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Abstract: The critical exponents, y, § andA are proved to exist and to take their mean-
field values for independent percolation on the following classes of infinite, locally finite,
connected transitive graphs: (1) Non-amenable planar with one end. (2) Unimodular with
infinitely many ends.

1. Introduction

1.1. Results. A great deal of attention has been given recently to the study of statistical
mechanics and related systems on various classes of graphs. The reader is invited to
consult [Lyo] and [Sch] for introductions to the subject, and for references to the liter-
ature. This paper can be seen as a continuation of [Sch], and we refer the reader to that
paper for background and motivation. Basic terminology, definitions and notation will
be reviewed later in this introduction.

We will consider independent bond percolation on an infinite, locally finite, connected
transitive graphG = (V, E). Results similar to the ones presented here hold also for
independent site percolation, with similar proofs. The same remark can be made aboutthe
extension from transitive to quasi-transitive graphs. Conjecture 1.2 in [Sch], combined
with Conjecture 6 in [BS1] (reproduced as Conjectures 1.1 in [Sch]), state that if the
graphis non-amenable, critical exponents exist and take their mean-field values. In [Sch],
Theorem 1.1, this was proved for various critical exponents in the case in which the graph
is unimodular and the edge-isoperimetric constant (Cheeger constant) is a sufficiently
large fraction of the degree of the graph (previously, a special case had been handled in
[Wu]). Here we prove similar results in two cases.

Theorem 1.1. For independent bond percolation on the following classes of infinite,
locally finite, connected transitive graphs the critical exponents 8, y, § and A exist and
take their mean field values:
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(i) Graphswhich are planar non-amenable and have one end.
(i) Graphswhich are unimodular and have infinitely many ends.

At the end of the next subsection, after introducing the necessary notation, we review
the meaning of the exponents addressed in this theorem and recall what their mean-field
values are.

It is worth pointing out that while Theorem 1.1 in [Sch] was proved by verifying the
triangle condition of [AN] (or, more precisely, the open triangle condition of [BA]), in
the present paper we will follow a somewhat different route, based nevertheless also on
the work of [AN, BA], and [Ngu]. We do not know whether the triangle condition holds
in the cases treated here.

The factthatthere is no percolation at the critical point, which is a feature of mean-field
criticality, is known to hold for independent percolation on any infinite, locally finite,
connected transitive unimodular graph. This was proved in [BLPS1], and a simpler proof
was provided in [BLPS2]. Unfortunately, the methods from these papers do not provide
information on critical exponents.

Part (i) of Theorem 1.1 is the main contribution in this paper. This is one more instance
in which the extra techniques resulting from planarity allow one to prove that results
on percolation conjectured to hold with greater generality are true at least in the planar
case. In the classical study of percolation (and other statistical mechanics processes) on
transitive amenable graphs, and especially on the graphthis is a well known fact:
planarity allows one to make much faster progress, and much more has been proved in
the case ofZ? than in the more general casef (see, e.g., [Gri]). In the context of
percolation on transitive non-amenable graphs, a similar pattern has been followed. The
paper [Lall] anticipated for certain transitive non-amenable planar graphs some of the
results which would later be proved for more general transitive non-amenable graphs.
The study of percolation on transitive non-amenable planar graphs was later greatly
developed in the papers [Lal2] and [BS2]. For instance, the fundamental Conjecture 6
in [BS1], which states that for independent bond or site percolation on transitive non-
amenable graphs there is always a regime with infinitely many infinite clusters, was
proved to hold under the extra assumption of planarity.

In contrast to Theorem 1.1(i), independent percolation on transitive amenable planar
graphs with one end is expected to have critical exponents with non-mean-field values.
The case in which the graph %&° is extensively discussed in [Gri]. In the case of
site percolation on the triangular lattice, various critical exponents have recently been
proved to indeed take their conjectured, non-mean-field, values. This is a result of the
rapid progress on conformal invariance, in combination with earlier work by H. Kesten
relating various critical exponents in the two dimensional case (see [LSW, SW] and
references therein).

