sect. 3, we can define a solution
“approximated to orderk” as

h(≤k)
ν (ε) =

k∑
k′=1

εk
′
h(k′)
ν , h(k′)

γ ν =
∑

θ∈-k′,ν,γ

Val(θ), (4.2)

where-k′,ν,γ is defined in 2.3, andVal(θ) is given by (2.17).

However we can define a different sequence ofapproximating functions h
[k]

(ψ; ε),
formally converging to the formal solution (as we shall see in Proposition 5.4 below),
by defining it iteratively as follows.

Denote by-R
k,ν,γ the set of all trees of orderk without self-energy graphs and with

labelsν!0 = ν andγ!0 = γ associated with the root line; we shall call-R
k,ν,γ the set

of renormalized trees of orderk (and with labelsν andγ associated with the root line).
Given a treeθ ∈ -R

k,ν,γ and a clusterT ∈ T (θ), by extension we shall say thatT is a
renormalized cluster.

We can also consider a self-energy graph which does not contain any other self-energy
graph: we shall say that such a self-energy graph is arenormalized self-energy graph;
of course no one of such clusters can appear in any tree in-R

k,ν,γ .
For a renormalized treeθ of arbitrary orderk′, define

Val
[k]

(θ) =
( ∏

v∈V (θ)

Fv

)( ∏
v∈L(θ)

Lv

)( ∏
!∈�(θ)

G
[k−1]
!

)
, (4.3)

with thedressed propagators given by{
G
[0]
! = (ω · ν!)−2 11δγ!,γ!′ ,

G
[k]
! = [

(ω · ν!)2 11−M [k](ω · ν!; ε)
]−1

, for k ≥ 1,
(4.4)

where the sequence{M [k](ω · ν; ε)}k∈N is iteratively defined as the sum of the values
of all renormalized self-energy graphs which can be obtained by using the propagators

G
[k−1]
! , i.e. as

M [k](ω · ν; ε) =
∑

renormalizedT

V [k]
T (ω · ν),

V [k]
T (ω · ν) = ε|V (T )| ( ∏

v∈V (T )

Fv

)( ∏
v∈L(T )

Lv

)( ∏
!∈�(T )

G
[k−1]
!

)
,

(4.5)
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where|V (T )| is the number of nodes inT ; we can also defineM [0](ω · ν; ε) ≡ 0. The
leaf factorsLv in (4.3) are recursively defined as

Lv = b[k,κv]0 = −
[
∂2
βf0(β0)

]−1 ∑
θ∈-R∗

κv ,0,β

Val
[k]′

(θ), (4.6)

where

Val
[k]′

(θ) =
( ∏

v∈V (θ)

Fv

)( ∏
v∈L(θ)

Lv

)( ∏
!∈�(θ)\!0

G
[k−1]
!

)
, (4.7)

and∗ has the same meaning as after (3.2).
To avoid confusing the value of a renormalized tree with the tree value introduced in

(2.13), we shall call (4.3) therenormalized value of the (renormalized) tree.
Then we shall write

h
[k]

(ψ; ε) =
∑
ν∈Zr

eiν·ψh
[k]
ν (ε),

h
[k]
ν (ε) =

∞∑
k′=1

εk
′
h
[k,k′]
ν (ε), h

[k,k′]
γ ν (ε) =

∑
θ∈-R

k′,ν,γ

Val
[k]

(θ),
(4.8)

where the last formula holds forν �= 0, because forν = 0, one has (4.6) forγ! = β,

while h
[k,k′]
γ 0 ≡ 0.

Remark 4.1. Note that if we expand the quantityM [k](ω · ν; ε) in powers ofε, by

expanding the propagatorsG
[k−1]
! , we reconstruct the sum of the values of all self-energy

graphs containing only self-energy graphs with heightD ≤ k. Therefore if we expand
M [k+1](ω · ν; ε) in powers ofε we obtain the same terms as if expandingM [k](ω · ν; ε),
plus the sum of the values of all the self-energy graphs containing also self-energies
graphs with heightk + 1, which are absent in the self-energy graphs contributing to
M [k](ω · ν; ε). Such a result will be used in Appendix A7 in order to prove the following
result.

Lemma 4.1. The power series defining the functions h
[k]
ν (ε), truncated at order k′ ≤ k,

coincide with the functions h(≤k′)
ν (ε) given by (4.2).

5. Convergence of the Renormalized Perturbative Expansion

5.1. Domains of analyticity and norms. Consider in the complexε-plane the domain
Dε0(ϕ) in Fig. 5 below: ifϕ denotes the half-opening of the sectorDε0(ϕ), then the
radius of the circle delimitingDε0(ϕ) will be of the formε(ϕ) = (π −ϕ)ε0 (see below).

We shall define‖ · ‖ an algebraic matrix norm (i.e. a norm which verifies‖AB‖ ≤
‖A‖ ‖B‖ for all matricesA andB); for instance‖ · ‖ can be the uniform norm.

The propagatorsG
[k]
! in (4.4) satisfy interestingk-independent bounds described and

proved below.
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ε-plane

Dε0(ϕ)

−x2

Fig. 5. The domainDε0(ϕ) in the complexε-plane: the half-opening angle of the sector isϕ<π but, otherwise,
arbitrary, and the radius of the circle delimitingDε0(ϕ) is given byε(ϕ) = (π − ϕ)ε0

Proposition 5.1. LetDε0(ϕ) be obtained from the disk of diameter ε0 > 0 in the complex
ε-plane by taking out a sector of half-openingπ−ϕ around the negative real axis. Assume

that the propagators G
[k]
! ≡ G

[k]
(ω · ν!; ε) satisfy

(
G
[k]

(x; ε)
)T = G

[k]
(−x; ε), ∥∥G[k]

(x; ε)∥∥ <
2

π − ϕ

1

x2 (5.1)

for all |ε| < (π − ϕ)ε0, if ε0 is small enough. Then there is a constant Bf such that,

summing over all renormalized trees θ with |V (θ)| = V nodes the values |Val
[k]

(θ)|,
one has

h
[k,V ]
γ ν ≤

∑
θ∈-R

V,ν,γ

∣∣∣Val
[k]

(θ)

∣∣∣ ≤ ( |ε|Bf

π − ϕ

)V

,

∑
θ∈-R

V,ν,γ
M(θ)=s

∣∣∣Val
[k]

(θ)

∣∣∣ ≤ ( |ε|Bf

π − ϕ

)V

e−κs/8,

∣∣∣b[k,V ]0

∣∣∣ ≤ ∥∥∥(∂2
βf0(β0)

−1
)∥∥∥( Bf

π − ϕ

)V+1

|ε|V ,

(5.2)

for all s > 0.

Remark 5.1. Note that, although the propagators are no longer diagonal, they still satisfy
the same property as (2.15), which is the crucial one which is used in order to prove both
the Lemmata 2.1 and 2.2 about the formal solubility of the equations of motion and the
Lemmata 3.2 and 3.3 about the formal cancellations between tree values.

Proof of Proposition 5.1. We can consider first trees without leaves, so that the tree values
are given by (4.3) withL(θ) = ∅.

The hypothesis (5.1) implies that for all propagatorsG
[k]
! one has

∥∥∥G[k]
!

