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Abstract: In this article, we consider two orthogonal systems: Sturm-Liouville op-
erators and Krein systems. For Krein systems, we study the behavior of generalized
polynomials at the infinity for spectral parameters in the upper half-plain. That makes
it possible to establish the presence of absolutely continuous component of the asso-
ciated measure. For Sturm-Liouville operator on the half-line with bounded potential
g, we prove that essential support of absolutely continuous component of the spectral
measure i§m, oco) ifimsup,_, ., g(x) = mandg’ € L?(R*). That holds for all bound-

ary conditions at zero. This result partially solves one open problem stated recently by
S. Molchanov, M. Novitskii, and B. Vainberg. We consider also some other classes of
potentials.

1. Introduction

The contents of the paper is as follows. In the first section, we prove the asymptotics of
generalized polynomials for Krein systems with coefficients of a special kind. We also
establish the presence of absolutely continuous component of the associated measure
In the second section, results obtained for Krein system are applied to Sturm-Liouville
operators.

In this introductory section, we will remind some results for the Krein systems. The
Krein systems are defined by the equations

dP(x,n) . S
- IAP(x,A) — A(x)Pye(x,2), P(O,1) =1,
dPy(x,)) (1)
i —AX)P(x, 1), Py(0,2) =1,

whereA (x) is locally summable function oR ™.
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In his famous work [6], M. G. Krein showed th&(x, ) have many properties of
polynomials orthogonal on the unit ciréleFor example, there exists a non-decreasing
functiono (1) (spectral measure ) defined on the whole line such that magphing) =

o
[ f(x)P(x, »)dx is isometry fromL?(R*) to L?(o, R). We will call P(x, 1) the gen-

0
eralized polynomials. The following Theorem was stated in [6]. It was proved later in
[12].

Theorem 1 ([6,12]). The following statements are equivalent

o0 ’
(1) Theintegral [ B2 d isfinite.
—00

(2) At least at some A, IA > 0, the integral

/|P(x,X>|2dx o)
0

converges.

(3) At least at some A, JA > 0, the function P, (x, A) is bounded.

(4) On any compact set in the open upper half-plane, integral (2) converges uniformly.
That isequivalent to the existence of uniformlimit IT(X) = lim, o Py (xp, 2) [19].

Consider some measupeon R. Let I be the finite union of intervals oR. Let us
assume that for any measurable Qetc 7 with positive Lebesgue measui@( > 0),
we haveu(2) > 0. That already means that has nontrivial absolutely continuous
component. Though not any measure with nontrivial absolutely continuous component
has this property. If this condition holds, we say that the essential support of absolutely
continuous component of measuyrés 7 (I C essuppuac})-

Thus, if one of the conditions (2)—(4) holds, then the essential suppgst@f) is R. It
is easy to show [6] that (x) € L2(R) or A(x) € L1(R)yields (3). In[3], we proved the
criterion for (3) to hold in terms of coefficient(x) from the so-called Stummel class.
In the next section, we will study another class of perturbations that does not shrink the
essential support for the absolutely continuous component of the measure. The similar
problems for Sturm-Liouville operators were studied in numerous publications (see, for
example, [7] and the bibliography there). But first, let us outline some relations between
Krein systems and some other orthogonal systems. Consider the Dirac system

{ ¢ = -2 —a19 +azy, $(0) =1,

W = A+ azd +ary, w0 =0, ®)

wherea; = 2RA(2x), ap = 23A(2x). It turns out thate="** P(2x, 1) = ¢(x, 1) +
iv(x,2). That allows us to say [6] thadpir (A) = 20 (L), where ppjr (A)— spectral
measure of Dirac systems (3).

In caseny; = 0 anda;— absolutely continuous, we have

Y —qy¥ + 1%y =0, y(0) =0, ¥/'(0) = A,

4
9" — q19 + 2% =0, $(0) = 1, ¢'(0) + a1(0)¢(0) = 0, *)

1 The spectral theory of Krein systems was developed further in [1,3,11-14].
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whereg = al +aj, q1= a% aj.

