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Abstract: The critical exponentsβ,γ ,δ and�are proved to exist and to take their mean-
field values for independent percolation on the following classes of infinite, locally finite,
connected transitive graphs: (1) Non-amenable planar with one end. (2) Unimodular with
infinitely many ends.

1. Introduction

1.1. Results. A great deal of attention has been given recently to the study of statistical
mechanics and related systems on various classes of graphs. The reader is invited to
consult [Lyo] and [Sch] for introductions to the subject, and for references to the liter-
ature. This paper can be seen as a continuation of [Sch], and we refer the reader to that
paper for background and motivation. Basic terminology, definitions and notation will
be reviewed later in this introduction.

We will consider independent bond percolation on an infinite, locally finite, connected
transitive graphG = (V ,E). Results similar to the ones presented here hold also for
independent site percolation, with similar proofs.The same remark can be made about the
extension from transitive to quasi-transitive graphs. Conjecture 1.2 in [Sch], combined
with Conjecture 6 in [BS1] (reproduced as Conjectures 1.1 in [Sch]), state that if the
graph is non-amenable, critical exponents exist and take their mean-field values. In [Sch],
Theorem 1.1, this was proved for various critical exponents in the case in which the graph
is unimodular and the edge-isoperimetric constant (Cheeger constant) is a sufficiently
large fraction of the degree of the graph (previously, a special case had been handled in
[Wu]). Here we prove similar results in two cases.

Theorem 1.1. For independent bond percolation on the following classes of infinite,
locally finite, connected transitive graphs the critical exponents β, γ , δ and � exist and
take their mean field values:
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fellowship.
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(i) Graphs which are planar non-amenable and have one end.
(ii) Graphs which are unimodular and have infinitely many ends.

At the end of the next subsection, after introducing the necessary notation, we review
the meaning of the exponents addressed in this theorem and recall what their mean-field
values are.

It is worth pointing out that while Theorem 1.1 in [Sch] was proved by verifying the
triangle condition of [AN] (or, more precisely, the open triangle condition of [BA]), in
the present paper we will follow a somewhat different route, based nevertheless also on
the work of [AN, BA], and [Ngu]. We do not know whether the triangle condition holds
in the cases treated here.

The fact that there is no percolation at the critical point, which is a feature of mean-field
criticality, is known to hold for independent percolation on any infinite, locally finite,
connected transitive unimodular graph. This was proved in [BLPS1], and a simpler proof
was provided in [BLPS2]. Unfortunately, the methods from these papers do not provide
information on critical exponents.

Part (i) ofTheorem 1.1 is the main contribution in this paper.This is one more instance
in which the extra techniques resulting from planarity allow one to prove that results
on percolation conjectured to hold with greater generality are true at least in the planar
case. In the classical study of percolation (and other statistical mechanics processes) on
transitive amenable graphs, and especially on the graphsZ

d , this is a well known fact:
planarity allows one to make much faster progress, and much more has been proved in
the case ofZ2 than in the more general case ofZ

d (see, e.g., [Gri]). In the context of
percolation on transitive non-amenable graphs, a similar pattern has been followed. The
paper [Lal1] anticipated for certain transitive non-amenable planar graphs some of the
results which would later be proved for more general transitive non-amenable graphs.
The study of percolation on transitive non-amenable planar graphs was later greatly
developed in the papers [Lal2] and [BS2]. For instance, the fundamental Conjecture 6
in [BS1], which states that for independent bond or site percolation on transitive non-
amenable graphs there is always a regime with infinitely many infinite clusters, was
proved to hold under the extra assumption of planarity.

In contrast to Theorem 1.1(i), independent percolation on transitive amenable planar
graphs with one end is expected to have critical exponents with non-mean-field values.
The case in which the graph isZ2 is extensively discussed in [Gri]. In the case of
site percolation on the triangular lattice, various critical exponents have recently been
proved to indeed take their conjectured, non-mean-field, values. This is a result of the
rapid progress on conformal invariance, in combination with earlier work by H. Kesten
relating various critical exponents in the two dimensional case (see [LSW, SW] and
references therein).