1.2. Terminology and notation. We will consider independent bond percolation on an
infinite, locally finite, connected gragh = (V, E), whereV is the set of vertices (sites)
andE is the set of edges (bonds). A sitec V will be singled out and denoted the root
of G. The cardinality of a se§ c V will be denoted by|S|. The edge boundary of
asetS C VisoeS = {{x,y} € E : x € S,y € §} and its inner vertex boundary
is dinS = {x € S : {x, y} € oS for somey € S¢}. Theedge-isoperimetric constant
(Cheeger constant) of G is defined as

~(1eS
iE(G)zlnf{%:SCV,O#|S|<OO}.
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G is said to beamenable in caseig(G) = 0. Thenumber of ends of the graphG is

£(G) = sup {number of infinite connected componentI®{S},

Scv
|S|<oo

whereG\S is the graph obtained from the graghby removing the vertices which
belong toS and the edges incident to these vertices. (The definition of ends of a graph
is being omitted because it is not needed in this paper. Those familiar with that concept
will note that€ (G) coincides with the cardinality of the set of ends of the gr&ph case
this cardinality is finite and thaf(G) = oo when this cardinality is infinite, buf (G)
does not distinguish between different infinite cardinalities. While this is a drawback of
£(9), its definition is simpler than that of the set of ends of a graph, and is sufficient
for various purposes including those in this paper.) Informally, a graphaissitive
(same as vertex-transitive or homogeneous) if all its vertices play exactly the same role.
More precisely, this means that for each paiy € V there is an automorphism of the
graph which maps to y. A graph is said to bguasi-transitive if there is a finite set
of vertices,Vp, with the property that each vertex of the graph can be mapped into one
of the vertices ol by an automorphism. Informally, a graph is quasi-transitive if there
is a finite number of types of vertices, and vertices of the same type play the same role.
The number of ends of an infinite, locally finite, connected transitive graph is 152; or
moreover, when the number of ends is 2, the graph is amenable and when the number
of ends isco the graph is non-amenable (see Sect. 6 of [Moh]). ¥abilizer, S(x),
of a vertexx € V is the set of automorphisms 6f which fix x. A transitive graph is
unimodular if for eachx,y € V, {y(y) : y € Sx)}| = {y(x) : y € S(»)}|. A graph
is said to beplanar if it can be embedded iR? with vertices being represented by points
and edges being represented by lines which connect the corresponding vertices and can
only intersect at their end-points.

The probability measure according to which each edge is occupied with probability
p and vacant with probability + p, independently of the others, will be denoted by
P,. The corresponding expectation will be denotediyy GivenA, B C V, we will
write {A < B} for the event that there is a path of occupied bonds connedtiogs (if
A = {x}, we write {x < B}, rather thar{{x} <> B}, and will use similar conventions

systematically). Given als§ c V we will write {A PN B} for the event that there is
a path of occupied bonds connectiado B with all the sites which appear in this path

belonging toS. We will set{A # B} = {A < B)S, {A 2> B} = {A <> B)°. For
x € V,C(x) ={y € V:x < y}will denote the cluster of the site The probability
of percolation is defined a&(p) = P,(|C(r)| = o0). The susceptibility is defined as
x(p) =E,(C(M))) = ) ey Pp(r < x). The threshold for percolation is the critical
point p. = inf{p € [0,1] : 6(p) > 0}. From the methods of [AB], we know that for
quasi-transitive graphs. = sudp € [0, 1] : x(p) < oo}. The threshold for uniqueness
oftheinfinite clusterig, = inf{p € [0, 1] : P, (there is a unique infinite clustes 1}.

In order to define the critical exponefitwe introduce a “ghost field”. Each site is
painted green, independently of anything else, with probabijlity, , will denote the
corresponding probability measure in this enlarged probability spacek apavill be
the corresponding expectation. The random set of green sites will be denoted by
One defined(p,q) =P, ,(r < @), andx(p,q) = E, ,(ICH;Cr)NQ =) =
Yoev Ppgr < x,r £ Q).

