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Abstract: We consider a class of a priori stable quasi-integrable analytic Hamiltonian
systems and study the regularity of low-dimensional hyperbolic invariant tori as functions
ofthe perturbation parameter. We show that, under natural nonresonance conditions, such
tori exist and can be identified through the maxima or minima of a suitable potential.
They are analytic inside a disc centered at the origin and deprived of a region around the
positive or negative real axis with a quadratic cusp at the origin. The invariant tori admit
an asymptotic series at the origin with Taylor coefficients that grow at most as a power
of a factorial and a remainder that to any ordeis bounded by théN + 1)-st power of

the argument times a power dfl. We show the existence of a summation criterion of
the (generically divergent) series, in powers of the perturbation size, that represent the
parametric equations of the tori by following the renormalization group methods for the
resummations of perturbative series in quantum field theory.

1. Introduction

1.1. The model. Consider the Hamiltonian
1 1
7—[=w~A+§A-A+§B'B+8f(oc,ﬁ), (1.1)

where(a, A) € TV x R" and(B, B) € T* x R® are conjugated variablesgenotes the
inner product both iR"” and inR*, andw is a vector inR" satisfying the Diophantine
condition

l@ - v| > Colv|~ ¢ Vv € Z" \ {0}, (1.2)

with Co > 0 andt > r — 1; we shall define by, (Co) the set of rotation vectors iR”
satisfying (1.2). We also write

f@,By=>) " "f(B), (1.3)

veZ’
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and setd = r + s. We shall suppose that is analytic in a strip of widthc > 0
around the real axis of the variablesg, so that there exists a constaftsuch that
| fv(B)| < Fe " forallv e Z" and allg € T°.

1.2. Low-dimensional tori. The equations of motion for the system (1.1) are

oa=w+A,

B =B,

A = —couf(@. ). (1.4)
B = —edpf(a,p).

Fore = 0 the system of Egs. (1.4), with initial dai@o, B, 0, 0), admits the solution

a(t) = ap + t,
B(1) = Bo,
A(t) =0,

B() =0,

(1.5)

which corresponds toadimensional torus (KAM torus): the firstangles rotate with
angular velocityws, . .. , w,, while the remaining remain fixed to their initial values.
Note that (1.4) can be written as

0= —¢cdy f(a, B),
- 1.6
:ﬂ = —¢edg f(a, B), (18

so that we obtain closed equations for the angle variables: once a solution has been found
for them, it can be used to find the action components by a simple integration.
We look for solutions of (1.6), far # 0, conjugatedto (1.5), i.e. we look for solutions
of the form
a(t) =y +a, Bo; ©). (1.7)
B(1) = Bo+ b, Bo; ), '

for some functionsa andb, real analytic and 2-periodic iny € T", such that the
motion in the variabley is ¥ = w.
We shall prove the following result.

Theorem 1.1. Consider the equations of motion (1.6)for @ € D, (Cp), and suppose B
to be such that

g fo(Bo) =0,

1.8

93 fo(Bo) is negative definite. (1.8)
There exist a constant eg > 0 and, for all ¢ € (0, &p), two functions a(¢, Bo; ¢) and
b(¥, Bo; €), real analytic and 2 -periodic in ¢ € T", such that (1.7)is a solution of
(1.6).
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Fig. 1. Analyticity domainDg for the hyperbolic invariant torus. The cusp at the origin is a second order cusp.
The figure corresponds to the case in (1.8) of the Theorem 1.1

Remarks. (1) As it is well known, and as it will appear from the proof, the solutions
whose existence is stated by the theorem cannot be expected to be analgtic ia O.
Furthermore, if the second condition in (1.8) is replaced with

95 fo(Bo) is positive definite, (1.9)

then the same conclusions hold foe (—¢g, 0).

(2) The proof will yield more detailed information on the regularity of the considered
tori, as we shall point out. In particular the analyticity domain is much larger, see the
heart-like domairDg in Fig. 1 below (and the discussion in the forthcoming Sect. 5.3). In
fact we think that our technique can lead to prove existence of many elliptic invariant tori,
i.e. for a large set of negativés, and to understand some of their analyticity properties;
see Sect. 6 for further remarks and results.

1.3. Contents of the paper. The paper is organized as follows. In Sect. 2 we introduce

the main graph techniques which will be used, and we prove through them the formal
solubility of the equations of motions (known from [JLZ]): this is enough if one wants

to prove existence and analyticity of periodic solutions, (see Remark 2.3 below), but it
requires new arguments to obtain existence of quasi-periodic solutions. Such arguments
are developed in the following sections: in Sect. 3 we introduce the concept of self-energy
graph, which will play a crucial réle, and we describe the basic cancellation mechanisms
which will be used in Sect. 4 to perform a suitable resummation of the series. In Sect. 5
we shall use such results in order to prove the convergence of the resummed series and its
analyticity properties. Finally in Sect. 6 we make some conclusive remarks, and briefly
discuss possible generalizations and extensions of the results. The main technical aspects
of the proof will be relegated to the Appendices.

1.4. Comparison with other papers. The problem considered hereaspriori stable
in the sense of [CG]: the low-dimensional invariant tori are degenerate in absence of
perturbations. Hamiltonians of the form (1.1) were explicitly studied in [T], in a more
general formulation (see Sect. 6 below), and in [JLZ], in a more particular case.

The problem usually considered in the literature essentially corresponds to a Hamil-
tonian of the form

1 1 1
EA2 +w- A+ EB2 — EAﬁz + f(A,B,a, B), fo(A,B,B) = O0(A3+B3+ 83,
(1.10)
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where A is a,a priori fixed, nondegenerate matrix (so that before the perturbation is
switched on the invariant torus At= 0 has a priori a well defined stability property,

i.e. its elliptic or hyperbolic stability is already well defined); this case is callpdori

unstable in [CG]. The system (1.10) has been widely studied in the hyperbolic case
A > 0, in the elliptic caseA < 0, and in the mixed case. The general hyperbolic
problem has been studied in [Mo]; in [Gr] the stable and unstable manifolds of the tori
are also determined. The elliptic and mixed cases have been considered in great detail in
several papers starting with [Me]; the reader will find, besides original results, a complete
description of the subsequent results and the relevant references in the recent paper [R],
with some very recent further results, on a subject that remains under intense study, in
[XY,BKS,Y].

Our case is of the form of (1.10) with replaced by A ; in our case the perturbation is
small because it is proportional&owhile in (1.10) one makes also use of the possibility
of takingA, B, g small to obtain a small perturbation. By classical perturbation analysis
our case can be reduced to the theory of (1.10).

We consider the novelty of this paper to be the technical analysis of the analyticity,
in ¢, of the resonant (i.e. of dimension lower than maximal) hyperbolic invariant tori of
(1.1) in a region as large as Figure 1 based on the Lindstedt series method; the same
analyticity domain can be obtained by a careful analysis and a nontrivial extension of
the methods of [Mo].

This is partially done in [T], wher€ > dependence oy/s was proved at = 0. And
it is done in a more special case in the paper [JLZ], where a scenario very similar to the
one provided by our conjecture (see below) emerges.

Closer to our approach is the analysis in [CF]: however the model studied there
differs from ours (see (2.24) of [CF]), and existence of hyperbolic low-dimensional tori
can be obtained for it without the need of performing the resummations which are on the
contrary essential in our case. The technique of [CF] can be extended to cover also our
case (which coincides with Eq. (2.22) of [CF]), but it would still make reference to the
coordinate changes which are characteristic of the methods of [Mo] (called “classical
transformation theory” in [CF]).

In fact one is also interested in asking whether the analyticity regiendan be
extended further to reacdome points on the negative real axis and whether the analytic
continuationte < 0 of the parametric equations of the hyperbolic tori can be interpreted
as the parametric equations of elliptic tori. We do not address the latter question: the
analysis performed in the present paper at first suggests to us that by the same methods
it should be possible to prove the following.

Conjecture 1.1. Consider the equations of motion (1.6) fore D, (Cp), and suppose
Bo to be such that

dp fo(Bo) =0,

I; ° ; . - (1.11)
95 fo(Bo) is negative definite.

Is it possible that there exist constamts > 0,& > 0 and a subsek,, C [—&o, 0]

with length> (1 — gé) £o such that the functions of Theorem 1.1 above are analytically
continuable outside the domalby along vertical lines which start at points interior to
Do and end orl,,, where their boundary value is real and gives the parametric equations

of an invariant torus for a# € I, on which the motion according to (1.6)s = w?
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The extended domain shape, near the origin, suggested in the above conjecture is
illustrated in the following Fig. 1

complex
e—plane

Fig. . The domainDg of Fig. 1 can be further extended? The conjecture above asks whether the extended
analyticity domain could possibly be represented (close to the origin) as here: the domain reaches the real
axis at cusp points which are ifg, and correspond, in the complexplane, to the elliptic tori which are the
analytic continuations of the hyperbolic tori. The analytic continuation would be continuous through the real
axis at the points of,,. The cusps would be at least quadratic

2. Formal Solubility of the Equations of Motion

2.1. Formal expansion and recursive equations. We look for a formal expansion

a(vp;s):Zska(k)(zﬁ): Yo "Vay(e) = Ze Y ral,

veZ veZ’ (2.1)
b(y; 8)—Zé‘kb(k>(l/l)— Ze”’wb (8)—28 Ze”"ﬁb(k)
vezZ’ vezZ’

where we have not explicitly written the dependencedgn
Then to ordek the equations of motion (1.6) become

(@ v)?a =81,

(2.2)
(@ - V)2 bgk) — [a f](k 1)
where, given any functiol admitting a formal expansion
0 .
F(¥;¢e)= Zsk Z el”'wF‘Sk), (2.3)

k=1 veZ’

we denote b)[F](k) the coefficient with Taylor labet and Fourier labeb.
We can write

[0 f1%~ H_ ZZ Z (1“0)p+1aqfvo(ﬂo)<l_[a(k ))( 1—[ b(k ))’

p=0 q>0 j=p+1
(2.4)
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where O< k; < kforall j = 1,..., p + ¢ and thex denotes that the sum has to be
performed with the constraints
ptq ptq
1+) kj=k  vot+ ) vi=v (2.5)
j=1 j=1

and, analogously,

(k D ZZ !Z* (ivo)p8q+lfvo(ﬂ0)(n a,’ )>( H b(k ))’

p=040 " j=1 j=p+1
(2.6)

with the same meaning of the symbols.

