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Abstract: In this article, we consider two orthogonal systems: Sturm–Liouville op-
erators and Krein systems. For Krein systems, we study the behavior of generalized
polynomials at the infinity for spectral parameters in the upper half-plain. That makes
it possible to establish the presence of absolutely continuous component of the asso-
ciated measure. For Sturm–Liouville operator on the half-line with bounded potential
q, we prove that essential support of absolutely continuous component of the spectral
measure is[m,∞) if lim supx→∞ q(x) = m andq ′ ∈ L2(R+). That holds for all bound-
ary conditions at zero. This result partially solves one open problem stated recently by
S. Molchanov, M. Novitskii, and B. Vainberg. We consider also some other classes of
potentials.

1. Introduction

The contents of the paper is as follows. In the first section, we prove the asymptotics of
generalized polynomials for Krein systems with coefficients of a special kind. We also
establish the presence of absolutely continuous component of the associated measure.
In the second section, results obtained for Krein system are applied to Sturm–Liouville
operators.

In this introductory section, we will remind some results for the Krein systems. The
Krein systems are defined by the equations


dP (x, λ)

dx
= iλP (x, λ)− A(x)P∗(x, λ), P (0, λ) = 1,

dP∗(x, λ)

dx
= −A(x)P (x, λ), P∗(0, λ) = 1,

(1)

whereA(x) is locally summable function onR+.
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In his famous work [6], M. G. Krein showed thatP (x, λ) have many properties of
polynomials orthogonal on the unit circle1. For example, there exists a non-decreasing
functionσ(λ) (spectral measure ) defined on the whole line such that mappingUP (f ) =
∞∫
0

f (x)P (x, λ)dx is isometry fromL2(R+) to L2(σ, R). We will call P (x, λ) the gen-

eralized polynomials. The following Theorem was stated in [6]. It was proved later in
[12].

Theorem 1 ([6,12]). The following statements are equivalent

(1) The integral
∞∫
−∞

ln σ
′
(λ)

1+λ2 dλ is finite.

(2) At least at some λ, 
λ > 0, the integral

∞∫
0

|P (x, λ)|2 dx (2)

converges.
(3) At least at some λ, 
λ > 0, the function P∗(x, λ) is bounded.
(4) On any compact set in the open upper half-plane, integral (2) converges uniformly.

That is equivalent to the existence of uniform limit �(λ) = limxn→∞ P∗(xn, λ) [19].
Consider some measureµ on R. Let I be the finite union of intervals onR. Let us

assume that for any measurable set� ⊂ I with positive Lebesgue measure (|�| > 0),
we haveµ(�) > 0. That already means thatµ has nontrivial absolutely continuous
component. Though not any measure with nontrivial absolutely continuous component
has this property. If this condition holds, we say that the essential support of absolutely
continuous component of measureµ is I (I ⊆ essupp{µac}).

Thus, if one of the conditions (2)–(4) holds, then the essential support ofσac(λ) isR. It
is easy to show [6] thatA(x) ∈ L2(R) orA(x) ∈ L1(R) yields (3). In [3], we proved the
criterion for (3) to hold in terms of coefficientsA(x) from the so-called Stummel class.
In the next section, we will study another class of perturbations that does not shrink the
essential support for the absolutely continuous component of the measure. The similar
problems for Sturm–Liouville operators were studied in numerous publications (see, for
example, [7] and the bibliography there). But first, let us outline some relations between
Krein systems and some other orthogonal systems. Consider the Dirac system{

φ′ = −λψ − a1φ + a2ψ, φ(0) = 1,

ψ ′ = λφ + a2φ + a1ψ, ψ(0) = 0,
(3)

wherea1 = 2�A(2x), a2 = 2
A(2x). It turns out thate−iλxP (2x, λ) = φ(x, λ) +
iψ(x, λ). That allows us to say [6] thatρDir (λ) = 2σ(λ), whereρDir (λ)− spectral
measure of Dirac systems (3).

In casea2 = 0 anda1− absolutely continuous, we have

ψ ′′ − qψ + λ2ψ = 0, ψ(0) = 0, ψ ′(0) = λ,

φ′′ − q1φ + λ2φ = 0, φ(0) = 1, φ′(0)+ a1(0)φ(0) = 0,
(4)

1 The spectral theory of Krein systems was developed further in [1,3,11–14].
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whereq = a2
1 + a′1, q1 = a2

1 − a′1.
Therefore, the spectral measureρd(λ) of Sturm–Liouville operatorl(u) = −u′′ +qu

with Dirichlet boundary conditionu(0) = 0 is related toσ(λ) by

ρd(λ) = 4

√
λ∫

0

ξ2dσ(ξ), λ > 0. (5)

2. Krein Systems with Coefficients of a Special Kind

In this section, we will prove the following theorem.

