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Abstract: We present a version of the/A-expansion for random matrix ensembles
known as matrix models. The case where the support of the density of states of an
ensemble consists of one interval and the case where the density of states is even and
its support consists of two symmetric intervals is treated. In these cases we construct
the expansion scheme for the Jacobi matrix determining a large class of expectations of
symmetric functions of eigenvalues of random matrices, prove the asymptotic character
ofthe scheme and give an explicit form of the first two terms. This allows us, in particular,
to clarify certain theoretical physics results on the variance of the normalized traces of
the resolvent of random matrices. We also find the asymptotic form of several related
objects, such as smoothed squares of certain orthogonal polynomials, the normalized
trace and the matrix elements of the resolvent of the Jacobi matrices, etc.

1. Introduction. Problem and Main Results

Random matrix theory is an actively developing field that has a wide variety of applica-
tions (see e.g. the review works [20,16,23] and references therein). Among numerous
random matrix ensembles studied by the theory and which have important applications
the ensembles with the unitary invariant probability distributions (known also as matrix
models) play a significant role [15,22]. This is, in particular, because of numerous links
of the ensembles with the theory of orthogonal polynomials, potential theory, the theory
of integrable systems, and other domains and techniques of analysis and mathematical
physics. These ensembles consist of n Hermitian matrices and are defined by the
distribution

Py(M)dM = Z exp{—nTrV(M)}dM, (1.1)
whereZ, is the normalizing constany, : R — R satisfies the conditions
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(i) for somee > O there existd.; > 0 such that

V(M| = (2+€)log|r|, |A] = Ly, (1.2)

(ii) forany 0 < Ly < oo there existy > 0 such that

V(A1) — V(A2)| < ClA1 — A2]”, |Ag2| < Lo, (1.3)

(iii) there existsn > 0 such that

/|V’(x>|e*mv<”d)\ < 00, (1.4)
and
n
dM =[] dM;; []dSMjdnim. (1.5)
j=1 j<k

The asymptotic regime that we study is intermediate between the global regime (see e.g.
[8,12]) and the local regime (see e.g. [24,13]) and the respective results are important in
studying the central limit theorem [17], universal conductance fluctuations [6], and the
universality of the local eigenvalue statistics at the edges of the support of the Integrated
Density of States (IDS) of the ensembles [25].

Let us recall the definition of the IDS. Denote by), o the eigenvalues of
a matrixM of the ensemble and define the eigenvalue counting measure (NCM) of the
matrix as

Na(A) =" e A} -n7H, (1.6)

whereA is an interval of the spectral axis. According to [8] the NCM tends weakly in
probability asn — oo to the nonrandom limiting measuré known as the Integrated
Density of States (IDS) of the ensemble. The IDS is normalized to unity and is absolutely
continuous ifV’ satisfies the Lipshitz condition (1.3) (with possibly different constants
C andy) [27]:

NR) =1, N(A):/ p(L)dA. (1.7)
A

The non-negative functiopin (1.7) is called the Density of States (DOS) of the ensem-
ble. The IDS can be found as the unique solution of a certain variational problem [8,12,
27]. The IDS is one of the main outputs of the study of the global regime.

Let us state now our main conditions.

Condition C1. The support of the IDS of the ensemble consists of either

(i) asingle interval:
o=|la,b], —oc0<a<b< oo,

or



On the ¥n Expansion for Some Unitary Invariant Ensembles of Random Matrices 273

(i) of two symmetric intervals:
o =[-b,—a]Ula,b], —oo<a<b< oo,
andViseven:V(A) = V(=A), A € R.
Remark 1ltis easy to see that changing the variables accordiig’'te- M — ﬂI

in case (i) we can always take the suppoib be symmetric with respect to the origin.
Therefore without loss of generality we can assume that in this case

o =(—a,a). (1.8)

Condition C2. The DOS (1) is strictly positive in all internal points af and behaves
asymptotically asconstjx — ¢|¥/2, » — ¢, in a neighborhood of each edgeof the
support. Besides, the function

u(h) = 2f loglp — Aldu — V(R (1.9)

achieves its maximum if and onlyxife o. We will call this behavior generic (see e.g.
[19] for results, justifying the term).

Condition C3. V(1) is real analytic oro, i.e. there exists an open dom&nc C such
thato C D and an analytic irD functionV (z), z € D such that

V(L+i0)=VQ), reo.

Note that we always have the one-interval case (iy ifs convex [8,17], or if it
has a unique absolute minimum and sufficiently large amplitude [19], and we always
have the two interval case (ii) f has two equal absolute minima and sufficiently large
amplitude [19].

As for the condition C3, it is the case in many of the quantum field theory [15] and
of the condensed matter theory [6] applications.

The following statement, known in several contexts, provides a sufficiently explicit
form of the IDS in our cases.

Proposition 1. Let an ensemble of form (1.1)—(1.5) satisfy conditions C1-C3 above.
Then its density of statgshas the form

1
P) = o Xa WP X (), (1.10)
T

wherey, (1) is the indicator of the suppost of the IDS,P (1) is analytic inD (including
o) and

a — A2, |A| < a inthe case (i)

1.11
signiy/ (A2 — a2)(b? — A2), a < |A| < b in the case (ii) (1.11)

X+() = {
Besides, the Stieltjes transform

g(z)=/m, Iz # 0, (1.12)
o Z—HM
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of the IDS can be represented in the form
1
gx) = E(V/(z) -~ X(@)P(z)), zeD, (1.13)

with

V72 —a?, in the case (i)

V(2 —a?)(z2 - b?), inthe case (ii),

X(z) = { (1.14)

and we take the branches of the square roots, which are analytic everywhere except
and have the asymptoti€(z) = z”(1+ 0(z™Y)), z — oo with p = 1, 2 for the one
interval and for the two interval cases respectivetyz) in (1.13) and in (1.10) can be
represented in the form

1
P@) =5 [ 0eox e (L.15)
Tl )L
whereL c D is a closed contour encircling, and
V/ _ V/
0@z )= (Z)fg(f) (1.16)

The proof of the proposition will be given in Sect. 3. Here we remark that in the
two-interval case the contour consists of two connected components encircling each
of the intervals ot .

We need also several facts on ensembles (1.1)—(1.5) (see e.qg. [7,20,22]).

Denote byp, (A1, ..., A,) the joint eigenvalue probability density which we assume
to be symmetric without loss of generality. It is known that [20]

paOa. ) =21 ] (Aj—kk)zexp{—nZV(Aj)}, (1.17)
j=1

1<j<kzn
whereZ, is the respective normalization factor. Let
pl(n)()»]_, = / 22 O Y VIR Y A RN W 7 ) I IO7 9 (1.18)
be the/™ marginal distribution density of (1.17). The link with orthogonal polynomials

is provided by the formula [20, 7]
(n—10!

Pz(n)(?nl,-u,?»l) = ,
n:

det|lkn (A, A1 s (1.19)

where

knOrs 1) = > 9" 00w () (1.20)

=1

is known as the reproducing kernel of the orthonormalized system

v = expl—nV(W)/2p" 0. =1, (1.21)



On the ¥n Expansion for Some Unitary Invariant Ensembles of Random Matrices 275

in which pl(”)(k), [ = 1,... are orthogonal polynomials oR associated with the
weight

wa(W) =e "V, (1.22)
i.e.
/ 2" 00 p (W ws (W d = 81 . (1.23)

The polynomialpl(”)(k) has the degrekand the positive coefficient in front af. The
orthonormalized functionﬁrl(")(k) verify the recurrent relations

Y00 + @™ 6y + Joamy 0 =P ), =1, (1.24)

where Jo(n) = 0. In other words, we have here a semi-infinite real symmetric Jacobi
matrix

T ) = {Jrm (M)} 50=1,

(1.25)
Jim@m) = q(m)8;,m + Ji(n)S11,m + Ji—1(m)8—1,m.