2.2. Treeformalism. By iterating (2.2), (2.4) and (2.6), one finds that one can represent

graphicallya, a® and bf,k) in terms oftrees. The definition and usage of graphical tools
based on tree graphs in the context of KAM theory has been advocated recently in the
literature as an interpretation of the work [E]; see for instance [G1,GG,BGGM] and
[BaG].

A treef (see Fig. 2 below) is defined as a partially ordered set of points, connected
by lines. The lines are oriented toward tiheot, which is the leftmost point; the line
entering the root is called threot line. If a line £ connects two points; andv, and is
oriented fromw, to v; we say thab, < v1 and we shall write) = v and¢ = ¢,,; we
shall say also that exits fromv, and enters;.

There will be two kinds of points: theodes and theleaves. The leaves can only be
endpoints, i.e. they have no lines entering them, but an endpoint can be either a node
or a leaf. The lines exiting from the leaves play a very different réle with respect to
the lines exiting from the nodes, as we shall see below. We shall denatgethg last
(i.e. leftmost) node of the tree, and By the root line; for future convenience we shall
write vy = r butr will not be considered a node.

root

v11

Fig. 2. A treeo with 12 nodes; one hagyy=2, py; =2. pv, =3, pu3=2.pv,=2. The length of the lines should be
the same but it is drawn of arbitrary size
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We shall denote by (0) the set of nodes, b (0) the set of leaves and hy(6) the
set of lines.

For any¢, € 6 fixed, we shall say that the subsetf€ontaining?, as well as all
nodesw =< v and all lines connecting them issabtree of 6 with rootv’: of course a
subtree is a tree.

Given a tree, with each nodewe associate aode label v, € Z", and to each leaf
v aleaf label «, € N. The quantity

k=VOI+ Y x (2.7)

veL(0)

is called theorder of the trees.
With any line¢ exiting from a nodev we associate two labelg, y, assuming the
symbolic valuesr, 8 and amomentumlabel v, € Z", which is defined as

vy =vy, = Z Vo, (2.8)

weV (@)
w=xv

while with any line¢ exiting from a leafv we associate only the labelg = y, = .

We can associate with each node also some labels depending on the entering lines and
on the exiting one: théranching labels p, andg,, denoting how many lineé having
the labely, = @ and, respectivelyy, = 8 enterv, and the labe$,, defined as

1, If Ye, = ,3,
8y = v 2.9
v iO, if ye, = c. (2.9)
Then with each node we associate node factor
11 . Pot+(1=5y) 48,
Fo= = (in) 83 fu,(Bo). (2.10)
Pv-qv-

which is a tensor of rank, + ¢, + 1, while with each leab we associate keaf factor
(to be defined recursively, see below)

L, =b%), (2.11)
0

whichis atensorofrank 1 (i.e. a vector); to each lirxiting from a node we associate
a propagator

(2.12)

which is a (diagonal) x d matrix, while no small divisor is associated with the lines
exiting from the leaves. For consistency we can define

Ge=38yy, 8y8 L, (2.13)

for lines exiting from leaves, so that a propagaforis in fact associated with each line.
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Remark 2.1. Note that we can write (2.12) in the form

Gooa Gy af
Gy = ( aa G, ) 2.14
E = \Grpa Gupp (2.14)

whereGy g, Geap, Ge,go ANAGy g arer x r,r x s, s x r ands x s matrices. By
construction one haS, .5 = Gzﬁa =0, and
Gi=Gw-v), G'(-x)=G"x)=GCw); (2.15)

here and hencefortli and t denote, respectively, the transposed and the adjoint of a
matrix.

2.3. Tree values and reduced treevalues. Call ©; , , the set of all trees of ordérwith
v, = v andyg, = y, if £o is the root line. Set

r, fory =a,
d, = 2.16
4 {s, fory = 8; ( )

we can define an applicatiorel : 9, , — R%, defined as
vale)=( [T 7)( IT £)( IT ). (2.17)
VeV (o) veL(6) LeA®)

which is called thevalue of the treed.
We can define also

Val’(@):( I1 F,,)( I1 LU)< I1 Gg), (2.18)
veV(0) vel(9) LeA()\lo

where, as usuafp denotes the root liné/al’ (9) is called thereduced value of the treed.
The following cancellation is proved in Appendix Al.

Lemma 2.1. Suppose that for all trees 6 € ©y , , the set A() \ £o does not contain
any lines ¢ with momentum v, = 0. Then Val’(9) iswell defined and

> val'e) =o. (2.19)

0€0k 0,0

2.4. Existence of formal solutions. The following result states the existence of formal
solutions to (1.6) which are conjugated to the unperturbed motion (1.5), provided the
value,, is suitably fixed.

Lemma 2.2. One can write, formally, for all v € Z" \ {0},

af= > va®),

96@1(1“,(,

bl = > val@).

0€Bk v.p

(2.20)
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while ag‘) = 0and

o) = ~[22fo0] T Y va'®). 2.21)

0€Oi 10

where the quantities Val (6) and Val’(9) are defined by (2.17)and (2.18), respectively,
and * imposesthe constraint that the tree whose reduced val ue is given by aﬁ fo(Bo) bg‘)
has to be discarded fromthe set ©;10 5. If one has

dg fo(Bo) =0,

2.22
detd; fo(Bo) # O, (222

then there exists a unique way to fix bg‘) for all k¥ € N such that af,k) and bﬁk) are finite
for all v € Z? \ {0} to all perturbative ordersk.

About the proof. The proof of (2.20) is by induction. In order to show that it is possible

to fix uniquelybg‘) so that the existence of a formal solution follows, the key is to realize

that no division by zero occurs in the recursive solution of (2.2): the coeffichéﬁts
are determined precisely by imposing the validity of this property for the knsgh
ye =y, = B. In fact the condition to avoid dividing by zero takes, to all orders ¢,

the forma2 fo(Bo) by’ = some vector determined recursively, so tht is defined by

exploiting the assumption (2.22). A further key point is to realize that the lingih
ye = v, = a and carryingv, = 0 never appear, and the previous lemma is enough to
imply this. Details of the proof are given in Appendix A20

Remark 2.2. By (2.2) and by Lemma 2.2 one has

[or] = Y VAo,

v
0€0O p.o

[aﬂf]ik) = 3 va'e),

0€Ok v,

(2.23)

as one realizes by comparing (2.17) with (2.18).

Remark 2.3. As it will follow from the analysis performed in the next sections, the
tools described above are sufficient to prove the convergence (hence the analyticity) of
the perturbative expansions (2.1), tosmall enough, in the case of periodic solutions
(i.e.r = 1): in fact we shall see that the main technical difficulties shall arise from the
problem of bounding the propagators, while, in the case of periodic solutions, we can
simply boundG, by the inverse of the rotation vectar (which is a number in such a
case).
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3. Sdf-Energy Graphs

3.1. Trimmed trees. With respect to the papers [GG,BGGM] and [BaG], the trees here

carry also “leaves”: each leaf can be decomposed in terms of trees, bbé’%hilsgiven
by

-1
by’ = ~[93 o8| G5, (3.1)

with Gg‘”) expressed as the sum of reduced values of trees of brdet (see Ap-
pendix A2); more precisely

G(()k+l) _ Z Val/(e) _ BEfO(ﬁO)bg() = Z Val/(e), (32)

0€B110p 9€0} 104

wherex has been defined after (2.21): it recalls that the tree whose reduced value is
given byaéfo(ﬂo) bg‘) has to be discarded from the st 1.05.

Of course each leaf can contain other leaves and so on. If each time a leaf is encoun-
tered, it can be decomposed into trees, at the end we have that the value af aaree
be expressed as product of factors which are values of trees without leaves, that we can
call, as in [Ge]trimmed trees. The sum of the orders of all the so obtained trimmed trees
is equal tok, if the treed belonged tady , , ; moreover for all trimmed trees the order
equals exactly the number of nodes, as it follows from (2.7) by using that a trimmed tree
has no leaves.

3.2. Multi-scale decomposition and clusters. Given a vectot € D (Cp), definewg =
2" Co_lw. Then there exists a sequer(§g},cz, , With y, € [2n—1 2", such that

llwo - vl —yp| = 2" if0 < |v| < 270 FI/T (3.3)

foralln < 0 and for allp > n, and|wg - v| # y, forall v € Z and for alln < 0; the
existence of such a sequence (dependingpis proved by proposition in Sect. 3 of
[GG].

Given a line¢ with momenturmy, we say that has scale label, = 1 if

lwo - vel > yo0, (3.4)

and scale label; =n € Z\ Z, if
Yn—1 < |wo - v¢| < ¥y. (35)

Once the scale labels have been assigned to the lines one has a natural decomposition
of the tree into clusters. Aluster T on scalen is a maximal set of nodes and lines
connecting them such that all the lines have scales n and there is at least one line
with scalen; if a clusterT’ is contained inside a clust@t we shall say thaf” is a
subcluster off. Themr > 0 lines entering the clustdt and the possible exiting line
(unique if existing at all) are called tlesternal lines of the clusterT'; given a cluste@
on scalen, we shall denote by; = n the scale of the cluster. We c&ll(9) the set of
all clusters in a treé.
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Given a clustei € T(9), call V(T), L(T) and A(T) the set of nodes, the set of
leaves and the set of lines ©f respectively. Let us define also

vy = Z vy, (3.6)

veV(T)

and denote by (0) the set of all clusterd with vy = 0. Given a clustef call Ty the
subset ofT" obtained fromT" by eliminating all the nodes and lines of the subclusters
T’ c T such thawy: = 0, and denote by (Tp) and A (Tp) the set of nodes and lines,
respectively, infg.

3.3. Sdf-energy graphs. We call self-energy graphs of a treef the clusters” € 7(0)
such that

(1) T has only one entering Iin@% and one exiting lingk.,
(2) T € To(9), i.e.

vr= Y =0, (3.7)
veV(T)
(3) one has
D vyl g2 (3.8)
veV (To)

wheren 2 = n is the scale of the lin€7.

We say that the Iiné% exiting a self-energy graph is aself-energy line; we call a
normal line any line of the tree which is not a self-energy line.