Theorem 2. If the bounded coefficient A(x) of the Krein system is real valued, 0 < l1 =
lim inf x→∞ A(x) ≤ lim supx→∞ A(x) = l2, and A′ ∈ L2(R+), then (−∞,−2l2] ∪
[2l2,∞) ⊂ essupp{σac}.

But first we will prove one auxiliary lemma. Consider the Krein system{
P ′ = iλP − AP∗, P (0) = 1,

P ′∗ = −AP, P∗(0) = 1,
(6)

where real valuedA is bounded, 0< l1 = lim inf x→∞ A ≤ lim supx→∞ A = l2, and
A′ ∈ L2(R+).

Matrix ℵ =
[

iλ −A

−A 0

]
has eigenvalues

µ1 = iλ−√
4A2 − λ2

2
, µ2 = iλ+√

4A2 − λ2

2
.

Considerλ = τ + ik, τ > 2l2 is fixed,k > 0. Assume for simplicityA is such that
l1 < 2A < τ/2+ l2 for all x ∈ R+. We will explain later why this assumption can
always be made without loss of generality. SymbolC is reserved for positive constants
whose value might change from one formula to another. It is easy to verify that�µ1 > 0
for all x > 0, k > 0.

The following Lemma is true.

Lemma 1. The asymptotics holds at infinity,

P∗(x, τ + ik) = exp

 x∫
0

µ1(s, k)ds

O(x, k), (7)

where |O(x, k)| < exp(C/k) for all x > 0, k > 0.

Proof. Many estimates in this proof are very crude, but they will be good enough for
our purposes. LetJ be a 2× 2 matrix that satisfies equationJ ′ = ℵJ . We will find J

in the formJ = LQ, whereL =
[−µ1/A −µ2/A

1 1

]
consists of eigenvectors ofℵ. We

have the following equation forQ: Q′ = L−1ℵLQ − L−1L′Q. Multiplying matrixes,
we have

Q′ =
[

µ1 0
0 µ2

]
Q+ V Q, (8)
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where

V =
[

v11 v12
v21 v22

]
= 1√

4A2 − λ2

[
−A′

A
µ1 + µ′1 −A′

A
µ2 + µ′2

A′
A

µ1 − µ′1
A′
A

µ2 − µ′2

]
. (9)

Let us notice that the following inequality:

∞∫
0

‖V ‖2dx < C (10)

holds uniformly ink. Introduce the matrix

Q◦ =

exp
[ x∫

0
(µ1(s, k)+ v11(s, k))ds

]
0

0 exp
[ x∫

0
(µ2(s, k)+ v22(s, k))ds

]
 . (11)

If Q = Q◦S, then forS =
[

s11 s12
s21 s22

]
, S(0) = I , we have

S′ =

 0 v12 exp
[ x∫

0
ν(s, k)ds

]
v21 exp

[
−

x∫
0

ν(s, k)ds
]

0

 S, (12)

whereν =
√

4A2 − λ2 + iλA′

A
√

4A2 − λ2
.

For s11 ands21, we have
s′11 = v12 exp

[ x∫
0

ν(s, k)ds
]
s21, s11(0) = 1,

s′21 = v21 exp
[
−

x∫
0

ν(s, k)ds
]
s11, s21(0) = 0.

(13)

Consider the system of the corresponding integral equations
s11(x) = 1+

x∫
0

v12(τ ) exp
[ τ∫

0
ν(s, k)ds

]
s21(τ )dτ,

s21(x) =
x∫
0

v21(t) exp
[
−

t∫
0

ν(s, k)ds
]
s11(t)dt.

(14)

Substituting the second formula into the first one and changing the order of integration,
we have the following integral equation fors11:

s11(x) = 1+
x∫

0

s11(t)v21(t)

x∫
t

v12(s) exp
[ s∫

t

ν(ξ)dξ
]
dsdt.
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This equation yields the integral inequality

|s11| ≤ 1+
x∫

0

|s11(t)||v21(t)|
∞∫

t

|v12(s)||exp
[ s∫

t

ν(ξ)dξ
]
|dsdt. (15)

Notice that
∣∣∣ s∫

t

iλA′

A
√

4A2 − λ2
dξ

∣∣∣ < C uniformly in k, t, s.