Note that if V(1) is even, the;(n) = 0,1 =1,.....
As in statistical mechanics the symmetrized marginal densities (1.18) allow us to
compute the expectation with respect to measure (1.1) of random variables of the form

wm()\'lv "'1)"}1) = Z(pm()\'il’ "'7)"i,,l)v (126)
ch
whereg,, (t1, ..., t,) IS symmetric in its arguments and , denotes the sum over

all choices ofm A’s from the set(1, ..., 1,). By using (1.19) and noting that the
semi-infinite matrix{wj(.") (x)¢;">(x)};?k:l is the density of the resolution of identity
of J(n), it is easy to show theE{w,,} is a linear combination of the matrix elements
of ., ((J (n))®™) (see e.g. formula (2.78)). This observation makes) an important
object of the theory. That is why our main result (Theorem 1 below) yields the 1
expansion of entries Qf (n). Besides, we give the/k-expansion of the expectation

gn(@ =E{n 'Trz =M™, 3z #0,
of the normalized trace of the resolvent of the random maifiand of the variance
of the trace. These quantities are of considerable interest by themselves and are also
important technical ingredients of the theory.
Theorem 1. Let the ensemble of the form (1.1)—(1.5) satisfy conditions (1.3), (1.2), and
C1-C3 above. Take a sequence of positive intefygrg and an integern > 0 such
that

N@mn YD 50, Nn) Ingzn — 00, asn — Q. (2.27)



276 S. Albeverio, L. Pastur, M. Shcherbina

Then there exist coefficien;,é?,)l, e q,ﬁ’f;), Jk(gz), el Jk(fz), |k —n| < N(n) and analytic

outside ol functionSg,(lo) @,..., g,(,m)(z) such that forany € [n — N(n), n + N(n)]
we have the following asymptotic formulas:

m m
qx(n) = Zn_'quEQ + n_mf‘,gﬁ’q), Je(n) = Zn_j Jk(]n) + n_mf‘,gﬁ’”, (1.28)
i=0 i=0

where
a1, 19)) < const(k —nl/ +1), j=0.....p, (1.29)
|F,§t’;’j)|, |F,Et’:l’q)| <em gm0 n— oo (1.30)
and
m .
gn@ =Y nIgd @) +n """ (@), (1.31)
=0
where
128" ()| < const (1.32)

F,gm’g)(z) -0, n—> o

uniformly in any compact set ify : §(z) > d}, whered(z) = dist(z,0),d > Ois an
arbitrary fixed number andonstdoes not depend aon n.
In particular:

920 =¢@, P =0 (1.33)

in the case (i)

0 0 1 1 1 (k—n) 1 1
g =0 JO=3a, qh=0 I = + . (1.34)

2 a P(a)  P(—a)
i.e. the zero order coefficients for= n(1 + o(1)) are independent df;
in the case (ii)

q)=0 j=01...,

and
T = %(b +(=Dra). or U = %(b — (-Dfa), (1.35)
w_ k=-n 1 (=D
Jin = az_bz( D) + P@) ) (1.36)

where the sign corresponds to the chosen sign in (1.35)
Besides, forn < 1 formulas (1.28)—(1.35) are valid for arty: |k — n| < n%/2 with

k—n|+1 k—nl2+1
|F,§0;lj )| < const—I I+ , |F,fo;lq)| < const—| |2 + ,
’ n ’ n (1.37)
~(1, k—nl2+1

Q) =(LJ)
|rk’n [, |rk’n | < const
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Remark 2According to (1.35) the 2-periodic functlol;jo) is determined by our method
up to the shift by 1. By using recent results of [13] on the form of the leading term of
the asymptotics of the orthogonal polynomials (1.23) it can be shown that

Jk(,on) = }(b — (=D*a), k=n@0+o0(D)). (1.38)

Moreover, all subsequent coefﬂmerj;(g) andg(” j =1, ..., N(n) ofthe asymptotic
expansions (1.28) and (1.31) are uniquely determined by the choice (1.35) and by the
recurrence procedure described in the proof of the theorem.

Remark 3The zero order coefficientg, and J.) were found in [2,17]. The first
order coefﬁuentslkl) (1.34) of the one-interval case were found in [14] in a somewhat
different context.

Theorem 1 allows us, in particular, to find théntexpansion of the covariance

1 1
Doz, 72) = E{ - Trea = M) =Tz = w72}
n n
(1.39)
1 -1 1 -1
— E{—Tr(zl - M) }E{—Tr(zz - M) }
n n
which is important in a number of questions of the random matrix theory and of its
applications.
Here and below the symbé&l{. . . } denotes the expectation with respect to measure
(1.1)—(1.5).
In the paper [24] it is proven that for ary satisfying (1.2)—(1.3) we have the bound
const
n?(3z1)2(Jz2)%°

Hence, the 1n-expansion oD, (z1, z2) has the form

|Dn(z1, 22)] <

oo
Du(z1,22) = Y dP 1,290/ +o(™?), n— o0 (1.40)
j=2
in which the leading term is of the order2.
Theorem 1 implies

Corollary 1. Under the conditions of Theorem 1 we have:
in the case (i) the-independent

1 a’—z122
2 - __ - e
) =50 e <1+ X(m)X(zz))’ (1.41)

whereX (z) is defined in the first line of (1.14);
in the case (ii) the 2-periodic in

1 (1 n (a? — 7122) (b® — mzz)) __(=D"ab
2(z1 — 22)? X(z1)X (z2) 2X(z1)X (z2)’
(1.42)

d®(z1,72) = —

whereX (z) is defined in the second line of (1.14).
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Remark 4The covariancéD,(z1, z2) of the traces of the resolvent is of considerable
interest in the random matrix theory since the beginning of the 90s, when its study was
motivated by matrix models of quantum field theory [1,3-5, 9, 10] and later by solid state
theory (see review [6] and references therein). Initially only the one interval case was
studied but later the many interval case was also analyzed. In particular, in [3, 1] a version
of the largen expansion procedure was proposed. In the case (ii) of the two-interval
symmetric potential the procedure leads to an expression for the leading term amplitude

d,SZ) (z1, z2) that does not depend arand contains elliptic integrals, while our expression
(1.42) is 2-periodic im and contains only elementary functions. By using recent results
of paper [13] on the asymptotic form of the leading term of orthogonal polynomials
(1.22)—(1.23) and our formula (2.78) below for the covariafigz1, z2), it can be
shown that in the general case of a two-interval non-symmetric potential the leading
term amplitudei,(,z) (z1, z2) is quasi-periodic im and contains Jacobi elliptic functions

that disappear when one passes to a two-interval symmetric potential. Moreover, by using
the same results, it can be shown that in the case of a potential leadingitterval

support of the density of states the amplitud@ (z1, z2) is a quasi-periodic function.

Its frequency module contains genericglly- 1 incommensurable frequencies (but can
reduce to gp-periodic function in some special cases [11]), and its form includes the
Riemanrp-function of p — 1 variables. The frequencies are determined by the density of
states, and the-function are determined by the endpoints of the support of the density
of states of the ensemble.

Remark 5Formulas (1.41) and (1.42) for the leading terms amplitl{d&z1, z») of the
covarianceD, (z1, z2) depend on the ensemble only viathe number of intervals of the IDS
support and via the endpoints of the support. This is why this property of the covariance
is often referred to as the long-range universality [10] in contradistinction with the short
range (or microscopic) universality that manifests itself jiin  neighborhoods of the
interior points ot and is valid independently of the number of connected components of

o (seee.g. papers[13,24]). Thus under conditions of these papers all the unitary invariant
ensembles belong to the same short range universality class. On the other hand, since
accordingto (1.41) and (1.42) the leading terms of the covariBp¢a, z2) are different

in the one and in the two-interval cases, the long range universality classes depend on
the number of intervals of the IDS support and on its endpoints.

Corallary 2. Under the conditions of Theorem 1 we have the following expressions for
the weak limits of squares of the orthonormalized functim,ﬁ%(k) with|k—n| < N(n):

(1.43)

w— fim, (1/’/5")(/\))2 _ Xe® {1’ in case(i),

X1 (A) | A, incase(i),
whereX (1) is defined in (1.11).

The proofs of these assertions will be given in the next section.