1.2. Terminology and notation. We will consider independent bond percolation on an
infinite, locally finite, connected graphG = (V ,E), whereV is the set of vertices (sites)
andE is the set of edges (bonds). A siter ∈ V will be singled out and denoted the root
of G. The cardinality of a setS ⊂ V will be denoted by|S|. The edge boundary of
a setS ⊂ V is ∂ES = {{x, y} ∈ E : x ∈ S, y ∈ Sc} and its inner vertex boundary
is ∂inS = {x ∈ S : {x, y} ∈ ∂ES for somey ∈ Sc}. Theedge-isoperimetric constant
(Cheeger constant) of G is defined as

iE(G) = inf

{ |∂ES|
|S| : S ⊂ V,0 �= |S| < ∞

}
.
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G is said to beamenable in caseiE(G) = 0. Thenumber of ends of the graphG is

E(G) = sup
S⊂V|S|<∞

{number of infinite connected components ofG\S},

whereG\S is the graph obtained from the graphG by removing the vertices which
belong toS and the edges incident to these vertices. (The definition of ends of a graph
is being omitted because it is not needed in this paper. Those familiar with that concept
will note thatE(G) coincides with the cardinality of the set of ends of the graphG in case
this cardinality is finite and thatE(G) = ∞ when this cardinality is infinite, butE(G)
does not distinguish between different infinite cardinalities. While this is a drawback of
E(G), its definition is simpler than that of the set of ends of a graph, and is sufficient
for various purposes including those in this paper.) Informally, a graph istransitive
(same as vertex-transitive or homogeneous) if all its vertices play exactly the same role.
More precisely, this means that for each pairx, y ∈ V there is an automorphism of the
graph which mapsx to y. A graph is said to bequasi-transitive if there is a finite set
of vertices,V0, with the property that each vertex of the graph can be mapped into one
of the vertices ofV0 by an automorphism. Informally, a graph is quasi-transitive if there
is a finite number of types of vertices, and vertices of the same type play the same role.
The number of ends of an infinite, locally finite, connected transitive graph is 1,2, or∞;
moreover, when the number of ends is 2, the graph is amenable and when the number
of ends is∞ the graph is non-amenable (see Sect. 6 of [Moh]). Thestabilizer, S(x),
of a vertexx ∈ V is the set of automorphisms ofG which fix x. A transitive graph is
unimodular if for eachx, y ∈ V , |{γ (y) : γ ∈ S(x)}| = |{γ (x) : γ ∈ S(y)}|. A graph
is said to beplanar if it can be embedded inR2 with vertices being represented by points
and edges being represented by lines which connect the corresponding vertices and can
only intersect at their end-points.

The probability measure according to which each edge is occupied with probability
p and vacant with probability 1− p, independently of the others, will be denoted by
Pp. The corresponding expectation will be denoted byEp. GivenA,B ⊂ V , we will
write {A ↔ B} for the event that there is a path of occupied bonds connectingA toB (if
A = {x}, we write{x ↔ B}, rather than{{x} ↔ B}, and will use similar conventions

systematically). Given alsoS ⊂ V we will write {A S←→ B} for the event that there is
a path of occupied bonds connectingA to B with all the sites which appear in this path

belonging toS. We will set{A �↔ B} = {A ↔ B}c, {A � S←→ B} = {A S←→ B}c. For
x ∈ V , C(x) = {y ∈ V : x ↔ y} will denote the cluster of the sitex. The probability
of percolation is defined asθ(p) = Pp(|C(r)| = ∞). The susceptibility is defined as
χ(p) = Ep(|C(r)|) = ∑

x∈V Pp(r ↔ x). The threshold for percolation is the critical
pointpc = inf {p ∈ [0,1] : θ(p) > 0}. From the methods of [AB], we know that for
quasi-transitive graphspc = sup{p ∈ [0,1] : χ(p) < ∞}. The threshold for uniqueness
of the infinite cluster ispu = inf {p ∈ [0,1] : Pp(there is a unique infinite cluster) = 1}.