Because�µ1 > 0, we have the estimate

�
√

4A2 − λ2 < −k. (16)

Consequently, the Gronwall Lemma, being applied to (15), yields

|s11| ≤ exp

C

x∫
0

|v21(t)|
∞∫

t

|v12(s)|exp
(
−k[s − t]

)
dsdt

 ≤ exp(C/k). (17)

At the final step, we used (10) and the Young inequality for convolutions.
Therefore, fors21, we have the estimate

|s21| ≤ exp(C/k)

x∫
0

|v21(s)||exp
[
−

s∫
0

ν(ξ, k)dξ
]
|ds

which follows from the second equation of system (13) and the estimate ons11. In the
same way, the estimates fors12, s22 can be obtained. They are as follows:

|s12| ≤ C√
k

exp

(
C

k

)
, (18)

|s22| ≤ C√
k

exp

(
C

k

) x∫
0

|v21(s)||exp
[
−

s∫
0

ν(ξ, k)dξ
]
|ds. (19)

If J is such thatJ (0) = I , thenJ = LQ◦SL−1(0). Therefore, forP∗, we will have

P∗ =exp
[ x∫

0

(µ1(t)+ v11(t))dt
]{

αs11+ βs12 (20)

+ exp

 x∫
0

(µ2(s)− µ1(s)+ v22(s)− v11(s))ds

 (s21α + s22β)
}
. (21)

Constantsα andβ are chosen in such a way that the initial conditionP∗(0, k) = 1 is
satisfied. We have[

α

β

]
= 1√

4A2(0)− λ2

(
A(0) µ2(0)

−A(0) −µ1(0)

)
×
[

1
1

]
, (22)
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therefore,α andβ are bounded uniformly ink. Denote byO(x, k),

O = exp
[ x∫

0

v11(t)dt
]{

αs11+ βs12 (23)

+ exp

 x∫
0

(µ2(s)− µ1(s)+ v22(s)− v11(s))ds

 (s21α + s22β)
}
. (24)

Notice that

x∫
0

v11(t)dt and

x∫
0

v22(t)dt are bounded uniformly inx andk. Due to the

estimates ons21 ands22, we have

∣∣∣exp

 x∫
0

(µ2(s)− µ1(s)+ v22(s)− v11(s))ds

 (s21α + s22β)

∣∣∣ (25)

≤ exp(C/k)

∣∣∣∣∣∣exp
[ x∫

0

ν(η, k)dη
]∣∣∣∣∣∣ (26)

×
x∫

0

|v21(s)|
∣∣∣∣∣∣exp

[
−

s∫
0

ν(ξ, k)dξ
]∣∣∣∣∣∣ ds (27)

≤ exp(C/k)

x∫
0

|v21(s)|
∣∣∣∣∣∣exp

[ x∫
s

ν(ξ, k)dξ
]∣∣∣∣∣∣ ds ≤ exp(C/k)/

√
k. (28)

To get the last estimate, we used the Cauchy inequality. Finally, bounds ons11, s12
lead to|O(x, k)| < exp(C/k). That finishes the proof of the lemma.��
Remark. More accurate estimates onα, β, s11 allow us to write inequality

|O(x, z)− 1| < 1/2, (29)

wherex ∈ R+, τ ≤ �z ≤ τ + 1,
z > k0, k0– some positive constant.

Indeed, it is easy to verify thatα → 1 and|β| <
C


z
if 
z →+∞, τ ≤ �z ≤ τ +1.

From (13), by the Cauchy inequality we have

|s11− 1| ≤ exp(C/k)/k (30)

uniformly in x ∈ R+, τ ≤ �z ≤ τ + 1, wherek = 
z > k0.

One can verify that

x∫
0

v11(t)dt → 0 uniformly inx if 
z →∞.
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Therefore, from (23) and (26)–(28), we infer (29).
Let us prove Theorem 2 now.

Proof of Theorem 2. Fix anyτ > 2l2. We will show that[τ,∞) ⊂ essupp{σac}. Because
τ is chosen arbitrarily larger than 2l2 andσ is odd (sinceA is real ), this inclusion is
sufficient for Theorem 2 to be true. Onceτ is fixed, we can assume thatl1 < 2A <

τ/2+ l2 for all x ∈ R+. Due to the standard trace-class perturbation argument applied
to the Dirac system (3) [9], we can always make this assumption. Indeed, sincel1 =
lim inf x→∞ A ≤ lim supx→∞ A = l2 asx → ∞, it suffices to multiplyA by some
smooth function which is equal to 0 on[0, MA] and 1 on[MA + 1,∞). The absolutely
continuous part ofρDir will not change because of the trace-class argument. On the other
hand, ifMA is sufficiently large, we will satisfy the imposed condition.