Next we review what is meant by saying that each one of the critical exponents
which appears in Theorem 1.1 exists and takes its mean-field value. The labels on the
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left indicate the way one usually refers to each statement, and provide the corresponding
mean-field value of each critical exponent:

[y =1] Ci(pc — p)~t < x(p) < Capc — p)~, forp < pe.

[B=1] Ci(p — po)t <6(p) < Calp — po)t, forp > pe,

[6=2] C1g¥? <0(pc,q) < Coq¥?, forg >0,

[A=2] Form = 1,2,... Ci(pe — p)™2 < IEp(|C(V)|'"+1)/H*:p(|c(r)|m)
< Ca(pe—p)~2, forp < pe,

where in each caséy, Cs € (0, 00).

2. Sufficient Conditionsfor Mean-Field Criticality

From the arguments in [AN] (modified in the fashion of Sect. 3.1 of [BA]) and [Ngu],
we have:

Lemma 2.1.A. Supposethat G = (V, E) isaninfinite, locally finite, connected transi-
tive unimodular graph such that p. < 1. Suppose also that there are ¢, ¢ > 0 and sites
x1, x2 € V such that for every p € (p. — €, pc),

D Pplx1 o 21, x2 © 22,51 £ X2) = c(x(p))>.

21,22€V
Theny =1and A = 2.
From the arguments in [BA] and [New] we have:

Lemma 2.1.B. Supposethat G = (V, E) isaninfinite, locally finite, connected transi-
tive unimodular graph such that p, < 1. Suppose also that there are ¢, ¢ > 0 and sites
x1, x2, x3 € V such that for every p € (p. — ¢, p.) andgq € (0, ¢€),

D Pyt zx1 8 Qx2 4 Q.53 Q.x2 4 x3) = cx(p. 9)O(p. 9))°.

zeV
Thené =2and g = 1.

The role of unimodularity in the derivation of the two lemmas above is explained in
Section 3.2 of [Sch].

In the remainder of this section, we will reduce the lemmas above to further sufficient
conditions for statements of mean-field criticality. The reader can either study these
lemmas in the order in which they will be presented, or alternatively, study first the
lemmas labeled with “A’, which refer to the exponemtsand A, and later study the
lemmas labeled with “B”, which refer to the exponestand g, and which have more
involved proofs.

Lemma2.2.A. Supposethat G = (V, E) isan infinite, locally finite, connected tran-
sitive unimodular graph. Suppose also that there are €, ¢ > 0, digoint sets of sites
Vi, Vo C V and sitesxy € Vi, x2 € Vo such that for every p € (p. — €, pe¢),

P,(V1i< Vo) <1l—c,

Y By < ) zex(p)  (i=1.2).

zeV;

Theny =1and A = 2.
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Proof. Fori = 1, 2, the eventgx; PALN z} depend only on the state of occupancy of
the edges which have both endpointdjnwhile the even{V; <> V>} depends only on
the state of occupancy of the other edges. Therefore, by independence,

Y Pp(x1 < 21, x2 <> 22, X1 > x2)

21,22€V

v

v V.
D Pplxa < 21,32 <> 22, Vi > Vo)

21,22€V

V. V;
= Y Pyl < 2)Pp(x2 <> )P, (V1 £ V2)

21,22€V

— (XS] Y P < ) | By f V)

71€V1 22€V2
> A(x(p)).

And the claim follows from Lemma 2.1.A. (The hypothesis in that lemma that 1
must hold, since otherwise,(V, < V) — 1,asp /" p..) 0O

Lemma 2.2.B. Supposethat G = (V, E) is an infinite, locally finite, connected tran-
sitive unimodular graph. Suppose also that there are ¢, ¢ > 0, digoint sets of sites
Vi, Vo, V3 C V andsitesxy € Vi, x2 € Vo, x3 € Vg suchthatfor every p € (p. —¢, pc)
andg € (0, €),

IP)p,q(vi<_>Vj)§1_c @ #J)

\%
D Ppgrn <> zx1 £ Q) = cx(p.q).
zeV1
Vi .
Pp,q(xi A Q) Z Ce(pﬂ CI) (l = 2v 3)
Thens =2and 8 = 1.