2. Proofs of Main Results

Proof of Theorem MVe introduce an eigenvalue distribution which is more general than
(1.17), making different the number of the variable and the large parameter in front of
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V in the exponent of the r.h.s of (1.17):

k
penCGa ) =Zy [ - Am)zexp{ —ny V(Aj)}, (2.1)

1<j<m=k j=1

where Z; ,, is the normalizing factor. Fot = n this probability distribution density
coincides with (1.17). Let

Prn(A1) = /d)»zmd?»kpk,n(kl,..-?»k), (2.2)

Pk (A1, A2) = /dk3 coedMprn (A, . Ag) (2.3)
be the first and the second marginal densities of (2.1). By standard arguments [20, 7] we
have
Prn(V) = Kin O, ),

- k- - -
Pron Gy 1) = = (K (s ) K Gt 1) = K2, 00w,

(2.4)

where
i k
KinOo ) = k729" 0oy (w), (2.5)
=1
andw,(”)(x) is defined by (1.21). We will use the notations

k

n n k il
KinOo ) =072 Yy 0w () = = Kin (. 1),
=1 " (2.6)

k .
Pkn(A) = Kk,n()\v A) = ;pk,n()\)-

. . V'(x
Consider now the quantitl, ()

for z, 3z # 0, whereE,{...} denotes the

1
expectation with respect to the probability distribution (2.1). It is well defined in view
of condition (1.4) above. It is easy to find that

(A ") P (A
Ek{V( 1)} Z/ Vi) @7
Z—A Z—A
On the other hand, integrating by parts the r.h.s. in (2.7) and using (2.3), we obtain that
V(A 1 Ok .n (A k—1 ok.n (X,
Ek{ ( 1)}:_ Pk.n( )zdk+2 Phon (As 1) drdp.
z—M nJ) (z—2) n z—2MARr—p
Combining these two expressions, we come to the identity
V' (A) pre.n (M 1 Ok .n (A k—1 Ok.n (A,
/ (A) Pk,n ( )d)\. _ = Pk )zdk+2 Pren (X, (1) drdp, (2.8)
Z—A nJ) (z—=2X) n (z—=MO—pw
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The symmetry propertgy , (A, i) = pr.» (1, A) of (2.3) implies

ﬁk,n()\'ﬂ /’L) d}\,du — _ )5](,}1 ()"7 I'L)
(=R —w (z—=mW*—pw
This allows us to rewrite (2.8) in the form
/ V (?»)/3k.,n()»)dX _ 1 pen(r) di + k—1 Prn (X 1) dadu.  (2.9)
Z—A nJ (z—»x7? n (z=M(z—w
Now, by using (2.4)—(2.6), we can rewrite (2.9) as
/ 4 ()»)Pk;()»)dk _ 1 pk,n(;)zdk
i (z—=2) , (2.10)
/ pk,n()\)pk,n(lﬁ) - (Kk,n()h “))
+ drd.
(z—ME—mw

This relation is a version of the well known loop equation of the matrix models of
the Quantum Field Theory [15].
We will use also

Proposition 2. Consider any unitary invariant ensemble of the form (1.1)—(1.5) and
assume tha¥ (1) possess two bounded derivatives in some neighborhood of the support
o of the density of states and thatp (1) satisfies Condition C2. Denote lay the
e-neighborhood ot for somes > 0. Then there exist-independent quantitie§,

Co, e0 > 0 such that for any positive-independent < gg there existe1 > 0 such

that for any integek satisfying inequalitﬂ% < &1 we have the bounds

/R \ Pen(W)dAh < e™CE, /R \ W (1))2dr < e7Ce. (2.11)
o o

Remark 6.The proof of Proposition 2, given in the next section, does not use the fact that
ensemble (1.1)—(1.5) consists of Hermitian matrices. Therefore Proposition 2 is valid
also for real symmetric and quaternion real matrices, i.e. for orthogonal and symplectic
ensembles, satisfying (1.2), (1.3), and Condition C2.

Let us fix now a sufficiently smadl such that, ¢ D and all the zeros of the function
P(z) are outside of.. Then (2.11) allows us to replace the integrals over the whole line
by the integrals oves, in (2.10). Therefore, denoting

LO0dA ¥ OO (L) dA
gk,n(Z)E/ pk’ZL, Rj,m(z)E/ J

)

—A zZ—A
o 2.12)
Y ()=_/ v (WDYm” (M)dA Vi) = V'(¢)
gm@ == | Ty V=TT
we get from (2.10):
(81n (20)% — / V(20 1) prm (V)
' ‘ (2.13)

k
1 1
T2 Z Ry (@) — 2 E R,Z,,,j(Z) = en(2),
m=1

m,j=1
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wheree, (z) is the remainder function which appears because of our replacement of the
integrals over the whole line by the integrals owgrNote that since the I.h.s. of (2.13)
is an analytic function ilC \ o, ¢, (z) is also analytic irC \ o, and admits the bound:

Co
len(2)] < s 2.14
8¢ (2)I! ( )

where

8¢ (z) = dist{z, o, } (2.15)

and! = 2. Besides, it follows from (2.11) that

C —nC»

en(z) < —~ (2.16)

13z12[8¢ ()|

with I’ = 0.

We will denote below byle, (z)}:° ; sequences of functions (may be different in
different formulas) which are analytic everywhereGn\ o, and satisfy the estimates
(2.14) and (2.16) with some nonnegativé’ and some positive-independenc’s.

According to our condition® (z, ) in (2.12) is analytic with respect tpinsideD,
except for the point = z. Hence, we can write that

~ _ i it pk,n(k)
/UE Vi(z, M) prn(M)dr = o /;E dl/LdEV(Z, ) c—%

1 -
= T/d;V(z, $)&rkn(8),
L Jr

(2.17)

whereL C D is an arbitrary closed contour which contamsand does not contain
This allows us to rewrite (2.13) as

1 - 1 &,
(8kn () = 5 fL V(z Ogkn(©)ds — — ;Rm,m(z)

- "= (2.18)
-5 ) R j@=e).

m,j=1

Now, subtracting from (2.18) the relation obtained from (2.18) by the replacement
(k — 1), we obtain:

1 -
2Ry 1 (2)gk—1,n(2) — %/; V(z, )R 1 ($)dE

L (2.19)

2 k—1
— “Rep@ - = Y RZ (@) =en().
J=1

Relations (2.18) and (2.19) are our main technical tools in constructing /the 1
expansion given in the theorem. We will consider (2.18) and (2.19) as a system of
equations with respect to the functiogs, (z) andR; ,,(z) and solve them by iterations
in1/n.
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We will need two more facts on ensembles (1.1)—(1.5).
(a) The functiong ,(z) from (2.12) andg(z) from (1.12) are related as
log2n |k —n|

18k,n(2) — g(2)] < ConStﬁSE(z) + ) (2.20)

This relation follows from (2.12), (2.6), (2.4), and from the bound valid for any function
¢ (), which grows not faster thaetV ", b > 0 as|u| — oo,

’ / & () pu ()d s — / d(w)p(u)du| < constle’ |13 16115 *n Y2 logH?n, (2.21)

where the symbq]| ... ||2 denotes thd.>-norm on a compact set & containingo,
(the bound was proved in [8], Lemma 4, see also [24]).
(b)

g%(2) — V'(2)g(2) + Q) =0, zeD, 3z#0, (2.22)

1 Vi) = V'(x
Q@) =5~ ./Q(Z, £)g(&)ds =f—(Z) ( )P()»)d)», (2.23)
Tl Jg, o zZ—A

and Q(z, ¢) is defined by (1.16). The relations follow from (2.20), and identity (2.10)
for n = k. Indeed, in view of (2.4) the r.h.s. of (2.10) is

n n 2
gr+ E{ [nl Y-t - E{an(z - /\1)1” }
=1 =1

The second term here is the variancenof Tr(z — M)~%, and according to [24],
Lemma 3, the variance is of the ord@xn—2). This and (2.20) imply (2.22).

It follows from the above that the zero order approximatiorgjor (z) coincides with
8(2).

To find the zero order approximations B i (z) for |k — n| < N(n), whereN (n)
is defined in (1.27), let us note that (2.12) leads to the bounds

k-1
const
IR @ 1Y RE () < ——.
j=1 85(2)

The first bound follows from the definition @ ;(z) in (2.12). To prove the second
bound we viewRy ; (z) of (2.12) as the generalized Fourier coefficients of the function
Xe (A)w,f”)(/\)(z — 1)~ 1 with respect to the orthonormal systeml(")(x)}j’il. Then the
Bessel inequality gives us the second bound.

These bounds imply that the last two terms in the I.h.s. of (2.19) have therortler
Hence, the zero order equations Ry (z) have the form

1 -
2@ Rik(D) = 5 fL eV (2 R (@) — rOP @) + en(2), (2.24)
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where the remainder

r/EOHR)( )= — —Rk L(2) — Z RZ(2) 229

+ 2Rk,k(Z)(gk—1,n(Z) —g@) =0, n— oo,

is analytic inC \ o, and tends to zero uniformly on any compact set for which
dist(z, 0.) > d > 0. Besides, since by definition (1.21)

/ W™2(Mdx =1
we have from (2.11), that
1 1
Rik(2) = E(1+ 0(2)) +en(z), z— o0 (2.26)

Equation (2.24) was already considered in [2]. However we will use here a bit different
way to analyze the equation, which is based on the following lemma:

Lemma 1. Consider the equation
1
2g(z2)R(z) — 7/ d{V(z )R() =0, zeD\o,, (2.27)

whereV (z, ¢) is defined in (2.12), and a closed contdure D containso, and does
not contain the point. Set forz ¢ o,

-1 . .
V() = {X (z), inthe casHi), (2.28)

X~1(z), inthe casdii),

where X (z) is defined by (1.14). Then the following statements are valid under the
conditions of Theorem 1:

1. Inthe casdi) Eq. (2.27) has the unique soluti®(z) = W (z) in the class of functions
analytic inC \ o, and behaving as

R() =z11+40(1), z— co. (2.29)
In the casq(ii) Eq. (2.27) has the unique solutidt(z) = Y(z) in the class (2.29),
under the additional symmetry conditidt{(—z) = —R(z).
2. In both cases Eq. (2.27) has no solutions in the class of funciigps analytic in
C \ o, and satisfying the condition

lim |z%R(z)| < const < co. (2.30)
|z]—00
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3. For any analytic inC \ o, function F(z), satisfying condition (2.30) and even in the
case(ii), the inhomogeneous equation

1 -
2RE) = 5 - fL eV (2, OR@) - F(2) (2.31)

has the unique solution of the form

Rz = 1 /g F()
27iX(2) Jp Pz —-¢)

in the class of functions analytic @ \ o, satisfying condition (2.30) and odd in the
case(ii) .