Therefore, the spectral measw;g{k) of Sturm—Liouville operatot(u) = —u” +qu
with Dirichlet boundary conditiom (0) = 0 is related tar (1) by

pa(A) = 4/520'6(5), 1> 0. )
0

2. Krein Systemswith Coefficients of a Special Kind

In this section, we will prove the following theorem.

Theorem 2. If the bounded coefficient A (x) of the Krein systemisreal valued, 0 < /1 =
liminf o A(x) <limsup,_ o, A(x) =lz,and A’ € L?(R1), then (—o0, —2I5] U
[2l2, 00) C essupfoy.}.

But first we will prove one auxiliary lemma. Consider the Krein system
P =iAP — AP,, P(0) =1, (6)
P, = —AP, P.(0) =1,

where real valued! is bounded, O< /1 = liminf,_, . A < limsup,_, ., A = I2, and
A € L3(RM).

Matrix 8 = [i);‘ _OA] has eigenvalues
iL—A4AZ — )2 i+ VA4AZ — )2
M1 = f’ M2 = f

Considerr = 7 + ik, t > 2l is fixed,k > 0. Assume for simplicityA is such that
l1 < 2A < t/2+ I forall x € RT. We will explain later why this assumption can
always be made without loss of generality. Symbadk reserved for positive constants
whose value might change from one formula to another. Itis easy to verifjifhat- O
forallx > 0,k > 0.

The following Lemmais true.

Lemma 1. The asymptotics holds at infinity,
Py(x, T+ ik) = exp /m(s,k)ds O(x, k), (7)
0
where |0 (x, k)| < exp(C/k) for all x > 0,k > 0.

Proof. Many estimates in this proof are very crude, but they will be good enough for
our purposes. Lef be a 2x 2 matrix that satisfies equatioi = RJ. We will find J

in the formJ = LQ, whereL = [_“11/’4 _“i/A consists of eigenvectors 8f We

have the following equation fop: Q' = L~RLQ — L~1L’Q. Multiplying matrixes,
we have

o= o erve ®)
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where

| vivie | 1 —%M1+Mi —%/M2+//2 9
V=l |~ Tz 2| 4 1A N ®)
21 V22 4AZ )2 | Gui—uy G2 — i

Let us notice that the following inequality:

o
/ IVI%dx < C (10)
0

holds uniformly ink. Introduce the matrix

exg] [ (2165, 1) + v1a(s, k))ds | 0
0o = 0 x (11)
0 exg] [ (t12(5. k) + vaa(s. K))ds |
0
_ _ | s11812 _
If 0= 0,5, thenforS = |:321 Szz}’ S(0) = I, we have
0 vlzexp[f v(s,k)ds]
S = . 0 S, (12)
vorexp — [ v(s, k)ds 0
A= ] vis.ods]
LA
wherev = V442 2y 20
AVAAZ — )2
Fors11 ands21, we have
sy = vizexp] [ v(s, s Jsz1, 5120 = 1,
0, (13)
Sél = v2q exp[— f v(s, k)ds:lsll, s21(0) = 0.
0
Consider the system of the corresponding integral equations
511x) = 1+ [ v12(7) exp[ [ v, k)ds]sz1(r)dr,
0 0 (14)

X t
52100 = [ vaa(t) exp[— [ s, k)ds]sll(t)dt.
0 0

Substituting the second formula into the first one and changing the order of integration,
we have the following integral equation fory:

s11(x) = 1+/511(I)v21(l)/v12(S)eXFJ[/ V(S)dg]del-
0 t t
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This equation yields the integral inequality

saal = 1+ [ lsn@llva)] [ so)liexd [ verde]asar. @s)
0 t t

irA!
AVAAZ — )2

t
Becauseiui > 0, we have the estimate

N
Notice that’/ ds‘ < C uniformly ink, t, s.