Proof. Set

V- ~
Al ={x1 5«2z},  Ai={xa# 0},
~ 1%
AS = {x1 =< z,x1 % O},

Ap={x2 B> 0}, As={x3 3« 0},
B={V1 & Vo, Vo #5 V3, V3 & Vi}.

For each set’ c E, we will denote byFg the o-field generated by the state of
occupancy of the edges itf. Let E; = {{u, v} € E : u,v € V1},and Iet(E’l‘)kzl be an
increasing sequence of subsetggfwhich converges to this set (i.mkE’l‘ = Ej).

For anyk, and any configuration; € {0, 1)1, the setof configurations i, 1} \F1 x
{0, 1}V which in combination withv; produce a configuration iA1 is a decreasing set.
Similarly for B. Therefore, by the Harris’ inequality,

Pp.q(ALBIFgt) = Bp g (ALl F 0P g (BIFgp) = Py g (A1 F )Py, g (B),
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where in the last step we used the fact tRalepends only on the state of occupancy
of the edges which have at least one endpoiri#)© and therefore is independent of
fEli. Lettingk — oo, and using (5.9) on p. 264 of [Dur], yields

Py q(A1B|FEy) = Pp o (A1l FE)P, 4 (B).
Integration ovedj € Fg,, yields now
P, (A5B) = P) ,(A1A5B) > P, 4 (A1ADP, ,(B) =P, (AP, ,(B).

Therefore,

D Ppgx1 oz x1 b Q. x20 Qx34 0,x2 4 x3) = Y Pp4(A]A243B)

zeV zeV1

=Y Ppy(AiB)P) (AP, 4(A3) = Y P4 (ADP, 4 (A2)P, 4 (A3)P) 4(B)

zeV1 zeVq

> x(p, )O(p. 9))°.

Inthe second step above we used the fact,ilﬁaidepends only on the state of occupancy
of the edges which have at least one endpoirinu V3)¢ and on the state (green or
not) of the vertices iV, U V3)¢, while, fori = 2,3, A; depends only on the state
of occupancy of the edges which have both endpointg iand on the state (green or
not) of the vertices inV;. In the last step above we used Harris’ inequality to obtain
P,q(B) > ¢3. The claim follows now from Lemma 2.1.B. (The hypothesis in that
lemma thatp. < 1 must hold, since otherwis®, ,(V; < V;) — 1,asp / p..) O

Lemma 2.3 A. Supposethat G = (V, E) isan infinite, locally finite, connected tran-
sitive unimodular graph. Suppose also that there are digoint sets of sites Vi, Vo C V
and sites x1 € V1, x2 € Vo such that

P, (V1< Vo) <1,

Y Ppiov)<l (=12
vedinV;

Theny =1and A = 2.

Proof. We will verify the hypothesis of Lemma 2.2.A with= p. andc = min{1 —
Py (V1 < Va), 1—Zveai vi Pp(x1 < v), 1—ZveainVZ P, (x2 <> v)}. By monotonic-
ity in p, only the second (Jiisplay in the hypothesis of Lemma 2.2.A requires any non-
trivial argumentation. To verify it, we note thatf{if; <> z} occurs, then eith€; PALN z}
occurs, or else there is some veriex 9, V; for which the evenfx; < v}O{v < z}
occurs. From the van den Berg—Kesten—Fiebig—Reimer inequality, we obtain then, for

P < Pe,

V;
Pp(xi < 2) <Pp(xi <> 2+ > Pylxi < )P, < 2)
v€Ehn Vi

v;
<Py(xi <= 2)+ Z Pp.(xi < v)Py(v < 2).

