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Abstract: We present a version of the 1/n-expansion for random matrix ensembles
known as matrix models. The case where the support of the density of states of an
ensemble consists of one interval and the case where the density of states is even and
its support consists of two symmetric intervals is treated. In these cases we construct
the expansion scheme for the Jacobi matrix determining a large class of expectations of
symmetric functions of eigenvalues of random matrices, prove the asymptotic character
of the scheme and give an explicit form of the first two terms. This allows us, in particular,
to clarify certain theoretical physics results on the variance of the normalized traces of
the resolvent of random matrices. We also find the asymptotic form of several related
objects, such as smoothed squares of certain orthogonal polynomials, the normalized
trace and the matrix elements of the resolvent of the Jacobi matrices, etc.

1. Introduction. Problem and Main Results

Random matrix theory is an actively developing field that has a wide variety of applica-
tions (see e.g. the review works [20,16,23] and references therein). Among numerous
random matrix ensembles studied by the theory and which have important applications
the ensembles with the unitary invariant probability distributions (known also as matrix
models) play a significant role [15,22]. This is, in particular, because of numerous links
of the ensembles with the theory of orthogonal polynomials, potential theory, the theory
of integrable systems, and other domains and techniques of analysis and mathematical
physics. These ensembles consist ofn × n Hermitian matrices and are defined by the
distribution

Pn(M)dM = Z−1
n exp{−nTrV (M)}dM, (1.1)

whereZn is the normalizing constant,V : R → R+ satisfies the conditions

� On leave from the U.F.R. de Mathématiques, Université Paris 7.
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(i) for someε > 0 there existsL1 > 0 such that

|V (λ)| ≥ (2+ ε) log |λ|, |λ| ≥ L1, (1.2)

(ii) for any 0< L2 < ∞ there existsγ > 0 such that

|V (λ1)− V (λ2)| ≤ C|λ1 − λ2|γ , |λ1,2| ≤ L2, (1.3)

(iii) there existsm > 0 such that∫
|V ′(λ)|e−mV (λ)dλ < ∞, (1.4)

and

dM =
n∏

j=1

dMjj

∏
j<k

d�Mjkd�Mjk. (1.5)

The asymptotic regime that we study is intermediate between the global regime (see e.g.
[8,12]) and the local regime (see e.g. [24,13]) and the respective results are important in
studying the central limit theorem [17], universal conductance fluctuations [6], and the
universality of the local eigenvalue statistics at the edges of the support of the Integrated
Density of States (IDS) of the ensembles [25].

Let us recall the definition of the IDS. Denote byλ(n)
1 , . . . , λ

(n)
n the eigenvalues of

a matrixM of the ensemble and define the eigenvalue counting measure (NCM) of the
matrix as

Nn(�) = �{λ(n)
l ∈ �} · n−1, (1.6)

where� is an interval of the spectral axis. According to [8] the NCM tends weakly in
probability asn → ∞ to the nonrandom limiting measureN known as the Integrated
Density of States (IDS) of the ensemble. The IDS is normalized to unity and is absolutely
continuous ifV ′ satisfies the Lipshitz condition (1.3) (with possibly different constants
C andγ ) [27]:

N(R) = 1, N(�) =
∫
�

ρ(λ)dλ. (1.7)

The non-negative functionρ in (1.7) is called the Density of States (DOS) of the ensem-
ble. The IDS can be found as the unique solution of a certain variational problem [8,12,
27]. The IDS is one of the main outputs of the study of the global regime.

Let us state now our main conditions.

Condition C1. The supportσ of the IDS of the ensemble consists of either

(i) a single interval:

σ = [a, b], −∞ < a < b < ∞,

or
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(ii) of two symmetric intervals:

σ = [−b,−a] ∪ [a, b], −∞ < a < b < ∞,

andV is even:V (λ) = V (−λ), λ ∈ R.

Remark 1.It is easy to see that changing the variables according toM ′ = M − a + b

2
I

in case (i) we can always take the supportσ to be symmetric with respect to the origin.
Therefore without loss of generality we can assume that in this case

σ = (−a, a). (1.8)

Condition C2. The DOSρ(λ) is strictly positive in all internal points ofσ and behaves
asymptotically asconst|λ − c|1/2, λ → c, in a neighborhood of each edgec of the
support. Besides, the function

u(λ) = 2
∫

log |µ− λ|dµ− V (λ) (1.9)

achieves its maximum if and only ifλ ∈ σ . We will call this behavior generic (see e.g.
[19] for results, justifying the term).

Condition C3. V (λ) is real analytic onσ , i.e. there exists an open domainD ⊂ C such
thatσ ⊂ D and an analytic inD functionV (z), z ∈ D such that

V (λ+ i0) = V (λ), λ ∈ σ.

Note that we always have the one-interval case (i) ifV is convex [8,17], or if it
has a unique absolute minimum and sufficiently large amplitude [19], and we always
have the two interval case (ii) ifV has two equal absolute minima and sufficiently large
amplitude [19].

As for the condition C3, it is the case in many of the quantum field theory [15] and
of the condensed matter theory [6] applications.

The following statement, known in several contexts, provides a sufficiently explicit
form of the IDS in our cases.

Proposition 1. Let an ensemble of form (1.1)–(1.5) satisfy conditions C1–C3 above.
Then its density of statesρ has the form

ρ(λ) = 1

2π
χσ (λ)P (λ)X+(λ), (1.10)

whereχσ (λ) is the indicator of the supportσ of the IDS,P(λ) is analytic inD (including
σ ) and

X+(λ) =
{√

a2 − λ2, |λ| ≤ a in the case (i),

signλ
√
(λ2 − a2)(b2 − λ2), a ≤ |λ| ≤ b in the case (ii).

(1.11)

Besides, the Stieltjes transform

g(z) =
∫
σ

ρ(µ)dµ

z− µ
, �z �= 0, (1.12)
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of the IDS can be represented in the form

g(z) = 1

2
(V ′(z)−X(z)P (z)), z ∈ D, (1.13)

with

X(z) =
{√

z2 − a2, in the case (i),√
(z2 − a2)(z2 − b2), in the case (ii),

(1.14)

and we take the branches of the square roots, which are analytic everywhere exceptσ

and have the asymptoticX(z) = zp(1+ O(z−1)), z → ∞ with p = 1,2 for the one
interval and for the two interval cases respectively.P(z) in (1.13) and in (1.10) can be
represented in the form

P(z) = 1

2πi

∫
L

Q(z, ζ )X−1(ζ )dζ, (1.15)

whereL ⊂ D is a closed contour encirclingσ , and

Q(z, ζ ) ≡ V ′(z)− V ′(ζ )
z− ζ

. (1.16)

The proof of the proposition will be given in Sect. 3. Here we remark that in the
two-interval case the contourL consists of two connected components encircling each
of the intervals ofσ .

We need also several facts on ensembles (1.1)–(1.5) (see e.g. [7,20,22]).
Denote bypn(λ1, . . . , λn) the joint eigenvalue probability density which we assume

to be symmetric without loss of generality. It is known that [20]

pn(λ1, . . . λn) = Z−1
n

∏
1≤j<k≤n

(λj − λk)
2 exp

{
− n

n∑
j=1

V (λj )

}
, (1.17)

whereZn is the respective normalization factor. Let

p
(n)
l (λ1, . . . , λl) =

∫
pn(λ1, . . . , λl, λl+1, . . . λn)dλl+1 . . . dλn (1.18)

be thelth marginal distribution density of (1.17). The link with orthogonal polynomials
is provided by the formula [20,7]

p
(n)
l (λ1, . . . , λl) = (n− l)!

n! det||kn(λj , λk)||lj,k=1, (1.19)

where

kn(λ, µ) =
n∑

l=1

ψ
(n)
l (λ)ψ

(n)
l (µ) (1.20)

is known as the reproducing kernel of the orthonormalized system

ψ
(n)
l (λ) = exp{−nV (λ)/2}p(n)

l−1(λ), l = 1, . . . , (1.21)
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in which p
(n)
l (λ), l = 1, . . . are orthogonal polynomials onR associated with the

weight

wn(λ) = e−nV (λ), (1.22)

i.e. ∫
p

(n)
l (λ)p(n)

m (λ)wn(λ)dλ = δl,m. (1.23)

The polynomialp(n)
l (λ) has the degreel and the positive coefficient in front ofλl . The

orthonormalized functionsψ(n)
l (λ) verify the recurrent relations

Jl(n)ψ
(n)
l+1(λ)+ ql(n)ψ

(n)
l (λ)+ Jl−1(n)ψ

(n)
l−1(λ) = λψ

(n)
l (λ), l = 1, . . . , (1.24)

whereJ0(n) = 0. In other words, we have here a semi-infinite real symmetric Jacobi
matrix

J (n) = {Jl,m(n)}∞l,m=1,

Jl,m(n) = ql(n)δl,m + Jl(n)δl+1,m + Jl−1(n)δl−1,m.
(1.25)

Note that ifV (λ) is even, thenql(n) = 0, l = 1, . . . ..
As in statistical mechanics the symmetrized marginal densities (1.18) allow us to

compute the expectation with respect to measure (1.1) of random variables of the form

ωm(λ1, . . . , λn) =
∑
ch

ϕm(λi1, . . . , λim), (1.26)

whereϕm(t1, . . . , tm) is symmetric in its arguments and
∑

ch denotes the sum over
all choices ofm λ’s from the set(λ1, . . . , λn). By using (1.19) and noting that the
semi-infinite matrix{ψ(n)

j (λ)ψ
(n)
k (λ)}∞j,k=1 is the density of the resolution of identity

of J (n), it is easy to show thatE{ωm} is a linear combination of the matrix elements
of ϕm((J (n))⊗m) (see e.g. formula (2.78)). This observation makesJ (n) an important
object of the theory. That is why our main result (Theorem 1 below) yields the 1/n-
expansion of entries ofJ (n). Besides, we give the 1/n-expansion of the expectation

gn(z) = E{n−1Tr(z−M)−1}, �z �= 0,

of the normalized trace of the resolvent of the random matrixM and of the variance
of the trace. These quantities are of considerable interest by themselves and are also
important technical ingredients of the theory.

Theorem 1. Let the ensemble of the form (1.1)–(1.5) satisfy conditions (1.3), (1.2), and
C1–C3 above. Take a sequence of positive integersN(n) and an integerm > 0 such
that

N(n)n−1/(m+1) → 0, N(n) log−2 n →∞, asn →∞. (1.27)
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Then there exist coefficientsq(0)
k,n, . . . , q

(m)
k,n , J (0)

k,n, . . . , J
(m)
k,n , |k−n| ≤ N(n) and analytic

outside ofσ functionsg(0)
n (z), . . . , g

(m)
n (z) such that for anyk ∈ [n−N(n), n+N(n)]

we have the following asymptotic formulas:

qk(n) =
m∑

j=0

n−j q
(j)
k,n + n−mr̃

(m,q)
k,n , Jk(n) =

m∑
j=0

n−j J
(j)
k,n + n−mr̃

(m,J )
k,n , (1.28)

where

|q(j)
k,n|, |J (j)

k,n | ≤ const(|k − n|j + 1), j = 0, . . . , p, (1.29)

|r̃ (m,J )
k,n |, |r̃ (m,q)

k,n | ≤ ε(m)
n , ε(m)

n → 0, n →∞; (1.30)

and

gn(z) =
m∑

j=0

n−j g
(j)
n (z)+ n−mr̃

(m,g)
n (z), (1.31)

where

|g(j)
n (z)| ≤ const, (1.32)

r̃
(m,g)
n (z) → 0, n →∞

uniformly in any compact set in{z : δ(z) ≥ d}, whereδ(z) = dist(z, σ ), d > 0 is an
arbitrary fixed number andconstdoes not depend onk, n.