Consider the Krein system with coefficientsA(n)(x) =
{

A(x), x < n,

0, x ≥ n.
Denote the

corresponding measure byσn. We have the formula ((3.14) from [12]):

√
2πP∗(∞, z) = √

2πP∗(n, z) = eiαn exp

 ∞∫
−∞

1

2πi

(1+ tz) ln σ ′n(t)

(z− t)(1+ t2)
dt

 ,
z > 0,

(31)

whereαn are some real constants. BecauseA(x) is real, functionsσn are odd. Therefore,
if we takez = i, the left-hand side of (31), together with exponent from the right-hand
side, are real valued. Thus,αn can be chosen equal to zero.

The asymptotics ofP∗(n, z) as|z| → ∞, 
z > 0 is P∗(n,∞) = 1 [11]. Therefore,
we can rewrite this formula as follows:

−2πi ln P∗(n, z) =
∞∫

−∞

(1+ tz) ln(2πσ ′n(t))

(t − z)(1+ t2)
dt (32)

if 
z > 0. Here we used the identity

√
2π = exp

 ∞∫
−∞

− 1

2πi

(1+ tz) ln(2π)

(z− t)(1+ t2)
dt

 , 
z > 0.

Also we used the fact that 2πσ ′n(t) → 1 if |t | → ∞ [11].
The right-hand sideRHS(z) of (32) satisfies the conditionRHS(z) = RHS(z̄).

Let us define the left-hand side for
z < 0 according to this rule. So we have some
analytic functionLHS(z) defined in the region:
z �= 0. Recall the asymptotic formula
for P∗(x, z), (
z > 0,�z = τ > 2l2):

P∗(x, z) = exp

 x∫
0

µ1(s, z)ds

O(x, z). (33)
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Then,

LHS(z) = −2πi

n∫
0

µ1(s, z)ds − 2πi ln O(n, z)

for 
z > 0.
It is easy to see that the continuation according to the chosen rule for the function

−2πi
n∫
0

µ1(s, z)ds is exactly the Schwarz analytic continuation. It follows from the fact

that the value of this function on the half-line
z = 0,�z ≥ τ is real.
Considerz = τ + ik. Let lnO(n, z) = r1(n, k) + ir2(n, k). From the definition

of LHS(z) in 
z < 0, we havei(r1(n, k)+ ir2(n, k)) = −ir1(n, k) − r2(n, k) =
ir1(n,−k)− r2(n,−k). Thus,r1(n, k) is odd andr2(n, k) is even. For fixedn, they are
well defined functions for allk �= 0 with finite right and left limits atk = 0. Notice also
that fork > 0, r1(n, k) = ln |O(n, τ + ik)| andr2(n, k) = ArgO(n, τ + ik). For r1,
r2, we haver1(n,∞) = 0, r2(n,∞) = 0 becauseP∗(n,∞) = 1 andµ1(s,∞) = 0.

Then, integrate both sides of (32), together with some auxiliary function
(z−τ)3

((z−τ)2+m2)4 , along the contour Con. We chooseCon as the contour that consists of
the complex numbersτ + ik (|k| ≤ m− 1, |k| ≥ m+ 1 ) and two right semicircles with
radii 1 centered atτ ∓ im. The direction of integration is upward.

For the right-hand side, we have∫
Con

(z− τ)3

((z− τ)2 +m2)4

∞∫
−∞

(1+ tz) ln(2πσ ′n(t))

(1+ t2)(t − z)
dtdz

=
∞∫

−∞

ln(2πσ ′n(t))

1+ t2

∫
Con

(1+ tz)(z− τ)3

((z− τ)2 +m2)4(t − z)
dzdt

= 2πi

∞∫
τ

(t − τ)3

((t − τ)2 +m2)4 ln(2πσ ′n(t))dt.

Here we changed the order of integration by the Fubini Theorem and then used the
Cauchy formula.

Integrating theLHS(z) with the same function, we have

− 2πi

∫
Con

n∫
0

µ1(s, z)ds
(z− τ)3

((z− τ)2 +m2)4 dz− 2πi

∫
Con

(z− τ)3

((z− τ)2 +m2)4 ln O(n, z)dz

= 0− 2πi

∫
Con

(z− τ)3

((z− τ)2 +m2)4 ln O(n, z)dz

because
n∫
0

µ1(s, z)ds is analytic and bounded in�z ≥ τ . Thus, we have the equality

−
∫

Con

(z− τ)3

((z− τ)2 +m2)4 ln O(n, z)dz =
∞∫

τ

(t − τ)3

((t − τ)2 +m2)4 ln(2πσ ′n(t))dt. (34)
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We have the following inequality [12]

∞∫
−∞

dσn(t)

1+ t2 < C (35)

uniformly in n. Define ln+ h = ln h for h > 1 and zero otherwise, ln− h = − ln h if
0 < h < 1 and zero otherwise. The trivial inequality ln+ h < h, together with (35),
guarantee that the right-hand side of (34) is bounded above uniformly inn. Our goal is
to show that it is bounded from below as well.