Given a self-energy grapfi € 7(0) we say that a self-energy grafif € T ()
contained inT is maximal if there are no other self-energy graphs internal'tand
containing7’. We say that a self-energy graffhhasheight Dy = 0 if it does not
contain any other self-energy graphs, and that it has héght D € Z., recursively,
if it contains maximal self-energy graphs with height- 1.

Given a linet € A(Tp) with momentunmy, its reduced momentum v? is defined as

v?: Z Vo, =4, (3.9)

weV(Tp)
w=xv

and it can be given a scaié such that
%o < [oo - v9| < 0 (3.10)

we callngJ thereduced scale of the lineZ.

Remark 3.1. (1) Given a self-energy graph, for all lines¢ € A(T), one can write, by
setting? = ¢,,

vy = v? + oy, (3.11)
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Fig. 3. An example of three clusters symbolically delimited by circles, as visual aids, inside a tree (whose
remaining lines and clusters are not drawn and are indicated by the bullets); not all labels are explicitly shown.
The scales (not marked) of the lines increase as one crosses inward the circles boundaries: recall, however,
that the scale labels areO. If the mode labels ofvs4, vs) add up taQ the clusterT” is a self-energy graph. If

the mode labels ofvs, vs, v2, ve) add up to0 the clusterT”’ is a self-energy graph and suchiisf the mode

labels of(v1, v2, v7, va, vs, V2, vg) add up td). The graphr’’ is maximal inT . If the three clusterg, 7/, T”

are self-energy graphs then their heights are respectivélyl2

wherev = V2 is the momentum flowing through the Iinfé enteringT, while oy is

defined as follows: writing = ¢, thenoy, = 1 if E% enters anoda < v andoy =0
otherwise.

(2) Note that the entering Iim?T must have, by the condition (3.7), the same momentum
as the exiting lineX.,, hence, by construction, the same scqbe_ Mgl

(3) The notion of self-energy graphs has been introduced by Eliasson who named them
“resonances”, [E]. We change the name here not only to avoid confusion with the notion
of mechanical resonance (which is related to a rational relation between frequencies of
a quasi-periodic motion) but also because the “tree expansions” that we use here (also
basically due to Eliasson) can be interpreted, [GGM], as Feynman graphs of a suitable
field theory. As such they correspond to classes of self-energy graphs: we use here the

correspondence to perform resummation operations typical of renormalization theory.

3.4. Value of a self-energy graph. Given a self-energy graph and denoting byV (T)|
the number of nodes ifi, define theself-energy value as

VT(w-v)zeW(T)|< I1 F)( I1 L)( I1 G@), V(T) > 1, (3.12)

veV(T) velL(T) LeN(T)

seen as a function @ - v, if v = v;2 = v,1 is the momentum flowing through the

external lines of the self-energy grajph Recall that we are considering trimmed trees,
so that no leaves can appear; see Sect. 3.1.
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We can have four types of self-energy graphs depending on thedypeg of the
Iabels;/él andy@:
T

VZ% Ve%

1 o o
3.13
5 " p (3.13)

3 B o

4 B B

Given a tred, define
N,(0) ={t € A®) : ng =n}, (3.14)
and
M@©) = Y |vl. (3.15)
veV(0)

Call N;i(9) the number of normal lines on scaleand callR, (9) the number of self-
energy lines on scake Of course

Nau(8) = NJ(©) + R (6). (3.16)

Then the following result holds; it is a version of the key estimate of Siegel’s theory
in the interpretation of Bryuno [B] and P&schel [P]. This is proved as in [G1] or [BaG],
for instance; however, for completeness, a proof is also given in Appendix A3.

Lemma 3.1. For any tree6 € ©, , , onehas
N ©) <cM®) 2", (3.17)

for some constant c.

3.5. Localization operators. For any self-energy graph we define
LVr(@-v) =Vr(0) + (@-v)dVr(0), (3.18)

wheredVr denotes the first derivative 0fy with respect to its argument; the quantity
Vr(0) is obtained fromVr (@ - v) by replacingv, with v? in the argument of each
propagatoiG, while 9V (0) is obtained fromVr (w - v) by differentiating it with respect
tox = w - v, and thence replacing with v‘g in the argument of each propagatey.

We shall callZ thelocalization operator and £LVr (w - v) thelocalized part of the
self-energy value.



434 G. Gallavotti, G. Gentile

Fig. 4. The sets/; andV; in a self-energy graph; note that, even if they are drawn like circles, the sgts
andV, are not clusters. One ha%:vy3+vv4+vv5+n6 andv= vyz ; of coursey,1 =v,» andvéz—(vv1+v12) by

z
definition of self-energy graph. The black balls represent the remaining parts of the trees. The labels are not
explicitly shown.

3.6. Families of self-energy graphs. Given a treg containing a self-energy graph,

we can consider all trees obtained by changing the location of the no@dgérinte that

Ty is defined after (3.6)) which the external linesTfare attached to: we denote by
Fr,(0) the set of trees so obtained, and calh# self-energy family associated with the
self-energy grapiT. And we shall refer to the operation of detaching and reattaching
the external lines, by saying that we ahifting such lines.

Of course shifting the external lines of a self-energy graph produces a change of the
propagators of the trees. In particular since all arrows have to point toward the root, some
lines can revert their arrows.

Moreover the momentum can change, as a reversal of the arrow implies a change
of the partial ordering of the nodes inside the self-energy graph and a shifting of the
entering line can add or subtract the contribution of the momentum flowing through it.
More precisely, if the external lines of a self-energy gr@re detached then reattached
to some other nodes i¥i(T'), the momentum flowing through the lifee A(T) can
be changed intd:v? + ov, with o € {0, 1}: if we call V; and V> the two disjoint sets
into which¢ dividesT (see Fig. 2), such that the arrow superposed igrdirected from
Vo to V; (before detaching the external lines), then the sig# i§ the exiting line is
reattached to a node insidg and it is— otherwise, whilex = 1 if the entering line is
reattached to a node insidie when the sign is- and to a node insid&; when the sign
is —, ando = 0 otherwise.

Referring to (3.13) for the notion of type of self-energy graph one shows the existence
of the following cancellations (the proof is in Appendix A4).
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Lemma 3.2. Given atree 9, for any self-energy graph T € 7 (6) one has

0. if Tis of type 1
(@-v)BYy . if Tisof type 2

Y. LVrw-v) = LR (3.19)
O/Efro(e) ((0 : V)B]:To(e), if Tis of type 3
AF7 ) if Tis of type 4

wherev = v,z , the sumis over the self-energy family associated with 7', and Az, ),

B’ and B’, are matricess x s, r x s and s x r, respectively, depending only
To®) Fro(®)

on the self-energy graph T'; in particular they are independent of the quantity w - v.

3.7. First step toward the resummation of self-energy graphs. Let6 be atre® € ©, 1,

with a self-energy grapii. Definedy = 6 \ T as the set of nodes and linessobutside

T (of coursedg is not a tree). Consider simultaneously all trees such that the structure
0o outside of the self-energy graph is the same, while the self-energy graph itself can be
arbitrary, i.e.T can be replaced by any other self-energy graphvith ky. > 1. This
allows us to define as a formal power series the matrix

Mw-v;e) = Z Vri(®-v), (3.20)

0=6pUT’

where the sum is over all treéssuch that \ T is fixed to befp and the mode labels
of the nodes € V(T') have to satisfy the conditions (1)—(3) in Sect. 3.3 defining the
self-energy graphs.

The following property holds (the proof is in Appendix A5) as an algebraic identity
between formal power series.

L emma 3.3. The following two properties hold: (1) (M (x; €))7 = M(—x; ¢), and (2)
(M (x; e;))Jr = M (x; ¢); thelatter means that the matrix M (x; ¢) is self-adjoint.

Remark 3.2. (1) The functionM (w - v; ¢) depends omr but, by construction, it is inde-
pendent oflp: hence we can rewrite (3.20) as

M@-vie)=Y V(@ v), (3.21)
T/

where the sum is over all self-energy graphs of order 1 with external lines with
momentunw.

(2) In (3.20) or (3.21), ifyy—1 < |wo - v| < yu, the sum has to be restricted to the
self-energy graph%’ on scalei7+ > n + 3. Writing, for any line¢ € T, v, as in (3.11)
one has

’wo : v?‘ > 27c5tCo ]vg\’f > 2f( 3 |vv|)7r > QT+, (3.22)
veV (Tp)
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while |wg - v| < 2", so that, by using again (3.11), one obtains
lwg - vg| > 272"+ — 21 5 12, (3.23)

which impliesny > n + 3.
(3) The matrixM (w - v; ) can be written as

vy — [Maa(@-v;€) Mog(@ -5 €)
M(w'v, 8)_ <Mﬁa(w'V; g) Mﬁﬁ(wv,é'))’ (324)

whereMyq (@ - v; ), Mug(@ - v; ), Mgy (@ - v; &) andMpg(w - v; &) arer x r,r x s,
s x r ands x s matrices. It is easy to realize that (up to convergence problems to be
discussed in Sect. 5)

Mao(@ - vi€) = O(e%(@ - 1)?),
Myp(® - v; ) = 02w - v)), (3.25)
Mgg(@ - v; 8) = O(e) + O(e%(w - v)?).

The proportionality ofMyq (@ - v; €) to (@ - v)2 and of Myg(w - v;e) tow - v is a
consequence of Lemma 3.2. First order computations already give, for instance,

Mg (@ - v; &) = £05 fo(Bo) + O(c2) + O((@ - v)?),

1
Myp(@ - v; &) = —26% (w-v) _—
a’B v1+2112::0 (w ’ v2)3

[vq|+lvp|<2~(1+3)/7

(9208 f51(B)93 fo2(Bo)—v2 11 (Bo)v20 fo(Bo) | + 0@ - )
(3.26)

wherey,_1 < |wg - v| < y,. ThereforeMgg(w - v; &) # 0 by hypothesis (see (1.8)),
andMqg(w - v; &) is generically nonvanishing.

e - . y .
(4) LEmma 3.3impliesthat, by defining the matnafé}s,To(g) a”dBfro(e) asinLemma3.2,
one has

T
1 _ ”
B o) =~ (Briyo) - (3.27)

3.8. Changing scales. When shifting the lines external to the self-energy graphs, the
momenta of the internal lines can change. As a consequence in principle also the scale
labels could change; however this does not happen, as the following result shows; for
the proof see Appendix A6.