∥∥∥ ≤ C12−2n!, C1 = 2

π − ϕ

(
2τ+2

C0

)2

. (5.3)
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Therefore the contribution from a single tree (see Sect. 2.3) is bounded for alln0 ≤ 0 by

|ε|V
(
C1 2−2(n0−1)

)V ∏
v∈V (θ)

[ 1

pv!qv! |νv|
pv+1

∣∣∣∂qv+1
β fνv (β0)

∣∣∣( n0−1∏
n=−∞

C12−2c|νv |n2n/τ
)]

,

(5.4)

whereV = |V (θ)|, having used that, for all treesθ ∈ -R
k,ν,γ , the numberNn(θ) of lines

with scalen in θ satisfy the bound

Nn(θ) ≤ cM(θ)2n/τ = c 2n/τ
∑

v∈V (θ)

|νv|, (5.5)

for some constantc: an estimate which follows from the proof of Lemma 3.1 (see
Sect. A3.3). The bound (5.5) is used in deriving (5.3) for all lines! ∈ �(θ) with scale
n! < n0, while for the lines!with scalen! ≥ n0 we have used simply that the propagators
are bounded byC12−2(n0−1).

If we use (recall that we are supposing that there are no leaves)

1

p! |ν|
p+1 ≤ (p + 1)

(
8

κ

)p+1

eκ|ν|/8,

1

q!
∣∣∣∂q+1
β fν(β0)

∣∣∣ ≤ C
q
2Fe−κ|ν|,∑

v∈V (θ)

(pv + qv) = k − 1,

(5.6)

for some constantC2, and if we choosen0 so that

κ

8
+ 2c

∞∑
n=|n0|+1

n2−n/τ ≤ κ

4
, (5.7)

(e.g. we can choosen0 = min{0,−2τ log 2 log((1 − 2−1/τ )κ/(16c log 2)), then we
obtain the first bound in (5.2), where we can takeBf = Df , with

Df = D0C
2
02−(n0−1)F

∑
ν∈Zr

e−κ|ν|/4, (5.8)

for some positive constantD0. This follows after summing over all renormalized trees
with V nodes and without leaves: this can be easily done. The sum over the mode labels
can be performed by using the decay factorse−κ|νv |/8, while the sum over all the possible
tree shapes gives a constant to the powerk.

Furthermore the valueκ/8 is so small that with our choices of the constants an extra
factor exp[−κM(θ)/8] has been bounded by 1 so that if, instead, the value ofM(θ) is
fixed we obtain the second bound of (5.2).

So far we considered only trees without leaves. If we want to consider also tree with
leaves, we can proceed in the following way.
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Given a treeθ (with leaves) of orderk′, we can write its renormalized valueVal
[k]

(θ)

as the product of the value of a trimmed treeθ times the factors of its leaves: simply
look at (4.3)), and interpret the renormalized value of the trimmed treeθ as

Val
[k]

(θ) =
( ∏

v∈V (θ)

Fv

)( ∏
!∈�(θ)

G
[k−1]
!

)
, (5.9)

while the product ( ∏
v∈L(θ)

Lv

)
(5.10)

represents the product of the leaf factors (4.6) associated to the|L(θ)| leaves ofθ ; note
that in (5.9) we can completely neglect the propagators associated to the lines exiting
from the leaves, as (2.13) trivially implies.

The only effect of the leaves onVal
[k]

(θ) is through the presence of some extra
derivatives∂β acting on the node factors corresponding to some nodesv ∈ V (θ); in
particular the momenta of the lines! ∈ �(θ) are completely independent of the leaves
(which contribute0 to such momenta).

Each leaf whose factor contributes to (5.10) can be written as a sum of values of
renormalized treesθ1, . . . , θ|L(θ)|, according to (4.6); for each such tree, sayθj , we can

write Val
[k]

(θj ) as a product of the renormalized value of the trimmed treeθj times the
product of the factors of its|L(θj )| leaves. And so on: we iterate until only trimmed
trees are left. The sum of the orders of all trimmed trees equals the orderk′ of the treeθ .

Then we can see how the analysis performed above in the case of trees without leaves
can be modified when trees with leaves are also taken into account.

First of all note that if, when considering the trees whose renormalized values con-
tribute to the leaf factor (4.6), we retain only the trees without leaves, we can repeat the
analysis leading to (5.8), with the only difference that (as it can be read from (4.6)) one

has a matrix
[
∂2
βf0(β0)

]−1
acting on the reduced valueVal

[k]′
(θ) and the treeθ has

orderκv + 1 (henceV + 1, if V is the number of nodes ofθ , as we are supposing thatθ

has no leaves), so that the first bound in (5.2) has to be replaced with∣∣∣b[k,V ]0

∣∣∣ ≤ ∣∣∣− [∂2
βf0(β0)

]−1 ∑
θ∈-R∗

V,ν,γ

Val
[k]′

(θ)

∣∣∣

≤
∥∥∥(∂2

βf0(β0)
−1
)∥∥∥( Df

π − ϕ

)V+1

|ε|V ,

(5.11)

so that we have an extra factor

C3 =
∥∥∥(∂2

βf0(β0)
−1
)∥∥∥( Df

π − ϕ

)
(5.12)

with respect to the bound one obtains for (5.2): this yields the third bound in (5.2) for
leaves arising from trees which do not contain other leaves.

Now we consider any tree of orderk′, and we decompose it in a collection of trimmed
trees (as described above)θ0, θ1, θ2, . . . , such that the root ofθ0 is the rootr of θ , while
the rootri of each other trimmed treeθi , i ≥ 1, coincides with a node of some other
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trimmed tree. Moreover the propagators of the root lines of the trimmed treesθj , j ≥ 0,
can be neglected by the definition (2.13). Then the value of the treeθ becomes the
product of (factorising) values of trimmed trees.

Then we can define the clusters as done in Sect. 3, with the further constraint that
all lines internal to a cluster have to belong to the same trimmed tree. Then for each
trimmed tree the cancellation mechanisms described in the previous sections apply, and
for each of them the same bound as before is obtained.

Therefore forθ0 we can repeat the same analysis as for trees without leaves with the
only difference that the third of (5.6) does not hold anymore, and it has to be replaced
with ∑

v∈V (θ)

(pv + qv) = k − 1+ |L(θ)|; (5.13)

as noted before the presence of the leaves implies that, for each of them, there is a
derivative∂β acting on the node factor of some nodev ∈ V (θ), so that, with respect to

the bound (5.2), we obtain an extra factorC
|L(θ)|
2 (one for leaf).

Now we can consider the trimmed treesθ1, . . . , θ |L(θ)|, and proceed in the same way.
With respect to the previous case, for each trimmed treeθj we obtain an extra factorC2

for each leaf attached to some node ofθj . Furthermore, as all the trimmed trees except
θ0 contribute to leaves, there is also an extra factorC3 for each of them.

At the end, instead of the first bound in (5.2) withDf given by (5.8), we obtain

( |ε|Df

π − ϕ

)k′

(C2C3)
L ; (5.14)

as the total number of leaves is less than the total number of lines with vanishing momen-
tum (hence less thank′), we obtain the first bound in (5.2), provided that one replaces
the previous value (5.8) forBf with

Bf = DfC2C3. (5.15)

The sum over the trees can be performed exactly as in the previous case.
In the same way one discusses the second and the third bound in (5.2), which follow

with the constantBf given by (5.15)). This completes the proof.� 

Proposition 5.2. Let Dε0(ϕ) be as in Proposition 5.1; then the matrices M [k](ω · ν; ε)
satisfy for ε ∈ Dε0(ϕ) the relation

(
M [k](x; ε)

)T = M [k](−x; ε). (5.16)

Let also

M [k](ω · ν; ε) =
(
M

[k]
αα(ω · ν; ε) M

[k]
αβ (ω · ν; ε)

M
[k]
βα(ω · ν; ε) M

[k]
ββ (ω · ν; ε)

)
; (5.17)
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then, if γq−1 ≤ |ω0 · ν| < γq and ε0 is small enough, the submatrices M
[k]
γ γ ′(ω · ν; ε)

can be analytically continued in the full disk |ω0 · ν| ≤ γq and satisfy the bounds

∥∥∥M [k]
αα(x; ε)

∥∥∥ ≤ (|ε|/(π − ϕ))2 C x2,∥∥∥M(k)
αβ (x; ε)

∥∥∥ ≤ (|ε|/(π − ϕ))2 C |x| ,∥∥∥M [k]
ββ (x; ε)− ε ∂2

βf0(β0)

∥∥∥ ≤ (|ε|/(π − ϕ))2 C x2,

(5.18)

for all k ∈ N and for a suitable constant C. As a consequence G
[k]
! verify (5.1) for all

k ≥ 1, and therefore (5.2)holds for all k ≥ 1.