Here P(z) is defined by (1.15) and a closed contdushould be taken sufficiently
close too, to havez and all zeros ofP (z) outside ofL. In particular, in the casgii)
the contour consists of two components, encircling each interval of the support.

(2.32)

The proof of the lemma will be given in the next section.
Omitting in (2.24) the error terms, we deduce from the obtained homogeneous equa-
tion and from (2.26) on the basis of Assertion 1 of Lemma 1 that the zero order approxi-

mationR,E?,l (2) of Ry k() is W (z) from (2.28). Moreover, the differend®,  (z) — ¥ (2)

decays at infinity as~ at least, and the error terms in the r.h.s. of (2.24) decays also as

z72, asz — oo. Thus on the basis of Assertion 3 of the lemma we can write that
Rex(@) = U@ + 70" (@) + en(2). (2.33)

Hererk0 R) (z) is obtained from formula (2.32) with'(z) = rk M )(z) given by (2.25)).

Using the fact tha’prk0 R) (z)| = 0 as|z| — oo and thatP(z) has no zeros o we
obtain the bound

FOP () < ;/ ro R @)
T, - ZJTiP(Z)X(Z) (Z —0)
_1 1
(O.R) ) — P (2) (2.34)
27T1X( )/d§ (é‘) z—10)
const (| .p OB
s X (‘ (Z)‘ + rgleax‘rk " (;)D -0, n— oo.

Thus, for allk such thatk — n| < N(n), whereN (n) is given in (1.27) foin = 0, we
have

RO = lim Ry 4(2) = ¥(2). (2.35)
’ n— o0

We have also the relations following from (1.21), (1.24), (2.11) and (2.12):
2 1 —nCe
gk = | AMprQ)dr = P CRek(£)dE + O(e™"%),
LJL
1
G+ I+ I = f EYEONdL = 5 /L Rk (£)dE + 0(e7"C*),
(@f + JE+ IE D% + (g + qer)* I + (g + @D TE 4 + T2IE
1
I .= / KYEdL = 5 / ARk (D)L + 0(e7C°).
L

(2.36)
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In what follows we omit the subindexin the coefﬂmentsg,ﬁ’) andJk(” introduced in
(1.28).

By using (2.35), and (2.28) for the case (i), we find from the first of the above relations
that the zero order term&o) is zero. Then, combining the second relation of (2.36) for
k,k — 1, andk + 1 and the third relation of (2.36), we find tha,jo) = a/2. In the

case (ii) the same scheme carried out for even andkddeds to the coefficientgc(o)
of (1.35). In other words we have proved that in the zero ordeyinthe coefficients
of the Jacobi matrix/ (n) defined in (1.25) do not depend én|k — n| < N(n) in the
case (i) of a one interval support of the density of states and are 2-periodic functions of
k in the case (i) of a two interval symmetric support.

To find the first order terms for these coefficients, we will study the first order versions
of Egs. (2.18). Note first that we have the bound

1] & , const
. Z[—R(z)// Z R ]‘ 3% 0) + len(2)1, (2.37)

j=1 j.m=1

where const does not depend onz. Indeed, by using the orthonormality of system
(1.21) we can write the l.h.s. as

5[ r [ duoo) - 042kE, 040 [ an fR AR OIRE, O ).

where¢ (1) = (z — »)~ 1 and Ki.n (1, p) is defined in (2.6). According to Lemma 3
of [24] the first term here is bounded by constup|¢’(1)|%/n < const/na“(z) and
according to Proposition 2, the second term,i&).

We conclude that the first order equation for the function

g (@) = n(gkn(2) — () (2.38)

has the form
280 () = =— f V(2 080 — s (2) + en(2), (2.39)

with
k

1 k
rf(@) = (g(” @)+ = Z[— R@jj— ) Rim(m}
m=1

j=1 (2.40)
const

né4(z)’

—(L,g
il )] =

(g“) @2 +78 (@),

Besides, we have the normalization condition
1
8@ =tk =mz (14 0(2)) +en). 2 > 00, lk—nl < N@).  (241)

which follows from Definition (2.12) of the functiog ,(z). Then, according to
Lemma 1, we get

gP @) = k=W @) + 70 @) + e (), (2.42)
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where the remainde”é’l;lg) (z) has the form

1-Lo® (112 —(1g)
(8, (N +7,,77(8)
~(1,8) _
T () = ZﬂlX(z)/ P(()(z—f) 4. (243)

Thus, denoting

@ _ (@H]
m, . (d)= max 2)|,
k, n( ) (e (ed) |gk,n( )l

whered is a positive constant, we obtain from relations (2.42) and (2.43) the inequality

(1) 2

412 ds/z + nd92
where(C is independent of, k, andd. This inequality implies that either

lk — n|

T Or me, ) = nd¥2cT o).

(1) ) (d) < 2

But the second inequality here cannot be true, because it was proved above that

-1 (D
n~m; (d)= max 72)—g(2)] =0
kn(@ {zzag(z)zd}lgk’"( ) — g

for anyk such thatk — n| = N(n), whereN (n) is given in (1.27) forn = 0. Hence in
view of (2.43) we get that fofz : §,(z) > d},

(. Ik —n|? 1
17 ( g>(z)| fCOI’lSt( ot a ) (2.44)

Substituting now representation (2.42) in the r.h.s. of (2.43), and using bound (2.44), we
get finally

N2
P (2) = %m) + Ok —nPn2d7%%) + 0((nd®™), (2.45)

where

Y=~ / 20
T 27X ) P@OGE—10)
1

. _< r ¢ ) 0.  (2.46)
- 2a \ P(a)(z—a) P(=a)(z+a)
X(@) ! -~ b (ii).

Z
@2 —b2)\ P(a)(z2—a2) P(b)(z2 — b2>>’

We have obtained the first order term in thdexpansion fogg, (z).
Now we need a lemma that will allow us to replake ;(z) in (2.18), (2.19) by a

certain simpler expression constructed from the coefﬂm@ﬁﬁs Jk(’n), j=0,.
found during the previous steps of our expansion process and to estimate the error of
this replacement.
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Lemma 2. TakeN (n) = [log? n] and letN1(n) be such that
Ni(m)n~Y@P*D 5 0, (N1(n))"*N(n) - 0, asn — oco. (2.47)

Assume that for ank : |k — n| < N1(n) we have found the coefficiera;t,ém, e, q,ﬁ”),

7O, ... I satisfying bound (1.29), and such that (1.28) is fulfilledrioe= p. Here

and below we omit the subindexn the coefficienta,ij) Jk(’n) of the asymptotic formula

(1.28) of Theorem 1. "
For any s such that|s| < 2/n consider the(2N1 + 1)-periodic symmetric Jacobi
matrix J (?)(s) defined by the entries

P P
N =" =3"sig?, IR =3P =511, |k—n| < Ni@). (2.48)
=0 j=0
Denote byR?) (z, s) the resolvent of () (s), and set

) 19/ - p o
RV () = =RV (z 9)=0, SP@) =) n/RV. (2.49)
jlos/ )

Then for anyL > 0 there exist positive n-independent quantiidsand C, such that
for anyk satisfying the inequality:
lk —n| < Ny — 2N = Na(n), (2.50)

and for anyz ¢ o, |z| < L,

)

— R 1 (2) — (SP - 8P 1 (@)

26 C NPt e~ C23: (N

|Rex(@) — S (2)