Lemma3.4. For all lines¢ € A(®) onehasny = n?; in particular this implies that,
when shifting the lines external to the self-energy graphs of atree 6, the scale labels ny
of all line ¢ € A(#) do not change.
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4. Resummations of Self-Energy Graphs: Renormalized Propagator s

4.1. Renormalized trees. So far we considered formal power expansions.iBy intro-
ducing the functiorh = (h,, hg) = (a, b), we can write the functioh(y, Bg; &) =
h(y; ¢) as

h(¥; &) = Z ¢ Yh,(e), 4.1)

vezZ’

because we are looking for a solution periodigire T".
In terms of the formal power expansion envisaged in Sect. 3, we can define a solution
“approximated to ordet” as

k
h(=(e) = 3 e¥ht), h& = > val@), (4.2)

96@,\,/1‘”/

where®y , , is defined in 2.3, an¥al (9) is given by (2.17).

However we can define a different sequenceggroximating functions ﬁ[k](lll; g),
formally converging to the formal solution (as we shall see in Proposition 5.4 below),
by defining it iteratively as follows.

Denote by@kRv the set of all trees of ordérwithout self-energy graphs and with

labelsvy, = v and ve, = y associated with the root line; we shall c@[2 y the set

of renormalized trees of orderk (and with labels andy associated with the root line).
Given atre® € OkRv Y and a clustef” € 7(9), by extension we shall say thétis a
renormalized cluster.

We can also consider a self-energy graph which does not contain any other self-energy
graph: we shall say that such a self-energy graphremermalized self-energy graph;

of course no one of such clusters can appear in any tr@éﬁ'ny.
For a renormalized tre@ of arbitrary orde’, define

@o-([1A)([Te)( oY) wo

veV (9) veL(9) LeA ()

with the dressed propagators given by

—[0 _
Gik] = (@) 15, . (4.4)
EE] =[((()'V€)2 ]I__M[k](w.v[;g)]7 s fork > 1,

where the sequend@/®(w - v; &)}ren is iteratively defined as the sum of the values

of all renormalized self-energy graphs which can be obtained by using the propagators

k—1]
GEZ ,l.e.as

MU@-viey= > VW),

renormalizedl’

oo (1 R)( T 2)( T o).

veV(T) veL(T) LeA(T)

(4.5)
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where|V (T)| is the number of nodes ifi; we can also defind/[%(w - v; &) = 0. The
leaf factorsL, in (4.3) are recursively defined as

-1 ’
_ plke] 2 [k]
Ly = b = —[03 fo(Bo) | ER: va'! o), (4.6)
Ge(@wfo_ﬁ

where

W["]’(e):( I F,,)( I Lv)( I EQ’C‘”), 4.7)

veV () vel(6) LeA(0)\lo

andx has the same meaning as after (3.2).

To avoid confusing the value of a renormalized tree with the tree value introduced in
(2.13), we shall call (4.3) theenormalized value of the (renormalized) tree.

Then we shall write

e =Y "R,

vezZ’"

o0 / , (4.8)
—lk r—[k,k —[k.k ——k
e =Y Ry e, Ao = Y vae.

k'=1 ee(-)]?w

where the last formula holds for £ 0, because for = 0, one has (4.6) foy, = 8,
while Rl = 0.

Remark 4.1. Note that if we expand the quantity/*(w - v; ¢) in powers ofe, by

expanding the propagato@kil], we reconstruct the sum of the values of all self-energy
graphs containing only self-energy graphs with heifh& k. Therefore if we expand
M+ (g . v; ¢) in powers ofs we obtain the same terms as if expanditff! (w - v; ¢),

plus the sum of the values of all the self-energy graphs containing also self-energies
graphs with height + 1, which are absent in the self-energy graphs contributing to
M™ (@ . v; ¢). Such a result will be used in Appendix A7 in order to prove the following
result.

Lemma 4.1. The power series defining the functionsﬁ[,k] (&), truncated at order k' < k,
coincide with the functions hf,fk/) (¢) given by (4.2).

5. Convergence of the Renormalized Perturbative Expansion

5.1. Domains of analyticity and norms. Consider in the complex-plane the domain
D¢, (p) in Fig. 5 below: ifp denotes the half-opening of the secidy, (¢), then the
radius of the circle delimitind,, (¢) will be of the forme (¢) = (r — ¢)eo (See below).

We shall defing| - || an algebraic matrix norm (i.e. a norm which verifig$B| <
IIA]l || B|| for all matricesA and B); for instance| - || can be the uniform norm.

The propagator@%k] in (4.4) satisfy interesting-independent bounds described and
proved below.
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e-plane

Dso (®)

Y
v

Fig. 5. The domainp, (¢) in the complex-plane: the half-opening angle of the sectapisr but, otherwise,
arbitrary, and the radius of the circle delimitidig, (¢) is given bye(¢) = (7 — ¢)eg

Proposition 5.1. Let D,,(¢) beobtained fromthedisk of diameter eg > 0inthecomplex
£-plane by taking out a sector of half-opening = —¢ around the negativereal axis. Assume

that the propagators 55‘] =GN vy; e) satisfy
1
22

T—@Xx

(5.1)

— [k T — [k
(Y e) =" xo,  [6%we)] <
for all |e| < (;w — @)eo, if g is small enough. Then there is a constant B such that,

summing over all renormalized trees 6 with |V (8)| = V nodes the values [Val'"" (6)],
one has

=k V L le1Bs\"
s > [vate) s(—’) ,

T =
QR
QeOV’v‘y
\%4
S=lk] le| B ks
3 ]vm ©) < (2L /8, (5.2)
T—¢
ee(-)?}
VY
M(0)=s

o] < | (3r80) | (F25)

for all s > O.

Remark 5.1. Note that, although the propagators are no longer diagonal, they still satisfy

the same property as (2.15), which is the crucial one which is used in order to prove both
the Lemmata 2.1 and 2.2 about the formal solubility of the equations of motion and the
Lemmata 3.2 and 3.3 about the formal cancellations between tree values.

Proof of Proposition 5.1. We can consider first trees without leaves, so that the tree values
are given by (4.3) with.(0) = @.
The hypothesis (5.1) implies that for all propagat@r%] one has

2

6 < o>, =2 (R0) 5.3
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Therefore the contribution from a single tree (see Sect. 2.3) is boundedigralD by

|4 1 no—1 /T
el (cr27200 D) T [ vl o™ £, Bo)|( ] caz- 2],
vevigy Prdv n=—00

(5.4)

whereV = |V ()|, having used that, for all treése @Ew, the numbew,, (9) of lines
with scalen in 6 satisfy the bound

N, (0) < cM@®) 2V =207 Z vyl (5.5)
veV ()

for some constant: an estimate which follows from the proof of Lemma 3.1 (see
Sect. A3.3). The bound (5.5) is used in deriving (5.3) for all lihes A (6) with scale
n¢ < ng, while forthe lineg with scale:, > nowe have used simply that the propagators
are bounded by',2-2("0—1D

If we use (recall that we are supposing that there are no leaves)

1 8 p+1
;|v|"+1 <(p+D ( ) evIMIr8,

K
1 g+l q —K|v|
1157 o] = e, (5.6)

Y (pota)=k-1,

VeV ()

for some constanf», and if we chooseg so that

o
§+ 2 Y 2 < %, (5.7)
n=|ng|+1

(e.g. we can choosey = min{0, —2t log 2 log((1 — 2‘1/f)/</(16clog 2)), then we
obtain the first bound in (5.2), where we can tdke= D s, with

Df = DOCSZ_(nO_l)F Z €_K|v|/4, (58)

veZ’

for some positive constarg. This follows after summing over all renormalized trees
with V nodes and without leaves: this can be easily done. The sum over the mode labels
can be performed by using the decay factor§”»!/8, while the sum over all the possible
tree shapes gives a constant to the paower

Furthermore the value/8 is so small that with our choices of the constants an extra
factor exp—« M (0)/8] has been bounded by 1 so that if, instead, the valud @f) is
fixed we obtain the second bound of (5.2).

So far we considered only trees without leaves. If we want to consider also tree with
leaves, we can proceed in the following way.
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Given a tree (with leaves) of ordet’, we can write its renormalized valva™! ®)
as the product of the value of a timmed tieéimes the factors of its leaves: simply
look at (4.3)), and interpret the renormalized value of the trimmedtize

W”‘](é):( I1 Fv)( I1 EE}"”), (5.9)

veV(6) LeA(H)

while the product

( I1 Lv> (5.10)

veL(0)

represents the product of the leaf factors (4.6) associated ta thy leaves ob; note
that in (5.9) we can completely neglect the propagators associated to the lines exiting
from the leaves, as (2.13) trivially implies.

The only effect of the leaves oﬁ[k]@ is through the presence of some extra
derivativesdg acting on the node factors corresponding to some nedesV (6); in
particular the momenta of the linéss A () are completely independent of the leaves
(which contributed to such momenta).

Each leaf whose factor contributes to (5.10) can be written as a sum of values of
renormalized treey, . .. , 1), according to (4.6); for each such tree, saywe can

write W[k] (6;) as a product of the renormalized value of the trimmed@r,etimes the
product of the factors of itsL(69;)| leaves. And so on: we iterate until only trimmed
trees are left. The sum of the orders of all trimmed trees equals theidmfehe tree).

Then we can see how the analysis performed above in the case of trees without leaves
can be modified when trees with leaves are also taken into account.

First of all note that if, when considering the trees whose renormalized values con-
tribute to the leaf factor (4.6), we retain only the trees without leaves, we can repeat the
analysis leading to (5.8), with the only difference that (as it can be read from (4.6)) one

~1 .
has a matrix[agfo(ﬂo)] acting on the reduced valuéal[k]/(@) and the tre® has

orderx, + 1 (henceV + 1, if V is the number of nodes éf as we are supposing that
has no leaves), so that the first bound in (5.2) has to be replaced with

b <[~ [Br060] T Y VAo
0eOTsy (5.11)
V+1

< | (430807 | <nD—_f¢) el”

so that we have an extra factor

¢ = | (080 4)| (24 (512)

with respect to the bound one obtains for (5.2): this yields the third bound in (5.2) for
leaves arising from trees which do not contain other leaves.