In particular:

g(0)
n (z) = g(z), g(1)

n (z) = 0; (1.33)

in the case (i)

q
(0)
k,n = 0, J

(0)
k,n =

1

2
a, q

(1)
k,n = 0, J

(1)
k,n =

(k − n)

a

(
1

P(a)
+ 1

P(−a)

)
, (1.34)

i.e. the zero order coefficients fork = n(1+ o(1)) are independent ofk;

in the case (ii)

q
(j)
k,n = 0, j = 0,1, . . . ,

and

J
(0)
k,n =

1

2
(b + (−1)ka), or J

(0)
k,n =

1

2
(b − (−1)ka), (1.35)

J
(1)
k,n =

(k − n)

a2 − b2

(
− 1

P(b)
± (−1)k

P (a)

)
, (1.36)

where the sign corresponds to the chosen sign in (1.35)
Besides, form ≤ 1 formulas (1.28)–(1.35) are valid for anyk : |k − n| ≤ n2/3 with

|r̃ (0,J )
k,n | ≤ const

|k − n| + 1

n
, |r̃ (0,q)k,n | ≤ const

|k − n|2 + 1

n2 ,

|r̃ (1,q)k,n |, |r̃ (1,J )
k,n | ≤ const

|k − n|2 + 1

n
.

(1.37)



On the 1/n Expansion for Some Unitary Invariant Ensembles of Random Matrices 277

Remark 2.According to (1.35) the 2-periodic functionJ (0)
k,n is determined by our method

up to the shift by 1. By using recent results of [13] on the form of the leading term of
the asymptotics of the orthogonal polynomials (1.23) it can be shown that

J
(0)
k,n =

1

2
(b − (−1)ka), k = n(1+ o(1)). (1.38)

Moreover, all subsequent coefficientsJ
(j)
k,n andg(j)

n , j = 1, . . . , N(n) of the asymptotic
expansions (1.28) and (1.31) are uniquely determined by the choice (1.35) and by the
recurrence procedure described in the proof of the theorem.

Remark 3.The zero order coefficientsq(0)
k,n and J

(0)
k,n were found in [2,17]. The first

order coefficientsJ (1)
k,n (1.34) of the one-interval case were found in [14] in a somewhat

different context.

Theorem 1 allows us, in particular, to find the 1/n-expansion of the covariance

Dn(z1, z2) ≡ E
{1

n
Tr(z1 −M)−1 1

n
Tr(z2 −M)−1

}
− E

{1

n
Tr(z1 −M)−1

}
E

{1

n
Tr(z2 −M)−1

}
,

(1.39)

which is important in a number of questions of the random matrix theory and of its
applications.

Here and below the symbolE{. . . } denotes the expectation with respect to measure
(1.1)–(1.5).

In the paper [24] it is proven that for anyV satisfying (1.2)–(1.3) we have the bound

|Dn(z1, z2)| ≤ const

n2(�z1)2(�z2)2 .

Hence, the 1/n-expansion ofDn(z1, z2) has the form

Dn(z1, z2) =
∞∑
j=2

d(k)
n (z1, z2)n

−j + o(n−p), n →∞ (1.40)

in which the leading term is of the ordern−2.
Theorem 1 implies

Corollary 1. Under the conditions of Theorem 1 we have:

in the case (i) then-independent

d(2)(z1, z2) = − 1

2(z1 − z2)2

(
1+ a2 − z1z2

X(z1)X(z2)

)
, (1.41)

whereX(z) is defined in the first line of (1.14);

in the case (ii) the 2-periodic inn

d(2)
n (z1, z2) = − 1

2(z1 − z2)2

(
1+ (a2 − z1z2)(b

2 − z1z2)

X(z1)X(z2)

)
− (−1)nab

2X(z1)X(z2)
,

(1.42)

whereX(z) is defined in the second line of (1.14).
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Remark 4.The covarianceDn(z1, z2) of the traces of the resolvent is of considerable
interest in the random matrix theory since the beginning of the 90s, when its study was
motivated by matrix models of quantum field theory [1,3–5,9,10] and later by solid state
theory (see review [6] and references therein). Initially only the one interval case was
studied but later the many interval case was also analyzed. In particular, in [3,1] a version
of the large-n expansion procedure was proposed. In the case (ii) of the two-interval
symmetric potential the procedure leads to an expression for the leading term amplitude
d
(2)
n (z1, z2) that does not depend onnand contains elliptic integrals, while our expression

(1.42) is 2-periodic inn and contains only elementary functions. By using recent results
of paper [13] on the asymptotic form of the leading term of orthogonal polynomials
(1.22)–(1.23) and our formula (2.78) below for the covarianceDn(z1, z2), it can be
shown that in the general case of a two-interval non-symmetric potential the leading
term amplituded(2)

n (z1, z2) is quasi-periodic inn and contains Jacobi elliptic functions
that disappear when one passes to a two-interval symmetric potential. Moreover, by using
the same results, it can be shown that in the case of a potential leading to ap-interval
support of the density of states the amplituded

(2)
n (z1, z2) is a quasi-periodic function.

Its frequency module contains genericallyp−1 incommensurable frequencies (but can
reduce to ap-periodic function in some special cases [11]), and its form includes the
Riemannθ -function ofp−1 variables. The frequencies are determined by the density of
states, and theθ -function are determined by the endpoints of the support of the density
of states of the ensemble.

Remark 5.Formulas (1.41) and (1.42) for the leading terms amplituded(2)(z1, z2) of the
covarianceDn(z1, z2)depend on the ensemble only via the number of intervals of the IDS
support and via the endpoints of the support. This is why this property of the covariance
is often referred to as the long-range universality [10] in contradistinction with the short
range (or microscopic) universality that manifests itself in 1/n - neighborhoods of the
interior points ofσ and is valid independently of the number of connected components of
σ (see e.g. papers [13,24]). Thus under conditions of these papers all the unitary invariant
ensembles belong to the same short range universality class. On the other hand, since
according to (1.41) and (1.42) the leading terms of the covarianceDn(z1, z2)are different
in the one and in the two-interval cases, the long range universality classes depend on
the number of intervals of the IDS support and on its endpoints.

Corollary 2. Under the conditions of Theorem 1 we have the following expressions for
the weak limits of squares of the orthonormalized functionsψ

(n)
k (λ)with |k−n| ≤ N(n):

w − lim
n→∞

(
ψ

(n)
k (λ)

)2 = χσ (λ)

πX+(λ)

{
1, in case(i),
λ, in case(ii ),

(1.43)

whereX+(λ) is defined in (1.11).

The proofs of these assertions will be given in the next section.

2. Proofs of Main Results

Proof of Theorem 1.We introduce an eigenvalue distribution which is more general than
(1.17), making different the number of the variable and the large parameter in front of
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V in the exponent of the r.h.s of (1.17):

pk,n(λ1, . . . λk) = Z−1
k,n

∏
1≤j<m≤k

(λj − λm)2 exp

{
− n

k∑
j=1

V (λj )

}
, (2.1)

whereZk,n is the normalizing factor. Fork = n this probability distribution density
coincides with (1.17). Let

ρ̃k,n(λ1) =
∫

dλ2 . . . dλkpk,n(λ1, . . . λk), (2.2)

ρ̃k,n(λ1, λ2) =
∫

dλ3 . . . dλkpk,n(λ1, . . . λk) (2.3)

be the first and the second marginal densities of (2.1). By standard arguments [20,7] we
have

ρ̃k,n(λ) = K̃k,n(λ, λ),

ρ̃k,n(λ, µ) = k

k − 1
[K̃k,n(λ, λ)K̃k,n(µ,µ)− K̃2

k,n(λ, µ)], (2.4)

where

K̃k,n(λ, µ) = k−1
k∑

l=1

ψ
(n)
l (λ)ψ

(n)
l (µ), (2.5)

andψ(n)
l (λ) is defined by (1.21). We will use the notations

Kk,n(λ, µ) ≡ n−1
k∑

l=1

ψ
(n)
l (λ)ψ

(n)
l (µ) = k

n
K̃k,n(λ, µ),

ρk,n(λ) ≡ Kk,n(λ, λ) = k

n
ρ̃k,n(λ).

(2.6)

Consider now the quantityEk

{
V ′(λ1)

z− λ1

}
for z,�z �= 0, whereEk{. . . } denotes the

expectation with respect to the probability distribution (2.1). It is well defined in view
of condition (1.4) above. It is easy to find that

Ek

{
V ′(λ1)

z− λ1

}
=

∫
V ′(λ)ρ̃k,n(λ)

z− λ
dλ. (2.7)

On the other hand, integrating by parts the r.h.s. in (2.7) and using (2.3), we obtain that

Ek

{
V ′(λ1)

z− λ1

}
= 1

n

∫
ρ̃k,n(λ)

(z− λ)2dλ+ 2
k − 1

n

∫
ρ̃k,n(λ, µ)

(z− λ)(λ− µ)
dλdµ.

Combining these two expressions, we come to the identity∫
V ′(λ)ρ̃k,n(λ)

z− λ
dλ = 1

n

∫
ρ̃k,n(λ)

(z− λ)2dλ+ 2
k − 1

n

∫
ρ̃k,n(λ, µ)

(z− λ)(λ− µ)
dλdµ, (2.8)
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The symmetry propertỹρk,n(λ, µ) = ρ̃k,n(µ, λ) of (2.3) implies∫
ρ̃k,n(λ, µ)

(z− λ)(λ− µ)
dλdµ = −

∫
ρ̃k,n(λ, µ)

(z− µ)(λ− µ)
dλdµ.

This allows us to rewrite (2.8) in the form∫
V ′(λ)ρ̃k,n(λ)

z− λ
dλ = 1

n

∫
ρ̃k,n(λ)

(z− λ)2dλ+
k − 1

n

∫
ρ̃k,n(λ, µ)

(z− λ)(z− µ)
dλdµ. (2.9)

Now, by using (2.4)–(2.6), we can rewrite (2.9) as∫
V ′(λ)ρk,n(λ)

z− λ
dλ = n−1

∫
ρk,n(λ)

(z− λ)2dλ

+
∫

ρk,n(λ)ρk,n(µ)− (Kk,n(λ, µ))2

(z− λ)(z− µ)
dλdµ.