Proof of Proposition 5.2. We consider the matricesM [k] defined in (4.5) and suppose
inductively thatM [k] verifies (5.18) and the analyticity property preceding it for 0≤
k ≤ p−1; note that the assumption holds trivially fork = 0. Note also that (5.18) imply

that the propagatorsG
[k]
! verify (5.1) forε0 small enough andε ∈ Dε0(ϕ).

To defineM [k] we must consider the renormalized self-energy graphsT and evaluate

their values by using the propagatorsG
[p−1]
! , according to (4.5).

Givenx = ω · ν such thatγq−1 ≤ |x| < γq for someq ≤ 0, the propagatorsG
[p−1]
!

have an analytic extension to the disk|x| < γq+2 and, under the hypotheses (5.16) and
(5.18), verify the symmetry property and the bound in (5.1), as is shown inAppendixA8.

We have (see (4.5))

M [p](x; ε) =
0∑

h=q+3

∑
renormalizedT

nT =h

V [p]
T ,h(x), (5.19)

where by appending the labelh toV [p]
T (x) we distinguish the contributions toM [p](x; ε)

coming from self-energy graphsT on scaleh (which is constrained to be≥ q + 3; see
Remark 3.2, (2)).

The valueV [p]
T (x) is analytic inx for |x| ≤ γh+2 and the sum over allT ’s with V

nodes is bounded by

∑
T

|V (T )|=V

∣∣∣V [p]
T ,h(x)

∣∣∣ ≤ (|ε|Bf )
V

1− e−κ/8e
−κ2−h/τ /8, (5.20)

because the mode labelsνv of the nodesv ∈ V (T ) must satisfy
∑

v∈V (T ) |νv| > 2−h/τ

(recall that we are dealing with renormalized trees, so that for all clustersT ∈ T (θ) one
hasT0 = T , and use (3.8) and use Remark 3.2, (2)).

Since the symmetry property expressed by (5.1) fork = p is implied by (5.16) and
this is the only property of the propagators that one needs in order to check the algebraic
Lemmata 3.2 and 3.3 (see Remark 5.1), we can conclude that the same cancellation
mechanisms extend to the renormalized self-energy valuesV [p]

T (ω·ν) (see RemarksA4.6

and A5.3). Therefore we see thatV [p]
T ,h,γ γ ′(x) will vanish atx = 0 to orderσγγ ′ , if we
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set

σγγ ′ =




2, for γ = α andγ ′ = α,

1, for γ = α andγ ′ = β,

1, for γ = β andγ ′ = α,

0, for γ = β andγ ′ = β;
(5.21)

moreoverV [p]
T ,h,ββ(x)− V [p]

T ,h,ββ(0) vanishes to order 2 atx = 0.
By the analyticity inx for |x| ≤ γh+2 and by the maximum principle (Schwarz’s

lemma) we deduce from (5.10) that one has

∑
T

|V (T )|=V

∣∣∣V [p]
T ,h,γ γ ′(x)

∣∣∣ ≤ (|ε|Bf )
V

1− e−κ/8e
−κ2−h/τ /8

(
x

γh+2

)σγγ ′
,

∑
T

|V (T )|=V

∣∣∣V [p]
T ,h,ββ(x)− V [p]

T ,h,ββ(0)
∣∣∣ ≤ (|ε|Bf )

V

1− e−κ/8e
−κ2−h/τ /8

(
x

γh+2

)2

.

(5.22)

Therefore we can use that
∑0

h=q+3 e
−κ2−h/τ

2−2h < B1 < ∞ and thatV ≥ 2 for
(γ, γ ′) ∈ {(α, α), (α, β), (β, α)}, while V ≥ 1 for (γ, γ ′) = (β, β ′), and the proof is
complete. � 

5.2. Convergence of the sequence {M [k](ω · ν; ε)}k∈N. It also follows that there exists
the limit

lim
k→∞M [k](x; ε) = M [∞](x; ε), (5.23)

with M [∞](x; ε) analytic inε in Dε0(ϕ): in fact the following result holds (the proof is
in Appendix 6.3).

Lemma 5.1. For all k ≥ 1 one has∥∥∥M [k+1](x; ε)−M [k](x; ε)
∥∥∥ ≤ B̂1B̂

k
2ε

2k
0 , (5.24)

for some constants B̂1 and B̂2.

5.3. Fully renormalized expansion. We can now define the “fully renormalized” expan-
sion of the parametric equations of the invariant torus as the sum of the values of the

renormalized trees evaluated according to (4.3) withG
[k−1]
! replaced by

G
[∞]

(x; ε) =
(
x2 11−M [∞](x; ε)

)−1
, x = ω · ν!. (5.25)

The above discussion shows that the series converges for allε ∈ Dε0 and that it coincides

with the limit for k →∞ of h
[k]

(ψ; ε), which therefore exists.
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The radius of the domainDε0(ϕ) is (π − ϕ) ε0, if ϕ is the half-opening of the sector

Dε0(ϕ), because the norms of the propagatorsG
[∞]

(x; ε) are bounded by 2/(x2(π−ϕ))

(see A8.3).

Therefore the functionsh
[k]

(ψ; ε) converge in a heart-like domain⋃
−π≤ϕ<π

Dε0(ϕ) = D0, (5.26)

whose boundary, for negativeε close to 0, is such that Im(ε) is proportional to(Re(ε))2.

Proposition 5.3. There exist positive constants ε0, B, B̃1 and B̃2, such that if

h(k)

Rγ ν
(ε) =

∑
-R

k,ν,γ

Val
[∞]

(θ),

Val
[∞]

(θ) =
( ∏

v∈V (θ)

Fv

)( ∏
v∈�(θ)

Fv

)( ∏
!∈L(θ)

G
[∞]
!

)
,

(5.27)

the renormalized series

h
[∞]

(ψ; ε) =
∞∑
k=1

εk
∑
ν∈Zr

eiν·ψh(k)

Rν(ε) (5.28)

converges in the heart-shaped domain (5.26)and its coefficients are bounded by∣∣∣h(k)

Rν(ε)
∣∣∣ ≤ B̃1B̃

k
2, N !−1

∣∣∣∂N
ε h(k)

Rν(ε)
∣∣∣ < N !2τ+1BN B̃1B̃

k
2, for N ≥ 0,

(5.29)

uniformly in ε ∈ D0.

5.4. Comments about (5.29). We leave out, for simplicity, the proof that theN !2τ+1 is
the appropriate power ofN ! that follows from our analysis.Although it is quite clear that
one has obtained a remainder bound proportional to a power ofN !, derived already in

[JLZ], we evaluated it explicitly in the hope that the power series expansion ofh
[∞]

(ψ; ε)
(hence ofh(ψ; ε), see Proposition 5.4 below) atε = 0 could be shown to be summable
in the sense of the Borel transforms or of its extensions. Since we have analyticity ofh
in the domainD0 of Fig. 1 in Sect. 1 we would need that the remainder in (5.29) behaves
at most asN !2, see [CGM]. Sinceτ ≥ r − 1 andr ≥ 2 (in order to have quasi-periodic
solutions) we see that (5.29) is not compatible with the general theory. Therefore one
needs more information than just (5.29) in order to be able to reconstruct from the power
series at the origin the full equation of the invariant torus.