In order to define the critical exponentδ, we introduce a “ghost field”. Each site is
painted green, independently of anything else, with probabilityq. Pp,q will denote the
corresponding probability measure in this enlarged probability space, andEp,q will be
the corresponding expectation. The random set of green sites will be denoted byQ.
One definesθ(p, q) = Pp,q(r ↔ Q), andχ(p, q) = Ep,q(|C(r)|; C(r) ∩ Q = ∅) =∑

x∈V Pp,q(r ↔ x, r �↔ Q).
Next we review what is meant by saying that each one of the critical exponents

which appears in Theorem 1.1 exists and takes its mean-field value. The labels on the
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left indicate the way one usually refers to each statement, and provide the corresponding
mean-field value of each critical exponent:

[γ = 1] C1(pc − p)−1 ≤ χ(p) ≤ C2(pc − p)−1, for p < pc,

[β = 1] C1(p − pc)
1 ≤ θ(p) ≤ C2(p − pc)

1, for p > pc,

[δ = 2] C1q
1/2 ≤ θ(pc, q) ≤ C2q

1/2, for q > 0,
[� = 2] For m = 1,2, . . . C1(pc − p)−2 ≤ Ep(|C(r)|m+1)/Ep(|C(r)|m)

≤ C2(pc − p)−2, for p < pc,

where in each caseC1, C2 ∈ (0,∞).

2. Sufficient Conditions for Mean-Field Criticality

From the arguments in [AN] (modified in the fashion of Sect. 3.1 of [BA]) and [Ngu],
we have:

Lemma 2.1.A. Suppose that G = (V ,E) is an infinite, locally finite, connected transi-
tive unimodular graph such that pc < 1. Suppose also that there are ε, c > 0 and sites
x1, x2 ∈ V such that for every p ∈ (pc − ε, pc),∑

z1,z2∈V
Pp(x1 ↔ z1, x2 ↔ z2, x1 �↔ x2) ≥ c(χ(p))2.

Then γ = 1 and � = 2.

From the arguments in [BA] and [New] we have:

Lemma 2.1.B. Suppose that G = (V ,E) is an infinite, locally finite, connected transi-
tive unimodular graph such that pc < 1. Suppose also that there are ε, c > 0 and sites
x1, x2, x3 ∈ V such that for every p ∈ (pc − ε, pc) and q ∈ (0, ε),∑

z∈V
Pp,q(x1 ↔ z, x1 �↔ Q, x2 ↔ Q, x3 ↔ Q, x2 �↔ x3) ≥ cχ(p, q)(θ(p, q))2.

Then δ = 2 and β = 1.

The role of unimodularity in the derivation of the two lemmas above is explained in
Section 3.2 of [Sch].

In the remainder of this section, we will reduce the lemmas above to further sufficient
conditions for statements of mean-field criticality. The reader can either study these
lemmas in the order in which they will be presented, or alternatively, study first the
lemmas labeled with “A”, which refer to the exponentsγ and�, and later study the
lemmas labeled with “B”, which refer to the exponentsδ andβ, and which have more
involved proofs.

Lemma 2.2.A. Suppose that G = (V ,E) is an infinite, locally finite, connected tran-
sitive unimodular graph. Suppose also that there are ε, c > 0, disjoint sets of sites
V1, V2 ⊂ V and sites x1 ∈ V1, x2 ∈ V2 such that for every p ∈ (pc − ε, pc),

Pp(V1 ↔ V2) ≤ 1− c,

∑
z∈Vi

Pp(xi
Vi←→ z) ≥ cχ(p) (i = 1,2).