Thus, we want to show that∫
Con

(z− τ)3

((z− τ)2 +m2)4 ln O(n, z)dz < C

uniformly in n. The left-hand side is equal toI1 +I2, where

I1 =
∫

|k|<m−1,|k|>m+1

i
(ik)3

(m2 − k2)4 (r1(n, k)+ ir2(n, k))dk

= 2
∫

0<k<m−1,k>m+1

k3

(m2 − k2)4 r1(n, k)dk ≤ C

uniformly in n due to the estimates on ln|O(n, k)|. We also used the fact thatr2(n, k) is
even. It is crucial since we do not have control over the argument ofO(n, k). We only
know the upper bound on ln|O(n, k)|. The termI2 corresponds to integration along the
semicircles. Choosem sufficiently large. Then, forI2, we have the estimate

|I2| ≤ C

uniformly in n because of the estimate (29).
To finish the proof, we will use one argument from [2]. Consider any compact setCo ∈

(τ,∞) of positive Lebesgue measure. Then, as it follows from (35) and boundedness
of right-hand side in (34),

∫
Co

ln− σ ′n(t)dt is bounded uniformly inn. Jensen’s inequality

yields

ln−
 1

|Co|
∫

Co

σ ′n(t)dt

 ≤ 1

|Co|
∫

Co

ln− σ ′n(t)dt.

Therefore,σn(Co) is greater than some positive constantd(Co) for all n. The
Weyl–Titchmarsh function of the system with coefficientsA(n) converges to the
Weyl–Titchmarsh function of a system with coefficientA [12]. This convergence is
uniform on any compact set of upper half-plane. By the Stone–Weierstrass Theorem, we
have weak convergence ofσn to σ . Consequently,σ(Co) ≥ lim supn→∞ σn(Co) > 0
for each compactCo with |Co| > 0. ��

In the next Theorem, we consider a different class of coefficients.
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Theorem 3. If A(x) = −l−v(x), where l ∈ R, v(x) is real valued, and v(x) ∈ L2(R+),
then for the corresponding Krein system essupp{σac} = (−∞,−2|l|] ∪ [2|l|,∞).

For l = 0, the result follows from [6]. Therefore, we will consider the casel �= 0. To
make calculations more simple, letl = −1/2. The idea of the proof is the same as that
of Theorem 2. We need the asymptotics onP∗(x, λ). Consider the Krein system written
in the following way: {

P ′ = iλP + P∗/2+ vP∗, P (0) = 1,

P ′∗ = P/2+ vP, P∗(0) = 1.
(36)

The matrix

[
iλ 1/2

1/2 0

]
has eigenvaluesµ± = (iλ ± √

1− λ2)/2. Considerλ =
τ + ik, τ > 1 is fixed,k > 0. One can verify that�µ− > 0 for all k > 0.

Lemma 2. The following asymptotics holds at the infinity

P∗(x, τ + ik) = exp

µ−(λ)x − 1√
1− λ2

x∫
0

v(s)ds

O(x, k), (37)

where |O(x, k)| < exp(C/k) for all x > 0, k > 0.

Proof. We will give only the sketch of the proof, because it repeats essentially the proof
of Lemma 1. Consider the following matrix differential system:

X′ =
[

iλ 1/2
1/2 0

]
X + v(x)

[
0 1
1 0

]
X, X(0) = E, (38)

whereE is 2× 2 identity matrix.

X0 =
[

exp(µ+(λ)x) exp(µ−(λ)x)

(−iλ+√
1− λ2) exp(µ+(λ)x) (−iλ−√

1− λ2) exp(µ−(λ)x)

]

is the solution of the equationX′
0 =

[
iλ 1/2

1/2 0

]
X0. Introduce the matrixV = X−1

0 (0) =
1

2
√

1−λ2

[
iλ+√

1− λ2 1
−iλ+√

1− λ2 −1

]
. We will find X in the formX = X0Y . Then we have

an equation forY : Y ′ = v(x)X−1
0

(
0 1
1 0

)
X0Y, andY (0) = V . The multiplication of

the matrixes yields

Y ′ = v(x)√
1− λ2

×
(

1 (λ2 − iλ
√

1− λ2) exp(−√1− λ2x)

−(λ2 + iλ
√

1− λ2) exp(
√

1− λ2x) −1

)
Y.