Now we consider any tree of orde; and we decompose it in a collection of trimmed
trees (as described abowg) 01, 0>, . . ., such that the root & is the root- of 8, while
the rootr; of each other trimmed tre®, i > 1, coincides with a node of some other
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trimmed tree. Moreover the propagators of the root lines of the trimmedéregs> 0,
can be neglected by the definition (2.13). Then the value of thettieecomes the
product of (factorising) values of trimmed trees.

Then we can define the clusters as done in Sect. 3, with the further constraint that
all lines internal to a cluster have to belong to the same trimmed tree. Then for each
trimmed tree the cancellation mechanisms described in the previous sections apply, and
for each of them the same bound as before is obtained.

Therefore foWp we can repeat the same analysis as for trees without leaves with the
only difference that the third of (5.6) does not hold anymore, and it has to be replaced
with

> (ot aq) =k—1+LO); (5.13)
veV(9)

as noted before the presence of the leaves implies that, for each of them, there is a
derivativedg acting on the node factor of some node V (), so that, with respect to
the bound (5.2), we obtain an extra fac(df(e)' (one for leaf).
Now we can consider the timmed treégs.. ... , 61|, and proceed in the same way.
With respect to the previous case, for each trimmedéye&e obtain an extra factar,
for each leaf attached to some node&ef Furthermore, as all the trimmed trees except
0o contribute to leaves, there is also an extra factpfor each of them.
At the end, instead of the first bound in (5.2) witly given by (5.8), we obtain

k/
(E22) cacart (5.14)

as the total number of leaves is less than the total number of lines with vanishing momen-
tum (hence less thait), we obtain the first bound in (5.2), provided that one replaces
the previous value (5.8) faB ; with

By = DyCoCs. (5.15)
The sum over the trees can be performed exactly as in the previous case.

In the same way one discusses the second and the third bound in (5.2), which follow
with the constanB given by (5.15)). This completes the proofu

Proposition 5.2. Let D,,(¢) be asin Proposition 5.1; then the matrices M*(® - v; ¢)
satisfy for € € D,,(¢) therelation

T
(MYae)) = MB—xse). (5.16)
Let also
M5 v ) MY (@ - v:
Mgy = (Mg (@250 (@220 (5.17)
Mﬁa(w-vgs) Mﬁﬂ(w-v;s)
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then, if y,_1 < |wo - v| < y, and gg is small enough, the submatrices M}[,k;,(w -p;€)
can be analytically continued in the full disk [wo - v| < y, and satisfy the bounds

|MBlex: o) < et/ -9 €42,
[M& o) < et/ = 9n? € 1l (5.18)

HMk](x €) — 38ﬂf0(ﬂ0)” < (lel/(r — @))% Cx2,

for all k € N and for a suitable constant C. Asacon%quence@kl verify (5.1) for all
k > 1, and therefore (5.2) holds for all k > 1.

Proof of Proposition 5.2. We consider the matrice®¥! defined in (4.5) and suppose
inductively that M*! verifies (5.18) and the analyticity property preceding it fog0
k < p—1; note that the assumption holds trivially foe= 0. Note also that (5.18) imply
that the propagato@%k] verify (5.1) foreg small enough and € D, (¢).
To defineM 1 we must consider the renormalized self-energy grdphed evaluate
their values by using the propagatﬁg’_l], according to (4.5).
[p-1]

Givenx = @ - v such thaty,_1 < |x| < y, for someg < 0, the propagator§,
have an analytic extension to the disk < y,42 and, under the hypotheses (5.16) and
(5.18), verify the symmetry property and the bound in (5.1), as is shown in Appendix A8.

We have (see (4.5))

0
Pl(x;¢) = Z Z V[T[j;l(x), (5.19)

h= q+3 renormalizedr’
nT h

where by appending the labeto V! (x) we distinguish the contributions 7! (x; &)
coming from self-energy graptfs on scale: (which is constrained to be ¢ + 3; see
Remark 3.2, (2)).

The vaIueV[T”](x) is analytic inx for |x| < y,4+2 and the sum over all”’'s with vV
nodes is bounded by

&€ —h/T
Vi@ )‘ (el fz/se—Kz "B, (5.20)

T
V(DI=v

because the mode labeis of the nodes) € V(T') must satisfy} .y (7, Vo] > 2-h/t
(recall that we are dealing with renormalized trees, so that for all cluster§ (6) one
hasTp = T, and use (3.8) and use Remark 3.2, (2)).
Since the symmetry property expressed by (5.1kfer p is implied by (5.16) and
this is the only property of the propagators that one needs in order to check the algebraic
Lemmata 3.2 and 3.3 (see Remark 5.1), we can conclude that the same cancellation

mechanisms extend to the renormalized self-energy vMHéGwv) (see Remarks A4.6
and A5.3). Therefore we see tl"h#”,]1 W,(x) will vanish atx = 0 to ordero,,,/, if we
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set

fory = a andy’ = «a,
fory =« andy’ = 8,
fory = gandy’ =q,
fory = gandy’ = 8;

Oyyr = (5.21)

oOr RPN

moreoverv“’] (x) — V'T{’}Lﬁﬁ (0) vanishes to order 2 at= 0.
By the analyticity inx for |x| < yu42 and by the maximum principle (Schwarz’s
lemma) we deduce from (5.10) that one has

P (|8|Bf) I Y %y’
T,h, V)//( ) —e K/8 5

Yh+2
Vi=v
5.22
o < (e1BDY opmeg(x \? (522
‘VThﬂﬁ(x) Thﬁﬁ()‘ —_K/ge )/h_+2 .

\V(T)I 14

Therefore we can use thaf_, ,se™? /"2 < By < co and thatV > 2 for

¥, y) € {(a, @), (a, B), (B, a)}, while V > 1 for (y, y') = (B, B), and the proof is
complete. O

5.2. Convergence of the sequence {M* (@ - v; )}1en. It also follows that there exists
the limit

lim M™(x:e) = M®(x: ¢), (5.23)
k—o00

with M1>l(x; &) analytic ine in D,y (¢): in fact the following result holds (the proof is
in Appendix 6.3).

Lemmab5.1. For all k > 1 one has
HM[]‘“Lll(x; e) — M"(x; &) H < éléé‘sgk, (5.24)

for some constants B; and B».

5.3. Fully renormalized expansion. We can now define the “fully renormalized” expan-
sion of the parametric equations of the invariant torus as the sum of the values of the

renormalized trees evaluated according to (4.3) @Eh_l] replaced by

-1
OO]()c;s) = (le—M[oo](x;s)> , X=w- vy (5.25)

The above discussion shows that the series converges foe dll,, and that it coincides
with the limit for k — oo of ﬁ[k](w; ¢), which therefore exists.
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The radius of the domaib,, (¢) is (r — ¢) &g, if ¢ is the half-opening of the sector

D, (¢), because the norms of the propaga@@os?](x; ¢) are bounded by 2x2(r —¢))
(see A8.3).

Therefore the fUﬂCtiOﬂE[kl(lﬁ; £) converge in a heart-like domain

L Do) = Do (5.26)

—T<p<m
whose boundary, for negativelose to 0, is such that Iifz) is proportional tqRe(¢))2.

Proposition 5.3. There exist positive constants eg, B, B1 and Bo, such that if

hiy )= Y Va'™@).

Ofy 5.27
Tl —oo] (5.27)

o= ( 1 #)( I1 #)( [T )

vev(9) veA(®) LeL®)
the renormalized series
oo

E[OO](W’ 8) — ng Z eiV'Wh%l(g) (528)

k=1 veZ’

converges in the heart-shaped domain (5.26)and its coefficients are bounded by

| < BuBs, N1

ath;’g{,(s)( < NZHIBN B BE for N > 0,
(5.29)

uniformlyine € Dy.

5.4. Comments about (5.29) We leave out, for simplicity, the proof that thé!?*+1 is
the appropriate power &¥! that follows from our analysis. Although it is quite clear that
one has obtained a remainder bound proportional to a pow®t,aderived already in

[JLZ], we evaluated it explicitly in the hope that the power series expansﬁﬁO 3)(1#; )
(hence oh(y; ¢), see Proposition 5.4 below) at= 0 could be shown to be summable

in the sense of the Borel transforms or of its extensions. Since we have analyticity of
in the domainDg of Fig. 1 in Sect. 1 we would need that the remainder in (5.29) behaves
at most asvV!2, see [CGM]. Since > r — 1 andr > 2 (in order to have quasi-periodic
solutions) we see that (5.29) is not compatible with the general theory. Therefore one
needs more information than just (5.29) in order to be able to reconstruct from the power
series at the origin the full equation of the invariant torus.

5.5. Conclusions. In Appendix A10 we show that the funCtiCb_T[IOO](qh; ¢), i.e. the limit

for k — oo of the approximated functior‘r_a;[k](w; ¢), solves the equations of motion
(1.6), so proving the following proposition: this concludes the proof of Theorem 1.1.
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Proposition 5.4. One has, formally (i.e. order by order in the expansion in ¢ around
e=0)

Ry e) = Jim s e) = hays o), (5.30)

where h(yr; ¢) isthe formal power series which solves Eq. (1.6).

6. Concluding Remarks
6.1. Some extensions. The case of more general Hamitonians of the form
H = ho(A) + ef (, A), (6.1)

with (e, A) € T¢ x A, whereA is an open domain iR¢, should be easily studied as

the case treated here to show existence and regularity of invariant tori associated with
rotation vectorss € R among whose components there arational relations, while

the independent ones verify a Diophantine condition.

6.2. Periodic orbits. The fully resonant case= 1 corresponds to periodic orbits is of
course a special case of our theory, but it is well known. Note that in such a case the
series expansion envisaged in Sect. 2 is sufficient to prove existence (and analyticity) of
the periodic solutions, and no resummation is needed; see Remark 2.3.

6.3. (Lack of) Borel summability. As pointed out in the concluding sentence of Sect. 5
the results that we have are not sufficient to imply (extended) Borel summability of the
formal power series at the origin of the parametric equations of the torus, hgfot).

The resummations that lead to the constructioh@f; ¢) are therefore of a different
type from the well known ones associated with the Borel transforms.