5.5. Conclusions. In Appendix A10 we show that the functionh
[∞]

(ψ; ε), i.e. the limit

for k → ∞ of the approximated functionsh
[k]

(ψ; ε), solves the equations of motion
(1.6), so proving the following proposition: this concludes the proof of Theorem 1.1.
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Proposition 5.4. One has, formally (i.e. order by order in the expansion in ε around
ε = 0)

h
[∞]

(ψ; ε) ≡ lim
k→∞h

[k]
(ψ; ε) = h(ψ; ε), (5.30)

where h(ψ; ε) is the formal power series which solves Eq. (1.6).

6. Concluding Remarks

6.1. Some extensions. The case of more general Hamitonians of the form

H = h0(A)+ εf (α,A), (6.1)

with (α,A) ∈ T
d × A, whereA is an open domain inRd , should be easily studied as

the case treated here to show existence and regularity of invariant tori associated with
rotation vectorsω ∈ R

d among whose components there ares rational relations, while
the independent ones verify a Diophantine condition.

6.2. Periodic orbits. The fully resonant caser = 1 corresponds to periodic orbits is of
course a special case of our theory, but it is well known. Note that in such a case the
series expansion envisaged in Sect. 2 is sufficient to prove existence (and analyticity) of
the periodic solutions, and no resummation is needed; see Remark 2.3.

6.3. (Lack of) Borel summability. As pointed out in the concluding sentence of Sect. 5
the results that we have are not sufficient to imply (extended) Borel summability of the
formal power series at the origin of the parametric equations of the torus, i.e. ofh(ψ; ε).
The resummations that lead to the construction ofh(ψ; ε) are therefore of a different
type from the well known ones associated with the Borel transforms.

Appendix A1. Proof of Lemma 2.1

A1.1. Proof of the lemma. Part I: Neglecting the factorials. Consider all contributions
arising from the treesθ ∈ -0,k,α: we group together all trees obtained from each other
by shifting the root line, i.e. by changing the node which the root line exits and orienting
the arrows in such a way that they still point toward the root. We callF(θ) such a class
of trees (hereθ is any element inside the class).

The reduced valuesVal′(θ ′) of such treesθ ′ ∈ F(θ) differ because
(1) there is a factoriνv depending on the nodev to which the root line is attached (see
the definition (2.9) ofFv), and
(2) some arrows change their directions; more precisely, when the root line is detached
from the nodev0 and reattached to the nodev, if P(v0, v) = {w ∈ V (θ) : v0 ' w ' v}
denotes the path joining the nodev0 to the nodev, all the momenta flowing through the
lines ! along the pathP(v0, v) change their signs, the factorials of the node factors
corresponding to the nodes joined by them can change, and the propagatorsG! are
replaced transposed.
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The change of the signs of the momenta simply follows from the fact that

∑
v∈V (θ)

νv = 0, (A1.1)

asθ ∈ -k,0,α: by the property (2.15), the propagator does not change.
The change of the factorials contributing to the node factors is due to the fact that

for the nodes along the pathP(v0, v), an entering line can become an exiting line and
vice versa, so that the labelspv andqv can be transformed intopv ± 1 andqv ± 1,
respectively: this does not modify the factor(iνv)

pv+(1−δv)∂
qv+δv
β fνv (β0) in (2.9) – up

to the factoriνv (if the root line is attached tov), which has been already taken into
account –, as one immediately checks, but it can produce a change of the factorials.

If we neglect the change of the factorials, i.e. if we assume that all combinatorial
factors are the same, by summing the reduced values of all possible trees inside the class
F(θ) we obtain a common value timesi times (A1.1), and the sum gives zero.

A1.2. Proof of the lemma. Part II: Taking into account the factorials. One can easily
show that a correct counting of the trees implies that all factorials are in fact equal: to do
this it is convenient to usetopological trees instead of the usualsemitopological used so
far (we follow the discussion in [BeG]).

We briefly outline the differences between the two kinds of trees, deferring to [G2] and
[GM] for a more detailed discussion of the differences between what finally amounts to a
different way to count trees. Define a group of transformations acting on trees generated
by the following operations: fix any nodev ∈ V (θ) and permute the subtrees entering
such a node. We shall call semitopological trees the trees which are superposable up
to a continuous deformation of the lines, and topological trees the trees for which the
same happens modulo the action of the just defined group of transformations. We define
equivalent two trees which are equal as topological trees.

Then we can still write (2.15) restricting the sum over the set of all nonequivalent
topological trees of orderk with labelsν!0 = ν andγ!0 = γ (we can denote it by
-

top
k,ν,γ ), provided that to each nodev ∈ V (θ) we associate a combinatorial factor which

is not the(pv!qv!)−1 appearing in (2.9).
In fact for topological trees the combinatorial factor associated to each node is differ-

ent, because we have to look now to how the subtrees emerging from each node differ.
For semitopological trees we have a factor(pv!qv!)−1 for each nodev, wherepv and
qv are the numbers of lines! with γ! = a andγ! = β, respectively, enteringv: except
for the labelsγ ′!, we are disregarding the kinds of the subtrees enteringv, so that in this
way we are counting as different many trees otherwise identical. On the contrary, in the
case of topological trees, we consider one and the same tree those trees that are different
as semitopological trees, but have the same value because they just differ in the order in
which identical subtrees enter each nodev: therefore, ifsv,1, . . . , sv,jv are the number
of entering lines to which are attached subtrees of a given shape and with the same labels
(so thatsv,1 + · · · + sv,jv = pv + qv, 1≤ jv ≤ pv + qv), the combinatorial factor, for
each node, becomes

1

pv!qv! ·
pv!qv!

sv,1! . . . sv,jv !
= 1

sv,1! . . . sv,jv !
; (A1.2)
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note in the second factor in the above formula the multinomial coefficient corresponding
to the number of different semitopological trees corresponding to the same topological
tree, for each node.

So in terms of topological treesa(k)
ν andb(k)

ν can be expressed as a sum of tree values
Valtop(θ), where

Valtop(θ) =
( ∏

v∈V (θ)

F
top
v

)( ∏
v∈L(θ)

Lv

)( ∏
!∈�(θ)

G!

)
, (A1.3)

where

F
top
v = 1

sv,1! . . . sv,jv !
(
iνv

)pv+(1−δv)

∂
qv+δv
β fνv (β0). (A1.4)

Still, when computing the combinatorial factors inside each familyF(θ), they do
differ. But this is actually an apparent, not a real discrepancy. In fact, due to symmetries
in the tree (that is, to the fact that the subtrees emerging from some node are sometimes
equal, i.e. that somesv,i are greater than 1), the actual number of topological trees in a
given familyF(θ) is less than the total number of trees obtained by the action of the
group of transformations: in other words some trees obtained by the action of the group
are equivalent as topological trees. When moving the root line from a nodev0 to another
nodev1, so transforming a treeθ into a treeθ1 ∈ F(θ), for some nodesw along the
pathP(v0, v1) the factor 1/sw,i ! can turn into 1/(sw,i −1)!, but then this means that the
same topological tree could be formed by the action ofsw,i different transformations of
the group: each of thesw,i equivalent subtrees enteringw contains a node such that, by
attaching to it the root line, the same topological tree is obtained. Therefore, by counting
all trees obtained by the action of the group, the corresponding topological tree value
is in fact countedsw,i times, so to avoid overcounting one needs a factor 1/sw,i : this
gives back the same combinatorial factor 1/sw,i !. Analogously one discusses the case of
a factor 1/sw,i ! turning into 1/(sw,i + 1)!, simply by noting that the same argument as
above can be followed also in this case by changing the rôles of the two nodesv0 andv1.