Then γ = 1 and � = 2.
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Proof. For i = 1,2, the events{xi Vi←→ z} depend only on the state of occupancy of
the edges which have both endpoints inVi , while the event{V1 ↔ V2} depends only on
the state of occupancy of the other edges. Therefore, by independence,

∑
z1,z2∈V

Pp(x1 ↔ z1, x2 ↔ z2, x1 �↔ x2)

≥
∑

z1,z2∈V
Pp(x1

V1←→ z1, x2
V2←→ z2, V1 �↔ V2)

=
∑

z1,z2∈V
Pp(x1

V1←→ z1)Pp(x2
V2←→ z2)Pp(V1 �↔ V2)

=

 ∑

z1∈V1

Pp(x1
V1←→ z1)





 ∑

z2∈V2

Pp(x2
V2←→ z2)


 Pp(V1 �↔ V2)

≥ c3(χ(p))2.

And the claim follows from Lemma 2.1.A. (The hypothesis in that lemma thatpc < 1
must hold, since otherwisePp(V1 ↔ V2) → 1, asp ↗ pc.) ��
Lemma 2.2.B. Suppose that G = (V ,E) is an infinite, locally finite, connected tran-
sitive unimodular graph. Suppose also that there are ε, c > 0, disjoint sets of sites
V1, V2, V3 ⊂ V and sites x1 ∈ V1, x2 ∈ V2, x3 ∈ V3 such that for every p ∈ (pc−ε, pc)

and q ∈ (0, ε),
Pp,q(Vi ↔ Vj ) ≤ 1− c (i �= j),

∑
z∈V1

Pp,q(x1
V1←→ z, x1 �↔ Q) ≥ cχ(p, q),

Pp,q(xi
Vi←→ Q) ≥ cθ(p, q) (i = 2,3).

Then δ = 2 and β = 1.

Proof. Set

Az
1 = {x1

V1→←→ z}, Ã1 = {x1 �↔ Q},
Ãz

1 = {x1
V1→←→ z, x1 �↔ Q},

A2 = {x2
V2→←→ Q}, A3 = {x3

V3→←→ Q},
B = {V1 �↔ V2, V2 �↔ V3, V3 �↔ V1}.

For each setE′ ⊂ E, we will denote byFE′ the σ -field generated by the state of
occupancy of the edges inE′. LetE1 = {{u, v} ∈ E : u, v ∈ V1}, and let(Ek

1)k≥1 be an
increasing sequence of subsets ofE1 which converges to this set (i.e.,∪kE

k
1 = E1).

For anyk, and any configurationω1 ∈ {0,1}Ek
1 , the set of configurations in{0,1}E\Ek

1×
{0,1}V which in combination withω1 produce a configuration iñA1 is a decreasing set.
Similarly for B. Therefore, by the Harris’ inequality,

Pp,q(Ã1B|FEk
1
) ≥ Pp,q(Ã1|FEk

1
)Pp,q(B|FEk

1
) = Pp,q(Ã1|FEk

1
)Pp,q(B),
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where in the last step we used the fact thatB depends only on the state of occupancy
of the edges which have at least one endpoint in(V1)

c and therefore is independent of
FEk

1
. Lettingk → ∞, and using (5.9) on p. 264 of [Dur], yields

Pp,q(Ã1B|FE1) ≥ Pp,q(Ã1|FE1)Pp,q(B).

Integration overAz
1 ∈ FE1, yields now

Pp,q(Ã
z
1B) = Pp,q(Ã1A

z
1B) ≥ Pp,q(Ã1A

z
1)Pp,q(B) = Pp,q(Ã

z
1)Pp,q(B).

Therefore,

∑
z∈V

Pp,q(x1 ↔ z, x1 �↔ Q, x2 ↔ Q, x3 ↔ Q, x2 �↔ x3) ≥
∑
z∈V1

Pp,q(Ã
z
1A2A3B)

=
∑
z∈V1

Pp,q(Ã
z
1B)Pp,q(A2)Pp,q(A3) ≥

∑
z∈V1

Pp,q(Ã
z
1)Pp,q(A2)Pp,q(A3)Pp,q(B)

≥ c6χ(p, q)(θ(p, q))2.