MRV4EAZ — A2 < —k. (16)

Consequently, the Gronwall Lemma, being applied to (15), yields

X

Is12] < explc / lv21(2)] f |U12(S)|eXp(—k[5 —r])dsdt} <expC/k). (17)
t

0

At the final step, we used (10) and the Young inequality for convolutions.
Therefore, forso1, we have the estimate

N

szl = expC/0) [ loaallexg{ - [ vie. e as
0

0

which follows from the second equation of system (13) and the estimatg oim the
same way, the estimates f@p, so» can be obtained. They are as follows:

Is12| < 7 eXp<C> (18)

sl = oo ) / v21(6)l exp] / v bde]ids.  (19)

If J is such that/(0) = I, thenJ = LQ.,SL~1(0). Therefore, forP,, we will have

P =exg] [ () + vasnar] asus + e (20)

+ exp (/(MZ(S) — u1(s) + v22(s) — v11(S))dS) (s2100 + 522,3)}~ (21)
0

Constantsr andg are chosen in such a way that the initial condit®i0, k) = 1 is
satisfied. We have

B /442(0) — 32 \ —A0) —11(0) 1’

209
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therefore andg are bounded uniformly ik. Denote byO (x, k),

0= exp[/x 011(t)dt] {OtS11 + Bs12 (23)
0

+ exp (/(MZ(S) — pa(s) + vao(s) — v11(S))dS) (s2100 + szzﬂ)}- (24)
0

X

Notice thatf v11(2)dt and[ v22(t)dt are bounded uniformly im andk. Due to the

0 0
estimates ony1 andsyo, we have

‘eXIO (/" (m2(s) — pa(s) + vaz(s) — v11(S))dS) (s21 + 5228) (25)
0

< exp(C/k) exp[ /x v(r;,k)dn] (26)

f v21(6) fexe] f v&, bde ]| ds 27)

< exp(C/k) / o211 exp| / o Kyt || ds < expCri VR (28)

To get the last estimate, we used the Cauchy inequality. Finally, bounds,onz
lead to|O (x, k)| < exp(C/k). That finishes the proof of the lemman

Remark. More accurate estimates an g, s11 allow us to write inequality
[0(x,z) — 1] < 1/2, (29)

wherex € RT, 1 < %z < 1 + 1, Iz > ko, ko— SOme positive constant.

Indeed, it is easy to verify that — 1 and|j| < g if 37 > +o00, 7 <Nz <7t+1.
Sz
From (13), by the Cauchy inequality we have

Is11— 1 < exp(C/k)/k (30)

uniformly inx € R*, t <Mz <t + 1, wherek = 3z > ko.

X
One can verify tha]/ v11(t)dt — O uniformly inx if Iz — oc.
0
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Therefore, from (23) and (26)—(28), we infer (29).
Let us prove Theorem 2 now.

Proof of Theorem 2. Fix anyt > 2/>. We will show thafz, co) C essupfo,.}. Because

7 is chosen arbitrarily larger thari;2ando is odd (sinceA is real ), this inclusion is
sufficient for Theorem 2 to be true. Onesds fixed, we can assume that < 24 <
t/2+ I forall x € R*. Due to the standard trace-class perturbation argument applied
to the Dirac system (3) [9], we can always make this assumption. Indeed,/siace
liminf, .o A < limsup,_, ., A = l2 asx — oo, it suffices to multiplyA by some
smooth function which is equal to 0 ¢6, M4] and 1 oM 4 + 1, o). The absolutely
continuous part obpir will not change because of the trace-class argument. On the other
hand, if M 4 is sufficiently large, we will satisfy the imposed condition.

Agf)’ ; ; Z Denote the
corresponding measure by. We have the formula ((3.14) from [12]):

Consider the Krein system with coefficiemsg,)(x) =

o0
i 1 A+1tz2)Inol(0)
21 Py(00, 7) = V21 Pe(n, 2) = €' = |, 0,
v (00,2) = V27 Py(n, 2) = €'“" exp /Zi(z S| e

—00

(31)

whereq,, are some real constants. Becadse) is real, functions,, are odd. Therefore,
if we takez = i, the left-hand side of (31), together with exponent from the right-hand
side, are real valued. Thusg, can be chosen equal to zero.
The asymptotics oP,(n, z) as|z| — oo, Iz > 0is Py(n, co) = 1 [11]. Therefore,
we can rewrite this formula as follows:

, [ A+ )n@ral)
=2riln Py(n,z) = / —o0id (32)

if Iz > 0. Here we used the identity

o0
1 (1+t2)In2r)
N2 = ——————d 3 0.
el [ o | e

—00

Also we used the fact thati, (1) — 1if |t| — oo [11].