. (251
T 02@nr s nrtl - 8e(2)13z)? (2-51)
k Kk » p+1 —C28: ()N
2¢ C1N e 2
RZ2 ()= Y (SP ()2 < 2 1 . (2.52)
mgl km mz=1 e,m 82(z)nP 8£+1(z)n1’+1 8:(2)|3z)2

k

k k k
1 2 1 (P) (2
;L |:_ R/(Z)j,j - Z Rj,m (Z)i| B ;l Z[(S(P) . S(p))j’j(z) - Z(Sj{jm(z))
j=1 m=1 j=1 m=1
2:(P) C1NPT2 —Cabe ()N /2
< S 1M ¢ . (253)
82(xynP+t 5Py pt2 13213

whered, (z) = dist{z, o,} ands,({’) =0(1),n — oo (see (1.30)).
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The proof of the lemma will be given in the next section.
Consider the function

R (@) = n (Rex@) = RO @), (2.54)

with R,ﬁ?,z (z) defined in (2.35). From (2.19) and (2.42) we get the first order equation for
Rix:

26RG" (@) = 5 / deV @ ORY" (@) — FP @) — iR @) + en(2).
(2.55)

Here
P @) = 2RO 08010 + (RO - RO)(2) - ZZ(R“”( »2
j=1

RO denotes the resolvent of the double infinite Jacobi makf¥ of the zero order
coefficients{J,fO)}kez, and

r]ilnR)( )_ 2R(O)(Z)~(1 g)( )+ R(l n)(Z)g(l) (Z)

+[-Rista) - ®O 30, )]

~ Z[Z(Rk (@)% = Z(R“” @) ]

By using the translational symmetry of the resolv@f and the exponential decay of
its matrix eIementst.?; in|j —m|, as|j —m| — oo, itis easy to show that

(2.56)

(RO ROy s(2) - 2Z<R(°)<z))

j=1
(R () + en (2), (i),
— ( (O))Z ( (O) )2
(RO (2))2 + o +en(2). (i),
This relation, and formulas (2.42), and (2.54) imply that
[2(k — n) — 1] ¥2(2), @),
FH0 = , . (=Dkab
(20— m =Y wP@) £ == (i),

where the sign in the case (ii) corresponds to that in (1.35).

In addition, bound (2.45), and the fact thaTlR,ilk")(z) — 0, asn — oo (see
formulas (2.54) and (2.33)—(2.35)) imply that the first two terms in the r.h.s. of (2.56)
tend to zero as — oco. And on the basis of Lemma 2, one can conclude that the last two
terms there also vanish as— oo. Thereforerk1 R)(z) — 0 asn — oo. Then on the
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basis of Lemma 1, and similarly to (2.38)—(2.46) we get for the first order Iéf}ﬁ(z)
all k such thatk — n| < N1(n), whereN1(n) is given in (2.47):

RO () = [2(k —n) — 1Y (), (i),
( )= {[Z(k —n)—1Y(@) £ (_1)ky(:|:) ), (”)’ (257)

whereY (z) is defined in (2.46),
e _ ab / d¢
©=2ixo |, Pox20c -0

_ Z b a
C X@@?-bd (P(a)(z2 —a?)  P(b) (22— bz))’

and the remainder functio”rji;m (2)is

F,ElnR)(z)
_ B 4
200 =ik - 1];( o=y vo(2). .
lk —n|* 1 i
+o(s)+o(3) W
where
)= f Y)W ()
T 22tiX@ ), P@)GE—-0) (2.59)
YEQOW(E) '

) = / .
@=2ix0 L% Porc=0

Now in the case (i) we take the first order terms with respeettoin Egs. (2.36) (recall
that the diagonal coefficientéo) are zero for alk). We obtain the relations

0 0 2

1 (1.J.4)
= ﬁf ;4R§;2q<;)d; +rie .
(2.60)
wherek = 2¢, |k —n| < N1(n), N1(n) is defined in (2.47) fop = 0, and:
rnt? —/ (2R @de -0, n— oo,
(2.61)

(114) /(4 aR)({)d{—)O n — oo.
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Consider also the two analogs of the first equation in (2.60) witreplaced by 2 — 1

and by 27 4+ 1. These relations and (2.60) comprise a linear system with the unknowns

Jz(;) 2 Jz(;)_l, J(l) and]z(l)Jrl The system is uniquely soluble fd 2) # 12(0)_1, and its

solution is speC|f|ed by (1 36), and its remainder terms satisfy the bounds (2.37).
However, forJ(O) = J(O) _, this system is degenerated. Thus, in the case (i) we cannot

use the system to f|nd coefﬂmen@&}) In this case we use first identity (2.36) that yields
the following relation in the first order:

g =Y = / iR (e

This and (2.57) yield thac;(l) 0. Furthermore, the first equation in (2.60) fg(tg) =
J3 1 = a/2,inview of (2.57) and (2.58), has the form

Cl(.lk(l) + J(l)l) [2(k — n) — 1]1(1) + ]Eln./ 2)’
® l( ! 1 ) (2.62)
19 =3 B

P@  P(—a)

Iterating this relation starting frorh = » it is easy to obtain the one-parameter family
of solutions

al = (k —m 1D — (=) 4 7D, (2.63)
where
k—n
~(1,J k—n—j (1,J,2
AP = Y ki,
j=0

Substituting expression (2.58) qu’l -R) (z) in (2.61) and using the resultlmj1 72 (2)
in the last relations, we obtain the bound

k—n2+1 |k—n|5>
+—
n n

~(1,
|(

i n”| <cons (2.64)

This leads to (1.37) for the case (i),|if — n| < n?/3.
To fix the parameter in (2.63) we use the relation known in random matrix theory
as the string equation (see e.g. [15]):

n n k
J / VO w0 =

The relation can be easily obtained from the identity

/(ean(l)p]E")l(A)p(”)()\)) dr=0

We use this relation in the form

2 — v (O)Runs+1(0)de =14+ 0(e™), (2.65)
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following from Proposition 2. The first order equation which follows from (2.65) has
the form

J(O) @ J(l)
V DR, 41

V (g)R}(1 n+1(§)d§ =0.

2mi

By using (1.34), (2.33), (2.57), and (2.63), we get a linear equation with respect to
DDe— AD =0, (2.66)

with
DO — ]f/LV’(g)R;?zl+l(§)d§+%/I:V’(;)(R(O)JﬂtR(O))n’,H_l(;)d;‘,

4D — 1’51*)va/(§)R,§?3,+1(§)d§ +C—;/L VIR . JI ROy (oyde,
(2.67)

whereJ* is the symmetric Jacobi matrix with coefficieft = (—1)"~* andJ @ is
the symmetric Jacobi matrix with coefficients defined by (1.34).

Lemma 3. Under conditions of the theored® = 0, D® = 0 and Eq. (2.66) has the
unique solutiorc = 0.

The proof of this lemma is given in the next section.

By using the lemma we find the first order terms of our expansion in the case (i) given
in (1.34).

Now we will prove (1.31) and (1.28) by induction. The scheme of the induction pro-

cedure will be as follows. Assume that we have found coefficieﬁl?s. .,q,ﬁ”) and

Jk(o), cees J,fp) Then we can find the +1 correct|org(”+ )(z) and estimate the respec-
tive remainde“f(‘_”’;rl ¢) from the (p + 1) form of Eq. (2.18) (see Eq. (2.70) below), in
which we use the functlor@go) @, ..., g,ﬁ”) () andR,EZ) @, ..., R,E’k’) (z) found previ-
ously. Then, by using thi + 1) form of Eq. (2.19) (see Eg. (2.73) below), we determine
R(p) (z) and estimate the respective remalrﬁéjL B . Finally, we find the coefficients

q,ﬁ”“), andJ,f”+l) and estimate the respective remainder by using ghe () form of
relations (2.36) and (2.65).
To realize this scheme we first write the asymptotic relation:

p
gen@ =Y g’ @ +n PO @), FNP() — 0, asn— oo, (2.68)
j=0

valid for all k such thatk — n| < N1(n). Let matricesR)(z), j = 0, ..., p be defined
as in Lemma 2 (see formula (2.48), (2.49)). Then, denoting

gkpn+1)(z) — nP+1(gk n(Z) Zn i (])(Z)) (269)

j=0
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we obtain from (2.18) the equation of thig + 1) order forg(PH) (2):

1
2818 (2) = — / Vi 08 @)ae

(2.70)
F(p+1 g)(z) (p+l g)(z) T en(2),
where
1 1-1 > —I-1
90 = 3 0600 + Z > YRR, G
=1 m=1 j=k+1 (=0
p
([7+1 2) (Z) n=P— l(g(P+l)(Z))2 + Zg(P+l) (Z) Zn—lglil)(z)
p !