Appendix Al. Proof of Lemma 2.1

Al.1. Proof of the lemma. Part I: Neglecting the factorials. Consider all contributions
arising from the tree8 € ®q x : We group together all trees obtained from each other
by shifting the root line, i.e. by changing the node which the root line exits and orienting
the arrows in such a way that they still point toward the root. WeE#&)l) such a class
of trees (her@ is any element inside the class).

The reduced valuegal’ (9”) of such tree®’ e F(0) differ because
(1) there is a factoiv, depending on the nodeto which the root line is attached (see
the definition (2.9) off,), and
(2) some arrows change their directions; more precisely, when the root line is detached
from the nodeyg and reattached to the nodgf P(vg, v) = {w € V(0) : vo > w > v}
denotes the path joining the nodgto the nodev, all the momenta flowing through the
lines ¢ along the pathP(vo, v) change their signs, the factorials of the node factors
corresponding to the nodes joined by them can change, and the propagatars
replaced transposed.
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The change of the signs of the momenta simply follows from the fact that

> v, =0, (A1.1)

VeV (9)

ash € B0 4: by the property (2.15), the propagator does not change.

The change of the factorials contributing to the node factors is due to the fact that
for the nodes along the path(vg, v), an entering line can become an exiting line and
vice versa, so that the labelg, andg, can be transformed intp, + 1 andg, + 1,
respectively: this does not modify the facta)vv)l’ﬁ(l“sv)ag””” fo,(Bo) in (2.9) —up
to the factoriv, (if the root line is attached to), which has been already taken into
account —, as one immediately checks, but it can produce a change of the factorials.

If we neglect the change of the factorials, i.e. if we assume that all combinatorial
factors are the same, by summing the reduced values of all possible trees inside the class
F(6) we obtain a common value timégimes (A1.1), and the sum gives zero.

Al1.2. Proof of the lemma. Part Il: Taking into account the factorials. One can easily
show that a correct counting of the trees implies that all factorials are in fact equal: to do
this it is convenient to usipological trees instead of the ususamitopological used so

far (we follow the discussion in [BeG]).

We briefly outline the differences between the two kinds of trees, deferring to [G2] and
[GM] for a more detailed discussion of the differences between what finally amounts to a
different way to count trees. Define a group of transformations acting on trees generated
by the following operations: fix any nodee V (9) and permute the subtrees entering
such a node. We shall call semitopological trees the trees which are superposable up
to a continuous deformation of the lines, and topological trees the trees for which the
same happens modulo the action of the just defined group of transformations. We define
equivalent two trees which are equal as topological trees.

Then we can still write (2.15) restricting the sum over the set of all nhonequivalent
topological trees of ordet with labelsv,, = v andy,, = y (we can denote it by
@}f'j,y), provided that to each nodec V (9) we associate a combinatorial factor which
is not the(p, '¢,!) 1 appearing in (2.9).

In fact for topological trees the combinatorial factor associated to each node is differ-
ent, because we have to look now to how the subtrees emerging from each node differ.
For semitopological trees we have a factpp!q,!)~* for each node, wherep, and
gy are the numbers of lineswith y, = a andy, = 8, respectively, entering: except
for the labelsy;, we are disregarding the kinds of the subtrees enteriisg that in this
way we are counting as different many trees otherwise identical. On the contrary, in the
case of topological trees, we consider one and the same tree those trees that are different
as semitopological trees, but have the same value because they just differ in the order in
whichidentical subtrees enter each nodetherefore, ifs, 1, ... , sy, j, are the number
of entering lines to which are attached subtrees of a given shape and with the same labels
(sothats, 1 + -+ 5y, j, = pv + qv, 1 < ju < pv + qv), the combinatorial factor, for
each node, becomes

1 Polgy! _ 1 .
Dolgy! sual..isy ! spal.. sy !

(AL.2)
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note in the second factor in the above formula the multinomial coefficient corresponding
to the number of different semitopological trees corresponding to the same topological
tree, for each node.

So in terms of topological treﬁk) andbf,k) can be expressed as a sum of tree values
Val'°P(9), where

vmmWe)z( I1 EPQ( I1 LO( I1 GO, (AL.3)

VeV (0) veL(9) LeA ()

where

t 1 . Pu+(1-3y) w8y
AP (v, 90 £, (Bo). (A1.4)
sp,1! Su, jp! A
A Syt

Still, when computing the combinatorial factors inside each farfily), they do
differ. But this is actually an apparent, not a real discrepancy. In fact, due to symmetries
in the tree (that is, to the fact that the subtrees emerging from some node are sometimes
equal, i.e. that soms, ; are greater than 1), the actual number of topological trees in a
given family F(0) is less than the total number of trees obtained by the action of the
group of transformations: in other words some trees obtained by the action of the group
are equivalent as topological trees. When moving the root line from amddenother
nodews, so transforming a tree into a treef; € F(0), for some nodes along the
path P (v, v1) the factor ¥s,, ;! can turninto X(s,, ; — 1)!, but then this means that the
same topological tree could be formed by the action,gf different transformations of
the group: each of the, ; equivalent subtrees enterimgcontains a node such that, by
attaching to it the root line, the same topological tree is obtained. Therefore, by counting
all trees obtained by the action of the group, the corresponding topological tree value
is in fact counted,, ; times, so to avoid overcounting one needs a facfoy, 1. this
gives back the same combinatorial factgs,l;!. Analogously one discusses the case of
a factor ¥s,, ;! turning into ¥ (s, ; + 1)!, simply by noting that the same argument as
above can be followed also in this case by changing the réles of the two npdedv;.

Al.3. Remark. The proof of the lemma relies only on the property (2.15) of the propa-
gators, so that also the functiErle](zlf; ¢) is well defined for alk € N.

Appendix A2. Proof of Lemma 2.2

A2.1. Proof. In order to prove the lemma we shall show by induction Izhfé)[ can

be arbitrarily fixed and)g‘) can be uniquely fixed in order to make formally solvable
Egs. (2.2).

Fork = 1 it is straightforward to realize thaf,l) and bf,l) are well defined for all
v € Z" \ {0}, by using the first condition in (1.8).

Then, fork > 1, assume that aﬂg” and bg‘ ) with ¥’ < k — 1, have been fixed,
and that, as a consequence,aﬁﬂ/) and bf,k/) are well defined fok’ < k and for all
v e Z"\ {0}.

By (2.16) and by Lemma 2.1, in (2.2) one i{ag,f]f,k_l) = 0, so that the equation
for a® is formally soluble, an@é") can be arbitrarily fixed, for instance equaldo
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In the second equation in (2.2) one can write
k _
[95 /1% = 82 fo(Bo)b* Y + GY), (A2.1)

where the functiorGf,k) takes into account all contributions except the one explicitly
written, and, by construction, all terms appearingEifff) can depend only on factors
bg‘) of ordersk’ < k — 2. We can choose

-1
b = —[93 fo(B0) | "G, (A2.2)

where the second condition in (1.8) has been used, so that also the equatiéfi for

becomes formally soluble. Of course alsrgi) is left undetermined: it will have to be
fixed in the next iterative step.

To complete the proof of the lemma one has still to show that the sums over the
Fourier labels can be performed, but this is a trivial factdor D, (Co). O

A2.2. Remark. The same proof applies to the renormalized trees introduced in Sect. 4.1.

Appendix A3. Proof of Lemma 3.1

A3.1. Inductive bounds. We prove inductively on the number of nodes of the trees the
bounds

N¥(0) < max{0, 2 M (9) 2" +3/7 _ 13, (A3.1)

whereM () is defined in (3.15).
First of all note that ifM (9) < 2-*+3/7 thenN,,(9) = 0 as in such a case for any
line ¢ € A(P) one has

lwo - ve| > 27 [ve| % > 2" M ()T > 272" 3, (A3.2)

by the Diophantine hypothesis (1.2) and by the definitiom®fiven in Sect. 3.2.

A3.2. Bound on N;(#). If 8 has only one node the bound is trivially satisfied because,
if v is the only node iV (9), one must hava/ (6) = |v,| > 2"/ in order that the line
exiting fromv is on scale< n: then 2M (9) 2" +3/7 > 4,

If 6 is a tree withV > 1 nodes, we assume that the bound holds for all trees
havingV’ < V nodes. Defingg, = (2 2"*+3/7)~1: s0 we have to prove thal*(9) <
max{0, M () E; 1 — 1}.

If the root line of 6 is either on scale% n or a self-energy line with scake, call
01, ...,6, them > 1 subtrees entering the last nogeof 6. Then

N¥©) =Y Ny©h), (A3.3)
i=1

hence the bound follows by the inductive hypothesis.



450 G. Gallavotti, G. Gentile

If the root line ¢ is normal (i.e. it is not a self-energy line) and it has sealeall
l1,... .4, them > 0O lines on scale< n which are the nearest t(this means that
no other line along the paths connecting the libgs. . , £,, to the root line is on scale
< n). Note that in such a ca#s, ... , ¢,, are the entering line of a clust&ron scale
>n.

If 6; is the subtree witl; as root line, one has

Ni©) =1+ N;®), (A3.4)
i=1

so that the bound becomes trivial if either= 0 orm > 2.
If m = 1then one hag = 0 \ 01, and the lineg and¢; are both with scales r;
as{j is not entering a self-energy graph, then

lwg - ve| < 2", lwg - ve,| <2, (A3.5)
and eithew, = v,, and one must have (recall thEf is defined after (3.6))
Do wlz Y0l > 270 =2E, > E,, (A3.6)
veV(T) veV(To)

orv, # vy, otherwisel’ would be a self-energy graph (see (3.7) and (3.8)) K vy,
then, by (A3.5) one hasy - (v¢ — v¢,)| < 2"+1, which, by the Diophantine condition
(1.2), implies|v, — vy, | > 227" +D/7 g0 that again

D ol = ve = vy | > 22702 S VT2, S E, (A3.7)
veV(T)

as in (A3.6). Therefore in both cases we get

M@©) = M) =) [v| > En, (A3.8)

veT
which, inserted into (A3.4) witlh = 1, gives, by using the inductive hypothesis,
Ni©)=1+N;01) <1+ M@O)E, 1 —1

A3.9
<1+ (M(@)—E,,)E;l—lg M@) E;t -1, (A3.9)

hence the bound is proved also if the root line is normal and on scale

A3.3 Remark. The same argument proves the bound (5.4) for renormalized trees, by
using the observation that there are no self-energy lines in the renormalized trees.