The right-hand sideR H S(z) of (32) satisfies the conditioRH S(z) = RHS(Z).
Let us define the left-hand side forz < 0 according to this rule. So we have some
analytic functionL H S(z) defined in the regiorsz # 0. Recall the asymptotic formula
for Pu(x,2), (Sz > 0,Nz =1 > 2):

X

P.(x,7) =exp /,ul(s,z)ds O(x,2z). (33)
0



212 S. A. Denisov
Then,
n
LHS(z) = —2mi / u1(s, 2)ds —2xiln O(n, z)
0

for 3z > 0.
It is easy to see that the continuation according to the chosen rule for the function
n

—2mi f ui(s, z)ds is exactly the Schwarz analytic continuation. It follows from the fact

0
that the value of this function on the half-lifg = 0, %z > 7 is real.

Considerz = 7 + ik. Let InO(n,z) = ri1(n, k) + ira(n, k). From the definition
of LHS(z) in 3z < 0, we havei(ri(n, k) +ira(n, k)) = —ir1(n, k) — ra(n, k) =
iri(n, —k) — ra(n, —k). Thus,r1(n, k) is odd and-(n, k) is even. For fixed:, they are
well defined functions for akt #~ 0 with finite right and left limits ak = 0. Notice also
that fork > 0,r1(n, k) = In|0O(n, T + ik)| andra(n, k) = ArgO(n, t + ik). Forry,
r2, wWe haver1(n, oo) = 0, ra2(n, 00) = 0 becauseP, (n, o0) = 1 andu1(s, oo) = 0.

Then, integrate both sides of (32), together with some auxiliary function

3 .
ﬁ%, along the contour Con. We chooé®n as the contour that consists of

the complex numbers+ ik (|k| < m — 1, |k| > m + 1) and two right semicircles with
radii 1 centered at  im. The direction of integration is upward.
For the right-hand side, we have

c-1° [ (A+12)n@rol@)

dtd
-n2+md? | Tadrde-—o

Con

~ /Ooln(zm,;(z)) / (1+12)(z —1)3
B ((z

dzdt
1+12 “0Z4mdAi - "

—00

I ,
—hl/mln(ZﬂUn(t))dt.

Here we changed the order of integration by the Fubini Theorem and then used the
Cauchy formula.
Integrating thel. H S(z) with the same function, we have

( 0)° . @-0°
— 2mi /[ /,Ll(s Z)dS 1’)2 2)4dZ — 27 m In 0(}’1, Z)dZ
Con0 Con
_ 3
=0-2ri D N0, oz

((z —1)2 4+ m?)
on

becausq ui(s, z)ds is analytic and bounded iz > 7. Thus, we have the equality

_ 3 3
/ <<z—(zr>2r) n2ya MO = / m'”@ﬂo ()dr. (34)
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We have the following inequality [12]

o0

doy, (1)
35
/ 112~ c (35)
—00
uniformly in n. Define In" & = Ink for h > 1 and zero otherwise, tnh = —In# if

0 < h < 1 and zero otherwise. The trivial inequalityla < #, together with (35),
guarantee that the right-hand side of (34) is bounded above uniformlyOoir goal is
to show that it is bounded from below as well.