In the second step above we used the fact thatÃz
1B depends only on the state of occupancy

of the edges which have at least one endpoint in(V2 ∪ V3)
c and on the state (green or

not) of the vertices in(V2 ∪ V3)
c, while, for i = 2,3, Ai depends only on the state

of occupancy of the edges which have both endpoints inVi and on the state (green or
not) of the vertices inVi . In the last step above we used Harris’ inequality to obtain
Pp,q(B) ≥ c3. The claim follows now from Lemma 2.1.B. (The hypothesis in that
lemma thatpc < 1 must hold, since otherwisePp,q(Vi ↔ Vj ) → 1, asp ↗ pc.) ��
Lemma 2.3.A. Suppose that G = (V ,E) is an infinite, locally finite, connected tran-
sitive unimodular graph. Suppose also that there are disjoint sets of sites V1, V2 ⊂ V

and sites x1 ∈ V1, x2 ∈ V2 such that

Ppc (V1 ↔ V2) < 1,
∑

v∈∂inVi

Ppc (xi ↔ v) < 1 (i = 1,2).

Then γ = 1 and � = 2.

Proof. We will verify the hypothesis of Lemma 2.2.A withε = pc andc = min{1 −
Ppc (V1 ↔ V2),1−∑

v∈∂inV1
Ppc (x1 ↔ v),1−∑

v∈∂inV2
Ppc (x2 ↔ v)}. By monotonic-

ity in p, only the second display in the hypothesis of Lemma 2.2.A requires any non-

trivial argumentation. To verify it, we note that if{xi ↔ z}occurs, then either{xi Vi←→ z}
occurs, or else there is some vertexv ∈ ∂inVi for which the event{xi ↔ v}�{v ↔ z}
occurs. From the van den Berg–Kesten–Fiebig–Reimer inequality, we obtain then, for
p < pc,

Pp(xi ↔ z) ≤ Pp(xi
Vi←→ z)+

∑
v∈∂inVi

Pp(xi ↔ v)Pp(v ↔ z)

≤ Pp(xi
Vi←→ z)+

∑
v∈∂inVi

Ppc (xi ↔ v)Pp(v ↔ z).
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Summing overz ∈ V ,

χ(p) ≤
∑
z∈Vi

Pp(xi
Vi←→ z)+

∑
v∈∂inVi

Ppc (xi ↔ v)χ(p).

Therefore, ∑
z∈Vi

Pp(xi
Vi←→ z) ≥ cχ(p). ��

Lemma 2.3.B. Suppose that G = (V ,E) is an infinite, locally finite, connected transi-
tive unimodular graph. Suppose also that there are disjoint sets of sites V1, V2, V3 ⊂ V

and sites x1 ∈ V1, x2 ∈ V2, x3 ∈ V3 such that

Ppc (Vi ↔ Vj ) < 1 (i �= j),∑
v∈∂inVi

Ppc (xi ↔ v) < 1 (i = 1,2,3).

Then δ = 2 and β = 1.

Proof. We will verify the hypothesis of Lemma 2.2.B withε = pc andc = min{1 −
Ppc (V1 ↔ V2),1 − Ppc (V2 ↔ V3),1 − Ppc (V3 ↔ V1),1 − ∑

v∈∂inV1
Ppc (x1 ↔

v),1−∑
v∈∂inV2

Ppc (x2 ↔ v),1−∑
v∈∂inV3

Ppc (x3 ↔ v)}. By monotonicity inp, only
the second and third displays in the hypothesis of Lemma 2.2.B require any non-trivial
argumentation.