Appendix A4. Proof of Lemma 3.2

A4.1. Factorials. As for the proof of the Lemma 2.2 we ignore the factorials: to take
them into account one can reason as said in Appendix Al.
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A4.2. Sif-energy graphs of type 1. First we prove thad_, Vr(0) = 0. Given a tre@
consider all trees which can be obtained by shifting the enteringﬂﬁnuote that the
trees so obtained are contained in the self-energy graph fafpjl).

Corresponding to such an operativp(0) changes by a factaw,, if v is the node
which the entering line is attached to, as all node factors and propagators do not change.
By (3.6) the sum of all such values is zero.

Then consided )V (0). By construction

wvro= Y ([1 )™ I &) (A4.1)

LeA(T) veV(T) UeA(T)\L

where all propagators have to be computeddow = 0, and

d
16" = -G (@ v] +owx)

o X=w-V. (A4.2)

x=

The line¢ dividesV (T') into two disjoint set of node®; andVa,, such thaf% exitsfroma
node insidé/, andﬁ% entersanodeinsidé:if £ = £,0onehads = {w € (T) : w < v}
andVy = V(T) \ Va. By (3.4), if

v, = Z vy, vy = Z vy, (A4.3)

veVy veVsr

one haw; + v = 0. Then consider the familie1(8) and F»(0) of trees obtained
as follows:F1(0) is obtained fromd by detachingﬂ% then reattaching to all the nodes
w € V71 and by detaching% then reattaching to all the nodese V,, while F»(0) is
obtained fron® by reattaching the Iiné% to all the nodesv € V» and by reattaching
the IineEZT to all the nodesv € V»; note thatF1(0) U F2(0) C Fr, ().

As a consequence of such an operation the arrows of somefliaes(7') change
their directions: this means that for some liheghe momentunv, is replaced with
—v, and the propagatoiG, are replaced with their transposéti . As the propagators
satisfy (2.15) no overall change is produced by such factors, except for the differentiated
propagator which can change sign: one has a different sign for the tréagdnwith
respect to the trees if2(6). Then by summing over all the possible treesFif(6) we
obtain a value2v1v» times a common factor, while by summing over all the possible
trees inF»(#) we obtain—i2v1v, times the same common factor, so that the sum of two
sums gives zero.

A4.3. Self-energy graphsof type2. Given atre@ with a self-energy grapfi consider all

trees obtained by detaching the exiting line, then reattaching to all the ncd&4T);

note again that the trees so obtained are contained in the self-energy grapt#Aa/ttily

In such a case again some momenta can change sign, but the corresponding propagato
does not change (reason as above for self-energy graphs of type 1). So at the end we
obtain a common factor timés,,, wherev is the node which the exiting line is attached

to. By (3.6) again we obtaih_, V7 (0) = 0.

Ad.4. Sf-energy graphs of type 3. To prove thaty ", V7 (0) = 0 simply reason as for
> 7 Vr(0) in the case (1), by using that the entering Iﬂiehas;/zzr =a.
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A4.5. Self-energy graphs of type 4. Given a tre& with a self-energy graplii consider
the contribution to V7 (0) in which a line¢ is differentiated (see (A4.1)). The line
dividesV (T) into two disjoint set of node®; andVa», such thaﬂ% exits from a node;
insideV; andé% entersanodey insideVs:if £ = £, onehads = {w € V(T) : w < v}
andVy; = V(T) \ Va. By (3.6), with the notations (A4.3), one hags+ v, = 0. Then
consider the tree obtained by detachfégrom v1, then reattaching to the nodg and,
simultaneously, by detachirﬂj from vy, then reattaching to the noae; note that the
tree so obtained is inside the claBg, (0).

As a consequence of such an operation the arrows along th@mathnecting; to
v2 change their directions: this means that for such ling® momentuny, is replaced
with —w,, but the propagators are even in the momentum, so that no overall change is
produced by such factors, if not because of the differentiated propagator (which is along
the path by construction) which changes sign. For all the other lines (i.e. the lines not
belonging taP) the propagator is left unchanged.

Since a derivative with respect pbacts on both the nodesg andv,, the shift of the
external lines does not produce any change on the node factors (except for the factorials,
that we are not explicitly considering, as said at the beginning of this subsection). Then
by summing over the two considered trees we obtain zero because of the change of sign
of the differentiated propagator.

A4.6. Remark. To prove the Lemma 3.2 we only use that the propagators satisfy (2.15),
so that the same proof applies also to the renormalized self-energy graphs (see the
Proposition 5.2), where there are no self-energy lines and the propagators are given by
(4.4).

Appendix A5. Proof of Lemma 3.3

A5.1. Proof of the property (1). Given a self-energy grapgh with momentunv flowing
through the entering lin€Z., call P the path connecting the exiting lirié to the entering
line E%. Then consider also the self-energy grdplobtained by taking% asthe entering
line andﬁ% as the exiting line and by takingv as the momentum flowing through the
(new) entering Iineﬁ%: in this way the arrows of all the lines along the p&hare
reverted, while all the subtrees (internalfd having the root ir? are left unchanged.
This implies that the momenta of the lines belonging?teahange signs, while all the
other momenta do not change. Since all propagaiqrsire transformed intO}[ the
property (2.15) implies that the entiy of the matrixM (w - v; €) corresponding to the
self-energy grapl#’ is equal to the entryi of the matrixM (—w - v; ¢); then the assertion
follows.

A5.2. Proof of the property (2). Given a self-energy graphi, consider also the self-
energy grapl’”’ obtained by reverting the sign of the mode labels of the node¥’ (T),

and by swapping the entering line with the exiting one. In this way the arrows of all the
lines along the patf® joining the two external lines are reverted, while all the subtrees
(internal toT') having the root irP are left unchanged. It is then easy to realize that the
complex conjugate ofy (w - v) equalsVr (w - v), by using the form of the node factors
(2.10), and the fact that one h#s(8) = f—,(B) andGT(w-v) = G(w-v) (see (2.15)).
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A5.3 Remark. The lemma has been proved without making use of the exact form of the
propagator, but only exploiting the fact that it satisfies the property (2.15): therefore,
once more, the proof applies also to the renormalized trees as a consequence of the first
relation in (5.1), and it gives (5.6).

Appendix A6. Proof of Lemma 3.4

A6.1. Set-up. Given a tre@ € Oy, ,, consider a self-energy graghwith heightD.

CallT® c 17® c ... c T™® the resonances containifig and se?’ = T™; denote
byn =n1 > n2 > n3 > ... > np the scales of the lines entering such resonances.
For any? € A(Tp), one can write

vy = v? + oy, (eA6.1)

wherev is the momentum of the Iinézr (with scalen) enteringT (see (3.9)).

A6.2. Proof. By shifting the lines entering all the resonances contairfinthe mo-
mentumyp, can change into a new value (as it can be seen by applying iteratively
(3.10)) in such a way thatog - #,| differs from |wo - v9| by a quantity bounded by
Yot Vag+ oot vnp <2022 4 4210 < 2HL

As [v9| < 2-@+3)/ py definition of the self-energy graph, we can apply (3.2) and
conclude thajwg - v2| has to be contained inside an interigl_1, y,1, with p = n? >
n + 3 (see Remark 3.2, (2)), at a distance at le&st rom the extremes: therefore the
quantity|wo - v,| still falls inside the same interval,,_1, y,1. In particular this implies
the identity

ne =ig =n?, (A6.2)

if 7, is defined as the integer such that_1 < |wo - V¢| < ¥3,.

Appendix A7. Proof of Lemma 4.1

A7.1. Set-up. We have to prove that, for af < k, one has
—[k / /
(0" s )18 =h{, (A7.1)

which yields that the functionis andh'"! admit the same power series expansions up to
orderk.

Of course bottmf,k/) and[ﬁ[k] ¥; s)]f,k/) are given by sums of several contributions; in
the same wayM (@ - v; £)]*) can be expressed as the sum of several terms. We shall
prove that, given any tree valival (6) contributing tohf,k) and any self-energy value
Vr(x) corresponding to a self-energy graplof orderk’, one can find the same terms
contributing, respectively, t{h_[k](w; 1% and to M (x; £)]*), andvice versa. The
proof will be by inductionork’ =1, ... , k.
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A7.2. Remarks. (1) Note tha(h[k](w; 8)]1(,1(’) is notthe same et_ék’kq(rﬁ; ¢): the quantity

[h[k](rlf aly (k ) is the coefficient to orde¥’ that one obtains by developirtTék)(rlf; g)in
powers ofe.

(2) The contributions t(Dh ('ﬁ £)1% and to[ M (x: £)]*" can arise only from trees
of orderk” < k'. Furthermorgh"’ WV £)]%) = h[k ](‘ﬁ 1% and[ MK (x; £)]*) =
(M (x s)](") this simply follows from Remark 4.1 and thetrivialobservation that, for
k > k', the self-energy graphs [trees] whose values contributé!fd(x; ¢) [h (w )]

but not to M¥1(x; &) [h ('ﬁ ¢)] are those containing also self-energy graphs with
height D > k’: such contributions are of order at ledstin ¢, so that they can not

contribute to{ M (x; £)1®" (A" (s 161,

A7.3.Sartingfromh. The cas&’ = listrivial. Suppose that, givén < &, the assertion
is true for allk” < k’: then we show that it is true also féf.