Thus, we want to show that

(z—1)3
((z—1)2+m?)4 InO(n,z)dz < C

Con

uniformly in n. The left-hand side is equal fg@ +12, where

I Gk (ri(n, k) +ira(n, k))dk
= l—F—>5(r1\n, ira\n,
1 (mz_k2)4 1 2
|k|<m—1,|k|>m+1
k3

O<k<m—1k>m+1

uniformly inn due to the estimates on|l® (n, k)|. We also used the fact that(n, k) is
even. It is crucial since we do not have control over the argumedi(of k). We only
know the upper bound on |®@ (n, k)|. The terml, corresponds to integration along the
semicircles. Choosa sufficiently large. Then, fof,, we have the estimate

b <C

uniformly in n because of the estimate (29).

Tofinish the proof, we will use one argument from [2]. Consider any compaCiset
(z, 00) of positive Lebesgue measure. Then, as it follows from (35) and boundedness
of right-hand side in (34)/ In~ o,,(t)dt is bounded uniformly im. Jensen’s inequality

Co
yields

1 1
In-{ — "(t)dt <—/In*’tdt.
Col /""() =ico ) " O
Co Co

Therefore,o,,(Co) is greater than some positive constaliCo) for all n. The
Weyl-Titchmarsh function of the system with coefficierds,) converges to the
Weyl-Titchmarsh function of a system with coefficieait[12]. This convergence is
uniform on any compact set of upper half-plane. By the Stone—Weierstrass Theorem, we
have weak convergence of to o. Consequentlyy (Co) > limsup,_, ., 0,(Co) > 0
for each compaafo with [Co| > 0. O

In the next Theorem, we consider a different class of coefficients.
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Theorem 3. If A(x) = —I—v(x),wherel € R, v(x)isreal valued,andv(x) € L2(R"),
then for the corresponding Krein system essupfo,.} = (—oo, —2JI|] U [2]]], 00).

Forl = 0, the result follows from [6]. Therefore, we will consider the case0. To
make calculations more simple, let= —1/2. The idea of the proof is the same as that
of Theorem 2. We need the asymptoticsRiix, A). Consider the Krein system written
in the following way:

P' = i\P + P,/2+ vP,, P(0) =1,
(36)

P.=  P/24+vP, PO =1

11/)L2 1(/)2 has eigenvalueg+ = (i + v/1—22)/2. Considen. =

T 4+ ik, © > lisfixed,k > 0. One can verify thatiu_ > O forallk > 0.

The matrix

Lemma 2. The following asymptotics holds at the infinity

P.(x, T +ik) =exp |:;L_(A)x — ﬁ O/ v(s)ds:| O(x, k), (37)

where |0 (x, k)| < exp(C/k) forall x > 0,k > O.

Proof. We will give only the sketch of the proof, because it repeats essentially the proof
of Lemma 1. Consider the following matrix differential system:

X = [1’?2 162}X+v(x) [%] X, X(0)=E, (38)

whereE is 2 x 2 identity matrix.

Yo — explp+(A)x) exp(p—(A)x)
OF | (min + V1= 22) explus(W)x) (—ir — VI — X2) exp(i—(A)x)

ir 1/2

is the solution of the equatioxy, = [1/2 0

1 ir+4/1-22 1
2V1-32 | —iA 4+ +/1—2A2 -1

an equation fot: Y’ = v(x)Xol(

} Xo. Introduce the matri¥ = Xal(O) =

] We will find X in the formX = XqY. Then we have

01

1 0) XoY, andY (0) = V. The multiplication of

the matrixes yields

v(x)

Y =
V1-22
( 1 (A2 —iav1— A2) exp(—v/1 — A%)) y
X .
—(A2 4+ iav1 = 22) exp(+v/1 — A2x) -1

(39)
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exp(ﬁ({v@)ﬁ) 0
LetY = . T.

0 exp(—ﬁgv(s)ds)

For T, we have the equation

T/ — v(x)

J/1-a2

0 (A2 —iav1 — A2) exp(—o (x, ,\)))

X Tv (40)

—(A2+ix/1=22) explg(x, 1)) 0

X
whereg (x, 1) = v/1—212x + ﬁ [ v(s)ds. Systems (40) and (12) have the same
)

structure. Therefore, we can use arguments that were applied to the system (12) from
Lemmal. O

Remark. Let us apply the Taylor formula for the square rooptofrom (7). We see that

ir—vI—idx 1 /x
2 \/1—)\20

Taking the exponent, we have exactly the main factor in the asymptotics from Lemma 2.