A1.3. Remark. The proof of the lemma relies only on the property (2.15) of the propa-

gators, so that also the functionh
[k]

(ψ; ε) is well defined for allk ∈ N.

Appendix A2. Proof of Lemma 2.2

A2.1. Proof. In order to prove the lemma we shall show by induction thata(k)
0 can

be arbitrarily fixed andb(k)
0 can be uniquely fixed in order to make formally solvable

Eqs. (2.2).
For k = 1 it is straightforward to realize thata(1)

ν andb(1)
ν are well defined for all

ν ∈ Z
r \ {0}, by using the first condition in (1.8).

Then, fork > 1, assume that alla(k′)
0 andb(k′)

0 , with k′ < k − 1, have been fixed,

and that, as a consequence, alla(k′)
ν andb(k′)

ν are well defined fork′ < k and for all
ν ∈ Z

r \ {0}.
By (2.16) and by Lemma 2.1, in (2.2) one has[∂αf ](k−1)

ν = 0, so that the equation
for a(k) is formally soluble, anda(k)

0 can be arbitrarily fixed, for instance equal to0.
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In the second equation in (2.2) one can write[
∂βf

](k)
ν

= ∂2
βf0(β0)b

(k−1)
ν + G(k)

ν , (A2.1)

where the functionG(k)
ν takes into account all contributions except the one explicitly

written, and, by construction, all terms appearing inG(k)
ν can depend only on factors

b(k′)
0 of ordersk′ ≤ k − 2. We can choose

b(k−1)
0 = −

[
∂2
βf0(β0)

]−1
G(k)

0 , (A2.2)

where the second condition in (1.8) has been used, so that also the equation forb(k)

becomes formally soluble. Of course alsob(k)
0 is left undetermined: it will have to be

fixed in the next iterative step.
To complete the proof of the lemma one has still to show that the sums over the

Fourier labels can be performed, but this is a trivial fact forω ∈ Dτ (C0). � 

A2.2. Remark. The same proof applies to the renormalized trees introduced in Sect. 4.1.

Appendix A3. Proof of Lemma 3.1

A3.1. Inductive bounds. We prove inductively on the number of nodes of the trees the
bounds

N∗
n (θ) ≤ max{0,2M(θ)2(n+3)/τ − 1}, (A3.1)

whereM(θ) is defined in (3.15).
First of all note that ifM(θ) < 2−(n+3)/τ thenNn(θ) = 0 as in such a case for any

line ! ∈ �(θ) one has

|ω0 · ν!| > 2τ |ν!|−τ > 2τM(θ)−τ > 2τ2n+3, (A3.2)

by the Diophantine hypothesis (1.2) and by the definition ofω0 given in Sect. 3.2.

A3.2. Bound on N∗
n (θ). If θ has only one node the bound is trivially satisfied because,

if v is the only node inV (θ), one must haveM(θ) = |νv| ≥ 2−n/τ in order that the line
exiting fromv is on scale≤ n: then 2M(θ)2(n+3)/τ ≥ 4.

If θ is a tree withV > 1 nodes, we assume that the bound holds for all trees
havingV ′ < V nodes. DefineEn = (2 2(n+3)/τ )−1: so we have to prove thatN∗

n (θ) ≤
max{0,M(θ)E−1

n − 1}.
If the root line! of θ is either on scale�= n or a self-energy line with scalen, call

θ1, . . . , θm them ≥ 1 subtrees entering the last nodev0 of θ . Then

N∗
n (θ) =

m∑
i=1

N∗
n (θi), (A3.3)

hence the bound follows by the inductive hypothesis.
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If the root line! is normal (i.e. it is not a self-energy line) and it has scalen, call
!1, . . . , !m them ≥ 0 lines on scale≤ n which are the nearest to! (this means that
no other line along the paths connecting the lines!1, . . . , !m to the root line is on scale
≤ n). Note that in such a case!1, . . . , !m are the entering line of a clusterT on scale
> n.

If θi is the subtree with!i as root line, one has

N∗
n (θ) = 1+

m∑
i=1

N∗
n (θi), (A3.4)

so that the bound becomes trivial if eitherm = 0 orm ≥ 2.
If m = 1 then one hasT = θ \ θ1, and the lines! and!1 are both with scales≤ n;

as!1 is not entering a self-energy graph, then

|ω0 · ν!| ≤ 2n, |ω0 · ν!1| ≤ 2n, (A3.5)

and eitherν! = ν!1 and one must have (recall thatT0 is defined after (3.6))∑
v∈V (T )

|νv| ≥
∑

v∈V (T0)

|νv| > 2−(n+3)/τ = 2En > En, (A3.6)

or ν! �= ν!1, otherwiseT would be a self-energy graph (see (3.7) and (3.8)). Ifν! �= ν!1,
then, by (A3.5) one has|ω0 · (ν! − ν!1)| ≤ 2n+1, which, by the Diophantine condition
(1.2), implies|ν! − ν!1| > 2 2−(n+1)/τ , so that again∑

v∈V (T )

|νv| ≥
∣∣ν! − ν!1

∣∣ > 2 2−(n+2)/τ > 21/τ+2En > En, (A3.7)

as in (A3.6). Therefore in both cases we get

M(θ)−M(θ1) =
∑
v∈T

|νv| > En, (A3.8)

which, inserted into (A3.4) withm = 1, gives, by using the inductive hypothesis,

N∗
n (θ) = 1+N∗

n (θ1) ≤ 1+M(θ1) E
−1
n − 1

≤ 1+
(
M(θ)− En

)
E−1

n − 1≤ M(θ)E−1
n − 1,

(A3.9)

hence the bound is proved also if the root line is normal and on scalen.

A3.3 Remark. The same argument proves the bound (5.4) for renormalized trees, by
using the observation that there are no self-energy lines in the renormalized trees.

Appendix A4. Proof of Lemma 3.2

A4.1. Factorials. As for the proof of the Lemma 2.2 we ignore the factorials: to take
them into account one can reason as said in Appendix A1.
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A4.2. Self-energy graphs of type 1. First we prove that
∑

T VT (0) = 0. Given a treeθ
consider all trees which can be obtained by shifting the entering line!2

T . Note that the
trees so obtained are contained in the self-energy graph familyFT0(θ).

Corresponding to such an operationVT (0) changes by a factoriνv if v is the node
which the entering line is attached to, as all node factors and propagators do not change.
By (3.6) the sum of all such values is zero.

Then consider∂VT (0). By construction

∂VT (0) =
∑

!∈�(T )

( ∏
v∈V (T )

Fv

)(
∂G

(n!)
!

∏
!′∈�(T )\!

G
(n!′ )
!′

)
, (A4.1)

where all propagators have to be computed forω · ν = 0, and

∂G
(n!)
! = d

dx
G

(n!)
! (ω · ν0

! + σ!x)

∣∣∣
x=0

, x = ω · ν. (A4.2)

The line! dividesV (T ) into two disjoint set of nodesV1 andV2, such that!1
T exits from a

node insideV1 and!2
T enters a node insideV2: if ! = !v one hasV2 = {w ∈ (T ) : w � v}

andV1 = V (T ) \ V2. By (3.4), if

ν1 =
∑
v∈V1

νv, ν2 =
∑
v∈V2

νv, (A4.3)

one hasν1 + ν2 = 0. Then consider the familiesF1(θ) andF2(θ) of trees obtained
as follows:F1(θ) is obtained fromθ by detaching!1

T then reattaching to all the nodes
w ∈ V1 and by detaching!2

T then reattaching to all the nodesw ∈ V2, while F2(θ) is
obtained fromθ by reattaching the line!1

T to all the nodesw ∈ V2 and by reattaching
the line!2

T to all the nodesw ∈ V2; note thatF1(θ) ∪ F2(θ) ⊂ FT0(θ).
As a consequence of such an operation the arrows of some lines! ∈ �(T ) change

their directions: this means that for some line! the momentumν! is replaced with
−ν! and the propagatorsG! are replaced with their transposedGT

! . As the propagators
satisfy (2.15) no overall change is produced by such factors, except for the differentiated
propagator which can change sign: one has a different sign for the trees inF1(θ) with
respect to the trees inF2(θ). Then by summing over all the possible trees inF1(θ) we
obtain a valuei2ν1ν2 times a common factor, while by summing over all the possible
trees inF2(θ) we obtain−i2ν1ν2 times the same common factor, so that the sum of two
sums gives zero.