To verify the third display, we note that if{xi ↔ Q} occurs, then either{xi Vi←→ Q}
occurs, or else there is some vertexv ∈ ∂inVi for which the event{xi ↔ v}�{v ↔ Q}
occurs. From the van den Berg–Kesten–Fiebig–Reimer inequality, we obtain then, for
p < pc andq ∈ (0,1],
θ(p, q) = Pp,q(xi ↔ Q) ≤ Pp,q(xi

Vi←→ Q)+
∑

v∈∂inVi

Pp,q(xi ↔ v)Pp,q(v ↔ Q)

≤ Pp,q(xi
Vi←→ Q)+

∑
v∈∂inVi

Ppc (xi ↔ v)θ(p, q).

Therefore,

Pp,q(xi
Vi←→ Q) ≥ cθ(p, q) (i = 2,3).

To verify the second display in the hypothesis of Lemma 2.2.B note that if{x1 ↔
z, x1 �↔ Q} occurs, then either{x1

V1←→ z, x1 �↔ Q} occurs, or else there is some vertex
v ∈ ∂inVi for which the event{x1 ↔ v}�{v ↔ z, v �↔ Q} occurs (this is slightly subtle;
recall that our sample space is{0,1}E × {0,1}V and, using the notation in [Gri], p. 38,
take for the setK in the definition of� a set of edges which produce a path fromx1
to v – do not include any vertex inK). From the van den Berg–Kesten–Fiebig–Reimer
inequality, we obtain then, forp < pc andq ∈ (0,1],

Pp,q(x1 ↔ z, x1 �↔ Q)

≤ Pp,q(x1
V1←→ z, x1 �↔ Q)+

∑
v∈∂inV1

Pp,q(x1 ↔ v)Pp,q(v ↔ z, v �↔ Q)

≤ Pp,q(x1
V1←→ z, x1 �↔ Q)+

∑
v∈∂inV1

Ppc (x1 ↔ v)Pp,q(v ↔ z, v �↔ Q).
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Summing overz ∈ V ,

χ(p, q) ≤
∑
z∈V1

Pp,q(x1
V1←→ z, x1 �↔ Q)+

∑
v∈∂inV1

Ppc (x1 ↔ v)χ(p, q).

Therefore, ∑
z∈V1

Pp,q(x1
V1←→ z, x1 �↔ Q) ≥ cχ(p, q). ��

3. The Case of Planar Graphs

In this section we suppose thatG = (V ,E) is an infinite, locally finite, connected
transitive non-amenable planar single-ended graph. Proposition 2.1 of [BS2] states that
G is unimodular and that it can be embedded in the hyperbolic planeH

2 in the following
way. Each vertex ofG is mapped into a point ofH2 and each edge ofG is mapped
into a geodesic line segment with endpoints at the points ofH

2 which are images of its
endpoints; moreover the group of automorphisms ofG is mapped in this way into a group
of isometries ofH2. It is clear that, by adjusting the length scale, such an embedding can
be chosen so that each face in the embedding has diameter less than 1. In particular any
point of H2 is then within distance 1 of a point which represents a vertex ofG, and all
the geodesic line segments which represent edges ofG have length at most 1. We will
refer to such an embedding as a “nice embedding”.

One convenient way to describe the dualG† = (V †, E†) of G is to represent each
element ofV † by a face (tile) in the embedding ofG, described above, and represent
elements ofE† by pairs of faces whose topological boundaries intersect on a non-
degenerate geodesic line segment (which represents an edge ofG). This establishes
a one-to-one correspondence betweenE andE†, and the image ofe ∈ E under this
correspondence will be denoted bye†. SinceG is transitive,G† is quasi-transitive.

Any bond percolation process onG is coupled to a bond percolation process on
G†, by declaring each edgee† vacant (resp. occupied) ife is occupied (resp. vacant).
Independent percolation at densityp on G is coupled in this fashion to independent
percolation at density 1− p onG†.

The following lemma is a basic building block in our argumentation in this section.
In the statement of this lemma, we identify a path in the dual graph with the union of the
tiles that correspond to the endpoints of the dual edges in this path in the embedding.