X

/Ml(s, k)ds =
0

v(s)ds + O(1).

The proof of Theorem 3 is straightforward now.

Proof of the Theorem 3. It suffices to use Lemma 2 and the arguments from the proof
of Theorem 2 to establish the inclusi¢roo, —2|I|] U [2|l]|, co) C essupfo,.}. The
converse inclusion follows from the fact that the essential spectrum of the Dirac system
(3) is (—o0, —2]I|]] U [2]l], c0) due to Weyl Theorem [8]. O

Remark. Itis likely that conditionv € L?(R™) can be relaxed as it was done in [3].

3. Sturm-Liouville Operators

The main goal of this section is to prove the following theorem. The idea of the proof
will follow [4] more or less. But it will require more technical details.

Theorem 4. Consider the Surm-Liouville operator on the half-line given by the differ-
ential expression

() = —u" +qu, (41)

where ¢ is bounded, lim sup,_, ., ¢ = m, g(x) is the absolutely continuous, and ¢’ €
L2(R™). Then, for any boundary condition at zero, the essential support of absolutely
continuous component of the corresponding spectral measureis [m, co).

Problems of this kind for Sturm—Liouville operators were treated in many publica-
tions. We mention some of the results obtained. P. Deift and R. Killip proved
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Theorem 5 ([2]). Ifin (41), ¢(x) € L2(R*), then the essential support of the absol utely
continuous component of the spectral measureis R™ for all boundary conditions.

In the paper of S. Molchanov, M. Novitskii, and B. Vainberg [7], some other results
were obtained. For example, it was proved that L3(R*) andg’ € L?(RT) lead to the
same property of the spectral measure. Consider the particular case of Theorem 4, where
g — 0asx — 00, g’ € L2(RT). We see that conditiop € L3(R™) used in [7] can be
relaxed tay — 0 asx — oo. In [7], the authors also pose the following open problem:

Is it true that for all boundary conditions at zero, esqupp = [m, co) provided that
¢ is bounded, limsup, ., ¢ = m, and for some integey, ¢ € L2(R™)? Hereg?”
means the derivative of order.

Theorem 4 solves this problem fpr= 1. Because any bounded function admits a
supremum, we actually characterize the absolutely continuous component of the spec-
trum for bounded potentials with a square summabile first derivative. We think that the
method developed here can be used to deal withyaryo doubt, it will require more
calculations to establish the asymptotics.

Let us prove the following lemma first.

Lemma 3. If bounded ¢ is such that limsup,_, .,¢ = mand ¢’ € L?(R™"), then for
some large y > 0, there exists bounded v(x) so that limsup,_, . v = /y2+m — y,
v e L%(RM),and g = v® + 2yv +v'.
Proof. Consider the corresponding integral equation
x
v(x) = e ¥ /ezys(q(s) — v(s))ds. (42)
0

If v(x) is a solution of this integral equation, then it satisfies the differential equation
as well. Write (42) as follows = O P,v, where O P, is the corresponding formal
nonlinear operator. Consider the complete metric space {f € C(RY), || flloo < 1}
with |.|lso metric. By C(R*) we denote continuous functions a@ti™. If y is large
enough, the operatap P, acts fromM to M. Naturally, the choice of depends on
llgllc- For largey, O P, has a contracting property. Indeed,

X
_ 1
|OP,g1— OP,ga| <e M/ezmgl — gallg1 + galds < g1 — galloo,
0

for y large enough. Therefore, there is the unique fixed point fddniet us call this
functionv.
Differentiate (42). After integration by parts, we will have