(39)
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Let Y =


exp

(
1√

1−λ2

x∫
0

v(s)ds

)
0

0 exp

(
− 1√

1−λ2

x∫
0

v(s)ds

)
 T .

For T , we have the equation

T ′ = v(x)√
1− λ2

×
(

0 (λ2 − iλ
√

1− λ2) exp(−φ(x, λ))

−(λ2 + iλ
√

1− λ2) exp(φ(x, λ)) 0

)
T , (40)

whereφ(x, λ) = √
1− λ2x + 2√

1−λ2

x∫
0

v(s)ds. Systems (40) and (12) have the same

structure. Therefore, we can use arguments that were applied to the system (12) from
Lemma 1. ��
Remark. Let us apply the Taylor formula for the square root toµ1 from (7). We see that

x∫
0

µ1(s, k)ds = (iλ−√
1− λ2)x

2
− 1√

1− λ2

x∫
0

v(s)ds +O(1).

Taking the exponent, we have exactly the main factor in the asymptotics from Lemma 2.

The proof of Theorem 3 is straightforward now.

Proof of the Theorem 3. It suffices to use Lemma 2 and the arguments from the proof
of Theorem 2 to establish the inclusion(−∞,−2|l|] ∪ [2|l|,∞) ⊆ essupp{σac}. The
converse inclusion follows from the fact that the essential spectrum of the Dirac system
(3) is (−∞,−2|l|] ∪ [2|l|,∞) due to Weyl Theorem [8]. ��

Remark. It is likely that conditionv ∈ L2(R+) can be relaxed as it was done in [3].

3. Sturm–Liouville Operators

The main goal of this section is to prove the following theorem. The idea of the proof
will follow [4] more or less. But it will require more technical details.

Theorem 4. Consider the Sturm–Liouville operator on the half-line given by the differ-
ential expression

l(u) = −u′′ + qu, (41)

where q is bounded, lim supx→∞ q = m, q(x) is the absolutely continuous, and q ′ ∈
L2(R+). Then, for any boundary condition at zero, the essential support of absolutely
continuous component of the corresponding spectral measure is [m,∞).

Problems of this kind for Sturm–Liouville operators were treated in many publica-
tions. We mention some of the results obtained. P. Deift and R. Killip proved
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Theorem 5 ([2]). If in (41), q(x) ∈ L2(R+), then the essential support of the absolutely
continuous component of the spectral measure is R+ for all boundary conditions.

In the paper of S. Molchanov, M. Novitskii, and B. Vainberg [7], some other results
were obtained. For example, it was proved thatq ∈ L3(R+) andq ′ ∈ L2(R+) lead to the
same property of the spectral measure. Consider the particular case of Theorem 4, where
q → 0 asx →∞, q ′ ∈ L2(R+). We see that conditionq ∈ L3(R+) used in [7] can be
relaxed toq → 0 asx →∞. In [7], the authors also pose the following open problem:
Is it true that for all boundary conditions at zero, essupp{ρac} = [m,∞) provided that
q is bounded, lim supx→∞ q = m, and for some integerp, q(p) ∈ L2(R+)? Hereq(p)

means the derivative of orderp.
Theorem 4 solves this problem forp = 1. Because any bounded function admits a

supremum, we actually characterize the absolutely continuous component of the spec-
trum for bounded potentials with a square summable first derivative. We think that the
method developed here can be used to deal with anyp. No doubt, it will require more
calculations to establish the asymptotics.

Let us prove the following lemma first.

Lemma 3. If bounded q is such that lim supx→∞ q = m and q ′ ∈ L2(R+), then for
some large γ > 0, there exists bounded v(x) so that lim supx→∞ v = √γ 2 +m − γ ,
v′ ∈ L2(R+), and q = v2 + 2γ v + v′.

Proof. Consider the corresponding integral equation

v(x) = e−2γ x

x∫
0

e2γ s(q(s)− v2(s))ds. (42)

If v(x) is a solution of this integral equation, then it satisfies the differential equation
as well. Write (42) as followsv = OPγ v, whereOPγ is the corresponding formal
nonlinear operator. Consider the complete metric spaceM = {f ∈ C(R+), ‖f ‖∞ ≤ 1}
with ‖.‖∞ metric. By C(R+) we denote continuous functions onR+. If γ is large
enough, the operatorOPγ acts fromM to M. Naturally, the choice ofγ depends on
‖q‖∞. For largeγ , OPγ has a contracting property. Indeed,

|OPγ g1 −OPγ g2| ≤ e−2γ x

x∫
0

e2γ s |g1 − g2||g1 + g2|ds ≤ 1

2
‖g1 − g2‖∞,

for γ large enough. Therefore, there is the unique fixed point fromM. Let us call this
functionv.