Lemma 3.1. Suppose that G is an infinite, locally finite, connected transitive non-
amenable planar single-ended graph, nicely embedded in H

2. If p < pu, then there
is C0 > 0 such that the following happens. Let L be an arbitrary geodesic line in H

2,
s′ and s′′ be two points on L, separated by distance l > 2, and L′ and L′′ be geodesic
lines perpendicular to L through s′ and s′′, respectively. Then

Pp(there is an occupied dual path separating L′ from L′′) > C0.

Proof. This was proved in a somewhat more restricted setting and for site percolation in
[Lal2], Lemma 2.15. The more general case considered here can be handled in the same
way, by using results in [BS2]. First, from Theorem 3.7 of [BS2], we learn that there is
percolation in the dual process whenp < pu. From the generalization of Corollary 4.4
of [BS2] to quasi-transitive tilings ofH2, we learn then that percolation also occurs in
this dual process on hyperbolic half-spaces. This enables us to use the arguments in the
proofs of Lemma 2.14 and 2.15 in [Lal2] to conclude the proof.��
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Given a nice embedding ofG in H
2 and a setS ⊂ H

2, we will use the notation̄S for
the set of vertices ofG which are endpoints of edges represented in the embedding by
geodesic line segments which intersectS.

Lemma 3.2. Suppose that G is an infinite, locally finite, connected transitive non-
amenable planar single-ended graph, nicely embedded in H

2. If p < pu, then there
are C1, C2 ∈ (0,∞), such that the following happens. Let L be an arbitrary geodesic
line in H

2, s′ and s′′ be two points on L, separated by distance L, and L′ and L′′ be
geodesic lines perpendicular to L through s′ and s′′, respectively. Then

Pp(L̄′ ↔ L̄′′) ≤ C1e
−C2L.

Proof. Takel > 2 and consider the set of geodesic lines which separateL′ from L′′, are
perpendicular toL and cross it at points which are at distancej l, j = 1,2, . . . , �L/l 
from s′. Since any path from̄L′ to L̄′′ has to cross all these lines, the claim follows from
Lemma 3.1. ��
Lemma 3.3. Suppose that G is an infinite, locally finite, connected transitive non-
amenable planar single-ended graph, nicely embedded in H

2. If p < pu, then there
are C3, C4 ∈ (0,∞), such that the following happens. Let L be an arbitrary geodesic
line in H

2, s and s′ be two points on L, separated by distance L, and L′ be the geodesic
line perpendicular to L through s′. Let x be a vertex of G which in the embedding is
mapped into a point of H

2 at distance at most 1 from s. Then

Pp(x ↔ y) ≤ C3e
−C4L.

Proof. Let L′+ andL′− be the two half-lines into whichs′ partitionsL′. Take some
l > 2. Sets0 = s′, and fork ∈ {1,2, . . . } let sk (resp.s−k) be the point onL′+ (resp.
L′−) at distancekl from s′. Fork ∈ {1,2, . . . } letIk (resp.I−k) be the geodesic segment
(contained inL′) with endpointssk−1 andsk (resp.s−k+1 ands−k). For j ∈ Z, let Lj

be the geodesic line perpendicular toL′ throughsj . Then
∑
y∈L̄′

Pp(x ↔ y) ≤
∑

j∈Z\{0}

∑
y∈Īj

Pp(x ↔ y).

Let D be the degree ofG. It is easy to see that for some smallε > 0 any ball of radius
ε in H

2 can intersect at mostD edges of the embedding ofG in H
2. Therefore it is also

easy to see that any geodesic line segment of lengthd can intersect at mostdD/ε such
edges. Therefore, from the previous display we obtain, for arbitraryJ ,

∑
y∈L̄′

Pp(x ↔ y) ≤ lD

ε

∑
j :|j |>J

Pp(x ↔ Īj )+ 2lJD

ε
Pp(x ↔ L̄).