A4.3. Self-energy graphs of type 2. Given a treeθ with a self-energy graphT consider all
trees obtained by detaching the exiting line, then reattaching to all the nodesv ∈ V (T );
note again that the trees so obtained are contained in the self-energy graph familyFT0(θ).
In such a case again some momenta can change sign, but the corresponding propagator
does not change (reason as above for self-energy graphs of type 1). So at the end we
obtain a common factor timesiνv, wherev is the node which the exiting line is attached
to. By (3.6) again we obtain

∑
T VT (0) = 0.

A4.4. Self-energy graphs of type 3. To prove that
∑

T VT (0) = 0 simply reason as for∑
T VT (0) in the case (1), by using that the entering line!2

T hasγ!2
T
= α.
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A4.5. Self-energy graphs of type 4. Given a treeθ with a self-energy graphT consider
the contribution to∂VT (0) in which a line! is differentiated (see (A4.1)). The line!
dividesV (T ) into two disjoint set of nodesV1 andV2, such that!1

T exits from a nodev1

insideV1 and!2
T enters a nodev2 insideV2: if ! = !v one hasV2 = {w ∈ V (T ) : w � v}

andV1 = V (T ) \ V2. By (3.6), with the notations (A4.3), one hasν1 + ν2 = 0. Then
consider the tree obtained by detaching!1

T from v1, then reattaching to the nodev2 and,
simultaneously, by detaching!2

T from v2, then reattaching to the nodev1; note that the
tree so obtained is inside the classFT0(θ).

As a consequence of such an operation the arrows along the pathP connectingv1 to
v2 change their directions: this means that for such lines! the momentumν! is replaced
with −ν!, but the propagators are even in the momentum, so that no overall change is
produced by such factors, if not because of the differentiated propagator (which is along
the path by construction) which changes sign. For all the other lines (i.e. the lines not
belonging toP) the propagator is left unchanged.

Since a derivative with respect toβ acts on both the nodesv1 andv2, the shift of the
external lines does not produce any change on the node factors (except for the factorials,
that we are not explicitly considering, as said at the beginning of this subsection). Then
by summing over the two considered trees we obtain zero because of the change of sign
of the differentiated propagator.

A4.6. Remark. To prove the Lemma 3.2 we only use that the propagators satisfy (2.15),
so that the same proof applies also to the renormalized self-energy graphs (see the
Proposition 5.2), where there are no self-energy lines and the propagators are given by
(4.4).

Appendix A5. Proof of Lemma 3.3

A5.1. Proof of the property (1). Given a self-energy graphT with momentumν flowing
through the entering line!2

T , callP the path connecting the exiting line!1
T to the entering

line!2
T . Then consider also the self-energy graphT ′ obtained by taking!1

T as the entering
line and!2

T as the exiting line and by taking−ν as the momentum flowing through the
(new) entering line!1

T : in this way the arrows of all the lines along the pathP are
reverted, while all the subtrees (internal toT ) having the root inP are left unchanged.
This implies that the momenta of the lines belonging toP change signs, while all the
other momenta do not change. Since all propagatorsG! are transformed intoGT

! the
property (2.15) implies that the entryij of the matrixM(ω · ν; ε) corresponding to the
self-energy graphT is equal to the entryji of the matrixM(−ω ·ν; ε); then the assertion
follows.

A5.2. Proof of the property (2). Given a self-energy graphT , consider also the self-
energy graphT ′ obtained by reverting the sign of the mode labels of the nodesv ∈ V (T ),
and by swapping the entering line with the exiting one. In this way the arrows of all the
lines along the pathP joining the two external lines are reverted, while all the subtrees
(internal toT ) having the root inP are left unchanged. It is then easy to realize that the
complex conjugate ofVT ′(ω · ν) equalsVT (ω · ν), by using the form of the node factors
(2.10), and the fact that one hasf ∗

ν (β) = f−ν(β) andG†(ω ·ν) = G(ω ·ν) (see (2.15)).
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A5.3 Remark. The lemma has been proved without making use of the exact form of the
propagator, but only exploiting the fact that it satisfies the property (2.15): therefore,
once more, the proof applies also to the renormalized trees as a consequence of the first
relation in (5.1), and it gives (5.6).

Appendix A6. Proof of Lemma 3.4

A6.1. Set-up. Given a treeθ ∈ -k,ν,γ , consider a self-energy graphT with heightD.
Call T (2) ⊂ T (3) ⊂ . . . ⊂ T (D) the resonances containingT , and setT = T (1); denote
by n = n1 > n2 > n3 > . . . > nD the scales of the lines entering such resonances.

For any! ∈ �(T0), one can write

ν! = ν0
! + σ!ν, (eA6.1)

whereν is the momentum of the line!2
T (with scalen) enteringT (see (3.9)).

A6.2. Proof. By shifting the lines entering all the resonances containing!, the mo-
mentumν! can change into a new valueν̃! (as it can be seen by applying iteratively
(3.10)) in such a way that|ω0 · ν̃!| differs from

∣∣ω0 · ν0
!

∣∣ by a quantity bounded by
γn + γn2 + . . .+ γnD

≤ 2n + 2n2 + . . .+ 2nD < 2n+1.
As
∣∣ν0

!

∣∣ < 2−(n+3)/τ , by definition of the self-energy graph, we can apply (3.2) and
conclude that|ω0 · ν0

!| has to be contained inside an interval[γp−1, γp], with p = n0
! ≥

n+ 3 (see Remark 3.2, (2)), at a distance at least 2n+1 from the extremes: therefore the
quantity|ω0 · ν̃!| still falls inside the same interval[γp−1, γp]. In particular this implies
the identity

n! = ñ! = n0
!, (A6.2)

if ñ! is defined as the integer such thatγñ!−1 ≤ |ω0 · ν̃!| < γñ!
.

Appendix A7. Proof of Lemma 4.1

A7.1. Set-up. We have to prove that, for allk′ ≤ k, one has

[h[k](ψ; ε)](k′)ν = h(k′)
ν , (A7.1)

which yields that the functionsh andh
[k]

admit the same power series expansions up to
orderk.

Of course bothh(k′)
ν and[h[k](ψ; ε)](k′)ν are given by sums of several contributions; in

the same way[M [k](ω · ν; ε)](k′) can be expressed as the sum of several terms. We shall

prove that, given any tree valueVal(θ) contributing toh(k′)
ν and any self-energy value

VT (x) corresponding to a self-energy graphT of orderk′, one can find the same terms

contributing, respectively, to[h[k](ψ; ε)](k′)ν and to[M [k](x; ε)](k′), andvice versa. The
proof will be by induction onk′ = 1, . . . , k.
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A7.2. Remarks. (1) Note that[h[k](ψ; ε)](k′)ν is not the same ash
[k,k′]
ν (ψ; ε): the quantity

[h[k](ψ; ε)](k′)ν is the coefficient to orderk′ that one obtains by developingh
(k)

(ψ; ε) in
powers ofε.