X X
v = e ¥ (g(0) — v2(0)) + e ¥ / 23/ (s)ds — 2¢~ 2% / %S u(s)v'(s)ds.
0 0
Consider integral equation
b=e"2"(g(0) — v?(0)) + e 2~ / e?3q/ (s)ds — 2¢7%7* / e?Sv(s)b(s)ds. (43)
0 0
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It has the unique solution fror@(R™). Therefore, its solution is’. The uniqueness
follows from the convergence of the corresponding iterated series. Write (48}as
OP1L,b,

X

o0
e—zyx/‘fz)’sq/(s)ds =/ ry (x = 5)q'(s)ds,
0

0

wherer, (s) = e~27s for positives, and zero otherwise. Becauges L2(R™T), theYoung
inequality for convolutions yields tha® P1, acts from the ball.|[> < 1 into itself,
provided thaty is large enough. For large, it has a contracting property. Therefore,
there is the unique fixed pointin ball ||.||2 < 1 which is equal ta’. We also used the
fact that||v|| < 1. Itis clear that’(x) — 0 asx — oo. Therefore, solving equation
v2 4 2yv + v — g = 0 gives the formula

v=—y£.,y2—1v +gq. (44)

We know thatg is bounded andlv|», < 1 for largey > 0. Consequently, to obtain
the asymptotics o at infinity, one should take sig# in (44). Therefore, we have

limsup,_, o v(x) = —y +y2+m. O
Now the proof of Theorem 4 is straightforward.

Proof of Theorem 4. Notice that the essential support of the absolutely continuous
component does not depend on the boundary condition at zero. It follows, for ex-
ample, from the subordinacy theory [5,15]. Consider (41) with Dirichlet boundary
condition at zero. Add to the potential some constang?. Denote the correspond-

ing self-adjoint operator byd, . Obviously, the spectral measure Hf, is the shift

of the spectral measure of the initial operafds. On the other hand, for large,

we can solve equatiop + y2 = (v + )2 + (v + y)’. That is due to Lemma 3

of this section. Now we can apply results of the first section for Krein systems with
coefficientA(x) = y/2 + v(x/2)/2. We can use Theorem 2 because for layge

0 <liminf, o A(x) <limsup,_, , A(x) = —WE’L’" Let us use formula (5) from the
Introduction. Thus, we see thgt2 + m, o) C essuppoq.(H,)} which is equivalent
to [m, 00) C essupppac(Ho)}-

To prove that it is actually an equality, one should use some result from [17] which
goes back to [16]. Before formulating this result, let us introduce some notations used in
[17]. ConsiderV —real valued and locally integrable 6B co). Assume that—% +V

&€
is limit point at+oo and [ |V (s)|ds < oco. LetT = —% + V in L2(RT) with any

0
fixed boundary condition at zero. Consider als6- integrable and bounded from below
function. Denote by, operator generated bydd—;2 + V, in L2(R). Then, the following
theorem holds.

Theorem 6 ([17], Theorem 2.1). Assume that —co < o < B < +oo and (a, B) N
Spectrum(T,) = ¢ and that intervals I,, C [0, co) exist such that

|[I,| > ocoasn — ocoand sup |V(x) — Vo(x)| <.
xeU, I,

Then, essuppoq.(T)} N (¢ + 68,8 —38) = 0.
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Now, considerV, = m, V = ¢. Because limsup, . ¢ = m andg’ € L3(R"), one
can easily show that for ar/ > 0, essupfp..(Ho)} N (—oo, m — §) = @. Indeed, it
suffices to choose, — oo such thatq(x,) — m| < §/2 andl,, as some neighboring

X

intervals. We specify them as follows. Notice that) — g (x,) = [ ¢/(s)ds. Therefore,

Xn
0 1/2

lg(x) — q(xn)| < [[q/(s)]zds VX = Xy = Ep/X — Xn,

n

whereg,, — 0 asn — oo. Choose ad,, intervals[x,, x, + e;l] for n so large that

&n < %. Evidently,|I,| — oo and for eaclx € I,,, we havdq(x,) —m| < §. Therefore,
the Stolz Theorem yields essypp. (Hp)} = [m, o0).