When j > 1 (resp.j < 1) any path fromx to Īj has to cross the linesLi , i =
1,2, . . . , j − 1, (resp.i = −1,−2, . . . ,−j + 1). Hence, Lemma 3.1 implies

Pp(x ↔ Īj ) ≤ C5e
−C6j ,

for someC5, C6 ∈ (0,∞). Therefore, using Lemma 3.2 and takingJ = �L , we obtain∑
y∈L̄′

Pp(x ↔ y) ≤ C7e
−C6�L + C8�L e−C2L ≤ C3e

−C4L. ��
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Proof of Theorem 1.1(i). We will check that the hypothesis of Lemma 2.3.A and Lemma
2.3.B are satisfied (note that the former are contained in the latter).

Suppose thatG is nicely embedded inH2. Let L be a geodesic line ands1, . . . , s7
be distinct points onL, such that fori = 1, . . . ,6, the distance betweensi andsi+1 has
the same common valueL. For eachi, let Li be the geodesic line perpendicular toL
throughri . The removal ofL2 ∪L3 ∪L5 ∪L6 breaksH2 into 5 connected components.
For i = 1,4,7, letVi be the connected component which containssi .

SetV1 = V̄1, V2 = V̄4, V3 = V̄7. Let x1, x2 andx3 be vertices ofG which in
the embedding are mapped into points ofH

2 at distance at most 1 froms1, s4 ands7,
respectively. With these choices, the hypothesis of Lemma 2.3.B are satisfied, provided
thatL is large enough, as can be seen from Lemma 3.2, Lemma 3.3 and Theorem 1.1 of
[BS2], which states thatpc < pu. ��

4. The Case of Graphs with Infinitely Many Ends

We will need some notation and terminology related to the binary homogeneous tree,
T2, i.e., the tree in which every vertex has degree 3. The set of vertices of this tree will
be denoted byV (T2). Giveni, j, k ∈ V (T2) we will say thatk is betweeni andj if the
shortest path fromi to j passes throughk.

The following proposition will be used in this section; it can be easily proved with the
arguments in the proof of Propositions 6.1 in [Moh2]. (Compare with Proposition 2.1
in [Sch].) BelowB(u, n) will denote the ball of radiusn centered atu ∈ V in the graph
G = (V ,E).

Proposition 4.1. Suppose that G = (V ,E) is an infinite, locally finite, connected tran-
sitive graph. If G has infinitely many ends, then there is a positive integer n and vertices
uk ∈ V , k ∈ V (T2) such that the balls B(uk, n), k ∈ Z ar disjoint and have the follow-
ing property. For each i, j ∈ V (T2) any path from B(ui, n) to B(uj , n) intersects each
B(uk, n) with k between i and j .

Proof of Theorem 1.1(ii). We will check that the hypothesis of Lemma 2.3.A and Lemma
2.3.B are satisfied (note that the former are contained in the latter).

Let k0, k1, k2, k3 ∈ V (T2) be such that for 1≤ i < j ≤ 3, k0 is betweenki andkj ,
and fori = 1,2,3, the distance inT2 betweenki andk0 has a common valuel. Using
the notation in Proposition 4.1, setxi = uki , i = 0,1,2,3. Proposition 4.1 implies that
G\B(x0, n) has at least 3 distinct infinite components, which contain respectivelyx1,
x2 andx3. Call them, respectively,V1, V2 andV3.

SinceG has infinitely many ends, it is non-amenable and hence, by Theorem 2 of
[BS1] (adapted to bond percolation), it haspc < 1.

To verify the hypothesis of Lemma 2.3.B, letK be the number of edges ofG which
have at least one endpoint inB(u0, n), and note that, for 1≤ i < j ≤ 3,

Ppc (Vi ↔ Vj ) ≤ 1− (1− pc)
K < 1,

and, fori = 1,2,3,∑
v∈∂inVi

Ppc (xi ↔ v) ≤ |∂inVi |Ppc (xi ↔ ∂inVi) ≤ K(1− (1− pc)
K)l−1.

The last expression can be made arbitrarily small by takingl sufficiently large. ��
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