+ Y T D@ (2.71)

LU'=114+1">p+1
1 k k
.nP| = —R'(2):: — R?
PAELEIE WAL
1 k

k
-y ((Sm LS @) — Z(Sﬁ-f)n),(mz)}
j=1 m=1

with S(”) (z) defined by (2.49). On the basis of (2.68), (1.28), and Lemma 2 we conclude
that the relations

|FPTH8) ()] < const(k — n|?Tt 4 1),
and
(p+1g)(z) — 0, as n— oo,

are valid uniformly in{z : 8.(z) > d}, for any fixedd > 0, because by the induction

assumption (2.68) we have thﬁtlgép:_l) (z) = g(”)(z) — 0asn — oo. Then Lemma

1 |ead5 to the I’elatiO 1S
+1 +1 +1, 272
g]gpn )( ) (p )( ) (p g)( )’ ( " )

where fors(z) > d > 0,

(p+1g)
1 F, )
g P = £

=—— | A 2Cgr, gt t(k —nPtt +1
5 |, P 18 @) s constk—nl" 4+ 1)

and

7P @) < const D @)+ max|r ARSI}

IX( )]
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Now, denoting (cf. (2.69))

14
1 _
R,Ef’; "(z) = n"+l<Rk,k(z) -Yn JR(])(Z))

Jj=0

we get from (2.19) the equation of the form (cf. (2.55))

2R V=5 / V@ ORYV(©)de
(2.73)
- F,i”“ @)= rP 0 @) + e ),
where
k e’}
F(P+1 R)( )_ Zg(P-HL l)(Z)R(lk( )+ <Z Z >ZR(pl_l)(Z)Ry(n[?/(Z)v
1=0 j=1  j=k+

p
LR 1 !
@) = 2R @) Y g1 @)

p
- ! 14
+ E nPti-1- lg,i)l(z)R,iJg(z)
LU'=1L14+I">p+1

k
+ n!'—l[( — Rk —2 Z(Rk,m<z))2)

m=1

((S(P) S(ﬂ)) ) Z(S](Pri (2)) >j|
By the virtue of (2.68), (1.28) and of Lemma 2, we conclude that the relations
|[FP R ()| < const(k — n|P+ + 1),

and

1R
rlgpj’ )(z)—>0, as n— oo,

293

are valid uniformly in{z : §.(z) > d}, for any fixedd > 0. Using again Lemma 1, we

get
REM (@) = REP @ +72THP @), (2.74)
where fors. (z) > d,
(p+1) 1 k(p+1 R)(g) ( +l) 1
RV (2) = /— IR (2)] < const(lk —n|Pt +1) (2.75
ok P() (& —2) (@.75)

and

FUARIOTE I‘;f(”;t ( A0 @]+ maxrl ’%)l)
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Now, as for the first order approximation case, in the case (ii) we takgthel) - order
terms (with respect to—1) of Egs. (2.36) fok = 24:

© ;(p+) |, ;0 Sp+n, _ 1 2 H(p+1) (p+1.7.2)
2(Jp) Jog T H Jpy a0y 1) = %/LC Ry, 2, ()dE + 13, ;

0 1 0 1 0 0
A5 I 10 I + ) D)

0) ;O 0 1 0 1 0 1 0 1
1+ 200750 21 gD a0+ 0 )

2g— 2q+1 2q—-1
1 1 1,J.4
- /L R @)de + g, (2.76)
whereFk(”H’J’z) andFk(”“’M) are the coefficients at”~1 in the r.h.s. of the second

p .
and the third equations (2.36) which we get, substituting thigre Z n/ Jk(”, and
j=0

r,ierl’J’Z) = / §2F,§pn+l’R)(§)d§ — 0, n— oo,
. ,

r,ip+l’J’4) = / ;“4F,£’1!+1’R)(§)d§ — 0, n— oo.
. ,

Consider also the two analogs of the first relation of (2.76), in whicis2eplaced by
2q — 1 and 2 + 1. These relations together with (2.76) comprise a linear system with

respect to the variableg(;’f%), ]2(5:11), Jz(;’“) and 12(5:11). For Jz(f;) + 12(2)_1, i.e.in
the case (ii), the system is uniquely soluble and the solution satisfies condition (1.29) in

view of (2.75).
However, for]z(g) = Jz(g)_l this system is degenerated and so in the case (i) we

cannot findlk(”H) from the system. Therefore similarly to (2.62)—(2.64) for the case (i)
we obtain the one-parameter family of solutions

JIPY = pP D ek D), (2.77)
where
k—n k—n
I S O N A e N UAR LI Y G N/ il
j=0 j=0
with

1 1.2 1 1
af = R 4 f PRI (@,
Tl Jr ’

To fix the parameter we use again identity (2.65) and Lemma 2. Then we get the
equation forc of the form

i @O _
DYe— AT =0,

where, as usually in perturbation theory, the Qoeffici@ﬁf is the same in each order
of the procedure. Thus, in view of Lemma B is nonzero and the parameteis
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uniquely defined by this equation. By the same argument as in thepcasel it is
easy to see that in view of (2.75)" " andJ”Vsatisfy bounds (1.30). Theorem 1 is
proven.

Proof of Corollary 1By using general formulas (1.18 )—(1.25), (2.12) (2.14)—(2.16) and
the Christoffel-Darboux identity for orthogonal polynomials it can be shown that the
covariance (1.39) can be written as

1 / (A — WZkZ(, wdrdp

(z1— M1 — w2 — M)(z2 — )

_ -]_,12 5Rn+1,n+1 SRn,n _ 8Rn+1,n

T n? 8z 8z 8z

wherek, (1, u) is defined in (1.20) and we dendi®; ; = Ry j(z1) — Rk, ;(z2) and

8z =2z1— 22

Then, on the basis of Lemma 2, we conclude that the ampl'tflﬂl%ezl, z2) of the

asymptotic formula (1.40) is:

Dy (z1,72) =

(2.78)

2
) ) + e, (z1) + eu(z2),

SR 11 SR 3 <5R(CJ)21 n >2>
8z 8z 0z '

According to Theorem 1 and Remark 2 after the theorem the zero-order coefficients
Jk(o) of the Jacobi matrix/ (n) do not depend o& (k = n(1 + o(1))) in the case (i)
and are 2-periodic functions @fin the case (ii). Thus, we have only to compute the
matrix elements of the resolvent of the constant Jacobi matrix and of the 2-periodic
Jacobi matrices whose coefficients are given by (1.34) and (1.35) in the cases (i) and (ii)
respectively. The computations are standard and lead to (1.41) and to (142).

d?(z1,22) = (J,$°>>2(

Proof of Corollary 2.The weak convergence ()1&,5")()»))2 is equivalent to the conver-
gence of its Stieltjes transform

) (5))2
/(wk (W) “dr (2.79)

uniformly in z on any compact set @ \ R. Accordlng to (2.12) and Proposition 2 the
Stieltjes transform (2.79) iRy« (2) + e, (z). Now the asymptotic formula (2.33) implies
that the Stieltjes transform (2.79) converge¥it@) asn — oo and dis{z, .} > d > 0.
This fact and the inversion formula (3.2) yield the resulti

3. Auxiliary Results

Proposition 1.For the proof of weak convergence of measu¥gsand (1.10) see [8].
Furthermore, it follows from Eq. (2.22) that 1 g(z) can be written as

VZ(Z) - %\/(V’(Z))2 —40(z), 3.1

whereQ(z) is defined in (2.23). Since

1
p(h) = —= lim Jg(x +ie), (3.2)
T e—40
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we conclude thap (1) satisfies the Holder condition. Thus we find from the real parts
of (3.1) that:

, AEO.

/ pdp V')
b . A— [ 2
Regarding this relation as a singular integral equation and using standard facts (see [21]),
we obtain (1.10) in which

1
PO =— / QO WX (wdp

andQ andX;l(u) aredefinedin (1.16) and (1.11). Itis clear tiRgh.) can be analytically
continued intdD and can be written in form (1.15). Singé€z) is uniquely determined
by its boundary values om and its asymptotic behaviogr(z) = z~(1 + o(1)), as
z — 00, we obtain the assertions of the lemman

Proof of Proposition 2According to the result of [8], and our condition C2, if we consider
the functionu (x) of the form (1.9), them(x) = C* (x € o) andu(x) < C* (x € o).