(2) The contributions to[h[k](ψ; ε)](k′)ν and to[M [k](x; ε)](k′) can arise only from trees

of orderk′′ ≤ k′. Furthermore[h[k](ψ; ε)](k′)ν = [h[k′](ψ; ε)](k′)ν and[M [k](x; ε)](k′) =
[M [k′](x; ε)](k′): this simply follows from Remark 4.1 and the trivial observation that, for

k > k′, the self-energy graphs [trees] whose values contribute toM [k](x; ε) [h
[k]

(ψ; ε)]
but not toM [k′](x; ε) [h

[k′]
(ψ; ε)] are those containing also self-energy graphs with

heightD > k′: such contributions are of order at leastD in ε, so that they can not

contribute to[M [k](x; ε)](k′) [[h[k](ψ; ε)](k′)].

A7.3. Starting from h. The casek′ = 1 is trivial. Suppose that, givenk′ ≤ k, the assertion
is true for allk′′ < k′: then we show that it is true also fork′.

Consider a treeθ ∈ -k,ν,γ and letVal(θ) be its value. Denote byT1, . . . , TN the
maximal self-energy graphs inθ , and byk1, . . . , kN the number of nodes that they
contain, respectively; the number of nodes external to the self-energy graphs will be
k0 = k − k1 − . . . − kN . Call θ0 the tree obtained fromθ by replacing each chain of
self-energy graphs together with their external lines with a new line carrying the same
momentum of the external lines. The treeθ0 will havek0+1 lines: by construction each
line !i of θ0 corresponds to a chain ofpi self-energy graphs, withpi ≥ 0, of orders
Ki1, . . . , Kipi

, such that

k0∑
i=1

pi∑
j=1

Kij = k − k0. (A7.2)

Then considerθ0 as a treeθR ∈ -R
k0,ν,γ

; let !i be the line inθR which corresponds

to the line with the same name inθ0. For each line!i ∈ �(θR), by settingxi = ω · ν!i ,
the propagator is of the form

G
[k−1]
!i

= G
[k−1]

(xi; ε), G
[k−1]

(xi; ε) =
[
x2
i 11−M [k−1](xi; ε)

]−1
, (A7.3)

and it can be expanded in powers ofM [k−1](xi; ε) as

G
[k−1]

(xi; ε) = 1

x2
i

(
11+M [k−1](xi; ε) 1

x2
i

+M [k−1](xi; ε) 1

x2
i

M [k−1](xi; ε) 1

x2
i

+ . . .

)
.

(A7.4)

We can consider the contribution

1

x2
i

[M [k−1](xi; ε)](Ki1)
1

x2
i

. . .
1

x2
i

[M [k−1](xi; ε)](Kipi
) 1

x2 (A7.5)

to (A7.4). Note thatKij < k − 1 for all i, j , by construction, so that by the Remark
A7.2, (2), we can write

[M [k−1](xi; ε)](Kipi
) = [M [k](xi; ε)](Kipi

) = [M [Kipi
](xi; ε)](Kipi

), (A7.6)
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for all j = 1, . . . , pi and for all i = 1, . . . , k0. Hence by the inductive hypothe-
sis, we can deduce that, for alli, j , there is a contribution to[M [k−1](xi; ε)](Kij ) =
[M [k](xi; ε)](Kij ) which corresponds to the considered resonance inθ .As a consequence

we can also conclude that there is a term contributing to[h[k](ψ; ε)](k′)ν which is the
same as the considered tree valueVal(θ).

Of course if instead of a tree value we had considered a self-energy value, the same
argument should have applied, so that the assertion follows.

A7.4. Starting from h
[k]

. The construction described in Sect. A7.3 can be used in the
opposite direction, in order to prove that each term of orderk′ in ε which is obtained by

truncatingh
[k]

to orderk corresponds to a term contributing toh(k′).

Proof of the bound (5.1) from (5.8)

A8.1. Set-up. Consider the matrix

A(x; ε) =
(
G[k](x; ε)

)−1 = x2 11−M [k](x; ε) = �+ ε2x=1 + ε2x2=2, (A8.1)

with

� =
(
�αα 0

0 �ββ

)
=
(
x2 11 0

0 x2 11− ε∂2
βf0(β0)

)
,

=1 =
(

0 B(ε)

−B(ε) 0

)
,

=2 =
(

−M
[k]
αα(x; ε) −M

[k]
αβ (x; ε)− ε2xB(ε)

−M
[k]
βα(x; ε)− ε2xB(ε) −M

[k]
ββ (x; ε)+ ε∂2

βf0(β0)

)
,

(A8.2)

where

B(ε) =
(
ε2x

)−1∑
T ′

LVT ′(ω · ν), (A8.3)

with the sum running over all self-energy graphs of type 2, so that one has

‖=1‖ ≤ C, ‖=2‖ ≤ C, (A8.4)

for some positive constantC.
The matrix� is a block matrix which induces a natural decompositionR

d = R
r⊕R

s ;
the eigenvalues of the block�αα ≡ �|Rr are all equal tox2, while the eigenvalues of
the block�ββ = �|Rs are of the formλj = x2 + aj ε, with aj > 0.

Set�1 = �+ η=1, with η = ε2x.
Define

B(x; ε) = eηXA(x; ε)e−ηX = eηX�1e
−ηX + ε2x2eηX=2e

−ηX

≡ B0(x; ε)+ ε2x2eηX=2e
−ηX; (A8.5)

of courseB(x; ε) has the same eigenvalues asA(x; ε).
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A8.2. Block-diagonalization. ConsiderB0(x; ε): we shall fix the matrixX in such a way
thatB0(x; ε) is block-diagonal up to orderη2.

So we look forX such that(
11+ ηX +O(η2)

)
(�+ η=1)

(
11− ηX +O(η2)

)
= �+ ηJ1 +O(η2), (A8.6)

with

J1 =
(
J1,αα J1,αβ
J1,βα J1,ββ

)
=
(
J1,αα 0

0 J1,ββ

)
. (A8.7)

By expanding to first order (A8.6) we obtain

[X,�] +=1 = J1, (A8.8)

while imposing (A8.7) gives

Xαβ = −B(ε)
(
�ββ − x2 11

)−1
,

Xβα = −
(
�ββ − x2 11

)−1
B(ε),

(A8.9)

where ∥∥∥∥(�ββ − x2 11
)−1

∥∥∥∥ = 1

ε

∥∥∥∥(∂2
βf0(β0)

)−1
∥∥∥∥ ≤ C

ε
, (A8.10)

for some constantC. Furthermore, by choosingXαα = 0 andXββ = 0, one obtains
J1 ≡ 0.

Then it follows that one has

B(x; ε) = �+O(η2X2)+O(ε2x2) = �+O(ε2x2), (A8.11)

so that

B−1(x; ε) = �−1 +O(ε2x2), (A8.12)

where the eigenvalues of�−1 are of the form either 1/x2 or 1/(x2 + aj ε).
Therefore one has∥∥∥G[k](x; ε)

∥∥∥ ≤ ∥∥∥eηX∥∥∥ ∥∥∥B−1
∥∥∥ ∥∥∥e−ηX

∥∥∥ ≤ 2

x2 , (A8.13)

which proves the bound in (5.1) for realε.

A8.3. Bounds in the complex plane. The above analysis applies also for complex values
of ε. Consider the domainD0 represented in Fig. 5, with half-opening angleϕ < π . For

ε ∈ D0 one has that the norms ofG
[k]

(x; ε))−1 are bounded from below by

x2

2
(π − ϕ) , (A8.14)

whenϕ is close toπ .
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Appendix A9. Proof of Lemma 5.1

A9.1. Set-up. BothM [k](ω · ν; ε) andM [k+1](ω · ν; ε) can be expressed by (4.5): the

only difference is that one has to use the propagatorsG
[k]
! for M [k+1](ω · ν; ε).