Consider a tre@ € 0y, , and letVal(9) be its value. Denote by, ... , Tn the
maximal self-energy graphs #, and byk;, ..., ky the number of nodes that they
contain, respectively; the number of nodes external to the self-energy graphs will be
ko = k — k1 — ... — ky. Call 6y the tree obtained frori by replacing each chain of
self-energy graphs together with their external lines with a new line carrying the same
momentum of the external lines. The tigewill have kg + 1 lines: by construction each
line ¢; of 6y corresponds to a chain ¢f self-energy graphs, witly; > 0, of orders
K1, ..., Kip;, such that

ko pi

> > Kij=k—ko. (A7.2)

i=1 j=1

Then consideég as a tre@R ¢ @% ,.,,+ lete; be the line i which corresponds

to the line with the same namedyg. For each ling; € A(O™), by settingy; = o - vy;,
the propagator is of the form

—k=1]  —=[k—1] —k—1]

-1
Gy 1=¢""e), G (xi;e)z[xizl—M[k_ll(xi;e)] . (A7.3)

and it can be expanded in powersitc—1(x;; ¢) as

k—1 1 _ 1 _ 1 _ 1
[CReE )-—2<1+M“‘ Uixis )= + ME Vs 0) 5 MFU(x; 05 +
Xl- X X X

i i i

(A7.4)
We can consider the contribution
1 1 1 1
M s K0 —Z[M[" H; ) = (A7.5)

i i
to (A7.4). Note thatk;; < k — 1 for all i, j, by construction, so that by the Remark
A7.2, (2), we can write

(MY (s )] Fir) = (MW (x5 001 Fir) = [u im0 )] Kims), (A7.6)
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forall j = 1,...,p; and for alli = 1,...,ko. Hence by the inductive hypothe-
sis, we can deduce that, for allj, there is a contribution teM*—1(x;; £)]Ki)) =
(MM (x;; £)]Ki) which corresponds to the considered resonanéeAs a consequence
we can also conclude that there is a term contributin{f[’g(w; s)]f,k/) which is the
same as the considered tree valia&(9).
Of course if instead of a tree value we had considered a self-energy value, the same

argument should have applied, so that the assertion follows.

A7.4. Sarting from 7™ The construction described in Sect. A7.3 can be used in the
opposite direction, in order to prove that each term of okdér ¢ which is obtained by

truncatingﬁ[k] to orderk corresponds to a term contributingh”.

Proof of thebound (5.1)from (5.8)
A8.1. Set-up. Consider the matrix

-1
A(x;e) = (G[k] (x; s)) =x?21— MM (x;e) = A + £%x A1 + 252 Ay, (A8.1)

with
A= Aee 0\ _ x?1 0
“U 0 Ag) T\ 0 x?1-edffo(Bo))”
0 Bf(e)
Ar= (—B(s) 0 ) (A8.2)
— MU (x: e) ~M%M(x; &) — £2xB(e)
Ba't g\ *s gJo(Po
where

Be) = () Y LV v, (A8.3)
T

with the sum running over all self-energy graphs of type 2, so that one has
A1l < C, Azl < C, (A8.4)

for some positive constaut.

The matrixA is a block matrix which induces a natural decomposiRén= R” @R?;
the eigenvalues of the block,, = A|R” are all equal tor?, while the eigenvalues of
the blockAgg = A|R® are of the formk; = x2 + ae, witha; > 0.

SetA1 = A + Ay, with n = 2x.

Define

B(x: ) = " A(x; £)e ™ = "™ A1e™X + £2x2e"X Age X (A8.5)

= Bo(x; &) + £2x2e"X Ape "X, .

of courseB(x; ¢) has the same eigenvaluesAs; ¢).
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A8.2. Block-diagonalization. ConsiderBg(x; ¢): we shall fix the matrixX in such a way
that Bo(x; ¢) is block-diagonal up to order?.
So we look forX such that

( 147X + 0(772)) (A + nAz) ( 19X + 0(;72)) — A+ nJ1+ 0m?), (A8.6)
with
J1,00 -Ilozﬂ Jiee O
= ? = , . A87
h <Jl,ﬁa Jmﬁ) ( 0 flﬁﬂ) (48.7)
By expanding to first order (A8.6) we obtain

[X, Al + Ay = Ja, (A8.8)

while imposing (A8.7) gives

=500 (s 21) .

“1
Xpo=—(App—x*1) B,
where

-1 1 -1
2 _ 2
H <Aﬂﬂ —X 1) H =2 H (a,gfo(ﬁo)) < (A8.10)
for some constant. Furthermore, by choosing,, = 0 andXgg = 0, one obtains
J1=0.
Then it follows that one has

c
€

B(x;e) = A+ 0(n°X?) + 0(e%x?) = A + 0(e%x?), (A8.11)
so that
B Yx;e) = A1+ 0242, (A8.12)

where the eigenvalues of 1 are of the form either Ax2 or 1/ (x2 + aje).
Therefore one has

| e P
which proves the bound in (5.1) for real

A8.3. Boundsin the complex plane. The above analysis applies also for complex values
of £. Consider the domaifg represented in Fig. 5, with half-opening angle: =. For

& € Dg one has that the norms Ellk'(x; ¢))~1 are bounded from below by

x2
> (r — @), (A8.14)

wheng is close tar.
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Appendix A9. Proof of Lemma 5.1

A9.1. Set-up. Both M (e - v; &) and M*+(w - v; ¢) can be expressed by (4.5): the

only difference is that one has to use the propaga_ré’%for MEH (@ - p; g).
This means that there is a correspondence 1-to-1 between the graphs contributing to
k(@ - v; £) and those contributing tsf*+1(w - v; &), so that we can write

M@ vie) =M @.vie)= 3 Vi,

renormalizedr’

k-1 0 (A9.1)
Wt = (T R)[( T 667) - (T o)
veV(T) LeA(T) LeA(T)
For each renormalized self-ener@ywe can WriteV[Tk’kH] (w - v) as sum ofV =

|V(T)| terms corresponding to trees whose lines have all the propagators of the form

eltherG =1 or 53‘], up to one which has a new propagator given by the difference
G[k 1) E[k
¢ — G

A9.2. Remark. Note that the scales of all lines are uniquely fixed by the momenta, so
that both propagato@ikil] andﬁy] admit the same bounds (see (5.6)).

A9.3. Bounds. We can order the lines im\(T) and construct a set o¥ subsets
Ay(T), ..., Ay(T) of A(T), with |A;(T)| = j, in the following way. Sei\1(T') = 9,
Aa(T) = £y, if £1 isthe root line ob and, inductively for2< j <V —1,A;11(T) =
Aj(T) U ¢, where the linef; € A(T) \ A;(T) is connected ta\ ;(T); of course
Ay (T) = A(T). Then

V[Tk,k+l](w.v) :8|V(T)|( l_[ Fv)

veV(T)

([ R T T )

teA;(T) LeA(TI\A;(T)

(A9.2)

where, by construction, the sefs; () are connected (while of course the sat®) \
A ;(6) in general are not).
We can write

k=11  =lk]

k—1
GZ _GZ —lk—-1]

_ —k
=G, [W(w.v@j;s)—M[k 11((,).%;8)]05],], (A9.3)

so that in (A9.2) we can bound

( IT feDer ei( T o)

eN;(T) LeA(T)\A;(T)

% L 2
< [(22+2TC0—1> H 2—2nN,,(9):| 7

n=—0o

(A9.4)
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where the power 2 (with respect to (5.9)) is due to the fact that in the product two
propagators correspond to the libg

This means thavl***!(w . v) admits the same bound as the squargbf(e - v)
times the supremum (ove) of the norms

HM[k](w vie) — MFU(w-v; ) ” . (A9.5)

If we perform the sum over all self-energy graphs in (A9.1) and we use that the first
non-trivial terms correspond to graphs with= 2 nodes, we obtain, far > 1,

(A9.6)

HM[kJrl](w -V €) — M[k](w -V, s)H < Ce? Z HM[k](w -V ) — M[kfl](w -v;€)

vezZ’

for some constant. Therefore the lemma follows.

Appendix 10. Proof of Proposition 5.4
A10.1. Set-up. Define

W["‘”(e):( I1 F)( I1 L)( I1 EE;”]), (A10.1)
VeV (9) veL(0) EING),

where the propagatoﬁlfo] = Eloo'(w -vy; ¢) are defined in (5.19); we shall denote by

G the operator with kernét' ™ (o - v; &) in Fourier space.
Then one has

e¢]

e =3 Y ke Y VA<l (A10.2)

k=1veZ’ (.)e@,zav y
which we can represent, in a more compact notation, as

Ao = Y VA @:v:e). (A10.3)
fe@R

where® is the set of all renormalized trees, and, fore O, C ©%, we have
defined

Va0 ¥ e) = kA (6). (A10.4)

The functionh(y; ) solving the equations of motion (1.6) is formally defined as the
solution of the functional equation

h(Y;e) =Goy f (¥ +h(¥; ), (A10.5)

whereG = (jw-9) 2 = % is the operator with kernel (x) = x2.
We have the following result.
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A10.2. Lemma. One hasG(x) (M™®)(x; &) + (G[®!(x; £))71) = 1.

A10.3. Proof. By definition one ha&'™ (x; &) = (G~1(x) — MI®!(x; £))71, so that
G 1x) = (G (x: &)1 + MI®(x: £): then the assertion follows.O

A10.4. Conclusions. The following result shows that the funCtitHI[lOO](vﬁ; ¢) formally
solves the equation of motions (1.6); as the analysis of the previous sections shows that

the functionﬁ[oo](rlfg ¢) is well defined and it is, order by order, equal to the formal
solution envisged in Sect. 3, we have proved the proposition.

Al10.5. Lemma. The functionﬁ[oo](nﬁ; ¢) defined by (A10.3) formally solves (A10.4).

A10.6. Proof. We shall show that (A10.3) solves (A10.5). One has

Goyf (v +h o)) =G i %a,’;“f(w (" o)

_GZ_aP+lf(¢) Z Va1 ¥ 6) .. Z WR(Gp;lﬁ;s)

p=o P 61e@R 0,e0R

-G (_[‘”]) 3 VAt 6: v ),
0e®
(A10.7)
where ®%, differs from ©®R as it contains also trees which can have only one self-
energy graph with exiting linép, if, as usualfp denotes the root line @f; the operator
G(G[Oo]) 1takes into accountthe fact that, by construction, to the root ljia@ operator

G is associated, while iﬁR(e; ¥; ), by definition, a propagatc(_ﬁloo' is associated.
Then we can write (A10.5), by explicitly separating the trees containing such a self-
energy graph from the others,

Gay f (v + @i o)
- G(E“"”)_l (5[°°]M[°°' S VA oo+ Y Vae; w;a))
HeOR HeOR
= (MR ;) + G s o)
= G(M™ + @R o) =A™ s e),
(A10.8)

where Lemma A10.2 has been used in the last line.

Note that at each step only absolutely converging series have been dealt with; then
the assertion is proved.
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