It is easy to see that at all endpoints of o there exist one-side derivativa$ (ax*)
(we take the right derivative for the right endpointsand the left derivative for the left
endpoints), and these derivatives are nonzeroCget %min |u/, (ax)| and consider
the function

0, X € o,
Vi(x) = 3 Cas, x € R\ o, 3.3)
+C1(x —ax), o:\o.
In the last line here we take plus for the right endpoints and minus for the left endpoints
of the spectrum. It is easy to see that we can always chapse small that for any
& < go the functionu1(x) = u(x) + Vi(x) also takes its maximum valu&* ono.
Consider now the following functions @k1, ..., x,) € R" that we will call Hamil-

tonians because their role below will be analogous to that of Hamiltonians of classical
statistical mechanics (see [8] for this analogy):

n
Hy(x1,...,x) =nY V) —2 Y Inlx—x;l,
i=1

1<i<j<n

n
HP (1, ) =nVx) +n) V) —2 > Inlxy —xjl,

i=2 1l<i<j<n
n
HM (x1, .. xn) = V(@) — (0 — Duaxn) +n Y V(xi)

i=2 (3.4)
-2 Z Inlxl-—le,

2<i<j<n

n
H\(x1, ... %) = —nVilx) —n Y u(x)
i=1

+n(n—1) / Infx — ylo(x)p(y)dxdy,
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where

V) = V@) - Vi),
u is defined in (1.9), andy = u + V1. Denote by

Pl =ZH texp—H)

the probability density defined by one of these functions (cf. (1.17)).
We will use the Bogolyubov inequality, valid for any two Hamiltoniakg > with
correspondent normalization constants (partition functians),

(Hz — H1)m, <logZ1 —logZ; < (H2 — H1) gy, (3.5)

where the symbol...)y denotes the mathematical expectation with respect to the
probability densityp = Z~1exp(—H}.

Using the r.h.s inequality in (3.5) fdi, = H,Sl) andH, = H,El”), we get

log Z(Y —log {1

<2mn -1 / loglx1 — xzl (Y (1, x2) — pY (v (x2) ) dxadxz

+2(n -1 / log |x1 — x2[p{" (x1) (p,ilz) (x2) — p(xz))dxldxz, (3.6)

Wherep,(ll’ b (x1), andp,ﬁl’z) (x2) are the firstmarginal densities correspondingtandx;
for the HamiltonianH,fl) (note thatp,gl’l) (x1) # ,0,51’2) (x1) sinceH,Sl) is not symmetric
in x1 andxy), andp,ﬁl’l) (x1, x2) is the second marginal density, correspondingstoco

(note thatp,(,l’l) (x1, x2) is not symmetric because of the same reason). Lemma 4 of
[8] (valid for not necessarily symmetric Hamiltonians) implies that the first term in the
r.h.s. of (3.6) isO (logn). To estimate the second term we first take into account that the
integral kernel logx — y|~1 is positive definite, hence by the corresponding Schwartz
inequality

' [ 1oglx = s1p o (e - p<y>)dxdy’

1/2
=

/ log|x — ylp{Y (0 oMY (v)dxdy

1/2
X

[ 109k = 31(p2 ) = o) (1200 ~ () )

(3.7)
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By using the estimate

exp{—nV<x+ 3/;/) nZ ( 3/y)}
. (3.8)
—exp{—nV(x)—nZV(x, }' H|x—x12 1_[ |x,—xj

i=2 2<i<j

= (z,gb)—l/dxz...dxn

const
< —p ),

valid for |X| < 1 in view of the condition (1.3), and the fact thﬁto,gl’l)(x)dx =1,

we obtain tharo,(,l’l) (x) < constz®?. Hence we have the following bound for the first
factor in the r.h.s. of (3.7):

‘/In Ix — y[pEY (0) ptY (y)dxdy| < const log.

To estimate the second factor in the r.h.s. of (3.7) we use the |.h.s inequality in (3.5) for
the Hamiltoniang?;, = H\* andH, = HY, whereH,® and Y are defined in (3.4).
We obtain the inequality

- (n_l,)l+_2) / log|x — yI(o{2 (x, y) — o2 () pH2 ()dxdy

—~ w / log|x — y|(p*2 (x) — p () (012 (y) — p(y))dxdy

2

(" ) f log [x — yl(o{"? (x) = p(x))p(y)dxdy
v / l0g 1 — ylpP (0)p()dxdy (3.9)
A f loglx — ylo@Y (x, y)dxdy

1 1 1
(@) _ @D _ (a)
—2 log Z,“ ) Iog VASIES (—2 logZ," — 2 log Z,,)

1 @ logn 2
+| = logZ, — |OgZ <0 - / Vi(x)pn(x)dx.
n

n

In the r.h.s. here we have used the result of [8] to estimaté lbg Z'” — 1/n2log Z,

and inequality (3.5) to estimate/42log Z, — 1/n%log Z\Y. Using Lemma 4 of [8]
(more precisely, repeating almost literally the arguments of that lemma in the case of
the non symmetric Hamiltonian ), we obtain that the first and the last terms in the L.h.s.
of (3.9) are of the orde© (logn/n). And the third, the fourth and the fifth terms here
are evidently of the orde® (n~1). Therefore finally we get from (3.9),

- f 10g 1 — ¥I(pE2 () — pN(E2 () — py)dady < const S (3.10)
n
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Substituting this estimate in (3.6) we obtain
logZ{Y —log z{ < consty/n logn. (3.11)

Now we use the r.h.s. inequality in (3.5) fél, = Hn(l”) andH, = H,, WhereHn(l“)
andH,, are defined in (3.4). We get

logZz{! —logZ, <n / V1(x1) oY (x1)dx1
(3.12)

+(n—1) / P (x1) () (v) — p(y))dx1dy,

(al) (a2)

wherep, ~ andp, “’ are the first marginal densities of the Hamiltoniﬁlﬁh’), corre-
sponding taxg andxy. On the other hand it is easy to see that

exp{(n — Dui(x) — V(x)}
[ expl(n — Dug(x) — V(x)}dx’

PAP (x) =

and due to the choice of the functidnthe densnyo(“l) (x) decays exponentially outside
of 0. Thus sincéV1(x) = 0 for x € o the first term in the r.h.s. of (3.12) is of the order
0(1). The second term can be estimated by the Schwartz inequality similarly to (3.7)

and then, using the fact thaf,“z) (x) coincides with the first marginal densities of the
Hamiltonian,

H,,,(xz,.. xn)—nZV(x,)—Z Z Inx; —x;l.

2<i<j

Therefore the analog of inequality (3.10) f,mﬁ”z) (x) follows directly from the results
of [8]. Thus, from (3.12) we derive

log Z{* —log Z, < consty/nlogn. (3.13)

Bounds (3.11) and (3.13) lead to the relation

@
V4
/ MV py (x)dxy = =

n

< eCzﬁIogn.

TakingCo = Zg—i, we obtain from the last relation that for any positiveatisfying the
inequality Con~Y2logn < & < eg we have

/ pn(x1)dx1 < exp{Ca/nlogn — Cren} < e "C1¢/2,
R\Ue

To obtain this statement fgr, , we have to prove now that for amyindependent we
can choosel such that fortk — n| < e1n the spectrum of the ensemble with potential

= "visinside ofo, /2. This fact follows from the main result of [8, 12] and also from
[19]. Proposition 2 is proven. O
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Proof of Lemma 1Using Proposition 1 we rewrite Eq. (2.27)[n

1
P(2)X(2)R(z) = %deEQ(Z, SR, (3.14)

with Q(z, ¢) defined by (1.16). It follows from formula (1.15) fé¥(z) that the function
W(z) of (2.28) solves Eq. (3.14) in the class (2.29). Let us show that the solution is
unique. Denoting byD(z) the r.h.s. of (3.14), we see tha@t(z) is an analytic function
in D. From Eq. (3.14) we derive that zerosbtz,_) in D coincide with zerog)(z) and

have the same order. Thus, functiBrr) X (z) = % is analytic inD. In the rest ofC it
is analytic, because we are looking for a solution analytic outgid€husR (z) X (z) is
analytic in the whol€. Besides, ifR (z) = (1 + o(1)), as|z| — oo, thenin the case (i)
R(z)X (z) is bounded, ag| — oc. Therefore by the Liouville theorenR(z) X (z) is a
constant. In the case (ii) we get also from the Liouville theorem RliatX (z) = az+b.
By the symmetry of the functio® (z) we getR(z) = zX1(z). This proves the first
statement of the lemma.

To prove the second statement, we notice that under condition (2.30) in the case (i) we
haveR(z)X (z) — 0, as|z| — oo. Thus, according to the above conclusigtg) = 0
for all z. In the case (ii) condition (2.30) implies th&%(z) X (z) = const and we get
R(2)X (z) = 0 from the symmetry condition.