Differentiate (42). After integration by parts, we will have

v′ = e−2γ x(q(0)− v2(0))+ e−2γ x

x∫
0

e2γ sq ′(s)ds − 2e−2γ x

x∫
0

e2γ sv(s)v′(s)ds.

Consider integral equation

b = e−2γ x(q(0)− v2(0))+ e−2γ x

x∫
0

e2γ sq ′(s)ds − 2e−2γ x

x∫
0

e2γ sv(s)b(s)ds. (43)
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It has the unique solution fromC(R+). Therefore, its solution isv′. The uniqueness
follows from the convergence of the corresponding iterated series. Write (43) asb =
OP 1γ b,

e−2γ x

x∫
0

e2γ sq ′(s)ds =
∫ ∞

0
rγ (x − s)q ′(s)ds,

whererγ (s) = e−2γ s for positives, and zero otherwise. Becauseq ′ ∈ L2(R+), theYoung
inequality for convolutions yields thatOP 1γ acts from the ball‖.‖2 ≤ 1 into itself,
provided thatγ is large enough. For largeγ , it has a contracting property. Therefore,
there is the unique fixed pointb in ball ‖.‖2 ≤ 1 which is equal tov′. We also used the
fact that‖v‖∞ ≤ 1. It is clear thatv′(x) → 0 asx →∞. Therefore, solving equation
v2 + 2γ v + v′ − q = 0 gives the formula

v = −γ ±
√

γ 2 − v′ + q. (44)

We know thatq is bounded and‖v‖∞ ≤ 1 for largeγ > 0. Consequently, to obtain
the asymptotics ofv at infinity, one should take sign+ in (44). Therefore, we have
lim supx→∞ v(x) = −γ +√γ 2 +m. ��

Now the proof of Theorem 4 is straightforward.

Proof of Theorem 4. Notice that the essential support of the absolutely continuous
component does not depend on the boundary condition at zero. It follows, for ex-
ample, from the subordinacy theory [5,15]. Consider (41) with Dirichlet boundary
condition at zero. Add to the potentialq some constantγ 2. Denote the correspond-
ing self-adjoint operator byHγ . Obviously, the spectral measure ofHγ is the shift
of the spectral measure of the initial operatorH0. On the other hand, for largeγ ,
we can solve equationq + γ 2 = (v + γ )2 + (v + γ )′. That is due to Lemma 3
of this section. Now we can apply results of the first section for Krein systems with
coefficientA(x) = γ /2 + v(x/2)/2. We can use Theorem 2 because for largeγ ,

0 < lim inf x→∞ A(x) ≤ lim supx→∞ A(x) =
√

γ 2+m

2 . Let us use formula (5) from the
Introduction. Thus, we see that[γ 2 + m,∞) ⊂ essupp{ρac(Hγ )} which is equivalent
to [m,∞) ⊂ essupp{ρac(H0)}.

To prove that it is actually an equality, one should use some result from [17] which
goes back to [16]. Before formulating this result, let us introduce some notations used in
[17]. ConsiderV – real valued and locally integrable on(0,∞). Assume that− d2

dx2 +V

is limit point at+∞ and
ε∫
0
|V (s)|ds < ∞. Let T = − d2

dx2 + V in L2(R+) with any

fixed boundary condition at zero. Consider alsoV◦ – integrable and bounded from below
function. Denote byT◦ operator generated by− d2

dx2 +V◦ in L2(R). Then, the following
theorem holds.

Theorem 6 ([17], Theorem 2.1). Assume that −∞ ≤ α < β ≤ +∞ and (α, β) ∩
Spectrum(T◦) = ∅ and that intervals In ⊂ [0,∞) exist such that

|In| → ∞ as n →∞ and sup
x∈∪nIn

|V (x)− V◦(x)| ≤ δ.

Then, essupp{ρac(T )} ∩ (α + δ, β − δ) = ∅.
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Now, considerV◦ = m, V = q. Because lim supx→∞ q = m andq ′ ∈ L2(R+), one
can easily show that for anyδ > 0, essupp{ρac(H0)} ∩ (−∞, m − δ) = ∅. Indeed, it
suffices to choosexn → ∞ such that|q(xn) − m| < δ/2 andIn as some neighboring

intervals. We specify them as follows. Notice thatq(x)−q(xn) =
x∫

xn

q ′(s)ds. Therefore,

|q(x)− q(xn)| ≤
 ∞∫

xn

[
q ′(s)

]2
ds

1/2

· √x − xn = εn

√
x − xn,

whereεn → 0 asn → ∞. Choose asIn intervals[xn, xn + ε−1
n ] for n so large that

εn < δ2

4 . Evidently,|In| → ∞ and for eachx ∈ In, we have|q(xn)−m| < δ. Therefore,
the Stolz Theorem yields essupp{ρac(H0)} = [m,∞).