(2.10)

This relation is a version of the well known loop equation of the matrix models of
the Quantum Field Theory [15].

We will use also

Proposition 2. Consider any unitary invariant ensemble of the form (1.1)–(1.5) and
assume thatV (λ) possess two bounded derivatives in some neighborhood of the support
σ of the density of statesρ and thatρ(λ) satisfies Condition C2. Denote byσε the
ε-neighborhood ofσ for someε > 0. Then there existn-independent quantitiesC,
C0, ε0 > 0 such that for any positiven-independentε < ε0 there existsε1 > 0 such
that for any integerk satisfying inequality|k−n|

n
≤ ε1 we have the bounds∫

R\σε

ρk,n(λ)dλ ≤ e−nCε,

∫
R\σε

(ψ
(n)
k (λ))2dλ ≤ e−nCε. (2.11)

Remark 6.The proof of Proposition 2, given in the next section, does not use the fact that
ensemble (1.1)–(1.5) consists of Hermitian matrices. Therefore Proposition 2 is valid
also for real symmetric and quaternion real matrices, i.e. for orthogonal and symplectic
ensembles, satisfying (1.2), (1.3), and Condition C2.

Let us fix now a sufficiently smallε such thatσε ⊂ D and all the zeros of the function
P(z) are outside ofσε. Then (2.11) allows us to replace the integrals over the whole line
by the integrals overσε in (2.10). Therefore, denoting

gk,n(z) ≡
∫
σε

ρk,n(λ)dλ

z− λ
, Rj,m(z) ≡

∫
σε

ψ
(n)
j (λ)ψ

(n)
m (λ)dλ

z− λ
,

R′
j,m(z) ≡ −

∫
σε

ψ
(n)
j (λ)ψ

(n)
m (λ)dλ

(z− λ)2 , Ṽ (z, ζ ) ≡ V ′(ζ )
z− ζ

,

(2.12)

we get from (2.10):

(gk,n(z))
2 −

∫
σε

Ṽ (z, λ)ρk,n(λ)dλ

− 1

n2

k∑
m=1

R′
m,m(z)− 1

n2

k∑
m,j=1

R2
m,j (z) = en(z),

(2.13)
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whereen(z) is the remainder function which appears because of our replacement of the
integrals over the whole line by the integrals overσε. Note that since the l.h.s. of (2.13)
is an analytic function inC \ σε, en(z) is also analytic inC \ σε, and admits the bound:

|en(z)| ≤ C0

|δε(z)|l , (2.14)

where

δε(z) ≡ dist{z, σε} (2.15)

andl = 2. Besides, it follows from (2.11) that

en(z) ≤ C1e
−nC2

|�z|2|δε(z)|l′ (2.16)

with l′ = 0.
We will denote below by{en(z)}∞n=1 sequences of functions (may be different in

different formulas) which are analytic everywhere inC \ σε and satisfy the estimates
(2.14) and (2.16) with some nonnegativel, l′ and some positiven-independentC’s.

According to our conditions̃V (z, ζ ) in (2.12) is analytic with respect toζ insideD,
except for the pointζ = z. Hence, we can write that∫

σε

Ṽ (z, λ)ρk,n(λ)dλ = 1

2πi

∫
σε

dλ

∫
L

dζ Ṽ (z, ζ )
ρk,n(λ)

ζ − λ

= 1

2πi

∫
L

dζ Ṽ (z, ζ )gk,n(ζ ),

(2.17)

whereL ⊂ D is an arbitrary closed contour which containsσε and does not containz.
This allows us to rewrite (2.13) as

(gk,n(z))
2 − 1

2πi

∫
L

Ṽ (z, ζ )gk,n(ζ )dζ − 1

n2

k∑
m=1

R′
m,m(z)

− 1

n2

k∑
m,j=1

R2
m,j (z) = en(z).

(2.18)

Now, subtracting from (2.18) the relation obtained from (2.18) by the replacementk →
(k − 1), we obtain:

2Rk,k(z)gk−1,n(z)− 1

2πi

∫
L

Ṽ (z, ζ )Rk,k(ζ )dζ

− 1

n
R′

k,k(z)−
2

n

k−1∑
j=1

R2
k,j (z) = en(z).

(2.19)

Relations (2.18) and (2.19) are our main technical tools in constructing the 1/n

expansion given in the theorem. We will consider (2.18) and (2.19) as a system of
equations with respect to the functionsgk,n(z) andRj,m(z) and solve them by iterations
in 1/n.
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We will need two more facts on ensembles (1.1)–(1.5).

(a) The functiongk,n(z) from (2.12) andg(z) from (1.12) are related as

|gk,n(z)− g(z)| ≤ const
log1/2 n√
nδ2

ε (z)
+ |k − n|

nδε(z)
. (2.20)

This relation follows from (2.12), (2.6), (2.4), and from the bound valid for any function
φ(µ), which grows not faster thanebV (µ), b > 0 as|µ| → ∞,∣∣∣∣∫ φ(µ)ρn(µ)dµ−

∫
φ(µ)ρ(µ)dµ

∣∣∣∣ ≤ const||φ′||1/2
2 ||φ||1/2

2 n−1/2 log1/2 n, (2.21)

where the symbol|| . . . ||2 denotes theL2-norm on a compact set ofR containingσε

(the bound was proved in [8], Lemma 4, see also [24]).

(b)

g2(z)− V ′(z)g(z)+Q(z) = 0, z ∈ D, �z �= 0, (2.22)

Q(z) = 1

2πi

∫
L

Q(z, ζ )g(ζ )dζ =
∫
σ

V ′(z)− V ′(λ)
z− λ

ρ(λ)dλ, (2.23)

andQ(z, ζ ) is defined by (1.16). The relations follow from (2.20), and identity (2.10)
for n = k. Indeed, in view of (2.4) the r.h.s. of (2.10) is

g2
n + E

{[
n−1

n∑
l=1

(z− λl)
−1 − E

{
n−1

n∑
l=1

(z− λl)
−1

}]2}
.

The second term here is the variance ofn−1 Tr(z − M)−1, and according to [24],
Lemma 3, the variance is of the orderO(n−2). This and (2.20) imply (2.22).

It follows from the above that the zero order approximation forgk,n(z) coincides with
g(z).

To find the zero order approximations forRk,k(z) for |k − n| ≤ N(n), whereN(n)

is defined in (1.27), let us note that (2.12) leads to the bounds

|R′
k,k(z)|, |

k−1∑
j=1

R2
k,j (z)| ≤

const

δ2
ε (z)

.

The first bound follows from the definition ofRk,i(z) in (2.12). To prove the second
bound we viewRk,i(z) of (2.12) as the generalized Fourier coefficients of the function
χε(λ)ψ

(n)
k (λ)(z − λ)−1 with respect to the orthonormal system{ψ(n)

l (λ)}∞l=1. Then the
Bessel inequality gives us the second bound.

These bounds imply that the last two terms in the l.h.s. of (2.19) have the ordern−1.
Hence, the zero order equations forRkk(z) have the form

2g(z)Rk,k(z) = 1

2πi

∫
L

dζ Ṽ (z, ζ )Rk,k(ζ )− r
(0,R)
k,n (z)+ en(z), (2.24)
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where the remainder

r
(0,R)
k,n (z) ≡ − 1

n
R′

k,k(z)−
2

n

k−1∑
j=1

R2
k,j (z)

+ 2Rk,k(z)(gk−1,n(z)− g(z)) → 0, n →∞,

(2.25)

is analytic in C \ σε and tends to zero uniformly on any compact set for which
dist(z, σε) ≥ d > 0. Besides, since by definition (1.21)∫

(ψ
(n)
k )2(λ)dλ = 1,

we have from (2.11), that

Rk,k(z) = 1

z
(1+O(

1

z
))+ en(z), z →∞. (2.26)

Equation (2.24) was already considered in [2]. However we will use here a bit different
way to analyze the equation, which is based on the following lemma:

Lemma 1. Consider the equation

2g(z)R(z)− 1

2πi

∫
L

dζ Ṽ (z, ζ )R(ζ ) = 0, z ∈ D \ σε, (2.27)

where ˜V (z, ζ ) is defined in (2.12), and a closed contourL ∈ D containsσe and does
not contain the pointz. Set forz �∈ σ ,

>(z) =
{
X−1(z), in the case(i),
zX−1(z), in the case(ii) ,

(2.28)

whereX(z) is defined by (1.14). Then the following statements are valid under the
conditions of Theorem 1:

1. In the case(i) Eq. (2.27) has the unique solutionR(z) = >(z) in the class of functions
analytic inC \ σε and behaving as

R(z) = z−1(1+ o(1)), z →∞. (2.29)

In the case(ii) Eq. (2.27) has the unique solutionR(z) = >(z) in the class (2.29),
under the additional symmetry conditionR(−z) = −R(z).

2. In both cases Eq. (2.27) has no solutions in the class of functionsR(z) analytic in
C \ σε and satisfying the condition

lim|z|→∞ |z2R(z)| ≤ const < ∞. (2.30)
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3. For any analytic inC \ σε functionF(z), satisfying condition (2.30) and even in the
case(ii) , the inhomogeneous equation

2g(z)R(z) = 1

2πi

∫
L

dζ Ṽ (z, ζ )R(ζ )− F(z) (2.31)

has the unique solution of the form

R(z) = 1

2πiX(z)

∫
L

dζ
F (ζ )

P (ζ )(z− ζ )
, (2.32)

in the class of functions analytic inC \ σε, satisfying condition (2.30) and odd in the
case(ii) .
HereP(z) is defined by (1.15) and a closed contourL should be taken sufficiently
close toσ , to havez and all zeros ofP(z) outside ofL. In particular, in the case(ii)
the contour consists of two components, encircling each interval of the support.

The proof of the lemma will be given in the next section.
Omitting in (2.24) the error terms, we deduce from the obtained homogeneous equa-

tion and from (2.26) on the basis of Assertion 1 of Lemma 1 that the zero order approxi-
mationR(0)

k,k(z) of Rk,k(z) is>(z) from (2.28). Moreover, the differenceRk,k(z)−>(z)

decays at infinity asz−2 at least, and the error terms in the r.h.s. of (2.24) decays also as
z−2, asz →∞. Thus on the basis of Assertion 3 of the lemma we can write that

Rk,k(z) = >(z)+ r̃
(0,R)
k,n (z)+ en(z). (2.33)

Herer̃
(0,R)
k,n (z) is obtained from formula (2.32) withF(z) = r

(0,R)
k,n (z) given by (2.25)).

Using the fact that|r(0,R)
k,n (z)| → 0 as|z| → ∞ and thatP(z) has no zeros onL we

obtain the bound

|r̃ (0,R)
k,n (z)| ≤

∣∣∣∣ 1

2πiP (z)X(z)

∫
L

dζ
r
(0,R)
k,n (ζ )

(z− ζ )

∣∣∣∣
+

∣∣∣∣ 1

2πiX(z)

∫
L

dζ r
(0,R)
k,n (ζ )

P−1(ζ )− P−1(z)

(z− ζ )

∣∣∣∣
≤ const

|X(z)|
(∣∣∣r(0,R)

k,n (z)

∣∣∣+max
ζ∈L

∣∣∣r(0,R)
k,n (ζ )

∣∣∣) → 0, n →∞.