To prove that (2.32) is a solution of Eq. (2.31) we note first that for any closed contour
L that does not contain the zeros®§z) we can write the relation

R(Z)X(Z)=i./ R(£)X(£)d¢ _if 0(¢)dg ’ (3.15)
2ri Jp L PO —2)

¢ -2 2mi
whereQ(z) is defined as in the r.h.s. of (3.14). Indeed, under the condition of the lemma
R(2)X (z) = z7 X1+ o(1)), asz — oo, i.e. the function is analytic outside of contour
L. Then, by the Cauchy theorem, the firstterm inthe r.hB(i3X (z). The second term
is zero, because the integrand is analytic inside the corit@ndz is outside ofL. By
using this relation, we can rewrite formula (2.32) for the solution as

1
27 <(V'(§) = P(OX())RQ)
Tl JLq

1 dg
—— [ V& RG)da + F@) )| 5——— =0,
i /L (&, SDR(&)dG (Z)) PO —2)
where the contoul.; lies outside of L and is close enough fo According to the
condition of the lemma the expression in the brackets is analytic outsitlg dhus by
the Cauchy theorem, we have

1
(V'(2) — PQ)X@)RE) — %/L V(z OR@)dE + F = 0.

Since Z(z) = V' — P(2)X(z), the last relation proves that (2.32) is the solution of
Eqg. (2.31).

Uniqueness follows from the absence of solutions of the homogeneous equation
(2.27) in the class (2.30). This fact was proven above.
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Proof of Lemma 2Consider the "block” symmetric Jacobi mattiX”-¥1 which can be
obtained fromJ if we setJ,_y, 1 = 0. Let R”-M(z) be its resolvent. We will use
the resolvent identity valid for any two selfadjoint operatdrs with resolventsRs
respectively,

R1(z) — R2(z) = R1(2)(J2 — J1)R2(2). (3.16)

Thus taking ast1(z) the resolvenR(z) of J(n), and ask2(z) the resolven NV (z)
of J N1 we obtain

o pLND _ pLND ,
Ri,j(2) Rk,j (Z)_Rk,n—Nl—l‘]n—Nl—lR”—Nl’/(Z) (3.17)

5(n, N
+ R,Ef'n+113,l+11n+Nl+1Rn+N1+2,,/ (2)-
Now we use the general fact of the theory of the Jacobi matrices.

Proposition 3. Let J be the Jacobi matrix with coefficienfs x+1 = Ji+1.x = ak € R,
|Jkkl < e, andlax| < A. Then there exist positive constass», such that for any
z € C\[—2A — ¢, 2A + ¢] the matrix elements of the resolveht= (z/ — J) ! satisfy
the inequalities:

C ,
G (2)] < —e™CoR@I=K, (3.18)
3:(2)
whereé, (z) = dist{z, [-2A — ¢, 2A + ¢]}.

The proof of the proposition is similar to that of the well-known Combes- Thomas
estimates for the Schroedinger operator (see e.g. [26]) and we omit the proof.
On the basis of the proposition we obtain the bound

. 1
(n,N1)

R 7)) <
RSO = 5

Thus, for(N1 — 2N) < |k — n| < (N1 — N) we have

o= C20:()j—k| (3.19)

5 (1.N1) 5(1.N) 1 cwon
1R Ny -1k @ IR, 1, (D] = EN 201N

So, it follows from (3.17) that
const o—C10: N

Re (2 —Ié(n’~Nl) < ———
IR j () kj @ 152]8¢ (2)

(3.20)

Similarly, if we consider th€2N; + 1)-periodic symmetric Jacobi matrik such that
Jeks1 = Jegr1 |k —n| < Ny, (3.21)

and denote byt its resolvent, then

- . 2 _
(n,N1) —C28,(2)N
Rir — R <——e 2 . 3.22
Therefore,
- const .
IRik(2) — R (2)| < e~ (2N, (3.23)

13218¢ (2)
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Applying the resolvent identity (3.16) to the matricés’ andJ we obtain in view of
estimate (1.28):

2:(P)
nP|3z|2’

|Ry j(z) — R“’) (z,n Y| < (3.24)

whereﬁ,ﬁ”j)(z s) is the resolvent of the Jacobi matriX? (z, s) defined in (2.48) and

¢\” is defined in (1.30). Now expandlng(”)(z n~1) with respect to: 1 it is easy to
f|nd that

C Np+1
(p) (p) 1
R, -8 <=1 3.25
IRz n™h =57 (2] < T (3.25)
From (3.23)—(3.25) we derive that
(p) Cle+1 e—Czth(Z)N

R S(’” bn .
ek (2) — @ = SZ(Z)np 5£+1(Z)np+1 132186 (2)

This inequality and (2.11), lead to the first inequality in (2.51).
To prove the second inequality in (2.51) we use again identity (3.17). Taking the
second power of the identity, using the bounds

5 N
IR @)1, R (2)] <

15z

valid for resolvents of arbitrary selfadjoint operators, and bound (3.19), we obtain
o

Z( k.J

4
< —
T 8:(2)

‘02‘38<2>N<Z|Rn N1 (@2 +Z|Rn+Nl,(z)> |) (3.26)
- 8 o—C28: (N
= Nz (2)

To estimate here the sums of the tyEé’O 1 Rn=ny, ](z)|2 we have used the simple
inequalities

o0 0

_ _ 1
E |R,,7Nl,j(z)|2 - E Rn-nN1,j DR jn-nN @) < (R(2) - R@)n-Nyn—N1 < e
j=1 j=1 h

Similarly,

Z (Ren(2))? — Z (Rim

m=k+1 m=k+1

emCH@N - (327)

2—
T IR7I8:(2)

And then, by the same way as in (3.23)-(3.25) we get the second inequality of (2.51).
The proof of (2.52) is similar.
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Note that in fact we have proved (2.51) and (2.52)|for n| < (N1 — N).
To prove (2.53) we need to make one more step. Let us prove th#t fom| <
(N1 —2N),

n—(N1—N) [

2

j=1

_ 2 —C28:(z)N/2
R;-’j(z) ZRJ,,,(Z)]‘ vz|28 (z)e 2062 . (3.28)

To this end we consider one more "block” symmetric Jacobi matfix¥1—2¥) which
can be obtained frond if we putJ, (N1—2N)—Ln—(Ny—2/) = 0. Using identity (3.16)

for J and.Jj ™ ™1=2M) and (3.19) for/ ™ ¥1~2M) we obtain similarly to (3.26),

(it n—(N1—
Z Z (Rjm(2)? — Z Z (R(” ,(N1— 2N))( )2
= m=k+1 =1 e
. o—C23:@N ;6—0258(@1{//2_ (3.29)
= 13z3¢ = 132%5,(2)

Then, using the estimate (3.19) féf.f’,;l(Nl_ZN))(z) with j <n — (N1 — N) andm >
k+1>n—(N1—2N) we get

n—(N1—

Z Z (R(n ,(N1— ZN))( ))2

j=1 m=k+1

2 cosoN o L —canN2
T 82(2) ~ 82(2)

This inequality combined with (3.29) proves that

n—(N1—N) k
> [(R R =D Rim(z)]‘
j=1 m=1
& 8:(2)N/2
—C26:(2)N
= Z Z (Z) 1Sz |3 2 @NI2,

= m=k+1

Now, using (2.11), we canreplacB «R) ;, j(z) by (—R}’j (z)) andRj ,,(z) by R 1 (2)

to get (3.28). Applying the first and the second line of (2.51)fcr n| < (N1 — N) we
get(2.53). O



304 S. Albeverio, L. Pastur, M. Shcherbina

Proof of Lemma 3To find D,(f) we first compute the quantity

ROIDRO@)) 011

e ¢]

0 _i (0 0 (0
> REGOED IR+ R @D TR, 0
j=—00
> 1 2 ei("*j)(x*)’*”)(l + e*i(ery))
= Z - / dxdy
j=—00 (27)% Jo (¢ —acosx)(¢ — acosx)

1 (% 1—cosX
= —_— X—
27 Jo (¢2 — a2 co2x)

§-2 1 /271 1 1
=2(1->5)— dx———5———+—
< a2>2ﬂ 0 x(§2—a200§x) +na2

_2( ¥\,
_E(l ;)X ©).

Then using the simple formulﬁf,?,)lﬂ(g) = a—l(gR,ﬁ?,)I(g“) D =alcx1c)-1
we find from (2.65),

i) _ / a 1 /
D =3 l.,/LL (§)<—+—§_<1——2>>X (¢)dg

a V()

" 2ni Jy X(@0)¢

d¢ = aP(0) # 0.

Here we have used representation (1.15) and the facfgh&t(X(g);)*l =0.

Similar calculations show us that®) = 0, so it follows from Eq. (2.66) that = 0

and we get (1.34). O
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