veoinV;
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Summing ovet € V,

X0 < Y Pyl < )+ Y Pyl < v)x(p).

zeV; veainV,
Therefore,
Vi
D Pyxi <> 2 =cx(p). O
zeV;

Lemma 2.3.B. Supposethat G = (V, E) isaninfinite, locally finite, connected transi-
tive unimodular graph. Suppose also that there are digoint sets of sites V1, Vo, V3 C V
and sitesx1 € Vi, x2 € Vo, x3 € V3 such that

Py (Vi V) <1 (i #)),
Y Ppieov<l (=123

vedinV;
Thens§ =2and 8 = 1.
Proof. We will verify the hypothesis of Lemma 2.2.B with= p. andc = min{1 —
Py (Vi < V2),1 =P, (V2 < V3),1 -P,.(V3 < V1),1~— Zveiiin\/l Py.(x1 <

V), 1= convy Pp. (k2 < 0), 1=3" o . P (x3 <> v)}. By monotonicity inp, only
the second and third displays in the hypothesis of Lemma 2.2.B require any non-trivial
argumentation.

To verify the third display, we note thatfik; <> Q} occurs, then eithg; PALN 0}
occurs, or else there is some veriex 0, V; for which the even{x; < v}0{v < 0}
occurs. From the van den Berg—Kesten—Fiebig—Reimer inequality, we obtain then, for
p < pc andg € (0, 1],

0(p.q) = Ppy(xi & Q) <Ppy(ri > Q)+ Y Ppylri < 0)Pyv < Q)
vedn Vi

‘/i
<Py <— 0)+ Z Pp. (xi <> v)0(p, q).
vEn Vi
Therefore,
Vi .
Ppg(xi < Q)= cb(p,q) (i =23).
To verify the second display in the hypothesis of Lemma 2.2.B note tHaf it

z, x1 ¥ Q}occurs, then eithgriy A, z,x1 #> Q}occurs, or else there is some vertex
v € dinV; for which the eventx1 < v}O{v < z, v ¥ Q} occurs (this is slightly subtle;
recall that our sample space{® 1}* x {0, 1} and, using the notation in [Gri], p. 38,
take for the se in the definition of(] a set of edges which produce a path frem

to v — do not include any vertex iK'). From the van den Berg—Kesten—Fiebig—Reimer
inequality, we obtain then, fgy < p. andg < (0, 1],

IP)p,q(xl < z,x1 % 0)
<Pp4a LR z,x1# 0)+ Z Ppqx1 < )P, (v z,0 4 Q)

vedn V1

<Ppgti <5 zx1 b O+ Y Bplao Py, oz s 0).

vedn V1
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Summing ovet € V,

XD <Y Ppgb <5 zxi o O+ Y. Pplar < 0)x(pg).

zeVy vedinV1
Therefore,
1%
D Ppgxr <=z x4 Q) = cx(p.g). O

zeV1

3. The Case of Planar Graphs

In this section we suppose that = (V, E) is an infinite, locally finite, connected
transitive non-amenable planar single-ended graph. Proposition 2.1 of [BS2] states that
G is unimodular and that it can be embedded in the hyperbolic (H&rie the following

way. Each vertex of; is mapped into a point dfi2 and each edge df is mapped

into a geodesic line segment with endpoints at the poinEoihich are images of its
endpoints; moreover the group of automorphisms &f mapped in this way into a group

of isometries off?. It is clear that, by adjusting the length scale, such an embedding can
be chosen so that each face in the embedding has diameter less than 1. In particular any
point of H? is then within distance 1 of a point which represents a verte®,aind all

the geodesic line segments which represent edgéstadve length at most 1. We will

refer to such an embedding as a “nice embedding”.