(2.34)

Thus, for allk such that|k − n| ≤ N(n), whereN(n) is given in (1.27) form = 0, we
have

R
(0)
k,k ≡ lim

n→∞Rk,k(z) = >(z). (2.35)

We have also the relations following from (1.21), (1.24), (2.11) and (2.12):

qk =
∫

λψ2
k (λ)dλ =

1

2πi

∫
L

ζRk,k(ζ )dζ +O(e−nCε),

q2
k + J 2

k + J 2
k−1 =

∫
λ2ψ2

k (λ)dλ =
1

2πi

∫
L

ζ 2Rk,k(ζ )dζ +O(e−nCε),

(q2
k + J 2

k + J 2
k−1)

2 + (qk + qk+1)
2J 2

k + (qk + qk−1)
2J 2

k−1 + J 2
k J

2
k+1

+J 2
k−1J

2
k−2 =

∫
λ4ψ2

k (λ)dλ =
1

2πi

∫
L

ζ 4Rk,k(ζ )dζ +O(e−nCε).

(2.36)
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In what follows we omit the subindexn in the coefficientsq(j)
k,n andJ

(j)
k,n , introduced in

(1.28).
By using (2.35), and (2.28) for the case (i), we find from the first of the above relations

that the zero order termq(0)
k is zero. Then, combining the second relation of (2.36) for

k, k − 1, andk + 1 and the third relation of (2.36), we find thatJ
(0)
k = a/2. In the

case (ii) the same scheme carried out for even and oddk leads to the coefficientsJ (0)
k

of (1.35). In other words we have proved that in the zero order in 1/n the coefficients
of the Jacobi matrixJ (n) defined in (1.25) do not depend onk, |k − n| ≤ N(n) in the
case (i) of a one interval support of the density of states and are 2-periodic functions of
k in the case (ii) of a two interval symmetric support.

To find the first order terms for these coefficients, we will study the first order versions
of Eqs. (2.18). Note first that we have the bound

1

n

∣∣∣∣ k∑
j=1

[
− R′(z)j,j −

k∑
j,m=1

R2
j,m(z)

]∣∣∣∣ ≤ const

nδ4
ε (z)

+ |en(z)|, (2.37)

where const does not depend onn, z. Indeed, by using the orthonormality of system
(1.21) we can write the l.h.s. as

n

2

∫
σε

dλ

∫
σε

dµ(φ(λ)− φ(µ))2K2
k,n(λ, µ)+ n

∫
σε

dλ

∫
R\σε

dµφ2(λ)K2
k,n(λ, µ),

whereφ(λ) = (z − λ)−1 andKk,n(λ, µ) is defined in (2.6). According to Lemma 3
of [24] the first term here is bounded by const· sup|φ′(λ)|2/n ≤ const/nδ4

ε (z), and
according to Proposition 2, the second term isen(z).

We conclude that the first order equation for the function

g
(1)
k,n(z) ≡ n(gk,n(z)− g(z)) (2.38)

has the form

2g(z)g(1)
k,n(z) =

1

2πi

∫
V (z, ζ )g

(1)
n,k(ζ )dζ − r

(1,g)
k,n (z)+ en(z), (2.39)

with

r
(1,g)
k,n (z) ≡ 1

n
(g

(1)
k,n(z))

2 + 1

n

k∑
j=1

[
− R′(z)j,j −

k∑
m=1

R2
j,m(z)

]

≡ 1

n
(g

(1)
k,n(z))

2 + r
(1,g)
k,n (z),

∣∣∣r(1,g)k,n (z)

∣∣∣ ≤ const

nδ4
ε (z)

.

(2.40)

Besides, we have the normalization condition

g
(1)
k,n(z) = (k − n)z−1

(
1+O

(1

z

))
+ en(z), z →∞, |k − n| ≤ N(n), (2.41)

which follows from Definition (2.12) of the functiongk,n(z). Then, according to
Lemma 1, we get

g
(1)
k,n(z) = (k − n)>(z)+ r̃

(1,g)
k,n (z)+ en(z), (2.42)
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where the remainder̃r(1,g)k,n (z) has the form

r̃
(1,g)
k,n (z) = 1

2πiX(z)

∫
L

n−1(g
(1)
k,n(ζ ))

2 + r
(1,g)
k,n (ζ )

P (ζ )(z− ζ )
dζ. (2.43)

Thus, denoting

m
(1)
k,n(d) ≡ max{z:δε(z)≥d} |g

(1)
k,n(z)|,

whered is a positive constant, we obtain from relations (2.42) and (2.43) the inequality

m
(1)
k,n(d) ≤

|k − n|
d1/2 + C

(
(m

(1)
k,n(d))

2

nd3/2 + 1

nd9/2

)
,

whereC is independent ofn, k, andd. This inequality implies that either

m
(1)
k,n(d) ≤

2|k − n|
d1/2 , or m

(1)
k,n(d) ≥ nd3/2C−1 +O(1).

But the second inequality here cannot be true, because it was proved above that

n−1m
(1)
k,n(d) = max{z:δε(z)≥d} |gk,n(z)− g(z)| → 0

for anyk such that|k − n| = N(n), whereN(n) is given in (1.27) form = 0. Hence in
view of (2.43) we get that for{z : δε(z) ≥ d},

|r̃ (1,g)k,n (z)| ≤ const

( |k − n|2
nd

+ 1

nd9/4

)
. (2.44)

Substituting now representation (2.42) in the r.h.s. of (2.43), and using bound (2.44), we
get finally

r̃
(1,g)
k,n (z) = (k − n)2

n
Y (z)+O(|k − n|3n−2d−5/2)+O((nd5)−1), (2.45)

where

Y (z) ≡ 1

2πiX(z)

∫
L

dζ
>2(ζ )

P (ζ )(z− ζ )

= 1

X(z)


1

2a

(
1

P(a)(z− a)
− 1

P(−a)(z+ a)

)
, (i),

1

(a2 − b2)

(
az

P (a)(z2 − a2)
− bz

P (b)(z2 − b2)

)
, (ii ).

(2.46)

We have obtained the first order term in the 1/n-expansion forgn,k(z).
Now we need a lemma that will allow us to replaceRk,j (z) in (2.18), (2.19) by a

certain simpler expression constructed from the coefficientsq
(j)
k,n, J (j)

k,n , j = 0, . . . , p
found during the previousp steps of our expansion process and to estimate the error of
this replacement.
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Lemma 2. TakeÑ(n) = [log2 n] and letN1(n) be such that

N1(n)n
−1/(p+1) → 0, (N1(n))

−1Ñ(n) → 0, asn →∞. (2.47)

Assume that for anyk : |k − n| ≤ N1(n) we have found the coefficientsq(0)
k , . . . , q

(p)
k ,

J
(0)
k , . . . , J

(p)
k , satisfying bound (1.29), and such that (1.28) is fulfilled form = p. Here

and below we omit the subindexn in the coefficientsq(j)
k,n, J (j)

k,n of the asymptotic formula
(1.28) of Theorem 1.

For any s such that|s| ≤ 2/n consider the(2N1 + 1)-periodic symmetric Jacobi
matrix J̃ (p)(s) defined by the entries

J̃
(p)
k,k ≡ q̃

(p)
k =

p∑
j=0

sj q
(j)
k , J̃

(p)
k,k+1 ≡ J̃

(p)
k =

p∑
j=0

sj J
(j)
k , |k − n| ≤ N1(n). (2.48)

Denote byR̃(p)(z, s) the resolvent of̃J (p)(s), and set

R(j)(z) ≡ 1

j !
∂j

∂sj
R̃(p)(z, s)|s=0, S(p)(z) ≡

p∑
j=0

n−jR(j). (2.49)

Then for anyL > 0 there exist positive n-independent quantitiesC1 andC2 such that
for anyk satisfying the inequality:

|k − n| ≤ N1 − 2Ñ ≡ N2(n), (2.50)

and for anyz �∈ σε, |z| < L,

∣∣Rk,k(z)− S
(p)
k,k (z)

∣∣, ∣∣− R′
k,k(z)− (S(p) · S(p))k,k(z)

∣∣
≤ 2ε(p)

n

δ2
ε (z)n

p
+ C1N

p+1
1

δ
p+1
ε (z)np+1

+ e−C2δε(z)Ñ

δε(z)|�z|2 , (2.51)

∣∣∣∣ k∑
m=1

R2
k,m(z)−

k∑
m=1

(S
(p)
k,m(z))2

∣∣∣∣ ≤ 2ε(p)
n

δ2
ε (z)n

p
+ C1N

p+1
1

δ
p+1
ε (z)np+1

+ e−C2δε(z)Ñ

δε(z)|�z|2 , (2.52)

∣∣∣∣1

n

k∑
j=1

[
− R′(z)j,j −

k∑
m=1

R2
j,m(z)

]
− 1

n

k∑
j=1

[(S(p) · S(p))j,j (z)−
k∑

m=1

(S
(p)
j,m(z))2

]∣∣∣∣
≤ 2ε(p)

n N1

δ2
ε (z)n

p+1 +
C1N

p+2
1

δ
p+1
ε (z)np+2

+ e−C2δε(z)Ñ/2

|�z|3 , (2.53)

whereδε(z) ≡ dist{z, σε} andε
(p)
n = o(1), n →∞ (see (1.30)).
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The proof of the lemma will be given in the next section.
Consider the function

R
(1,n)
k,k (z) ≡ n

(
Rk,k(z)− R

(0)
k,k(z)

)
, (2.54)

with R
(0)
k,k(z) defined in (2.35). From (2.19) and (2.42) we get the first order equation for

Rkk:

2g(z)R(1,n)
k,k (z) = 1

2πi

∫
L

dζ Ṽ (z, ζ )R
(1,n)
kk (ζ )− F

(1,R)
k (z)− r

(1,R)
k,n (z)+ en(z).

(2.55)

Here

F
(1,R)
k (z) ≡ 2R(0)

k,k(z)g
(1)
k−1(z)+ (R(0) · R(0))k,k(z)− 2

k−1∑
j=1

(R
(0)
k,j (z))

2,

R(0) denotes the resolvent of the double infinite Jacobi matrixJ (0) of the zero order
coefficients{J (0)

k }k∈Z, and

r
(1,R)
k,n (z) ≡ 2R(0)

k,k(z)r̃
(1,g)
k,n (z)+ 2

n
R

(1,n)
k,k (z)g

(1)
k,n(z)

+
[
−R′

k,k(z)− (R(0) · R(0))k,k(z)
]

− 2

[ k−1∑
j=1

(Rk,j (z))
2 −

k−1∑
j=1

(R
(0)
k,j (z))

2
]
.