Remark. There are many functions that satisfy conditions of Theorem 4. In partic-
ular, these are some slowly oscillating functions. One can think about cos(xµ) for
0 < µ < 1/2. In that case lim supx→∞ q(x) = 1, q ′ ∈ L2(R+). Consequently,
essupp{ρac} = [1,∞) for all boundary conditions. In paper [17], the author used the
theory of subordinate solutions to show that for any 0< µ < 1, the spectrum is actu-
ally purely absolutely continuous on[1,∞). The interval[−1, 1] is filled by singular
spectrum.

Remark. The conditionq ′ ∈ L2(R+) from Theorem 4 is optimal [7]. That means that
the statement can be false ifq ′ ∈ Lp(R+), p > 2. The famous von Neumann-Wigner
potential [18,10] satisfies the conditions of Theorem 4. That means that under the con-
ditions of Theorem 4, the singular component of the spectrum can appear on the interval
[m,∞) which supports the absolutely continuous part.

Remark. It should be noted that the class of Sturm–Liouville operators with decaying
potentials match very well the class of Krein systems with coefficients that tend to
nonzero constant. For example, Sturm–Liouville operators of this kind admit negative
eigenvalues with zero as the only possible point of accumulation. For the Krein systems,
these eigenvalues of the discrete spectrum might accumulate only near the edges of
the corresponding symmetric interval centered at zero. This relation can be explained
as follows. Consider the potential fromLp(R+), (1 ≤ p < ∞) space and Dirichlet
boundary condition for example. Then, forγ large enough, Eq. (42) can be solved so
thatv ∈ L∞(R+) ∩ Lp(R+). Consequently, formula (5) from the Introduction allows
us to study the Krein system with coefficientA = γ /2+ v(x/2)/2 instead of initial
Sturm–Liouville operator.

Theorem 3 from the first section lets us prove the theorem of P. Deift and R. Killip
for more general class of potentials.

Theorem 7. Consider Sturm–Liouville operator (41) with potential q(x). If q is uni-
formly square summable functions from H−1(R+) space, i.e.

x+1∫
x

q2(s)ds < C
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uniformly in x ∈ R+, and

e−x

x∫
0

esq(s)ds ∈ L2(R+), (45)

then, for any boundary conditions at zero, the essential support of the absolutely con-
tinuous component of the corresponding spectral measure is a positive half-line.

This result solves one open problem stated in [4]. The proof is essentially the same
as the proof of Theorem 4.

Lemma 4. Under the conditions imposed on q(x), we can find the absolutely continu-
ous function a(x) which is square summable on the positive half-line and satisfies the
equation q(x) = a′(x)+ a(x).

Proof. Consider the functiona(x) = e−x
x∫
0

esq(s)ds. Obviously,a(x) ∈ AC(R+) and

q = a′ + a. From (45), we havea(x) ∈ L2(R+). ��
Proof of Theorem 7. For givenq(x), find the corresponding functiona(x) and consider
the Krein system (1) withA(x) = a(x/2)/2+1/4.The absolutely continuous component
of the corresponding measureσ has essential support(−∞,−1/2] ∪ [1/2,∞). That is
due to Lemma 4 and Theorem 3. Consequently, for the Sturm–Liouville operator on the
half-line with potentialq∗ = a2+a+1/4+a′ and Dirichlet boundary condition at zero,
the essential support of the absolutely continuous component of the spectral measure is
[1/4,∞). The essential support of the absolutely continuous component does not depend
on the boundary condition. Therefore, this property holds for all boundary conditions
at zero. Becausea ∈ L2(R+) andq = a′ + a, the standard trace-class perturbation
argument yields that for operator with potentialq + 1/4, the essential support of the
absolutely continuous component is again the interval[1/4,∞). It suffices to subtract
1/4 from the operator to complete the proof of the theorem.��

Remark. Let q(x) be zero forx < 0. Then condition (45) means thatq(x) is from
H−1(R) class.

Indeed, sinceq(x) = 0 for x < 0, we can write

e−x

x∫
0

esq(s)ds =
+∞∫
−∞

q(s)r(x − s)ds,

wherer(t) = e−t for t > 0 andr(t) = 0 otherwise. Taking the Fourier transform, we
haveq̂(ω)r̂(ω) = 1√

2π(1−iω)
q̂(ω) ∈ L2(R). That meansq(x) ∈ H−1(R).
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