One convenient way to describe the dadl = (VT, ET) of G is to represent each
element ofV' T by a face (tile) in the embedding &f, described above, and represent
elements ofET by pairs of faces whose topological boundaries intersect on a non-
degenerate geodesic line segment (which represents an edge ©his establishes
a one-to-one correspondence betwéeand ET, and the image oé € E under this
correspondence will be denoted bl SinceG is transitive,G1 is quasi-transitive.

Any bond percolation process ai is coupled to a bond percolation process on
G', by declaring each edg€d vacant (resp. occupied) éf is occupied (resp. vacant).
Independent percolation at densjiyon G is coupled in this fashion to independent
percolation at density + p onGT.

The following lemma is a basic building block in our argumentation in this section.
In the statement of this lemma, we identify a path in the dual graph with the union of the
tiles that correspond to the endpoints of the dual edges in this path in the embedding.

Lemma 3.1. Suppose that G is an infinite, locally finite, connected transitive non-
amenable planar single-ended graph, nicely embedded in H2. If p < p,, then there
is Co > 0 such that the following happens. Let £ be an arbitrary geodesic line in H?,
s" and s” be two points on £, separated by distance! > 2, and £’ and £” be geodesic
lines perpendicular to £ through s’ and s”, respectively. Then

PP, (thereis an occupied dual path separating £’ from £”) > Co.

Proof. This was proved in a somewhat more restricted setting and for site percolation in
[Lal2], Lemma 2.15. The more general case considered here can be handled in the same
way, by using results in [BS2]. First, from Theorem 3.7 of [BS2], we learn that there is
percolation in the dual process whgn< p,. From the generalization of Corollary 4.4

of [BS2] to quasi-transitive tilings dfl2, we learn then that percolation also occurs in

this dual process on hyperbolic half-spaces. This enables us to use the arguments in the
proofs of Lemma 2.14 and 2.15 in [Lal2] to conclude the prodf.
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Given a nice embedding @f in H? and a seS ¢ H?, we will use the notatio§ for
the set of vertices of; which are endpoints of edges represented in the embedding by
geodesic line segments which inters&ct

Lemma 3.2. Suppose that G is an infinite, locally finite, connected transitive non-
amenable planar single-ended graph, nicely embedded in H?. If p < p,, then there
are C1, C2 € (0, 00), such that the following happens. Let £ be an arbitrary geodesic
linein HZ2, s' and s” be two points on £, separated by distance L, and £’ and £ be
geodesic lines perpendicular to £ through s’ and s”, respectively. Then

P,(L < L") < Cre™2F,

Proof. Takel > 2 and consider the set of geodesic lines which sepdrdtem £”, are
perpendicular taC and cross it at points which are at distanéej = 1,2,..., [L/1]
froms’. Since any path fromd’ to £” has to cross all these lines, the claim follows from
Lemma3.1. O

Lemma 3.3. Suppose that G is an infinite, locally finite, connected transitive non-
amenable planar single-ended graph, nicely embedded in H?. If p < p,, then there
are C3, C4 € (0, 00), such that the following happens. Let £ be an arbitrary geodesic
linein H2, s and s’ be two points on £, separated by distance L, and £’ be the geodesic
line perpendicular to £ through s’. Let x be a vertex of G which in the embedding is
mapped into a point of H? at distance at most 1 from . Then

Py(x < y) < Cze” “4F.
Proof. Let £/, and£” be the two half-lines into whick’ partitions L. Take some
I > 2. Setso = s/, and fork € {1,2,...} lets; (resp.s_) be the point onZ’, (resp.
L' ) atdistancé! froms’. Fork € {1, 2, ...} letZ; (respZ_;) be the geodesic segment
(contained inl’) with endpointss;_1 andsy (resp.s—i4+1 ands_g). For j € Z, let £;
be the geodesic line perpendiculardbthroughs;. Then

ZPp(xey) < Z Z]P’p(xey).