(2.56)

By using the translational symmetry of the resolventR(0) and the exponential decay of
its matrix elementsR(0)

jm in |j −m|, as|j −m| → ∞, it is easy to show that

(R(0) · R(0))k,k(z)− 2
k−1∑
j=1

(R
(0)
k,j (z))

2

=


(R

(0)
k,k(z))

2 + en(z), (i),

(R
(0)
k,k(z))

2 + (J
(0)
k )2 − (J

(0)
k−1)

2

X2(z)
+ en(z), (ii) ,

This relation, and formulas (2.42), and (2.54) imply that

F
(1,R)
k =


[2(k − n)− 1] >2(z), (i),

[2(k − n)− 1] >2(z)± (−1)kab

X2(z)
, (ii) ,

where the sign in the case (ii) corresponds to that in (1.35).
In addition, bound (2.45), and the fact thatn−1R

(1,n)
k,k (z) → 0, asn → ∞ (see

formulas (2.54) and (2.33)–(2.35)) imply that the first two terms in the r.h.s. of (2.56)
tend to zero asn →∞. And on the basis of Lemma 2, one can conclude that the last two
terms there also vanish asn → ∞. Thereforer(1,R)

k,n (z) → 0 asn → ∞. Then on the
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basis of Lemma 1, and similarly to (2.38)–(2.46) we get for the first order termR
(1)
k,k(z)

all k such that|k − n| ≤ N1(n), whereN1(n) is given in (2.47):

R
(1)
k,k(z) =

{
[2(k − n)− 1]Y (z), (i),
[2(k − n)− 1] Y (z)± (−1)kY (±)(z), (ii) ,

(2.57)

whereY (z) is defined in (2.46),

Y (±)(z) ≡ ab

2πiX(z)

∫
L

dζ

P (ζ )X2(ζ )(z− ζ )

= z

X(z)(a2 − b2)

(
b

P (a)(z2 − a2)
− a

P (b)(z2 − b2)

)
,

and the remainder functioñr(1,R)
k,n (z) is

r̃
(1,R)
k,n (z)

=



2(k − n)[3(k − n)− 1]
n

Ỹ (z)+O
( |k − n|4

n3

)
+O

(1

n

)
, (i),

2(k − n)[3(k − n)− 1]
n

Ỹ (z)± 2(−1)k(k − n)Ỹ±(z)

+O
( |k − n|4

n3

)
+O

(1

n

)
, (ii)

(2.58)

where

Ỹ (z) ≡ 1

2πiX(z)

∫
L

dζ
Y (ζ )>(ζ )

P (ζ )(z− ζ )
,

Ỹ±(z) ≡ 1

2πiX(z)

∫
L

dζ
Y±(ζ )>(ζ )

P (ζ )(z− ζ )
.

(2.59)

Now in the case (ii) we take the first order terms with respect ton−1 in Eqs. (2.36) (recall
that the diagonal coefficientsq(0)

k are zero for allk). We obtain the relations

2(J (0)
2q J

(1)
2q + J

(0)
2q−1J

(1)
2q−1) =

1

2πi

∫
L

ζ 2R
(1)
2q,2q(ζ )dζ + r

(1,J,2)
2q ,

4(J (0)
2q J

(1)
2q + J

(0)
2q−1J

(1)
2q−1)((J

(0)
2q )2 + (J

(0)
2q−1)

2)

+ 2J (0)
2q J

(0)
2q−1(J

(0)
2q−1J

(1)
2q + J

(0)
2q J

(1)
2q+1 + J

(0)
2q J

(1)
2q−1 + J

(0)
2q−1J

(1)
2q−2)

= 1

2πi

∫
L

ζ 4R
(1)
2q,2q(ζ )dζ + r

(1,J,4)
2q ,

(2.60)

wherek = 2q, |k − n| ≤ N1(n), N1(n) is defined in (2.47) forp = 0, and:

r
(1,J,2)
k,n ≡

∫
L

ζ 2r̃
(1,R)
k,n (ζ )dζ → 0, n →∞,

r
(1,J,4)
k,n ≡

∫
L

ζ 4r̃
(1,R)
k,n (ζ )dζ → 0, n →∞.

(2.61)
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Consider also the two analogs of the first equation in (2.60) with 2q replaced by 2q − 1
and by 2q + 1. These relations and (2.60) comprise a linear system with the unknowns
J

(1)
2q−2, J (1)

2q−1, J (1)
2q andJ (1)

2q+1. The system is uniquely soluble forJ (0)
2q �= J

(0)
2q−1, and its

solution is specified by (1.36), and its remainder terms satisfy the bounds (1.37).
However, forJ (0)

2q = J
(0)
2q−1 this system is degenerated. Thus, in the case (i) we cannot

use the system to find coefficientsJ
(1)
k,n . In this case we use first identity (2.36) that yields

the following relation in the first order:

q
(1)
k = r

(1,q,1)
k,n ≡

∫
L

ζ r̃
(1,R)
k,n (ζ )dζ.

This and (2.57) yield thatq(1)
k = 0. Furthermore, the first equation in (2.60) forJ

(0)
2q =

J
(0)
2q−1 = a/2, in view of (2.57) and (2.58), has the form

a(J
(1)
k + J

(1)
k−1) = [2(k − n)− 1]I (i) + r

(1,J,2)
k,n ,

I (i) ≡ 1

2

(
1

P(a)
+ 1

P(−a)

)
.

(2.62)

Iterating this relation starting fromk = n it is easy to obtain the one-parameter family
of solutions

aJ
(1)
k = (k − n)I (i) − c(−1)k−n + r̃

(1,J )
k,n , (2.63)

where

r̃
(1,J )
k,n =

k−n∑
j=0

(−1)k−n−j r
(1,J,2)
n+j,n .

Substituting expression (2.58) forr̃ (1,R)
k,n (z) in (2.61) and using the resultingr(1,J,2)k,n (z)

in the last relations, we obtain the bound

|r̃ (1,J )
k,n | ≤ const

( |k − n|2 + 1

n
+ |k − n|5

n3

)
. (2.64)

This leads to (1.37) for the case (i), if|k − n| ≤ n2/3.
To fix the parameterc in (2.63) we use the relation known in random matrix theory

as the string equation (see e.g. [15]):

Jk

∫
V ′(λ)ψ(n)

k (λ)ψ
(n)
k+1(λ)dλ =

k

n
.

The relation can be easily obtained from the identity∫ (
e−nV (λ)p

(n)
k−1(λ)p

(n)
k (λ)

)′
dλ = 0.

We use this relation in the form

Jn

2πi

∫
L

V ′(ζ )Rn,n+1(ζ )dζ = 1+O(e−nC), (2.65)
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following from Proposition 2. The first order equation which follows from (2.65) has
the form

J
(0)
n

2πi

∫
L

V ′(ζ )R(1)
n,n+1(ζ )dζ +

J
(1)
n

2πi

∫
L

V ′(ζ )R(0)
n,n+1(ζ )dζ = 0.

By using (1.34), (2.33), (2.57), and (2.63), we get a linear equation with respect toc:

D(i)c − A(i) = 0, (2.66)

with

D(i) ≡ J±n
∫
L

V ′(ζ )R(0)
n,n+1(ζ )dζ +

a

2

∫
L

V ′(ζ )(R(0)J±R(0))n,n+1(ζ )dζ,

A(i) ≡ J (1∗)
n

∫
L

V ′(ζ )R(0)
n,n+1(ζ )dζ +

a

2

∫
L

V ′(ζ )(R(0) · J (1∗) · R(0))n,n+1(ζ )dζ,

(2.67)

whereJ± is the symmetric Jacobi matrix with coefficientJ±k = (−1)n−k andJ (1∗) is
the symmetric Jacobi matrix with coefficients defined by (1.34).

Lemma 3. Under conditions of the theoremA(i) = 0, D(i) �= 0 and Eq. (2.66) has the
unique solutionc = 0.

The proof of this lemma is given in the next section.
By using the lemma we find the first order terms of our expansion in the case (i) given

in (1.34).
Now we will prove (1.31) and (1.28) by induction. The scheme of the induction pro-

cedure will be as follows. Assume that we have found coefficientsq
(0)
k , . . . , q

(p)
k and

J
(0)
k , . . . , J

(p)
k . Then we can find thep+1 correctiong(p+1)

k (z) and estimate the respec-

tive remainder̃r(p+1,g)
k,n from the (p + 1) form of Eq. (2.18) (see Eq. (2.70) below), in

which we use the functionsg(0)
k (z), . . . , g

(p)
k (z) andR

(0)
kk (z), . . . , R

(p)
kk (z) found previ-

ously. Then, by using the(p+1) form of Eq. (2.19) (see Eq. (2.73) below), we determine
R

(p)
kk (z) and estimate the respective remainderr̃

(p+1,R)
k,n . Finally, we find the coefficients

q
(p+1)
k , andJ (p+1)

k and estimate the respective remainder by using the (p + 1) form of
relations (2.36) and (2.65).

To realize this scheme we first write the asymptotic relation:

gk,n(z) =
p∑

j=0

n−j g
(j)
k (z)+ n−pr̃

(p,g)
k,n (z), r̃

(p,g)
k,n (z) → 0, asn →∞, (2.68)

valid for all k such that|k− n| ≤ N1(n). Let matricesR(j)(z), j = 0, . . . , p be defined
as in Lemma 2 (see formula (2.48), (2.49)). Then, denoting

g
(p+1)
k,n (z) ≡ np+1

(
gk,n(z)−

p∑
j=0

n−j g
(j)
k (z)

)
, (2.69)
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we obtain from (2.18) the equation of the(p + 1)th order forg(p+1)
k,n (z):

2g(z)g(p+1)
k,n (z) = 1

2πi

∫
Ṽ (z, ζ )g

(p+1)
k,n (ζ )dζ

− F
(p+1,g)
k (z)− r

(p+1,g)
k,n (z)+ en(z),

(2.70)

where

F
(p+1,g)
k (z) =

p∑
l=1

g
(p+1−l)
k (z)g

(l)
k (z)+

k∑
m=1

∞∑
j=k+1

p−1∑
l=0

R
(p−l−1)
m,j (z)R

(l)
m,j (z),

r
(p+1,g)
k,n (z) = n−p−1(g

(p+1)
k,n (z))2 + 2g(p+1)

k,n (z)

p∑
l=1

n−lg
(l)
k (z)

+
p∑

l,l′=1,l+l′>p+1

np+1−l−l′g(l)
k (z)g

(l′)
k (z)

· np

[
1

n

k∑
j=1

(
− R′(z)j,j −

k∑
m=1

R2
j,m(z)

)

− 1

n

k∑
j=1

(
(S(p) · S(p))j,j (z)−

k∑
m=1

(S
(p)
j,m(z))2

)]
,

(2.71)

with S
(p)
j,m(z) defined by (2.49). On the basis of (2.68), (1.28), and Lemma 2 we conclude

that the relations ∣∣F (p+1,g)
k (z)