This means that there is a correspondence 1-to-1 between the graphs contributing to
M [k](ω · ν; ε) and those contributing toM [k+1](ω · ν; ε), so that we can write

M [k](ω · ν; ε)−M [k+1](ω · ν; ε) =
∑

renormalizedT

V [k,k+1]
T (ω · ν),

V [k,k+1]
T (ω · ν) = ε|V (T )| ( ∏

v∈V (T )

Fv

)[( ∏
!∈�(T )

G
[k−1]
!

)
−
( ∏

!∈�(T )

G
[k]
!

)]
.

(A9.1)

For each renormalized self-energyT we can writeV [k,k+1]
T (ω · ν) as sum ofV =

|V (T )| terms corresponding to trees whose lines have all the propagators of the form

eitherG
[k−1]
! or G

[k]
! , up to one which has a new propagator given by the difference

G
[k−1]
! −G

[k]
! .

A9.2. Remark. Note that the scales of all lines are uniquely fixed by the momenta, so

that both propagatorsG
[k−1]
! andG

[k]
! admit the same bounds (see (5.6)).

A9.3. Bounds. We can order the lines in�(T ) and construct a set ofV subsets
�1(T ), . . . , �V (T ) of �(T ), with |�j(T )| = j , in the following way. Set�1(T ) = ∅,
�2(T ) = !1, if !1 is the root line ofθ and, inductively for 2≤ j ≤ V − 1,�j+1(T ) =
�j(T ) ∪ !j , where the line!j ∈ �(T ) \ �j(T ) is connected to�j(T ); of course
�V (T ) = �(T ). Then

V [k,k+1]
T (ω · ν) = ε|V (T )|( ∏

v∈V (T )

Fv

)
V∑

j=1

[( ∏
!∈�j (T )

G
[k−1]
!

) (
G
[k−1]
!j

−G
[k]
!j

) ( ∏
!∈�(T )\�j (T )

G
[k]
!

)]
,

(A9.2)

where, by construction, the sets�j(θ) are connected (while of course the sets�(θ) \
�j(θ) in general are not).

We can write

G
[k−1]
!j

−G
[k]
!j
= G

[k−1]
!j

[
M [k](ω · ν!j ; ε)−M [k−1](ω · ν!j ; ε)

]
G
[k]
!j

, (A9.3)

so that in (A9.2) we can bound( ∏
!∈�j (T )

∥∥∥G[k−1]
!

∥∥∥ ) ∥∥∥G[k−1]
!j

∥∥∥ ∥∥∥G[k]
!j

∥∥∥ ( ∏
!∈�(T )\�j (T )

∥∥∥G[k]
!

∥∥∥ )

≤
[(

22+2τC−1
0

)2k 1∏
n=−∞

2−2nNn(θ)

]2

,

(A9.4)
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where the power 2 (with respect to (5.9)) is due to the fact that in the product two
propagators correspond to the line!j .

This means thatV [k,k+1]
T (ω · ν) admits the same bound as the square ofV [k]

T (ω · ν)
times the supremum (overν) of the norms∥∥∥M [k](ω · ν; ε)−M [k−1](ω · ν; ε)

∥∥∥ . (A9.5)

If we perform the sum over all self-energy graphs in (A9.1) and we use that the first
non-trivial terms correspond to graphs withV = 2 nodes, we obtain, fork ≥ 1,∥∥∥M [k+1](ω · ν; ε)−M [k](ω · ν; ε)

∥∥∥ ≤ Cε2
∑
ν∈Zr

∥∥∥M [k](ω · ν; ε)−M [k−1](ω · ν; ε)
∥∥∥ ,

(A9.6)

for some constantC. Therefore the lemma follows.

Appendix 10. Proof of Proposition 5.4

A10.1. Set-up. Define

Val
[∞]

(θ) =
( ∏

v∈V (θ)

Fv

)( ∏
v∈L(θ)

Lv

)( ∏
!∈�(θ)

G
[∞]
!

)
, (A10.1)

where the propagatorsG
[∞]
! = G

[∞]
(ω · ν!; ε) are defined in (5.19); we shall denote by

G
[∞]

the operator with kernelG
[∞]

(ω · ν; ε) in Fourier space.
Then one has

h
[∞]
γ (ψ; ε) =

∞∑
k=1

∑
ν∈Zr

εkeiν·ψ
∑

θ∈-R
k,ν,γ

Val
[∞]

(θ), (A10.2)

which we can represent, in a more compact notation, as

h
[∞]

(ψ; ε) =
∑

θ∈-R
Val

R
(θ;ψ; ε), (A10.3)

where-R is the set of all renormalized trees, and, forθ ∈ -R
k,ν,γ ⊂ -R, we have

defined

Val
R
(θ;ψ; ε) = εkeiν·ψVal

[∞]
(θ). (A10.4)

The functionh(ψ; ε) solving the equations of motion (1.6) is formally defined as the
solution of the functional equation

h(ψ; ε) = G∂ψf (ψ + h(ψ; ε)) , (A10.5)

whereG = (iω · ∂)−2 = G
[0]

is the operator with kernelG(x) = x2.
We have the following result.
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A10.2. Lemma. One hasG(x)
(
M [∞](x; ε)+ (G[∞](x; ε))−1

) = 11.

A10.3. Proof. By definition one hasG
[∞]

(x; ε) = (G−1(x) −M [∞](x; ε))−1, so that

G−1(x) = (G
[∞]

(x; ε))−1 +M [∞](x; ε); then the assertion follows.� 

A10.4. Conclusions. The following result shows that the functionh
[∞]

(ψ; ε) formally
solves the equation of motions (1.6); as the analysis of the previous sections shows that

the functionh
[∞]

(ψ; ε) is well defined and it is, order by order, equal to the formal
solution envisged in Sect. 3, we have proved the proposition.

A10.5. Lemma. The functionh
[∞]

(ψ; ε) defined by (A10.3) formally solves (A10.4).

A10.6. Proof. We shall show that (A10.3) solves (A10.5). One has

G∂ψf
(
ψ + h

[∞]
(ψ; ε)

)
= G

∞∑
p=0

1

p!∂
p+1
ψ f (ψ)

(
h
[∞]

(ψ; ε)
)p

= G

∞∑
p=0

1

p!∂
p+1
ψ f (ψ)

∑
θ1∈-R

Val
R
(θ1;ψ; ε) . . .

∑
θp∈-R

Val
R
(θp;ψ; ε)

= G
(
G
[∞])−1 ∑

θ∈-∗
R

Val
R
(θ;ψ; ε),

(A10.7)

where-∗
R differs from -R as it contains also trees which can have only one self-

energy graph with exiting line!0, if, as usual,!0 denotes the root line ofθ ; the operator

G(G
[∞]

)−1 takes into account the fact that, by construction, to the root line!0 an operator

G is associated, while inVal
R
(θ;ψ; ε), by definition, a propagatorG

[∞]
is associated.

Then we can write (A10.5), by explicitly separating the trees containing such a self-
energy graph from the others,

G∂ψf
(
ψ + h

[∞]
(ψ; ε)

)
= G

(
G
[∞])−1 (

G
[∞]

M [∞] ∑
θ∈-R

Val
R
(θ;ψ; ε)+

∑
θ∈-R

Val
R
(θ;ψ; ε)

)

= G
(
M [∞]h[∞]

(ψ; ε)+ (G
[∞]

)−1h
[∞]

(ψ; ε)
)

= G
(
M [∞] + (G

[∞]
)−1

)
h
[∞]

(ψ; ε) = h
[∞]

(ψ; ε),
(A10.8)

where Lemma A10.2 has been used in the last line.
Note that at each step only absolutely converging series have been dealt with; then

the assertion is proved.
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