Remark. There are many functions that satisfy conditions of Theorem 4. In partic-
ular, these are some slowly oscillating functions. One can think about€p$or

0 < u < 1/2. In that case limsup, . ¢(x) = 1, ¢ € L?(RT). Consequently,
essuppp..} = [1, co) for all boundary conditions. In paper [17], the author used the
theory of subordinate solutions to show that for any Qv < 1, the spectrum is actu-
ally purely absolutely continuous dfi, co). The interval[—1, 1] is filled by singular
spectrum.

Remark. The conditiong’ € L2(R") from Theorem 4 is optimal [7]. That means that

the statement can be falsgif € L”(R™), p > 2. The famous von Neumann-Wigner
potential [18, 10] satisfies the conditions of Theorem 4. That means that under the con-
ditions of Theorem 4, the singular component of the spectrum can appear on the interval
[m, co) which supports the absolutely continuous part.

Remark. It should be noted that the class of Sturm—Liouville operators with decaying
potentials match very well the class of Krein systems with coefficients that tend to
nonzero constant. For example, Sturm—Liouville operators of this kind admit negative
eigenvalues with zero as the only possible point of accumulation. For the Krein systems,
these eigenvalues of the discrete spectrum might accumulate only near the edges of
the corresponding symmetric interval centered at zero. This relation can be explained
as follows. Consider the potential frof¥ (RT), (1 < p < oo) space and Dirichlet
boundary condition for example. Then, fprlarge enough, Eq. (42) can be solved so
thatv € L®°(R™) N L?(R™). Consequently, formula (5) from the Introduction allows

us to study the Krein system with coefficieat= y/2 + v(x/2)/2 instead of initial
Sturm-Liouville operator.

Theorem 3 from the first section lets us prove the theorem of P. Deift and R. Killip
for more general class of potentials.

Theorem 7. Consider Sturm-Liouville operator (41) with potential ¢(x). If g is uni-
formly square summable functions from H~1(R*) space, i.e.

x+1

/ qz(s)ds <C

X
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uniformly inx € R*, and

X

e_x/esq(s)ds € L%(RM), (45)
0

then, for any boundary conditions at zero, the essential support of the absolutely con-
tinuous component of the corresponding spectral measure is a positive half-line.

This result solves one open problem stated in [4]. The proof is essentially the same
as the proof of Theorem 4.

Lemma 4. Under the conditions imposed on ¢ (x), we can find the absolutely continu-
ous function a(x) which is square summable on the positive half-line and satisfies the
equation g (x) = a’(x) + a(x).

Proof. Consider the function(x) = e [ ¢*q(s)ds. Obviously,a(x) € AC(R*) and
0
g = d’ + a. From (45), we have(x) € L?(RT). O

Proof of Theorem 7. For giveng (x), find the corresponding functian(x) and consider

the Krein system (1) witl (x) = a(x/2)/2+1/4. The absolutely continuous component

of the corresponding measurehas essential suppdr-oco, —1/2] U [1/2, c0). That is

due to Lemma 4 and Theorem 3. Consequently, for the Sturm—Liouville operator on the
half-line with potential* = a?+a + 1/4+a’ and Dirichlet boundary condition at zero,

the essential support of the absolutely continuous component of the spectral measure is
[1/4, 00). The essential support of the absolutely continuous component does not depend
on the boundary condition. Therefore, this property holds for all boundary conditions
at zero. Because € L?(R") andg = a’ + a, the standard trace-class perturbation
argument yields that for operator with potentigh- 1/4, the essential support of the
absolutely continuous component is again the intefiid, co). It suffices to subtract

1/4 from the operator to complete the proof of the theorem.

Remark. Let g(x) be zero forx < 0. Then condition (45) means thatx) is from
H~1(R) class.

Indeed, sincg (x) = 0 forx < 0, we can write

X +00

e_x/esq(s)ds = f q(s)r(x — s)ds,

0 —00

wherer (1) = e™' fort > 0 andr(¢) = 0 otherwise. Taking the Fourier transform, we
haveq(a))r(a)) F(l q(a)) € L?(R). That meang (x) € H 1(R).
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