∣∣ ≤ const(|k − n|p+1 + 1),

and

r
(p+1,g)
k,n (z) → 0, as n →∞,

are valid uniformly in{z : δε(z) ≥ d}, for any fixedd > 0, because by the induction
assumption (2.68) we have thatn−1g

(p+1)
k,n (z) ≡ g̃

(p)
k,n(z) → 0 asn →∞. Then Lemma

1 leads to the relations

g
(p+1)
k,n (z) = g

(p+1)
k (z)+ r̃

(p+1,g)
k,n (z), (2.72)

where forδε(z) ≥ d > 0,

g
(p+1)
k (z) = 1

2πi

∫
L

F
(p+1,g)
k (ζ )

P (ζ )(ζ − z)
dζ, |g(p+1)

k (z)| ≤ const(|k − n|p+1 + 1)

and

|r̃ (p+1,g)
k,n (z)| ≤ const

|X(z)| ((|r
(p+1,g)
k,n (z)| + max{ζ∈L} |r

(p+1,g)
k,n (ζ )|).
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Now, denoting (cf. (2.69))

R
(p+1,n)
k,k (z) ≡ np+1

(
Rk,k(z)−

p∑
j=0

n−jR
(j)
k,k(z)

)
,

we get from (2.19) the equation of the form (cf. (2.55))

2g(z)R(p+1,n)
k,k (z) = 1

2πi

∫
Ṽ (z, ζ )R

(p+1)
k,k (ζ )dζ

− F
(p+1,R)
k (z)− r

(p+1,R)
k,n (z)+ en(z),

(2.73)

where

F
(p+1,R)
k (z) =

p∑
l=0

g
(p+1−l)
k−1 (z)R

(l)
k,k(z)+

( k∑
j=1

−
∞∑

j=k+1

) p∑
l=0

R
(p−l)
m,j (z)R

(l)
m,j (z),

r
(p+1,R)
k,n (z) = 2R(p+1)

k,k (z)

p∑
l=1

n−lg
(l)
k−1(z)

+
p∑

l,l′=1,l+l′>p+1

np+1−l−l′g(l)
k−1(z)R

(l′)
k,k (z)

+ np−1
[(

− R′(z)k,k − 2
k∑

m=1

(Rk,m(z))2
)

−
(
(S(p) · S(p))j,j (z)− 2

k∑
m=1

(S
(p)
j,m(z))2

)]
.

By the virtue of (2.68), (1.28) and of Lemma 2, we conclude that the relations∣∣F (p+1,R)
k (z)

∣∣ ≤ const(|k − n|p+1 + 1),

and

r
(p+1,R)
k,n (z) → 0, as n →∞,

are valid uniformly in{z : δε(z) ≥ d}, for any fixedd > 0. Using again Lemma 1, we
get

R
(p+1,n)
k,k (z) = R

(p+1)
k,k (z)+ r̃

(p+1,R)
k,n (z), (2.74)

where forδε(z) > d,

R
(p+1)
k,k (z) = 1

2πi

∫
L

F
(p+1,R)
k (ζ )

P (ζ )(ζ − z)
dζ, |R(p+1)

k,k (z)| ≤ const(|k − n|p+1 + 1) (2.75)

and ∣∣r̃ (p+1,R)
k,n (z)

∣∣ ≤ const

|X(z)|
(∣∣r(p+1,R)

k,n (z)
∣∣+ max{ζ∈L}

∣∣r(p+1,R)
k,n (ζ )

∣∣) .
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Now, as for the first order approximation case, in the case (ii) we take the(p+1) - order
terms (with respect ton−1) of Eqs. (2.36) fork = 2q:

2(J (0)
2q J

(p+1)
2q + J

(0)
2q−1J

(p+1)
2q−1 ) = 1

2πi

∫
L

ζ 2R
(p+1)
2q,2q (ζ )dζ + r

(p+1,J,2)
2q ,

4(J (0)
2q J

(p+1)
2q + J

(0)
2q−1J

(p+1)
2q−1 )((J

(0)
2q )2 + (J

(0)
2q−1)

2)

+ 2J (0)
2q J

(0)
2q−1(J

(0)
2q−1J

(p+1)
2q + J

(0)
2q J

(p+1)
2q+1 + J

(0)
2q J

(p+1)
2q−1 + J

(0)
2q−1J

(p+1)
2q−2 )

= 1

2πi

∫
L

ζ 4R
(p+1)
2q,2q (ζ )dζ + r

(p+1,J,4)
2q , (2.76)

whereF (p+1,J,2)
k andF (p+1,J,4)

k are the coefficients atn−p−1 in the r.h.s. of the second

and the third equations (2.36) which we get, substituting thereJk =
p∑

j=0

n−j J
(j)
k , and

r
(p+1,J,2)
k ≡

∫
L

ζ 2r̃
(p+1,R)
k,n (ζ )dζ → 0, n →∞,

r
(p+1,J,4)
k ≡

∫
L

ζ 4r̃
(p+1,R)
k,n (ζ )dζ → 0, n →∞.

Consider also the two analogs of the first relation of (2.76), in which 2q is replaced by
2q − 1 and 2q + 1. These relations together with (2.76) comprise a linear system with
respect to the variablesJ (p+1)

2q−2 , J (p+1)
2q−1 , J (p+1)

2q andJ
(p+1)
2q+1 . For J (0)

2q �= J
(0)
2q−1, i.e. in

the case (ii), the system is uniquely soluble and the solution satisfies condition (1.29) in
view of (2.75).

However, forJ (0)
2q = J

(0)
2q−1 this system is degenerated and so in the case (i) we

cannot findJ (p+1)
k from the system. Therefore similarly to (2.62)–(2.64) for the case (i)

we obtain the one-parameter family of solutions

J
(p+1)
k = b

(p+1)
k − c(−1)k−n + r̃

(p+1,J )
k,n , (2.77)

where

b
(p+1)
k =

k−n∑
j=0

(−1)k−n−j a
(p+1)
n+j , r̃

(p+1,J )
k,n =

k−n∑
j=0

(−1)k−n−j r
(p+1,J,2)
n+j,n ,

with

a
(p+1)
k ≡ −F

(p+1,J,2)
k + 1

2πi

∫
L

ζ 2R
(p+1)
k,k (ζ )dζ,

To fix the parameterc we use again identity (2.65) and Lemma 2. Then we get the
equation forc of the form

D(i)c − A
(i)
p+1 = 0,

where, as usually in perturbation theory, the coefficientD(i) is the same in each order
of the procedure. Thus, in view of Lemma 3,D(i) is nonzero and the parameterc is
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uniquely defined by this equation. By the same argument as in the casep = 1 it is
easy to see that in view of (2.75)q(p+1)

k andJ (p+1)
k satisfy bounds (1.30). Theorem 1 is

proven.

Proof of Corollary 1.By using general formulas (1.18 )–(1.25), (2.12) (2.14)–(2.16) and
the Christoffel–Darboux identity for orthogonal polynomials it can be shown that the
covariance (1.39) can be written as

Dn(z1, z2) = 1

2n2

∫
(λ− µ)2k2

n(λ, µ)dλdµ

(z1 − λ)(z1 − µ)(z2 − λ)(z2 − µ)

= J 2
n

n2

(
δRn+1,n+1

δz

δRn,n

δz
−

(
δRn+1,n

δz

)2)
+ en(z1)+ en(z2),

(2.78)

wherekn(λ, µ) is defined in (1.20) and we denoteδRk,j ≡ Rk,j (z1) − Rk,j (z2) and
δz ≡ z1 − z2.

Then, on the basis of Lemma 2, we conclude that the amplituded
(2)
n (z1, z2) of the

asymptotic formula (1.40) is:

d(2)
n (z1, z2) = (J (0)

n )2
(
δR

(0)
n+1,n+1

δz

δR
(0)
n,n

δz
−

(
δR

(0)
n+1,n

δz

)2)
.

According to Theorem 1 and Remark 2 after the theorem the zero-order coefficients
J

(0)
k of the Jacobi matrixJ (n) do not depend onk (k = n(1+ o(1))) in the case (i)

and are 2-periodic functions ofk in the case (ii). Thus, we have only to compute the
matrix elements of the resolvent of the constant Jacobi matrix and of the 2-periodic
Jacobi matrices whose coefficients are given by (1.34) and (1.35) in the cases (i) and (ii)
respectively. The computations are standard and lead to (1.41) and to (1.42). !

Proof of Corollary 2.The weak convergence of(ψ(n)
k (λ))2 is equivalent to the conver-

gence of its Stieltjes transform ∫
(ψ

(n)
k (λ))2dλ

z− λ
(2.79)

uniformly in z on any compact set ofC \ R. According to (2.12) and Proposition 2 the
Stieltjes transform (2.79) isRkk(z)+ en(z). Now the asymptotic formula (2.33) implies
that the Stieltjes transform (2.79) converges to>(z) asn →∞ and dist{z, σε} ≥ ḋ > 0.
This fact and the inversion formula (3.2) yield the result. !

3. Auxiliary Results

Proposition 1.For the proof of weak convergence of measuresNn and (1.10) see [8].
Furthermore, it follows from Eq. (2.22) that inD g(z) can be written as

V ′(z)
2

− 1

2

√
(V ′(z))2 − 4Q(z), (3.1)

whereQ(z) is defined in (2.23). Since

ρ(λ) = − 1

π
lim

ε→+0
�g(λ+ iε), (3.2)
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we conclude thatρ(λ) satisfies the Holder condition. Thus we find from the real parts
of (3.1) that:

v.p.

∫
σ

ρ(µ)dµ

λ− µ
= V ′(λ)

2
, λ ∈ σ.

Regarding this relation as a singular integral equation and using standard facts (see [21]),
we obtain (1.10) in which

P(λ) = 1

π

∫
σ

Q(λ,µ)X−1+ (µ)dµ

andQandX−1+ (µ)are defined in (1.16) and (1.11). It is clear thatP(λ)can be analytically
continued intoD and can be written in form (1.15). Sinceg(z) is uniquely determined
by its boundary values onσ and its asymptotic behaviourg(z) = z−1(1 + o(1)), as
z →∞, we obtain the assertions of the lemma. !

Proof of Proposition 2.According to the result of [8], and our condition C2, if we consider
the functionu(x) of the form (1.9), thenu(x) = C∗ (x ∈ σ ) andu(x) < C∗ (x ∈ σ ).
It is easy to see that at all endpointsa∗ of σ there exist one-side derivativesu′±(a∗)
(we take the right derivative for the right endpointsa∗ and the left derivative for the left
endpoints), and these derivatives are nonzero. SetC1 = 1

2 min |u′±(a∗)| and consider
the function

V1(x) =


0, x ∈ σ,

C1ε, x ∈ R \ σε,

±C1(x − a∗), σε \ σ.

(3.3)

In the last line here we take plus for the right endpoints and minus for the left endpoints
of the spectrum. It is easy to see that we can always chooseε0 so small that for any
ε ≤ ε0 the functionu1(x) ≡ u(x)+ V1(x) also takes its maximum valueC∗ onσ .