vel! JEINO) ye,

Let D be the degree df. It is easy to see that for some small- 0 any ball of radius
€ in H? can intersect at mog? edges of the embedding 6fin H2. Therefore it is also
easy to see that any geodesic line segment of lethgtim intersect at mogtD /e such

edges. Therefore, from the previous display we obtain, for arbitfary

ID - 217D _
Z Py(x < y) < - Z Py(x & I;)+ T]P’,,(x < L).
yel’ Jljl=J

Whenj > 1 (resp.j < 1) any path fromx to fj has to cross the lines;, i =
1,2,...,j—1,(respi =-1,-2,..., —j + 1). Hence, Lemma 3.1 implies

P,(x < Z;) < Cse™ 8/,
for someCs, Cg € (0, 00). Therefore, using Lemma 3.2 and takifg= | L |, we obtain

Z P,(x <> y) < Ce 6] 4 Cg|Lje 2L < C3e7CE. O
ye[l’
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Proof of Theorem 1.1(i). We will check that the hypothesis of Lemma 2.3.A and Lemma
2.3.B are satisfied (note that the former are contained in the latter).

Suppose tha6 is nicely embedded ifil%. Let £ be a geodesic line and, ..., s7
be distinct points o, such that foi = 1, ..., 6, the distance betwespands; 1 has
the same common value. For each, let £; be the geodesic line perpendiculardo
throughr;. The removal of2> U £3 U L5 U Lg breaksH? into 5 connected components.
Fori =1, 4,7, letV; be the connected component which contajns

SetVi = V1, Vo = Vs, V3 = V7. Let x1, xo and x3 be vertices ofG which in
the embedding are mapped into pointsHst at distance at most 1 from, s4 ands7,
respectively. With these choices, the hypothesis of Lemma 2.3.B are satisfied, provided
thatL is large enough, as can be seen from Lemma 3.2, Lemma 3.3 and Theorem 1.1 of
[BS2], which states that, < p,. O

4. The Case of Graphswith Infinitely Many Ends

We will need some notation and terminology related to the binary homogeneous tree,
T,, i.e., the tree in which every vertex has degree 3. The set of vertices of this tree will
be denoted by (T2). Giveni, j, k € V(T2) we will say thatk is between and; if the
shortest path fromto j passes through.

The following proposition will be used in this section; it can be easily proved with the
arguments in the proof of Propositions 6.1 in [Moh2]. (Compare with Proposition 2.1
in [Sch].) BelowB(u, n) will denote the ball of radius centered ai € V in the graph
G =(V,E).

Proposition 4.1. Supposethat G = (V, E) isan infinite, locally finite, connected tran-
sitive graph. If G hasinfinitely many ends, then there is a positive integer n and vertices
uy € V, k € V(T2) such that the balls B(uy, n), k € Z ar digoint and have the follow-
ing property. For each i, j € V(T>) any path from B(u;, n) to B(u, n) intersects each
B(uy, n) with k betweeni and ;.

Proof of Theorem1.1(ii). We will check that the hypothesis of Lemma 2.3.A and Lemma
2.3.B are satisfied (note that the former are contained in the latter).

Let ko, k1, k2, k3 € V(T2) be such that for ki < j < 3, ko is betweerk; andk;,
and fori = 1, 2, 3, the distance i, betweenk; andkg has a common valuke Using
the notation in Proposition 4.1, set=u,, i = 0, 1, 2, 3. Proposition 4.1 implies that
G\ B(xg, n) has at least 3 distinct infinite components, which contain respectiyely
x2 andxz. Call them, respectively/;, V> and V.

SinceG has infinitely many ends, it is non-amenable and hence, by Theorem 2 of
[BS1] (adapted to bond percolation), it has < 1.

To verify the hypothesis of Lemma 2.3.B, |[Etbe the number of edges 6f which
have at least one endpoint B(ug, n), and note that, for ki < j < 3,

P, (Vi< V) <1—(1-po¥ <1,
and, fori =1, 2, 3,

D Py xi < v) < |8 VilPp, (5 < 0 Vi) < K(1— (1— po)©)I L.
Ve V;

The last expression can be made arbitrarily small by taksufficiently large. O
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