Consider now the following functions of(x1, . . . , xn) ∈ Rn that we will call Hamil-
tonians because their role below will be analogous to that of Hamiltonians of classical
statistical mechanics (see [8] for this analogy):

Hn(x1, . . . , xn) = n

n∑
i=1

V (xi)− 2
∑

1≤i<j≤n

ln |xi − xj |,

H (1)
n (x1, . . . , xn) = nṼ (x1)+ n

n∑
i=2

V (xi)− 2
∑

1≤i<j≤n

ln |xi − xj |,

H (1a)
n (x1, . . . , xn) = Ṽ (x1)− (n− 1)u1(x1)+ n

n∑
i=2

V (xi)

− 2
∑

2≤i<j≤n

ln |xi − xj |,

H (a)
n (x1, . . . , xn) = − nV1(x1)− n

n∑
i=1

u(xi)

+ n(n− 1)
∫

ln |x − y|ρ(x)ρ(y)dxdy,

(3.4)
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where

Ṽ (x) ≡ V (x)− V1(x),

u is defined in (1.9), andu1 = u+ V1. Denote by

p�
n = (Z�)−1 exp{−H�

n}

the probability density defined by one of these functions (cf. (1.17)).
We will use the Bogolyubov inequality, valid for any two HamiltoniansH1,2 with

correspondent normalization constants (partition functions)Z1,2,

〈H2 −H1〉H2 ≤ logZ1 − logZ2 ≤ 〈H2 −H1〉H1, (3.5)

where the symbol〈. . . 〉H denotes the mathematical expectation with respect to the
probability densityp = Z−1 exp{−H }.

Using the r.h.s inequality in (3.5) forH1 = H
(1)
n andH2 = H

(1a)
n , we get

logZ(1)
n − logZ(1a)

n

≤ 2(n− 1)
∫

log |x1 − x2|
(
ρ(1,1)
n (x1, x2)− ρ(1,1)

n (x1)ρ
(1,2)
n (x2)

)
dx1dx2

+ 2(n− 1)
∫

log |x1 − x2|ρ(1,1)
n (x1)

(
ρ(1,2)
n (x2)− ρ(x2)

)
dx1dx2, (3.6)

whereρ(1,1)
n (x1), andρ(1,2)

n (x2)are the first marginal densities corresponding tox1 andx2

for the HamiltonianH(1)
n (note thatρ(1,1)

n (x1) �= ρ
(1,2)
n (x1) sinceH(1)

n is not symmetric
in x1 andx2), andρ(1,1)

n (x1, x2) is the second marginal density, corresponding tox1, x2

(note thatρ(1,1)
n (x1, x2) is not symmetric because of the same reason). Lemma 4 of

[8] (valid for not necessarily symmetric Hamiltonians) implies that the first term in the
r.h.s. of (3.6) isO(logn). To estimate the second term we first take into account that the
integral kernel log|x − y|−1 is positive definite, hence by the corresponding Schwartz
inequality

∣∣∣∣ ∫ log |x − y|ρ(1,1)
n (x)

(
ρ(1,2)
n (y)− ρ(y)

)
dxdy

∣∣∣∣
≤

∣∣∣∣ ∫ log |x − y|ρ(1,1)
n (x)ρ(1,1)

n (y)dxdy

∣∣∣∣1/2

×
∣∣∣∣ ∫ log |x − y|

(
ρ(1,2)
n (x)− ρ(x)

)(
ρ(1,2)
n (y)− ρ(y)

)
dxdy

∣∣∣∣1/2

. (3.7)
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By using the estimate∣∣∣∣ρ(1,1)
n

(
x + x̃

n3/γ

)
− ρ(1,1)

n (x)

∣∣∣∣
= (Z(1)

n )−1
∫

dx2 . . . dxn

∣∣∣∣ exp

{
− nṼ

(
x + x̃

n3/γ

)
− n

n∑
i=2

V
(
xi + x̃

n3/γ

)}

− exp

{
− nṼ (x)− n

n∑
i=2

V (xi)

}∣∣∣∣ · n∏
i=2

|x − xi |2
n∏

2≤i<j

|xi − xj |2

≤ const

n
ρ(1,1)
n (x),

(3.8)

valid for |x̃| < 1 in view of the condition (1.3), and the fact that
∫
ρ
(1,1)
n (x)dx = 1,

we obtain thatρ(1,1)
n (x) ≤ constn3/γ . Hence we have the following bound for the first

factor in the r.h.s. of (3.7):∣∣∣∣ ∫ ln |x − y|ρ(1,1)
n (x)ρ(1,1)

n (y)dxdy

∣∣∣∣ ≤ const logn.

To estimate the second factor in the r.h.s. of (3.7) we use the l.h.s inequality in (3.5) for
the HamiltoniansH1 = H

(a)
n andH2 = H

(1)
n , whereH(a)

n andH(1)
n are defined in (3.4).

We obtain the inequality

− (n− 1)(n− 2)

n2

∫
log |x − y|(ρ(1,2)

n (x, y)− ρ(1,2)
n (x)ρ(1,2)

n (y))dxdy

− (n− 1)(n− 2)

n2

∫
log |x − y|(ρ(1,2)

n (x)− ρ(x))(ρ(1,2)
n (y)− ρ(y))dxdy

+ 2(n− 1)

n2

∫
log |x − y|(ρ(1,2)

n (x)− ρ(x))ρ(y)dxdy

+ 2

n

∫
log |x − y|ρ(1,1)

n (x)ρ(y)dxdy

− 2(n− 1)

n2

∫
log |x − y|ρ(1,1)

n (x, y)dxdy

≤ 1

n2 logZ(a)
n − 1

n2 logZ(1)
n =

(
1

n2 logZ(a)
n − 1

n2 logZn

)
+

(
1

n2 logZn − 1

n2 logZ(1)
n

)
≤ O

(
logn

n

)
− 2

n

∫
V1(x)ρn(x)dx.

(3.9)

In the r.h.s. here we have used the result of [8] to estimate 1/n2 logZ
(a)
n − 1/n2 logZn

and inequality (3.5) to estimate 1/n2 logZn − 1/n2 logZ
(1)
n . Using Lemma 4 of [8]

(more precisely, repeating almost literally the arguments of that lemma in the case of
the non symmetric Hamiltonian ), we obtain that the first and the last terms in the l.h.s.
of (3.9) are of the orderO(logn/n). And the third, the fourth and the fifth terms here
are evidently of the orderO(n−1). Therefore finally we get from (3.9),

−
∫

log |x − y|(ρ(1,2)
n (x)− ρ(x))(ρ(1,2)

n (y)− ρ(y))dxdy ≤ const
logn

n
. (3.10)
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Substituting this estimate in (3.6) we obtain

logZ(1)
n − logZ(1a)

n ≤ const
√

n logn. (3.11)

Now we use the r.h.s. inequality in (3.5) forH1 = H
(1a)
n andH2 = Hn, whereH(1a)

n

andHn are defined in (3.4). We get

logZ(1a)
n − logZn ≤ n

∫
V1(x1)ρ

(a1)
n (x1)dx1

+ (n− 1)
∫

ρ(a1)
n (x1)(ρ

(a2)
n (y)− ρ(y))dx1dy,

(3.12)

whereρ(a1)
n andρ

(a2)
n are the first marginal densities of the HamiltonianH

(1a)
n , corre-

sponding tox1 andx2. On the other hand it is easy to see that

ρ(a1)
n (x) = exp{(n− 1)u1(x)− Ṽ (x)}∫

exp{(n− 1)u1(x)− Ṽ (x)}dx ,

and due to the choice of the functionV1 the densityρ(a1)
n (x)decays exponentially outside

of σ . Thus sinceV1(x) = 0 for x ∈ σ the first term in the r.h.s. of (3.12) is of the order
O(1). The second term can be estimated by the Schwartz inequality similarly to (3.7)
and then, using the fact thatρ(a2)

n (x) coincides with the first marginal densities of the
Hamiltonian,

H
′
n(x2, . . . , xn) = n

n∑
i=2

V (xi)− 2
∑

2≤i<j

ln |xi − xj |.

Therefore the analog of inequality (3.10) forρ
(a2)
n (x) follows directly from the results

of [8]. Thus, from (3.12) we derive

logZ(1a)
n − logZn ≤ const

√
n logn. (3.13)

Bounds (3.11) and (3.13) lead to the relation∫
enV1(x1)ρn(x1)dx1 = Z

(1)
n

Zn

≤ eC2
√

n logn.

TakingC0 = 2C2
C1

, we obtain from the last relation that for any positiveε satisfying the

inequality: C0n
−1/2 logn ≤ ε ≤ ε0 we have∫
R\σe

ρn(x1)dx1 ≤ exp{C2
√

n logn− C1εn} ≤ e−nC1ε/2.

To obtain this statement forρk,n we have to prove now that for anyn-independentε we
can chooseε1 such that for|k − n| ≤ ε1n the spectrum of the ensemble with potential

Ṽ ≡ n

k
V is inside ofσε/2. This fact follows from the main result of [8,12] and also from

[19]. Proposition 2 is proven. !
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Proof of Lemma 1.Using Proposition 1 we rewrite Eq. (2.27) inD:

P(z)X(z)R(z) = 1

2πi

∫
L

dζQ(z, ζ )R(ζ ), (3.14)

with Q(z, ζ ) defined by (1.16). It follows from formula (1.15) forP(z) that the function
>(z) of (2.28) solves Eq. (3.14) in the class (2.29). Let us show that the solution is
unique. Denoting byQ̃(z) the r.h.s. of (3.14), we see thatQ̃(z) is an analytic function
in D. From Eq. (3.14) we derive that zeros ofP(z) in D coincide with zerosQ̃(z) and

have the same order. Thus, functionR(z)X(z) = Q̃(z)
P (z)

is analytic inD. In the rest ofC it
is analytic, because we are looking for a solution analytic outsideσε. ThusR(z)X(z) is
analytic in the wholeC. Besides, ifR(z) = 1

z
(1+ o(1)), as|z| → ∞, then in the case (i)

R(z)X(z) is bounded, as|z| → ∞. Therefore by the Liouville theorem,R(z)X(z) is a
constant. In the case (ii) we get also from the Liouville theorem, thatR(z)X(z) = az+b.
By the symmetry of the functionR(z) we getR(z) = zX−1(z). This proves the first
statement of the lemma.

To prove the second statement, we notice that under condition (2.30) in the case (i) we
haveR(z)X(z) → 0, as|z| → ∞. Thus, according to the above conclusionsR(z) = 0
for all z. In the case (ii) condition (2.30) implies thatR(z)X(z) = const and we get
R(z)X(z) = 0 from the symmetry condition.

To prove that (2.32) is a solution of Eq. (2.31) we note first that for any closed contour
L that does not contain the zeros ofP(z) we can write the relation

R(z)X(z) = 1

2πi

∫
L

R(ζ )X(ζ )dζ

(ζ − z)
− 1

2πi

∫
L

Q̃(ζ )dζ

P (ζ )(ζ − z)
, (3.15)

whereQ̃(z) is defined as in the r.h.s. of (3.14). Indeed, under the condition of the lemma
R(z)X(z) = z−1(1+ o(1)), asz → ∞, i.e. the function is analytic outside of contour
L. Then, by the Cauchy theorem, the first term in the r.h.s. isR(z)X(z). The second term
is zero, because the integrand is analytic inside the contourL andz is outside ofL. By
using this relation, we can rewrite formula (2.32) for the solution as

1

2πi

∫
L1

(
(V ′(ζ )− P(ζ )X(ζ ))R(ζ )

− 1

2πi

∫
L

V (ζ, ζ1)R(ζ1)dζ1 + F(ζ )

)
dζ

P (ζ )(ζ − z)
= 0,

where the contourL1 lies outside of L and is close enough toL. According to the
condition of the lemma the expression in the brackets is analytic outside ofL1. Thus by
the Cauchy theorem, we have

(V ′(z)− P(z)X(z))R(z)− 1

2πi

∫
L

V (z, ζ )R(ζ )dζ + F = 0.

Since 2g(z) = V ′ − P(z)X(z), the last relation proves that (2.32) is the solution of
Eq. (2.31).

Uniqueness follows from the absence of solutions of the homogeneous equation
(2.27) in the class (2.30). This fact was proven above. !
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Proof of Lemma 2.Consider the ”block” symmetric Jacobi matriẋJ (n,N1) which can be
obtained fromJ if we setJn−N1−1 = 0. Let Ṙ(n,N1)(z) be its resolvent. We will use
the resolvent identity valid for any two selfadjoint operatorsJ1,2 with resolventsR1,2
respectively,

R1(z)− R2(z) = R1(z)(J2 − J1)R2(z). (3.16)

Thus taking asR1(z) the resolventR(z) of J (n), and asR2(z) the resolventṘ(n,N1)(z)

of J̇ (n,N1) we obtain

Rk,j (z)− Ṙ
(n,N1)
k,j (z) = Ṙ

(n,N1)
k,n−N1−1Jn−N1−1Rn−N1,j (z)

+ Ṙ
(n,N1)
k,n+N1+1Jn+N1+1Rn+N1+2,j (z).

(3.17)

Now we use the general fact of the theory of the Jacobi matrices.

Proposition 3. LetJ be the Jacobi matrix with coefficientsJk,k+1 = Jk+1,k = ak ∈ R,
|Jk,k| ≤ ε, and |ak| ≤ A. Then there exist positive constantsC1,2, such that for any
z ∈ C \ [−2A− ε,2A+ ε] the matrix elements of the resolventG = (zI − J )−1 satisfy
the inequalities:

|Gk,k′(z)| ≤ C1

δε(z)
e−C2δε(z)|k−k′|, (3.18)

whereδε(z) ≡ dist{z, [−2A− ε,2A+ ε]}.
The proof of the proposition is similar to that of the well-known Combes- Thomas
estimates for the Schroedinger operator (see e.g. [26]) and we omit the proof.

On the basis of the proposition we obtain the bound

|Ṙ(n,N1)
j,k (z)| ≤ 1

δε(z)
e−C2δε(z)|j−k|. (3.19)

Thus, for(N1 − 2Ñ) ≤ |k − n| ≤ (N1 − Ñ) we have

|Ṙ(n,N1)
n−N1−1,k(z)|, |Ṙ(n,N1)

n+N1+1,k(z)| ≤
1

δε(z)
e−C2δε(z)Ñ .

So, it follows from (3.17) that

|Rk,j (z)− Ṙ
(n,N1)
k,j (z)| ≤ const

|�z|δε(z)e
−C1δε(z)Ñ . (3.20)

Similarly, if we consider the(2N1 + 1)-periodic symmetric Jacobi matrix̃J such that

J̃k,k+1 = Jk,k+1 |k − n| ≤ N1, (3.21)

and denote bỹR its resolvent, then

|R̃k,k − Ṙ
(n,N1)
k,k (z)| ≤ 2

|�z|δε(z)e
−C2δε(z)Ñ . (3.22)

Therefore,

|Rk,k(z)− R̃k,k(z)| ≤ const

|�z|δε(z)e
−C2δε(z)Ñ . (3.23)
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Applying the resolvent identity (3.16) to the matricesJ̃ (p) andJ̃ we obtain in view of
estimate (1.28):

|R̃k,j (z)− R̃
(p)
k,j (z, n

−1)| ≤ 2ε(p)
n

np|�z|2 , (3.24)

whereR̃(p)
k,j (z, s) is the resolvent of the Jacobi matrix̃J (p)(z, s) defined in (2.48) and

ε
(p)
n is defined in (1.30). Now expanding̃R(p)

k,k (z, n
−1) with respect ton−1 it is easy to

find that

|R̃(p)
k,j (z, n

−1)− S
(p)
k,j (z)| ≤

C1N
p+1
1

δ
p+1
ε (z)np+1

. (3.25)

From (3.23)–(3.25) we derive that

Rk,k(z)− S
(p)
k,k (z)| ≤

ε
(p)
n

δ2
ε (z)n

p
+ C1N

p+1
1

δ
p+1
ε (z)np+1

+ e−C2δε(z)Ñ

|�z|δε(z) .

This inequality and (2.11), lead to the first inequality in (2.51).
To prove the second inequality in (2.51) we use again identity (3.17). Taking the

second power of the identity, using the bounds

|Ṙ(n,N1)
k,j (z)|, |Rk,j (z)| ≤ 1

|�z| ,

valid for resolvents of arbitrary selfadjoint operators, and bound (3.19), we obtain∣∣∣∣ ∞∑
j=1

(Rk,j (z))
2 −

∞∑
j=1

(Ṙ
(n,N1)
k,j (z))2

∣∣∣∣
≤ 4

δε(z)
e−C2δε(z)Ñ

( ∞∑
j=1

|Rn−N1,j (z)|2 +
∞∑
j=1

|Rn+N1,j (z))
2|

)

≤ 8

|�z|2δε(z)e
−C2δε(z)Ñ .

(3.26)

To estimate here the sums of the type
∑∞

j=1 |Rn−N1,j (z)|2 we have used the simple
inequalities

∞∑
j=1

|Rn−N1,j (z)|2 =
∞∑
j=1

Rn−N1,j (z)Rj,n−N1(z) ≤ (R(z) ·R(z))n−N1,n−N1 ≤
1

|�z|2 .

Similarly,∣∣∣∣ ∞∑
m=k+1

(R̃k,m(z))2 −
∞∑

m=k+1

(Ṙ
(n,N1)
km (z))2

∣∣∣∣ ≤ 2
1

|�z|2δε(z)e
−C2δε(z)Ñ . (3.27)

And then, by the same way as in (3.23)-(3.25) we get the second inequality of (2.51).
The proof of (2.52) is similar.
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Note that in fact we have proved (2.51) and (2.52) for|k − n| ≤ (N1 − Ñ).
To prove (2.53) we need to make one more step. Let us prove that for|k − n| ≤

(N1 − 2Ñ),

∣∣∣∣ n−(N1−Ñ)∑
j=1

[
− R′

j,j (z)−
k∑

m=1

R2
j,m(z)

]∣∣∣∣ ≤ 1

|�z|2δε(z)e
−C2δε(z)Ñ/2. (3.28)

To this end we consider one more ”block” symmetric Jacobi matrixJ̇ (n,(N1−2Ñ)) which
can be obtained fromJ if we put J

n−(N1−2Ñ)−1,n−(N1−2Ñ)
= 0. Using identity (3.16)

for J andJ̇ (n,(N1−2Ñ)) and (3.19) forJ̇ (n,(N1−2Ñ)), we obtain similarly to (3.26),

∣∣∣∣ n−(N1−Ñ)∑
j=1

∞∑
m=k+1

(Rj,m(z))2 −
n−(N1−Ñ)∑

j=1

∞∑
m=k+1

(Ṙ
(n,(N1−2Ñ))
j,m (z))2

∣∣∣∣
≤ 2n

|�z|3e
−C2δε(z)Ñ ≤ 1

|�z|2δε(z)e
−C2δε(z)Ñ/2. (3.29)

Then, using the estimate (3.19) forṘ
(n,(N1−2Ñ))
j,m (z) with j ≤ n − (N1 − Ñ) andm ≥

k + 1 > n− (N1 − 2Ñ) we get

∣∣∣∣ n−(N1−Ñ)∑
j=1

∞∑
m=k+1

(Ṙ
(n,(N1−2Ñ))
j,m (z))2

∣∣∣∣ ≤ 2n

δ2
ε (z)

e−C2δε(z)Ñ ≤ 1

δ2
ε (z)

e−C2δε(z)Ñ/2.

This inequality combined with (3.29) proves that

∣∣∣∣ n−(N1−Ñ)∑
j=1

[
(R ·R)j,j (z)−

k∑
m=1

R2
j,m(z)

]∣∣∣∣
=

∣∣∣∣ n−(N1−Ñ)∑
j=1

∞∑
m=k+1

R2
j,m(z)

∣∣∣∣ ≤ 1

|�z|3e
−C2δε(z)Ñ/2.

Now, using (2.11), we can replace(R∗R)j,j (z) by (−R′
j,j (z)) andRj,m(z) byRj,m(z)

to get (3.28). Applying the first and the second line of (2.51) for|k−n| ≤ (N1− Ñ) we
get (2.53).  !
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Proof of Lemma 3.To findD
(i)
k we first compute the quantity

(R(0)(ζ )J (±)R(0)(ζ ))n,n+1

=
∞∑

j=−∞
(R

(0)
n,j (ζ )(−1)n−jR

(0)
j+1,n+1 + R

(0)
n,j+1(ζ )(−1)n−jR

(0)
j+2,n+1(ζ )

=
∞∑

j=−∞

1

(2π)2

∫ 2π

0
dxdy

ei(n−j)(x−y−π)(1+ e−i(x+y))

(ζ − a cosx)(ζ − a cosx)

= 1

2π

∫ 2π

0
dx

1− cos 2x

(ζ 2 − a2 cos2 x)

= 2

(
1− ζ 2

a2

)
1

2π

∫ 2π

0
dx

1

(ζ 2 − a2 cos2 x)
+ 1

πa2

= 2

ζ

(
1− ζ 2

a2

)
X−1(ζ ).

Then using the simple formulaR(0)
n,n+1(ζ ) = a−1(ζR

(0)
n,n(ζ )− 1) = a−1(ζX−1(ζ )− 1)

we find from (2.65),

D(i) = 1

2πi

∫
L

V ′(ζ )
(
ζ

a
+ a

ζ

(
1− ζ 2

a2

))
X−1(ζ )dζ

= a

2πi

∫
L

V ′(ζ )
X(ζ )ζ

dζ = aP (0) �= 0.

Here we have used representation (1.15) and the fact that
∫
L
dζ(X(ζ )ζ )−1 = 0.

Similar calculations show us thatA(i) = 0, so it follows from Eq. (2.66) thatc = 0
and we get (1.34).  !
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